BRIEF COMMUNICATION

CARBOHYDRATE ASSIMILATION PROFILES OF BRAZILIAN Candida dubliniensis ISOLATES BASED ON ID 32C SYSTEM

Sydney Hartz ALVES(1), Jorge A. HORTA(2), Eveline P. MILÁN(3), Liliane A. SCHEID(1), Marilene H. VAINSTEIN(2), Janio M. SANTURIO(1) & Arnaldo L. COLOMBO(4)

SUMMARY

The purpose of the present study was to evaluate the identification of 19 Brazilian C. dubliniensis based on the biochemical profile exhibited when tested by the commercial identification kit ID 32C (bioMerieux). Thirteen of the isolates were rigorously identified as C. dubliniensis and the remaining isolates (six) were considered as having a doubtful profile but the software also suggested that there was 83.6% of chances for them to be C. dubliniensis. As well as pointed by the literature the identification obtained by phenotypic tests should be considered presumptive for C. dubliniensis due to variability of this new species.

KEYWORDS: Candida dubliniensis; ID 32C; Phenotypic identification.

INTRODUCTION

Candida dubliniensis is a newly described species of Candida, which was first reported by SULLIVAN et al. in 199521. Despite C. dubliniensis has been recovered from several body sites in many human populations, it is most often isolated from the oral cavities of patients infected with the Human Immunodeficiency Virus. This new yeast is found all over the world4,10,15,16,22 and is similar to C. albicans in a number of ways including morphology and metabolism, being considered as an opportunistic yeast pathogen but also recognized as a minor constituent of the normal human oral microbial flora11,15.

A multicenter surveillance study conducted in Brazil by MILÁN et al.10 showed a 2.8% prevalence rate of HIV-infected/AIDS adult patients harboring C. dubliniensis in their oral cavities. In contrast with patients from the north-hemisphere countries where this particular species may be recovered from 27% of asymptomatic HIV-positive patients and 32% of AIDS patients with oral candidiasis21, different studies from South America suggest that C. dubliniensis is more rarely found2,10,16,18.

C. dubliniensis is phylogenetically related to C. albicans and the distinction between C. dubliniensis and C. albicans remains a challenge for clinical microbiology laboratories. The importance of the correct identification seems to be meaningful for epidemiological proposals and therapeutic interventions. The majority of C. dubliniensis isolates show susceptibility to currently used antifungal drugs15, but it has been demonstrated that they may rapidly develop a stable resistance to fluconazole upon in vitro exposure11.

Various phenotype screening tests have been used to discriminate those organisms, including the colony color on CHROMagar Candida, growth temperature test at 42/45 °C14, sugar assimilation tests and, β-glucosidase activity17,21. In addition, C. dubliniensis strains may be recognized by their ability to produce abundant chlamydospores often observed in triplets or in contiguous pairs21, to coaggregate in vitro with Fusobacterium nucleatum, to produce rough colonies and chlamydospores on Staib agar20 and also by its intolerance to 6.5% sodium chloride broth1 and inability to produce an opacity halo at Tween 80 agar19. It is important to highlight that no single phenotype test has proven to be highly effective and the use of genotypic tests may be necessary for definitive identification purposes7,9,22. Considering that molecular methods are relatively time consuming and expensive there is a need for clinical laboratories to have phenotype tests as reliable as the carbohydrate assimilation profiles.

The present study was undertaken to evaluate the biochemical profile exhibited by nineteen Brazilian C. dubliniensis isolates formerly identified by genotyping methods, when tested by the commercial identification kit ID 32C (bioMerieux). This kit provides an evaluation for the assimilation of 30 carbon sources and for the growth of yeasts in the presence of cycloheximide. The assays were performed according to the manufacturer’s instructions. It consists of 32 cupules, each containing a dehydrated carbohydrate substrate. A semi-solid,
chemically defined, minimal medium was inoculated with a suspension of the yeast organism to be tested. After 24–48 hours of incubation, growth in each cupule was detected by visual reading. Identification was obtained using the identification software (bioMérieux).

After 48 h of incubation, the ID 32 C system was able to rigorously identify and classify great part of the isolates as positive (13) for C. dubliniensis at three different levels: excellent (seven), very good (five) and as good (one). Almost all the remaining isolates (six) were considered as having a doubtful profile but the software also suggest that there is 83.6% of chances for them to be C. dubliniensis. It should be pointed here that in laboratory routine the percentage of 83.6% would be an important indication of the species and should be taken into account.

Some assimilation profiles were not consistent among the strains of C. dubliniensis tested once they exhibited variation of results among different isolates tested. The lower agreement rate was found with results generated by palatinose, 2-keto-gluconate, N-acetylgulcosamine, lactate, trehalose, galactose and sorbitol (Table 1). Best discrimination and consistence of results were obtained with α-methyl-D-glucoside (MDG) and xylose (XYL) that were not assimilated by 100% of the isolates tested. Lactate (LAT) and trehalose (TRE) were assimilated (MDG) and xylose (XYL) that were not assimilated by 100% of the isolates tested. Lactate (LAT) and trehalose (TRE) were assimilated (MDG) and xylose (XYL) that were not assimilated by 100% of the isolates tested. Lactate (LAT) and trehalose (TRE) were assimilated (MDG) and xylose (XYL) that were not assimilated by 100% of the isolates tested. Lactate (LAT) and trehalose (TRE) were assimilated (MDG) and xylose (XYL) that were not assimilated by 100% of the isolates tested.

In conclusion, despite the promising results obtained with the ID 32C system, this method exhibited some limitations in the identification of C. dubliniensis. Since variability has been reported in the literature, the results obtained by phenotypic tests should be considered presumptive for C. dubliniensis and one or more confirmatory tests should be employed. Therefore, we do not recommend the use of ID 32C system as the only screening test for the identification of C. dubliniensis.


