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Obesity treatments, such as calorie restriction (CR), eventually lead to muscle

wasting and higher rates of neuroinflammation, whereas hypothalamic inflammatory

conditions impair body weight (BW) control. Nicotinamide riboside (NR) has been

proposed against obesity but with little evidence on skeletal muscle tissue (SMT) and

neuroinflammation. Therefore, we aimed to investigate the effects of CR on SMT and

on hypothalamic inflammatory biomarkers in obese adult male Wistar rats, and whether

NR supplementation alone or in combination with CR affects these parameters. Obesity

was induced in rats through a cafeteria diet for 6 weeks. After that, a group of obese

rats was exposed to CR, associated or not associated with NR supplementation (400

mg/kg), for another 4 weeks. As a result, obese rats, with or without CR, presented lower

relative weight of SMT when compared with eutrophic rats. Rats under CR presented

lower absolute SMT weight compared with obese and eutrophic rats, in addition to

presenting elevated hypothalamic levels of TNF-α. NR supplementation, in all groups,

enhanced weight loss and increased relative weight of the SMT. Furthermore, in animals

under CR, NR reversed increases TNF-α levels in the hypothalamus. In this study,

these data, although succinct, are the first to evidence the effects of NR on SMT and

neuroinflammation when associated with CR, especially in obesity conditions. Therefore,

this provides preliminary support for future studies in this investigative field. Furthermore,

NR emerges as a potential adjuvant for preventing muscle mass loss in the weight

loss processes.
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INTRODUCTION

Presenting global epidemic proportions, obesity is a chronic
metabolic disease associated with serious health problems (1).
Ideally, its treatment is aimed at a gradual loss of body weight
(BW), mainly through the reduction in body fat. In this sense,
both physical activity and calorie restriction (CR) are the
standardly used clinical practices (1). However, CR regimens
particularly can lead not only to reduced body fat but also muscle
protein breakdown, which subsequently causes muscle wasting
(2, 3). Loss of muscle mass is a considerable risk factor for bone
fractures, cardiovascular problems, and metabolic dysfunctions.
In addition, complications in skeletal muscle tissue (SMT) impair
the whole-body bioenergetic metabolism and hinder the process
of weight loss (4). Therefore, a healthy weight loss strategy should
have STM as a focus as well.

Changes in body composition, especially in SMT, are
directly coordinated through the brain (5). In the central
nervous system (CNS), hypothalamic neurons are mainly
responsible for the management of eating behavior and energy
expenditure. Additionally, hypothalamic stimuli inherent
to whole-body energy homeostasis (e.g., fasting or feeding)
or local neurochemical insults (e.g., inflammation) can
unbalance neuronal circuits and affect both BW loss and
lean mass maintenance processes (5–7). Moreover, hypothalamic
inflammatory factors are known to be closely associated with
morbid obesity and muscle syndromes associated with muscle
wasting and weakness (7).

Nutritional compounds combined with conventional weight
loss interventions have been widely encouraged against obesity,
especially if they simultaneously bring benefits to SMT (8). In
line with this, nicotinamide riboside (NR), a dietary compound
analogous to vitamin B3, has been shown in recent experiments
as effective for weight loss and SMT health maintenance (9–
11). We have previously shown that supplementation with NR
positively modulates obesity-related parameters in both obese
rats and obese rats under CR, including reduced BW gain and
reduced adiposity (12), unaware of whether this process affected
SMT or neuroinflammatory parameters. As studies on this topic
are really scarce, with no clinical or preclinical evidence reporting
its potential effects on muscle mass or neuroinflammatory events
when associated with a CR strategy under obesity conditions, in
this study, we aimed to investigate whether NR supplementation,
combined or not with CR, affects muscle mass and hypothalamic
inflammatory parameters of rats with obesity induced by a
hypercaloric diet model.

MATERIALS AND METHODS

Animals and Ethical Procedures
The data presented in this study were obtained and continued
from our previous experiments (12). A full version of the
methods is also published in this study. In summary, 52 adult
male Wistar rats (60 days old; weight ±250 g) were used,
and three to four animals were housed per polycarbonate
cage, with sawdust-covered floors and enriched using cardboard
tubes. Animals were maintained under strictly controlled

environmental conditions (12-h light–dark cycle, temperature 22
± 2◦C, air humidity 50 ± 5%, and water and rodent chow ad
libitum). All experiments and procedures were approved by the
Institutional Committee for Animal Care and Use of the Hospital
de Clínicas de Porto Alegre (GPPG-HCPA protocol #2018-
0049). The experimental protocol complied with the ethical and
methodological standards of the ARRIVE guidelines (13).

Experimental Design
The study was carried out in two phases, as follows: (1) period
of induction to obesity (for 6 weeks) where one group of
animals was exposed to cafeteria diet (CAFD) and another
to a standard diet (SD); (2) period of intervention with NR
supplementation and/or CR (for 4 weeks). In the intervention
period, the animals were subdivided into three groups (CAFD,
CR, and SD). Additionally, these three subgroups were further
subdivided into the vehicle and NR-supplemented animals,
resulting in six subgroups (Figure 1). Noteworthy, CAFD for 6
weeks was efficient in inducing obesity (12). CAFD is a robust and
translational obesity model that aims to offer animals the same
and main obesity-generating hypercaloric foods in humans, for
example, flavored snacks, stuffed crackers, processed meats, and
sugar-sweetened beverages (14). The constituent foods of CAFD
were freely distributed to the animals and were replaced daily
with fresh and new foods and beverages. The dietary pattern was
changed weekly, being replaced by foods with new flavors, odors,
and shapes, in order to avoid adaptation and to maintain the
novelty aspect of the diet. CR is defined as a reduction in dietary
calories usually consumed without restricting micronutrients
(e.g., vitamins andminerals) (2). Thus, the CR protocol consisted
of replacing a hypercaloric diet (CAFD) with a standard diet
(SD) for 4 weeks, starting immediately after the establishment of
obesity. This process promoted, on average, a 62% reduction in
calories ingested when compared with calories ingested during
CAFD access (12). Nutritional characteristics of both diets are
presented in Table 1, and complete nutritional information in
Supplementary Material. Regarding NR (400 mg/kg) (15, 16)
or control (vehicle/distilled water 0.5ml) supplementation, both
were administered orally, aiming at the translational aspect. This
intervention was performed after the obesity induction period.
Information about experimental groups, n per group, and the
experimental timeline is presented in Figure 1.

Biochemical and Weight Analysis
The animals were weighed weekly throughout the
experiment. Delta weight gain was calculated using BW
value from week 6 to 10 by the formula: 1 weight gain =
(

(BW at week10− BW at week6
)

∗100). Relative weight of
gastrocnemius was calculated using final BW (week 10)
and the absolute weight of the structure, by the formula:

relative weight = (
(

BW at week10
absolute weight of gastrocnemius

)

∗100). Twenty-

four hours after the end of the experiment, animals were
euthanized by decapitation, and the biological samples were
collected. SMT, more precisely, total gastrocnemius (from origin
to insertion) of the left lower limb, and total hypothalamus
were gently dissected, immediately weighed (semianalytical
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FIGURE 1 | Experimental design. SD, standard diet; CR, caloric restriction; CAFD, cafeteria diet; NR, nicotinamide riboside; kcal, kilocalorie; g, gram; wk, week; PND,

postnatal day; n, total of animals.

TABLE 1 | Comparative nutritional description of experimental diets.

Standard diet (SD) Cafeteria diet (CAFD) 1 Difference (%)

Total energy (kcal = kJ) 26.2 = 109.6 53.4 = 223.4 103.8

Kilocalories per gram 2.62 5.34 103.8

Total Fat g (%) 0.40 (4.0) 2.44 (24.4) 510.0

Total carbohydrate g (%) 3.45 (34.5) 6.25 (62.5) 81.1

Dietary fiber g (%) 0.70 (7.0) 0.14 (1.4) −80.0

Protein g (%) 2.19 (21.9) 1.25 (12.5) −42.9

Sodium mg (%) 27.0 (0.27) 75.0 (0.75) 177.7

Total vitamins and minerals mg (%) 3.50 (0.03) * NA

Other food additives g (%) 3.22 (32.2) * NA

Values equivalent to a 10 g portion consumed by animals, averaged across the study. Nutritional values calculated based on commercial product information.

Kcal, kilocalorie; kJ, kilojoule; g, gram; %, percentage; mg, milligram; 1, delta denominator (indicates in percentage how much CAF values are greater or lower than SD values);

*unreported or established values; NA, not applicable. Formula: 1 difference =
(CAFD value−SD value)*100

SD value
.

balance), and subsequently frozen at −80◦C. The hypothalamus
was homogenized using a handheld homogenizer with a 1:10
protease inhibitor cocktail (Sigma R© #P8340) and centrifuged for
5min at 10,000 rpm using the supernatant for the technique.
The levels of hypothalamic TNF-α (DY510) and IL-10 (DY522)
were determined by sandwich ELISA using monoclonal
antibodies (R&D Systems; Minneapolis, MN). Total protein
was determined by Bradford’s method (17) using bovine serum
albumin as standard. Data are expressed in pg/µg of protein.

Statistical Analysis
The variable normality was verified by Shapiro–Wilk tests
and histograms. Absolute weight and relative weight of
gastrocnemius and delta weight gain were analyzed by the two-
way ANOVA parametric test (diet and supplementation factors).
Hypothalamic TNF-α and IL-6 levels were analyzed by non-
parametric tests; for diet purposes, Kruskal–Wallis test, and for
NR supplementation purposes, Mann–Whitney test. Data were

examined using SPSS Software (version 20) (IBM Corporation,
Somers, NY, USA) and expressed as mean ± SEM, considering
significant differences with P < 0.05. F-statistics (F), mean of
difference (MD), confidence interval (CI), chi-square (χ2), and
U-statistics (U) were reported for effect size purposes.

RESULTS

Effects of CR and NR on Delta Weight Gain
According to the two-way ANOVA, there was no interaction
between the factors diet and supplementation on variable 1

weight gain. The CAFD group when compared with the animals
of the SD group showed an increase in BW gain [MD 38.5 g,
CI95% (25.7–51.3), P < 0.001]. The intervention with CR
promoted a significant loss of BW compared with the CAFD and
SD groups, respectively [MD −75.5g, CI95% (−62.3 to −88.8),
P < 0.001; MD −37.2 g, CI95% (−50.2 to −23.7), P < 0.001].
On the other hand, NR supplementation delayed and reduced 1
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weight gain, respectively, in the SD and CAFD groups. Moreover,
it maximized BW loss in the CR group [F(1,46) = 42.984; P <

0.001; Figure 2A].

Effects of CR and NR on Absolute and
Relative Weight of Gastrocnemius Muscle
According to the two-way ANOVA, there was no interaction
between the diet and supplementation on the variables and
relative and absolute weight of the gastrocnemius muscle. The
absolute weight of the gastrocnemius was lower in the CR group,
compared with both SD and CAFD groups [respectively, MD
−0.60 g, CI95% (−0.97 to −0.24), P < 0.001; MD −0.71 g,
CI95% (−1.07 to −0.34), P < 0.001]. The relative weight of the
gastrocnemius was lower in the CR and CAFD groups compared
with the SD group [respectively, MD −0.17 g, CI95% (−0.24 to
−0.11), P < 0.001; MD −0.12 g, CI95% (−0.18 to −0.60), P
< 0.001]. NR supplementation increased the relative weight of
gastrocnemius in all groups [F(1,46) = 6.045; P = 0.018]. On the
absolute weight, NR supplementation had no significant effect;
Figures 2B,C.

Effects of CR and NR on Cytokines in the
Hypothalamus
According to the Kruskal–Wallis test, the CR group presented
higher hypothalamic TNF-α levels compared with the SD
group [χ2

(2) = 7.280, P < 0.026]. There were no significant
TNF-α level differences between the other groups nor for
hypothalamic IL-10 levels. According to the Mann–Whitney
test, NR supplementation reversed the increase in hypothalamic
TNF-α levels in the CR group (U = 25.000, P < 0.008]. Other
significant effects with NR supplementation were not observed;
Figures 3A,B.

DISCUSSION

As far as we know, these preliminary data are the first in
the literature to evidence the combined effects of NR and CR
on muscle tissue, especially in obesity conditions. We have
previously shown that 28 days of CR in rats with obesity
effectively reverses obesogenic indicators (12). In fact, CR is
undeniably effective in the short term and medium term to
reduce BW and adiposity (2). However, the deficit in energy
intake often culminates in muscle wasting (2, 3). In addition, CR
is known to inhibit the mechanistic target of rapamycin (mTOR),
an energy-sensing cell signaling pathway that initiates cascades
of anabolic reactions involved in muscle protein synthesis (18).
These signals and reactions are essential for muscle mass both
to stimulate hypertrophy and to prevent atrophy (4). Besides
that, a low protein intake unintentionally reduces the availability
of essential amino acids that are crucial substrates for mTOR
signaling and muscle protein synthesis (19). In this line, before
being exposed to CR, the animals of this group consumed
42% less protein than the control animals. Therefore, in an
overview, the reduction in both absolute and relative weight
of the gastrocnemius in animals under CR may be a reflex of

muscle mass loss or delay in its gain, probably resulting from
impairments in anabolic cellular mechanisms.

Another potential mechanism is related to the CNS. In
the hypothalamus, CR caused a significant increase in TNF-
α cytokine without altering IL-10 cytokine levels. TNF-α
is usually involved in proinflammatory processes whereas
IL-10 is responsible for inhibiting them (20, 21). In this
sense, it is plausible to suppose that these animals have
an unbalanced inflammatory profile in the hypothalamus
induced by CR. Proinflammatory mediators can alter the brain
neurochemistry, influencing peripheral systems (20). Particularly
in the hypothalamus, these signs are closely linked to alterations
in BW and in muscle dysfunctions (5, 6). Furthermore,
hypothalamic inflammatory reactions drive the sympathetic
nervous system and the hypothalamus–pituitary–adrenal axis
to increase, respectively, systemic levels of epinephrine and
glucocorticoids (4, 6, 22). These processes, uninterruptedly,
stimulate muscle protein breakdown, inducing SMT atrophy (6).
Thus, this reinforces our view that animals under CR have lost
lean mass or have had a delay in their gain.

We observed that in all NR-supplemented groups, there
was a significant increase in the proportion of gastrocnemius
in relation to BW. Noteworthy, in the previous study we
showed that NR prevented BW gain and adiposity in these
three dietary conditions (12), which would partially justify this
observation regarding relative muscle weight. Accordingly, if NR
can maintain lean mass weight while substantially reducing fat
mass, it supposedly presents a potential benefit for SMT. Even
with scarce data in the literature, it has recently been reported
that aged mice exposed to a diet containing NR exhibited an
increase in the diameter of slow-twitch muscle fibers, despite
not being stated if there was an effect in the total mass of the
structure (23).

In general, NR is a potent nicotinamide adenine dinucleotide
(NAD) enhancer, and its biological effects may be inherent to
this mechanism (9, 24). NAD is a key coenzyme for muscle
cells, both for energy metabolism and muscle contraction (25).
Furthermore, it serves as a co-substrate for post-translational
modifications (for example, mono/poly-ADP-ribosylation and
deacetylation) that influence the health and maintenance of
SMT (25–28). We recognize that the lack of histological data,
particularly to determine the cross-sectional area of skeletal
muscle fibers, and of molecular data, aiming to quantify NAD
and its derivatives, are limitations of this study. Collectively,
these analyzes would lead to more conclusive findings on the
NR’s ability to remodel the muscle tissue and potential NAD-
dependent mechanisms. Ultimately, as we evidenced previously
(12), NR supplementation showed a state-dependent effect in
relation to time and diets on the caloric intake of the animals.
However, although NR modulates BW, adiposity, and, according
to this study, SMT, we have no clear evidence that this is the
result of a change in food intake. For example, recent evidence
shows that NR supplementation does not alter food intake in
rodents (29–31).

At the CNS level, we found that NR was able to reverse
CR-induced high TNF-α levels in the hypothalamus. Although
preclinical studies have reported central antiinflammatory effects
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FIGURE 2 | Effects of caloric restriction and/or NR supplementation on gastrocnemius muscle and body weight gain. (A) 1 weight gain. (B) Absolute weight of

gastrocnemius. (C) Relative weight of gastrocnemius. SD, standard diet; CR, caloric restriction; CAFD, cafeteria diet; g, gram; 1, delta denominator (indicates in

grams how much the body weight of the animals increased or decreased at the end of 4 weeks of intervention).

FIGURE 3 | Effects of caloric restriction and/or NR supplementation on hypothalamic cytokine levels. (A) TNF-α. (B) IL-10. SD, standard diet; CR, caloric restriction;

CAFD, cafeteria diet; g, gram; pg, picogram; µg, microgram. *P < 0.05, CR+control compared to SD+control.

of NR (31–34), our study is the first to determine the NR effect
at the hypothalamic level in an obesity and CR model. Direct
suppressive effects on TNF-α levels and pathways, centrally
(31–34) and peripherally (35–38), have been demonstrated in
recent studies with NR. Besides, data from Roboon et al.
(32) indicate that in rodents, NR inhibits neuroinflammation
through suppression in CD38 ectoenzyme activity of microglial
cells. Microglia are macrophage-like CNS cells that mediate
inflammation in virtually all brain regions, and CD38 activity on
these cells is a precipitating mechanism for neuroinflammation
(39, 40). Therefore, blockade in CD38 activity in hypothalamic
microglial cells may be supposedly a pathway through which,

in our study, NR has reversed the neuroinflammatory status
in rats under CR. Furthermore, NR-like NAD precursors
have been posed as promising therapeutic strategies against
neuroinflammation (41, 42).

Regardless of having normalized central TNF-α levels in CR
animals, NR did not prevent muscle wasting. Anyway, this does
not make it irrelevant or ineffective for SMT. It is important to
emphasize that a generalized weight loss commonly affects body
composition; it is estimated that in every 8–10% BW loss induced
by dietary modulation, ∼2–10% of muscle mass is negatively
affected (43). Here, when compared to animals in the non-
supplemented CR group, NR supplementation increased the BW
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loss by about 517%. For this reason, we expected that animals on
CR supplemented with NR had a lower muscle weight compared
with their control peers. Notably, this did not happen and even
showed that muscle weight tended to be higher in this group
of animals. Hence, we reinforce our view that NR can preserve
SMT, especially during CR weight loss processes, and that its
negative regulation on TNF-α may have contributed to this effect.
Mechanisms other than those involving central TNF-α are also
not discarded, for example, encompassing actions on muscular
oxidative stress (OS).

Besides being recognized as antiinflammatory agents (41,
42), NAD precursors are also strong antioxidants (44). In our
previous results (12), we showed that NR has this capacity in
cardiac muscle tissue of obese rats with and without CR. On the
other hand, CR plays a dichotomous role on OS; depending on
the severity and/or duration, it may have either antioxidant or
prooxidant activity (45). In SMT, OS triggers cellular catabolic
pathways involved in muscle wasting such as autophagy,
ubiquitination, and apoptosis (46). Hereby, hypothetically, it is
reasonable that somehow CR would precipitate the OS process
and, consequently, promote the loss of muscle mass, whereas NR,
being a potential antioxidant, could modulate this scenario by
dampening it. In view of this, future molecular assays are needed
for a better understanding of the potential interconnections
between NR, OS, CR, and SMT.

Nicotinamide riboside has been recently tested for obesity
in clinical trials, showing to be safe and well-tolerated (11).
However, studies have shown limited and inconclusive results
for body composition and metabolism (11, 47). Further, few
studies have combined NR supplementation with standard
weight loss practices; only four have been found published
(three in rodents and one in humans), all associated solely
with physical activity (27, 48–50). Additionally, evidence for
its effect on muscle tissue from obese/overweight individuals
follows the same dilemma. At the same time, in the CNS,
NR-led neuromodulatory and neuroprotective effects have been
extremely interesting (10, 11). In this way, investigations in the
line of neuropsychiatric disorders such as those that directly
impact weight and body composition, especially bulimia and
anorexia, are very promising.

From the current data, we want to raise the following key
points for future studies involving NR, mainly on BW and body
composition: (1) Benefits of BW reduction are directly linked to
decreased body fat (43); (2) CR reduces BW and adiposity but
usually causes fat-free lean mass loss, including SMT (2, 43);
(3) preserved SMT potentiates oxidation and fat mobilization,
increases basal energy expenditure, and improves physical fitness
(46); (4) dietary compounds that prevent muscle catabolism in
the weight loss process should be concomitantly encouraged
and studied in CR therapies (8); and (5) currently, there are no
human studies involving NR in combination with CR. Further
reinforcing, to date, in the clinical.trials.gov platform, from
64 registered studies involving NR, none are intended for use
in combination with this dietary strategy. Finally, since the
results of this study are preliminary and new, naturally some
insights into the NR will remain open. To soften, we discuss our
findings to draw attention to the limitations and propose possible

mechanisms of action, in addition to raising the importance of
new preclinical and clinical investigations.

In conclusion, we show that caloric restriction in obese rats
implies loss ofmusclemass, observed by a reduction in the weight
of the gastrocnemius muscle and neuroinflammation, evidenced
by increased TNF-α levels in the hypothalamus. On the other
hand, NR supplementation combined with caloric restriction
suppressed neuroinflammation, enhanced BW loss, and did
not alter muscle weight. Nevertheless, potential effects and
mechanisms of NR for weight loss processes must be the focus
of further clinical and experimental studies, thereby providing
definitive information on its use as a therapeutic option for
skeletal muscle health in conditions related to mass loss.
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