UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE EDUCAÇÃO FÍSICA, FISIOTERAPIA E DANÇA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DO MOVIMENTO HUMANO

Edson Soares da Silva

HOW DO SMALL HORIZONTAL IMPEDING FORCES AFFECT PHYSIOMECHANICS OF RUNNING?

Edson Soares da Silva

HOW DO SMALL HORIZONTAL IMPEDING FORCES AFFECT PHYSIOMECHANICS OF RUNNING?

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Human Movement Sciences of the School of Physical Education, Physiotherapy and Dance of the Universidade Federal do Rio Grande do Sul.

Orientador: Prof. Dr. Leonardo Alexandre Peyré Tartaruga
Coorientador: Prof. Dr. Wouter Hoogkamer

Porto Alegre

Edson Soares da Silva

HOW DO SMALL HORIZONTAL IMPEDING FORCES AFFECT PHYSIOMECHANICS OF RUNNING?

Conceito final:

28 de janeiro de 2021

BANCA EXAMINADORA

Prof. Dr. Flávio Antônio de Souza Castro
Universidade Federal do Rio Grande do Sul - UFRGS

Prof. Dr. Gaspare Pavei
University of Milan

Prof. Dr. Marcelo Coertjens
Universidade Federal do Delta do Parnaíba - UFDPar

Prof. Dr. Rodrigo Gomes da Rosa
Universidade Federal do Rio Grande do Sul - UFRGS

Orientador - Prof. Dr. Leonardo Alexandre Peyré Tartaruga Universidade Federal do Rio Grande do Sul - UFRGS

CIP - Catalogação na Publicação

```
Soares da Silva, Edson
    HOW DO SMALL HORIZONTAL IMPEDING FORCES AFFECT
PHYSIOMECHANICS OF RUNNING? / Edson Soares da Silva.
-- 2021.
    125 f.
    Orientador: Leonardo Alexandre Peyré Tartaruga.
    Coorientador: Wouter Hoogkamer.
    Dissertação (Mestrado) -- Universidade Federal do
Rio Grande do Sul, Escola de Educação Física, Programa
de Pós-Graduação em Ciências do Movimento Humano,
Porto Alegre, BR-RS, 2021.
    1. drafting. 2. economia de corrida. 3. desempenho.
4. modelo massa-mola. 5. mecânica. I. Alexandre Peyré
Tartaruga, Leonardo, orient. II. Hoogkamer, Wouter,
coorient. III. Título.
```


AGRADECIMENTOS

Agradeço a todos os pesquisadores, amigos e familiares que foram importantes para a conclusão de mais uma etapa da minha formação acadêmica. Aos atuais e antigos membros do Grupo de Pesquisa em Mecânica e Energética da Locomoção Terrestre (LOCOMOTION), que foram parceiros em todos os momentos desde 2013, em especial: Ana Zanardi, Henrique Leal, Pedro Schons, Tamiris Castro, Renan Coimbra, Henrique Bianchi Oliveira, Onéscimo Ubiratãn, Jonas Santos, Araton Cardoso, Marcela Zimmermann, André Mello, Leonardo Bloedow, Marcos Masiero, Patrick Guimarães, Natalia Gomenuka, Alex Fagundes, Valéria Martins, Elren Monteiro, Marcelo Coertjens e Guilherme Berriel. Além disso, agradeço aos amigos e pesquisadores de outros grupos, que também fazem parte dessa história: Fábio Lanferdini, Jeam Geremia e Rochelle Costa.

Agradeço aos meus coorientadores de iniciação cientifica ao longo da minha graduação em Educação Física, que sempre foram minha referência em profissionalismo e humildade: Paula Finatto e Rodrigo Rosa. Além disso, tenho orgulho de ter coorientado alunos de iniciação cientifica dedicados nesse período: Miguel Backes, Paulo Silva, Esthevan Machado, Juliana Dias e Rafael Fortes, aos quais também agradeço.

Sou eternamente grato ao meu orientador e amigo professor Leonardo Alexandre Peyré Tartaruga, que me deu a oportunidade conhecer a pesquisa de alto nível e por ter acreditado no meu potencial desde a iniciação científica. Foram anos incríveis de trabalho duro e conquistas juntos.

Tive a sorte de conhecer pessoas incríveis durante o meu estágio de pesquisa na Universidade do Colorado - Boulder (USA), pesquisa esta que originou esse trabalho: Clarissa Whiting, Shalaya Kipp, Christian Carmack, Tripp Hurt e Randy Hutchison fizeram parte do "dream team" durante a coleta de dados. Os professores Rodger Kram e Wouter Hoogkamer foram meus coorientadores nesse trabalho e têm sido grandes amigos, fonte de inspiração e parceiros para além do ambiente acadêmico.

Agradeço à pessoa mais especial da minha vida, minha mãe Maria Lucia de Souza Silva, e aos meus familiares que mesmo distantes sempre me incentivaram a investir em educação.

RESUMO

Introdução: Os benefícios da estratégia de drafting no desempenho de maratonistas de elite são conhecidos. Porém, devido a diferentes métodos para converter as forças de arrasto na corrida em potência metabólica e as altas forças horizontais impeditivas (HIF) utilizadas nos estudos anteriores, não está claro como os fatores fisiomecânicos são afetados nessas condições. Objetivo: Quantificar como pequenas HIF afetam a fisiomecânica de corredores de longa distância. Métodos: Doze corredores homens (idade: $26,1 \pm 3,5$ anos, massa corporal: $66,5 \pm 5,6 \mathrm{~kg}$, estatura: $1,79 \pm 0,09 \mathrm{~m}$) participaram do estudo. O estudo consistiu em três sessões de coletas de dados. Em cada sessão, os sujeitos correram em duas vezes uma velocidade (12 ou 14 ou 16 $\mathrm{km} . \mathrm{h}^{-1}$) nas três forças (0,4 e 8 N) totalizando 6 tentativas de 5 minutos por sessão, com 5 minutos de recuperação entre as tentativas. Nós mensuramos o consumo de oxigênio submáximo e forças de reação do solo, simultaneamente. As forças de reação do solo foram duplamente integradas para cálculo das variáveis do sistema massa mola, e as assimetrias contato-despregue e rebound no software Labview. A potência metabólica, eficiência aparente (E_{ff}), impulsos de frenagem (lbrake) e de propulsão (lorop), picos de força de frenagem ($F_{\text {brake,peak }}$) e propulsão ($F_{\text {prop,peak }}$), tempo de contato $\left(t_{c}\right)$ e aéreo (t_{a}), comprimento do passo (L), duty factor, tempo de contato efetivo ($t_{c e}$) e aéreo efetivo (t_{ae}), tempo de propulsão ($t_{\text {push }}$) e frenagem ($t_{\text {brake }}$), deslocamento vertical do centro de massa (s_{v}): durante o contato (s_{c}), fase aérea (s_{a}), contato efetivo descendente ($s_{\mathrm{ce}, \text { down }}$), contato efetivo ascendente ($s_{c e, \text { up }}$), aéreo efetivo descendente ($S_{\mathrm{ae}, \text { down }}$) e aéreo efetivo ascendente ($S_{\mathrm{ae}, \text { up }}$), frequência de passo (f_{step}), frequência natural do sistema ($f_{\text {syst }}$), rigidez vertical ($k_{\text {vert }}$), força vertical (F_{v}), velocidade vertical do centro de massa durante a fase descendente ($v_{v, \text { max, down })}$ e ascendente ($v_{v, \text { max }, u p}$), armazenamento de energia elástica $(E L)$ e as assimetrias $t_{\text {ce }} / t_{\text {ae }}, t_{\text {push }} / t_{\text {brake }}$, $S_{\text {ae,down }} / S_{\text {aee,up, }} S_{c e, d o w n} / S_{c e, u p}$ e $V_{v, \text { max,down }} / V_{v, \text { max,up }}$ foram calculadas. Foi utilizada uma ANOVA de duas vias para medidas repetidas com post-hoc de Bonferroni para a comparação entre as variáveis ($\alpha=0,05$). Resultados: A potência metabólica aumentou $6,13 \%$ por 1% do peso corporal de HIF. Com o aumento das HIF, lbrake reduziram, enquanto loprop aumentaram. O L e F_{v} reduziram com aumento das HIF correspondente a 8 N . As variáveis $t_{\mathrm{c}}, t_{\mathrm{a}}, t_{\mathrm{ce}}, t_{\mathrm{ae}}$, duty factor, $F_{\text {brake,peak, }} F_{\text {prop,peak, }} S_{\mathrm{a}}, f_{\text {step }}$, $f_{\text {syst, }}$ Kvert, EL e assimetria entre $t_{\text {ce }} / t_{\text {te }}$ foram todas independentes das HIF. A assimetria entre $v_{v, \text { max, down }} / v_{v, \text { max, up }}$ reduziu quando 4 e 8 N de HIF foi aplicada, enquanto 8 N tornou as relações entre $S_{\mathrm{ae}, \text { down }} / S_{\mathrm{ae}, \text { up }}$ e $S_{\mathrm{ce}, \text { down }} / S_{\mathrm{ce} \text {, up }}$ simétricas. Não houve qualquer efeito da velocidade de corrida e das HIF na $E_{F F}, s_{v}, s_{c}$, e na assimetria entre $t_{\text {push }} / t_{\text {brake }}$.
Conclusão: Concluímos que o sistema massa-mola pode ser otimizado com altas HIF. Essa otimização acontece quando as altas HIF (8 N) tornam as relações entre $S_{a e, d o w n} / S_{a e, u p}, S_{c e, d o w n} / S_{c e, \text { up }}$ e $V_{v, \text { max, down }} / V_{v, \text { max, up }}$ simétricas. Entretanto, custo energético para superar lprop contra HIF aumenta a potência metabólica em 6,13\% por 1% da massa corporal de HIF.

Palavras-chave: drafting; economia de corrida; desempenho; modelo massa-mola, mecânica.

Abstract

Background: Benefits of drafting strategies for elite marathon performance are known. However, due to different methods to convert aerodynamic drag force to metabolic power and high horizontal impeding forces (HIF) implemented in previous studies, it is unclear how physiomechanical is affected at these conditions. Objective: We aimed to quantify how small HIF affect the physiomechanics of long-distance runners. Methods: Twelve male runners (age: 26.1 ± 3.5 years, mass: $66.5 \pm 5.6 \mathrm{~kg}$, height $1.79 \pm 0.09 \mathrm{~m}$) participated. The study consisted of three data collection sessions. On each session, the subjects ran one velocity two times per session (12, 14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) at three $\mathrm{HIF}(0,4$ and 8 N) in a total of six 5 -minute trials with 5 minutes recovery in-between. We measured submaximal oxygen uptake and ground reaction forces simultaneously. Ground reaction forces were double integrated for calculating spring-mass model variables, landing take-off and rebound asymmetries on Labview software. The metabolic power, apparent efficiency (E_{ff}), braking (lorake) and propulsive impulses (l prop), peak of braking ($F_{\text {brake,peak }}$) and propulsive forces ($F_{\text {prop,peak }}$), contact (t_{c}) and aerial time (t_{a}), step length (L), duty factor, effective contact ($t_{\text {ce }}$) and aerial time ($t_{\text {ae }}$), push ($t_{\text {push }}$) and brake duration (tbrake), vertical displacement of the center of mass (s_{v}) during contact time (s_{c}), aerial time (s_{a}), effective contact downward ($S_{c e, d o w n), ~ e f f e c t i v e ~ c o n t a c t ~ u p w a r d ~(~}^{\text {ce, up }}$), effective aerial downward ($S_{\text {ae,down }}$) and effective aerial upward ($S_{\text {ae, up }}$), step frequency ($f_{\text {step }}$), natural frequency of the system ($f_{\text {syst. }}$), vertical stiffness (Kvert), vertical force (F_{v}), vertical velocity of the center of mass downward (v_{v},max,down) and upward ($v_{v, \text { max, up }}$), elastic energy storage (EL) and $t_{c e} / t_{\text {ae }}, t_{\text {push }} / t_{\text {brake, }} \quad S_{\text {aae,down }} / S_{\text {aae,up, }} \quad S_{c e, d o w n} / S_{c e, u p}$ and $\quad V_{v, m a x, d o w n} / V_{v, \text { max,up }}$ asymmetries were calculated. We performed a two-way ANOVA with repeated measures and Bonferroni post-hoc for comparing the variables ($\alpha=0.05$). Results: The metabolic power increased by 6.13% per 1% body weight of HIF. With increasing HIF, lorake decreased while I lorop increased. The L and F_{v} reduced with increase of HIF corresponding of 8 N . The variables $t_{\mathrm{c}}, t_{\mathrm{a}}, t_{\mathrm{ce}}, t_{\mathrm{ae}}$, duty factor, $F_{\text {brake,peak, }} F_{\text {prop,peak, }} S_{\mathrm{a}}, f_{\text {step }}$, $f_{\text {syst., }} K_{\text {vert, }} E L$ and $t_{c e} / t_{\text {ae }}$ asymmetry were all independent of HIF. tbrake, $V_{v, \text { max, down }}, v_{v, \text { max, up }}$ and elastic energy storage were all independent of HIF. The asymmetry between $v_{v, \text { max, down }} / v_{v, \text { max, up }}$ reduced when was applied 4 and 8 N of HIF, whereas 8 N becomes $s_{a e, d o w n} / s_{\text {ae, up }}$ and $s_{\text {ce,down }} / s_{\text {ce, up }} s_{m m m e t r i c a l . ~ T h e ~} E_{\mathrm{ff}}, s_{\mathrm{v}}, s_{\mathrm{c}}$, and $t_{\text {push }} / t_{\text {brake }}$ asymmetry were not affected by running velocity and HIF. Conclusion: We concluded that springmass model can be optimized at high HIF. This optimization is related to symmetrical relationship between $S_{\text {ae,down }} / S_{\text {ae, up, }} S_{c e, d o w n} / S_{c e, u p}$ e $V_{v, m a x, d o w n} / V_{v, \text { max, up }}$ with high HIF (8 $\mathrm{N})$. Therefore, although attenuated by elastic mechanism, the metabolic power increases 6.13% by adding HIF of 1% body weight.

Keywords: drafting; running economy; performance; spring-mass model; mechanics.

LIST OF FIGURES

Figure 1. Drag Forces Models 24
Figure 2. CFD simulation for Eliud Kipchoge 25
Figure 3. Drag forces across running velocities 26
Figure 4. Horizontal impeding forces method 29
Figure 5. Symmetrical rebound 35
Figure 6. Asymmetrical rebound 35
Figure 7. Landing-takeoff asymmetry across running velocities 35
Figure 8. Rebound asymmetry across running velocities 36
Figure 9. Experimental set-up. 50
Figure 10. Metabolic power vs. running velocities and horizontal impeding force in Newton. 52
Figure 11. Metabolic power vs. running velocities and horizontal impeding force in percentage of body weight. 53
Figure 12. Increase in metabolic power in percentage with increase of running velocities and horizontal impeding forces in percentage. 53
Figure 13. Vertical and anteroposterior ground reaction forces vs. running velocities and horizontal impeding forces 56
Figure 14. Aerial and contact times, effective aerial and contact times vs. running velocities and horizontal impeding forces 84
Figure 15. Vertical displacement of center of mass and its components in response of running velocities and horizontal impeding forces 85
Figure 16. Push and brake durations vs. running velocities and horizontal impeding forces 86
Figure 17. Step frequency and natural frequency of the system vs. running velocities and horizontal impeding forces 87
Figure 18. Mass-specific stiffness and vertical force vs. running velocities and horizontal impeding forces 88
Figure 19. Individual values of elastic energy storage vs. running velocities and horizontal impeding forces 90
Figure 20. Effect of horizontal impeding forces on rebound asymmetries in comparison with previous studies 93

Figure 21. Effect of horizontal impeding forces on landing take-off asymmetries in comparison with previour studies .94
Figure 22. Relationship between delta propulsive and braking impulse 106
Figure 23. Cost of transport and elastic energy storage vs. running velocities and horizontal impeding forces 108
Figure 24. Conceptual model of energy cost to overcome air resistive forces .109

LIST OF TABLES

Table 1. Physiological responses of horizontal external loads 30
Table 2. Biomechanical responses of horizontal external loads 31
Table 3. Spatiotemporal data for different horizontal impeding forces applied 54
Table 4. Kinetic data for different horizontal impeding forces applied 54
Table 5. Asymmetries of bouncing step during running against horizontal impeding forces 89

ABBREVIATIONS

av,max	Maximal vertical Acceleration
BCoM	Body center of mass
BW	Body weight
C	Cost of transport
$E_{\text {ff }}$	Apparent mechanical efficiency
EL	Elastic energy storage
eff musc	Muscle efficiency
HIF	Horizontal impeding force
Fbrake,peak	Peak of braking forces
$F_{\text {prop,peak }}$	Peak of propulsive forces
$f_{\text {syst }}$	Natural frequency of the system
$f_{\text {step }}$	Step frequency
F_{v}	Vertical force
lbrake	Braking impulses
1 prop	Propulsive impulses
Kvert	Mass-specific stiffness
L	Step length
Sa	Vertical displacement of BCoM during aerial time
Sae	Vertical displacement of BCoM during effective aerial time
Sae,down	Vertical displacement of BCoM during effective aerial downward phase
Sc	Vertical displacement of BCoM during contact time
Sce	Vertical displacement of BCoM during effective contact time
Sce,up	Vertical displacement of BCoM during effective aerial upward phase
$S_{\text {ae, }}$ down $/ S_{\text {ae, up }}$	Asymmetry between vertical displacement of BCoM during effective during effective aerial downward and upward phases
$S_{\text {ce,down }} / S_{\text {ce,up }}$	Asymmetry between vertical displacement of BCoM during effective during effective contact downward and upward phases
Sv	Vertical displacement of BCoM vertical displacement of BCoM
$t a$	Aerial time

t_{ae}	Effective aerial time
$t_{\text {brake }}$	Brake duration
t_{c}	Contact time
t_{ce}	Effective contact time
$t_{\mathrm{ce}} / t_{\mathrm{ae}}$	Asymmetry between effective contact and aerial time
$t_{\text {push }}$	Push duration
$t_{\text {push }} / t_{\text {brake }}$	Asymmetry between push and brake duration
$v_{v, \text { max, down }}$	Vertical velocity of BCoM downward
$v_{v, \text { max, up }}$	Vertical velocity of BCoM upward
$v_{v, \text { max, down }} / V_{v, \text { max,up }}$	Asymmetry between vertical velocity of BCoM downward and
	upward

SUMMARY

CHAPTER 1 15
1.1 General presentation 15
1.1.1 Contextualization and delimitation of the study 15
1.1.2 Structure of dissertation 16
1.2 Problem statement 17
1.3 Aims 20
1.3.1 General aim 20
1.3.2 Specific aims 20
1.3.3 Hypothesis 20
1.4 Literature review 22
1.4.1 Aerodynamic drag forces during running 22
1.4.2 Effects of air resistive force on physiomechanics of running 27
1.4.3 Asymmetries of bouncing step during running 34
1.4.4 Integrative analysis of running aerodynamics. 38
1.5 References. 40
CHAPTER 2 44
2.1 Introduction 46
2.2 Methods 48
2.2.1 Participants 48
2.2.2 Experimental protocol 48
2.2.3 Horizontal pulling apparatus 49
2.2.4 Metabolic power protocol 50
2.2.5 Force measurements and analyses. 51
2.2.6 Apparent mechanical efficiency. 51
2.2.7 Statistics 51
2.3 Results 52
2.4 Discussion 56
2.5 Conclusion 60
2.6 References. 62
2.7 Appendix S1 65
2.9 Appendix $\mathbf{S 2}$ 67
2.8 Appendix S3 69
2.9 Appendix S4 70
2.10 References 73
CHAPTER 3 75
3.1 Introduction 77
3.2 Methods 80
3.2.1 Participants 80
3.2.2 Experimental protocol 80
3.2.3 Horizontal impeding forces 80
3.2.4 Force measurements 81
3.2.5 Landing-takeoff asymmetries 81
3.2.6 Vertical oscillation of the center of mass 82
3.2.7 Vertical stiffness and system frequency 82
3.2.8 Elastic energy storage 82
3.2.9 Statistics 83
3.3 Results 83
3.4 Discussion 90
3.5 Conclusion 96
3.6 References 98
3.4 Appendix S5 102
CHAPTER 4 105
4.1 General discussion 105
4.2 General Conclusion 112
4.3 References 113
CHAPTER 5 115
5.1 The published studies during master's degree 115
5.1.1 Abstracts presented 115
5.1.2 Papers published 115
5.2 Appendix S6 117
5.3 Appendix 57 119
5.3 Appendix S8 120
5.4 Appendix S9 124

CHAPTER 1

GENERAL INTRODUCTION

This chapter contains four sections: general presentation, problem statement, aims of dissertation and finally a literature review.

1.1 General presentation

1.1.1 Contextualization and delimitation of the study

This work is part of research line from the LOCOMOTION research group (Mechanics and Energetics of Terrestrial Locomotion/UFRGS, Brazil) under coordination from my advisor, Prof. Leonardo Alexandre Peyré-Tartaruga. The group's primary goals are to study the basic energy-saving mechanisms (elastic and pendulum-like) of human locomotion in different gaits, task conditions, environments, and population. This Master's Degree dissertation is the outcome of a partnership between the LOCOMOTION group of Escola de Educação Física, Fisioterapia e Dança (ESEFID) at Universidade Federal do Rio Grande do Sul (UFRGS), my coadvisor, Prof. Wouter Hoogkamer (University of Massachusetts), and Prof. Rodger Kram from Integrative Physiology Department at University of Colorado Boulder.

This partnership started back in 2017 when Prof. Wouter collaborated in one of my studies, entitled: "Gait functionality of individuals with visual impairment who participate in sports", as part of my graduation in Physical Education at UFRGS. It was reinforced in 2018 when I was invited to a 2-month vising scholar program at University of Colorado, Boulder in USA, when I had the opportunity to improve my research skills in biomechanics and physiology. At that time, we started working on a project to quantify the effects to air resistive forces on running economy and running performance, using a horizontal impeding force method. Project was written and data were collected during those 2 months and when I came back to Brazil, we discussed the contents and theoretical approach with Prof. Leonardo, which was important to improve our conceptual model, including the elastic storage analysis from a physiomechanics point of view, emerging from this my Master thesis.

Prof. Wouter and Dr. Rodger have been leading a series of studies investigating marathon performance aspects such as running economy, running shoes, and drafting
strategies during running. Prof. Leonardo has solid studies in the field of physiomechanics such as running economy and elastic storage in elderly populations and long-distance runners. Here we join forces with the aim to understand how small horizontal impeding forces (comparable to air resistive forces) affect physiomechanics of running.

1.1.2 Structure of dissertation

This study was developed at Integrative Physiology Department of University of Colorado Boulder and at Exercise Research Laboratory of ESEFID. This dissertation is divided into five chapters.

The first chapter provides a general introduction, the aims of dissertation and literature review.

The second chapter presents a randomized crossover study of the metabolic cost of overcoming air resistive forces in distance running in competitive male runners.

The third chapter presents a randomized crossover study of the effect of small horizontal impeding force on spring-mass model and asymmetries of bouncing step in long-distance runners.

The fourth chapter presents a summarized the results from the two studies on integrative point of view and general conclusion of dissertation.

The fifth chapter lists the abstracts and papers published during master's degree period.

1.2 Problem statement

The energy cost to overcome air resistance forces during locomotion for long distances and high velocities have been discussed over the years. In the nature, birds overcome drag forces and support their body weight migrating non-stopping more than $1,000 \mathrm{~km}$ (SCHMIDT-NIELSEN, 1972). To save energy during the travel birds adopt optimal formation, such " v " formation, conferring to them aerodynamic advantage and reducing their energy expenditure in 14% in comparison to flying solo (WEIMERSKIRCH et al., 2001). On cycling, it is common to use of drafting strategies to reduce the drag forces. An athlete can reduce his drag force in 27.1% cycling shielded 1 m by other leader cyclist (BLOCKEN et al., 2013) and there is a decrease in oxygen consumption of 27% when a cyclist was shielded in line formation at $40 \mathrm{~km} . \mathrm{h}$ ${ }^{1}$ (MCCOLE et al., 1985). In running the drag forces cannot be neglected. The air resistive forces represent 7.5 to 8% of total energy cost of running (PUGH, 1970; 1971), and 6.5% of the oxygen consumption can be reduced if a runner stay 1 m behind to other at $16.2 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ (PUGH, 1971).

A known difference between indoor and overground running is the lack of air resistive forces during a treadmill. Jones and Doust (1996) suggested the uphill running of $+1 \%$ should counterbalance the difference in metabolic power between outdoor and treadmill in running velocity above $12 \mathrm{~km} . \mathrm{h}^{-1}$. Other authors suggested that there are little or null differences between two conditions in oxygen consumption in running velocities up to $17 \mathrm{~km} . \mathrm{h}^{-1}$ (MCMIKEN and DANIELS, 1976; BASSETT et al., 1985). However, according to Pugh (1970) and Pugh (1971), it is expected that the difference in metabolic power between outdoor and treadmill running depends directly on running velocity.

Pugh (1971) and Davies (1980) studied the energy cost of running to overcoming air resistive forces using a wind tunnel. Due to difficult experimental design, they tested a small number of runners and they did not systematically assess the effects of running speed and drag force. Alternatively, Lloyd and Zacks (1972), Zacks (1973) and later Chang and Kram (1999) quantified the energy cost of overcoming resistive forces applying horizontal impeding forces to the waist to simulate the effect of the air resistive forces. The abovementioned studies were performed at relatively low running speeds ($\sim 12 \mathrm{~km} \cdot \mathrm{~h}^{-1}$), and with heavy horizontal impeding forces (3 to 6% of runners' body weight). Chang and Kram (1999) data suggest that the
metabolic power increases approximately 4% for every 1% of body mass at $12 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. It has been shown that drag forces for elite runners with dimensions of Eliud Kipchoge and Kenenisa Bekele are around at 6.6 N at $21.1 \mathrm{~km} . \mathrm{h}^{-1}$ and 7.7 N at $20.7 \mathrm{~km} . \mathrm{h}^{-1}$ (POLIDORI et al., 2020; BEVES and FERGUSON, 2017) representing air resistive forces of 1.29 and 1.4% of their body weight, respectively. Futures studies should apply resistive forces more representative to real conditions.

The metabolic power to overcome air resistive forces, drafting strategies and time saving for elite marathon runners have been estimated (BEVES and FERGUSON, 2017; HOOGKAMER, SNYDER and ARELLANO, 2018; HOOGKAMER, SNYDER and ARELLANO, 2019; POLIDORI et al., 2020). However, each study used a different method for converting aerodynamic force to the metabolic cost of running and, hence, running performance. Is not clear how metabolic power respond to increase of air resistance forces and running velocities.

Chang and Kram (1999) using horizontal impeding forces found that metabolic cost increases linearly with horizontal impeding forces (0 to 6% per percentage of body weight of applied force) at $12 \mathrm{~km} . \mathrm{h}^{-1}$. Davies (1980) using wind tunnel also found a linear relationship between metabolic cost and wind velocities from 5 to $15 \mathrm{~m} . \mathrm{s}^{-1}$ at running velocities up to $21.6 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. However, Pugh (1971) using wind tunnel found at $13.5 \mathrm{~km} . \mathrm{h}^{-1}$ the relationship between oxygen consumption and all wind velocities applied (up to $18.5 \mathrm{~m} . \mathrm{s}^{-1}$) was linear, while at $16.1 \mathrm{~km} . \mathrm{h}^{-1}$ was curvilinear at wind velocities over $12.5 \mathrm{~m} . \mathrm{s}^{-1}$. In addition, comparing running overground in calm air and treadmill, Pugh (1970) found a curvilinear relation between the increase in extra oxygen intake and running velocity at overground conditions (when running and wind velocities are equal).

During running against air resistive forces on treadmill that runners leaned their trunk forward and some cases they changed their technique from rearfoot to forefoot strike (DAVIES, 1980; PUGH, 1971). During steady state, level treadmill running braking and propulsive impulses must be equal and opposite (GOTTSCHALL and KRAM, 2005). It was demonstrated that with increment of horizontal impeding forces (0 to 6% of body weight) the oxygen consumption increased 30.2% and propulsive impulses increased while braking impulses decreased (CHANG and KRAM, 1999). Therefore, it seems that runners apply a greater amount of propulsive forces when
they are running against drag forces and these forces are energetically costly due to muscular work and respective muscular efficiency employed (ALEXANDER, 1976).

The mass-spring model is the mechanism that explain the minimization of energy expenditure during running (BLICKHAN, 1989; MCMAHON and CHENG, 1990). It considers the runner body as a mass and the leg as a spring. In this model, the mass oscillates symmetrically at a frequency on a spring with specific stiffness during step storing and releasing elastic energy (BLICKHAN, 1989; MCMAHON and CHENG, 1990). The elastic energy is stored in the tendon-muscle units during negative work phase (tbrake) when the center of mass falling and is released in positive work ($t_{\text {push }}$), when the center of mass is raising (CAVAGNA, SAIBENE and MARGARIA, 1964). Additionally, the capacity of energy storage is associated with the amount of force applied during effective contact time ($t_{c \mathrm{c}}$), when vertical force is greater than body weight, and how longer effective aerial time (t_{ae}) is to use the stored energy, when the vertical force is lower than body weight (CAVAGNA et al., 1988). Cavagna et al. (2006) showed that human running presented deviation from this symmetrical ideal model due the force-velocity muscle relationship. The $t_{\text {push }}>$ torake in low and intermediate running velocities are asymmetrical and becomes symmetrical ($t_{\text {push }}=t_{\text {brake }}$) at high velocities, whereas $t_{\mathrm{ae}}=t_{\mathrm{ce}}$ at low and intermediate running velocities and becomes asymmetrical in high running velocities ($t_{\mathrm{ae}}>t_{\mathrm{ce}}$). Therefore, optimal bouncing elastic is enhanced when $t_{\text {push }}=t_{\text {brake }}$ and $t_{\mathrm{ae}}>t_{\mathrm{ce}}(C A V A G N A, 2009)$. Other running asymmetries related to vertical velocity and displacement of the center of mass during tae and tce are discussed in detail in Cavagna's study (CAVAGNA, 2006).

Mesquita et al. (2020) quantified the effect of high horizontal impeding forces (5, 10 and 15% of body weight) on running mechanical variables at running velocities from 8 to $16 \mathrm{~km} . \mathrm{h}^{-1}$. The authors found that the increment of horizontal impeding forces impair the elastic bouncing ($t_{\text {ae }}=t_{\mathrm{ce}}$ and $t_{\text {push }}>t_{\text {brake }}$) at high running velocities. These findings are in line with Dewolf, Peñailillo and Willems (2016) that compared mechanical variables during overground and uphill running and found that with increase of incline the elastic bouncing $t_{\mathrm{ae}}=t_{\mathrm{ce}}$ and $t_{\text {push }}>t_{\text {brake }}$. However, paradoxically Mesquita et al. (2020), found that highest load evaluated (15\% of body weight) increased the recovery of external mechanical work in 16% at $8 \mathrm{~km} . \mathrm{h}^{-1}$ (the lowest running velocity). This recovery was reduced at high velocities.

Based on previous studies, the metabolic cost of running with horizontal impeding forces increases according the propulsive impulses (CHANG and KRAM, 1999), though the energy transduction between potential and kinetic energies is improved (MESQUITA et al., 2020). A deep analysis of metabolic power to overcome horizontal impeding forces comparable to air resistive forces in large sample of competitive runners and at higher running velocities could improve the understanding of the energy cost of running overground, running economy and the accuracy of drafting and time savings calculations. Additionally, the spring-mass model variables such landing-takeoff ($t_{\text {push }} / t_{\text {brake }}$) and rebound ($t_{\text {ae }} / t_{\text {ce }}$) can demonstrate if running against small resistive forces becomes the system resonant or dissonant and therefore saving energy.

1.3 Aims

1.3.1 General aim

The purpose of this dissertation was to quantify how small horizontal impeding forces affect the running physiomechanics variables across a range of running velocities.

1.3.2 Specific aims

1) Quantify how small horizontal impeding forces (0,4 and 8 N) affect metabolic power in a large sample of competitive runners over a range of velocities (12, 14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$).
2) Quantify how small horizontal impeding forces (0,4 and 8 N) can save energy by spring-mass model through asymmetries of bouncing step (rebound and landing take-off) in long-distance runners.

1.3.3 Hypothesis

1) We expect that with increase of small horizontal impeding forces (0,4 , and 8 N) across running velocities (12, 14, $16 \mathrm{~km} . \mathrm{h}^{-1}$) the metabolic power will increase linearly.
2) We expect that with increase of horizontal impeding forces the landing-takeoff ($t_{\text {push }} / t_{\text {brake }}$) and rebound ($t_{\text {ae }} / t_{\text {ce }}$) will not be changed, however, another asymmetry of spring-mass model: vertical velocity of the center of mass during downward and upward ($v_{v, \text { max, down }} / v_{v, \text { max,up }}$) will become symmetrical due to altered values during fatigue conditions found in previous work (FISCHER, 2010).

1.4 Literature review

1.4.1 Aerodynamic drag forces during running

Aerodynamic drag forces during locomotion are an inevitable phenomenon and the concerns regarding its effects at different running velocities through different measurements have been described (HILL, 1928; SHANEBROOK and JASZCZAK, 1976). The main factors associated to drag forces during running are running velocity, body dimensions (surface and frontal area), density of the air, wind velocity and wind direction such as tailwind, headwind, or crosswind (HILL, 1928; SHANEBROOK and JASZCZAK, 1976).

The drag forces (F) in N during running can be calculated using a standard equation proposed by Lord Rayleigh (1876), with information of projected frontal area $\left(A_{f}\right)$ expressed in m^{2}, coefficient of drag ($\left.\mathrm{Ca}_{\mathrm{d}}\right)$, air density (ρ) in $\mathrm{kg} / \mathrm{m}^{3}$ and the running velocity (v) in m. s^{-1} :

$$
\mathrm{F}=0.5 \mathrm{~A}_{\mathrm{f}} \mathrm{C}_{\mathrm{d}} \rho \mathrm{v}^{2}
$$

Equation 1
The A_{f} is related to general position adopted by runner during race (see Figure 1). It has been suggested that A_{f} during running is equal to 26% of surface area (PUGH, 1970; DU BOIS and DU BOIS, 1916) or 0.15 times the square of runner height (HILL, 1928). The C_{d} is ratio of F to a dynamic pressure (kinetic energy per unit volume of a moving solid body) of a moving air stream (PUGH, 1971). The C_{d} is a function of Reynold's number (R) that are dependent of kinematic viscosity of the air (air viscosity $/ \rho$) and wind velocity on $\mathrm{A}_{f}\left(\right.$ PUGH, 1971). It is expected a C_{d} around $0.8-0.9$ during running (PUGH, 1971; HILL, 1928), whereas, for ρ, a value of $1.204 \mathrm{~kg} / \mathrm{m}^{3}$ is common in sea level at $20^{\circ} \mathrm{C}$ (KYLE and CAIOZZO, 1986), but it is worth noting that ρ decreases with increase of room temperature (PUGH, 1971).

Hill (1928) measured air resistive forces using small wind tunnel and a scaled physical model of a runner (0.2 m tall). In this runner, it was assumed two running body position: standing and running position (as shown in Figure 1). To determine the projected area, Hill used photography method and therefore he found $0.28 \mathrm{~m}^{2}$ for standing position and lower values of $0.24 \mathrm{~m}^{2}$ for running position. Further, the "resistance" called by Hill was measured using the following equations for both conditions, which F varies as the square of running velocity:

$$
\mathrm{F}=0.45 \rho \mathrm{v}^{2} \mathrm{~A}_{\mathrm{r}} \text { (running position) }
$$

Equation 2

$$
\mathrm{F}=0.49 \rho \mathrm{v}^{2} \mathrm{~A}_{\mathrm{s}} \text { (standing position) }
$$

Equation 3
Where A_{r} is the projected area in running position $\left(\mathrm{ft}^{2}\right), \mathrm{A}_{\mathrm{s}}$ is the projected area in standing position (ft^{2}), v is the running velocity (feet per second), and ρ was 0.00237 and represents the air density at $15^{\circ} \mathrm{C}$ and at normal barometric pressure (expressed in lbs. per cubic foot divided to gravity to convert F in Ibs. weight). To represent F during running in practical terms, Hill converted all units of Equation 2 and 3, running velocity in $\mathrm{m} . \mathrm{s}^{-1}$, the area in m^{2} and F in kilograms:

$$
\begin{aligned}
& \mathrm{R}=0.056 \mathrm{v}^{2} \mathrm{~A}_{\mathrm{r}} \text { (running position) } \\
& \mathrm{R}=0.061 \mathrm{v}^{2} \mathrm{~A}_{\mathrm{s}} \text { (standing position) }
\end{aligned}
$$

Equation 4
Equation 5
It was found the projected area during running could be represented by the square of height (H) in the proportion of $0.146\left(\mathrm{~A}_{r}=0.146 \mathrm{H}^{2}\right)$ in running position and 0.171 in standing position ($\mathrm{A}_{s}=0.171 \mathrm{H}^{2}$). Hill (1928) calculated the projected area for a 1.75 m of height and found $A_{r}=0.446 \mathrm{~m}^{2}$ in running position and $A_{r}=0.520 \mathrm{~m}^{2}$. Therefore, he corrected this proportion using a photograph of runner finishing a race and found a proportion of A_{r} equal to $0.15 \mathrm{H}^{2}$. Finally, it was concluded that A_{r} for a runner is approximately $0.464 \mathrm{~m}^{2}$ and F is $0.0053 \mathrm{v}^{2}(\mathrm{lbs})$, where v is expressed in feet per second. For a runner during sprint of $38 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ in a calm air (without wind), the Hill equation described above the F is 28 N and for running at $26 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ the F is 13.3 N .

Another critical outcome in Hill (1928) was the effect of F on running performance. In a hypothetical scenario without air resistance a runner at $38 \mathrm{~km} . \mathrm{h}^{-1}$ could increase his maximal velocity by 5%. The increase of 5% in maximal running velocity would be possible in a real scenario with a tailwind velocity (when the wind is blowing in the same direction of a moving object) equal to 16.1 or $38.6 \mathrm{~km} . \mathrm{h}^{-1}$ improving his time in 3 and 5 s at 100 yards ($\sim 91 \mathrm{~m}$), respectively. It is needed to highlight that F varies square of running velocity and, thus, when the same runner overcomes a headwind velocity (when the wind is blowing against the direction of a moving object) of $16.1 \mathrm{~km} . \mathrm{h}^{-1}$, his performance decreases in 5 s at the same distance.

Almost 50 years later, Shanebrook and Jaszczak (1976) improved the estimates of F in runners creating a segmented model during contact time. In this runner model, lower limbs, upper limbs, and trunk were considered cylinders and for the head was considered a sphere. Additionally, it was assumed a runner posture similar during race,
where one arm and one leg on opposite sides of the trunk are bent forward and backward, respectively, as shown in Figure 1.

Figure 1. Drag Forces Models
Applying the Shanebrook and Jaszczak (1976) model to an American male adult (percentile 50 in body dimensions) sprinting at $36.2 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ for 100 yards (91 m) with $C_{d} 1.14$, the authors found F of 30 N . It was also possible to observe that F varies when body dimensions changes. American male with percentile 2.5 at the same conditions F was 24.7 $\mathrm{N}\left(\mathrm{C}_{d}=1.14\right)$, while and with percentile 97.5 the F increased to 36.3 N . The findings of Shanebrook and Jaszczak (1976) model for a male percentile 50 are in line with Hill (1928) model for sprinter runners who found F of 28 N running at $38 \mathrm{~km} . \mathrm{h}^{-1}$. Future studies calculating F during long distance runners would elucidate energetics responses and time saving through drafting strategies (when a runner benefit from a low-pressure zone behind another leader runner) (HOOGKAMER, KRAM and ARELLANO, 2017).

Hoogkamer, Kram and Arellano (2017) calculated the F to Dennis Kimetto (1.71 m and $58 \mathrm{~kg} ; \mathrm{A}_{\mathrm{f}}=0.450 \mathrm{~m}^{2}$) to overcome the 2-hr marathon pace. They used the Rayleigh's equation for F with C_{d} of 1.0 , ρ equal $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and running velocity of 5.86 m. s^{-1}. Kimetto would face 9.2 N during the $2-\mathrm{hr}$ marathon. However, the authors suggested that if there was cooperative drafting in which four elite marathoners in line (1 m of distance) alternating the leadership for 3 min (5 times for each one), the second half of marathon of the would be reached in 58:24 min. An interaction during this
cooperative drafting with three runners also alternating for 3 min would allow the second half of marathon in 58:51, and 59:30 with only two runners cooperating. An updated model of cooperative drafting proposed by Hoogkamer, Snyder and Arellano (2019) with current world record marathonist Eliud Kipchoge (2:01:39), suggested that interaction of 3 Kipchoge-like runners is needed to break 2-hr marathon saving 1:51 min.

Currently, with technological advances, simulations using the Computational Fluid Dynamic (CFD) method also allow the calculation of F during running at different running posture, with or without additional wind velocities, high running velocities, different air conditions and temperatures. Beves and Ferguson (2017) using CFD method, simulated the effect of F on Eliud Kipchoge performance (2:00:25) at 21.1 $\mathrm{km} . \mathrm{h}^{-1}$ during an unofficial marathon in Monza (Italy) in 2017. It was simulated 4 scenarios: 1°) Kipchoge running alone; 2°) the car in front of Kipchoge; 3°) Kipchoge drafting in delta formation; and 4°) the car in front of Kipchoge drafting in delta formation (see Figure 2). It was found 6.6 N for running alone at baseline. The F decreased from 6.6 to 4.6 N on the second scenario, decreased from 6.6 to 1.8 N when Kipchoge ran with delta formation and his F decreased from 6.6 to 1.25 N when Kipchoge ran with a car plus delta formation. They also suggested that 4:09 min was saved by delta formation in comparison to running alone.

Figure 2. CFD simulation for Eliud Kipchoge (from Beves and Ferguson, 2017).

Polidori et al. (2020) simulated the F using CFD in various cooperative drafting configurations for Kenenisa Bekele ($\mathrm{A}_{f}=0.475 \mathrm{~m}^{2}$) at $20.7 \mathrm{~km} . \mathrm{h}^{-1}$. The 3 pacers designed were positioned side by side (0.3 m) shielding Bekele (at 1.3 m). The authors
found that when Bekele was running alone, the F was 7.77 N , while running between two pacers, it was 4.78 N . In another scenario, when Bekele ran behind a lateral pacer, the F was 3.47 N. Finally, when Bekele ran in optimal drafting (behind the middle pacer), the F was 3.32 N . Therefore, maximal drafting benefits it is not achieved only when a runner stay behind another runner.

Aerodynamic Drag Forces

Figure 3. Drag forces across running velocities. It was extracted drag forces values during running from 5 studies: Hill (1928), in red circles for 1 runner with $A_{f}=0.464 \mathrm{~m}^{2}$ at running velocities between 19.1 to 38 $\mathrm{km} . \mathrm{h}^{-1}$; Shanebrook and Jaszczak (1976) in black circle for 1 runner (Af was not reported) at $36.2 \mathrm{~km} . \mathrm{h}^{-1}$; Beves and Ferguson (2017) in blue circle for Eliud Kipchoge (A_{f} was not reported) at $21.1 \mathrm{~km} . \mathrm{h}^{-1}$; Hoogkamer, Kram and Arellano (2017) in grey circle for Dennis Kimetto with $A_{f}=0.450 \mathrm{~m}^{2}$ at $21.1 \mathrm{~km} . \mathrm{h}^{-1}$, and Polidori et al. (2020) in green circle for Kenenisa Bekele with $A_{f}=0.475 \mathrm{~m}^{2}$ at $20.7 \mathrm{~km} . \mathrm{h}^{-1}$.

Based on previous studies (Figure 3), it possible to assume an elite marathon with dimensions of Kipchoge at 2-hr marathon ($21.1 \mathrm{~km} . \mathrm{h}^{-1}$) would have the F around 6.6 to 9.9 N . Given the differences in methods for F calculation (equations and CFD simulations) and body dimensions reported, new F estimates at 2-hr marathon pace are needed to improve accurate time saving during running.

1.4.2 Effects of air resistive force on physiomechanics of running

There are four approaches to quantify the air resistive forces during running experimentally. The first direct methods are the use of wind tunnel on treadmill and add wind velocities at the same as the treadmill belt compared to running on treadmill with wind tunnel off (PUGH, 1971; DAVIES, 1980). The second compares running on treadmill and running outside the lab (overground) (PUGH, 1970; MCMIKEN and DANIELS, 1976; BASSETT et al., 1985; JONES and DOUST, 1996). The third is comparison between running overground and equivalent uphill running on treadmill (JONES and DOUST, 1996). Finally, the last one is horizontal impeding forces applied on waist belt like air resistive forces (LLOYD and ZACKS, 1972; ZACKS, 1973; CHANG and KRAM, 1999; MESQUITA et al., 2020). Here, we will describe the main findings related to methods cited on physiology and biomechanics outcomes.

In a seminal study, Pugh (1971) measured the energetics of long-distance running on a treadmill against wind tunnel effects. Pugh studied only one elite runner ($\mathrm{A}_{\mathrm{f}} 0.478 \mathrm{~m}^{2}$) at constant running velocities of 13.5 and $16.1 \mathrm{~km} . \mathrm{h}^{-1}$ at adjustable wind velocities of up to $18.5 \mathrm{~m} . \mathrm{s}^{-1}$. The oxygen consumption $\left(\mathrm{VO}_{2}\right)$ at $16.1 \mathrm{~km} . \mathrm{h}^{-1}$ increased from $3.05 \mathrm{~L}^{2} \mathrm{~min}^{-1}$ at baseline wind velocity to $4.96 \mathrm{~L}^{2} \cdot \mathrm{~min}^{-1}$ at $18.5 \mathrm{~m} . \mathrm{s}^{-1}$ of wind velocity. In addition, at $13.5 \mathrm{~km} . \mathrm{h}^{-1}$ the relationship between VO_{2} and all wind velocities applied was linear, while at $16.1 \mathrm{~km} . \mathrm{h}^{-1}$ was curvilinear at wind velocities over $12.5 \mathrm{~m} . \mathrm{s}^{-1}$. Interestingly, the author reported that the runner changed his running technique from rearfoot to forefoot strike and leaned the trunk forward with an increase of running and wind velocities.

Another result of Pugh (1971) was the metabolic cost of drafting during running. The metabolic rate was reduced by $0.250 \mathrm{~L} . \mathrm{min}^{-1}$ at $6.0 \mathrm{~m} . \mathrm{s}^{-1}$ of wind velocity when the runner was shielded by another runner 1 m behind him at running velocity of $16.2 \mathrm{~km} . \mathrm{h}$ ${ }^{1}$. Applying these results outside the lab in calm air, when running velocity equal to wind velocity, the VO_{2} can be reduced by 6.5% with drafting. A total of 7.5% of energy was needed to overcome air resistive forces at $21.6 \mathrm{~km} . \mathrm{h}^{-1}$ and 13.6% for sprinting 100 m in 10 s using Pugh (1970) energy cost estimates.

Davies (1980) also quantified air resistive forces on VO_{2} during running using a wind tunnel. Two trained and one male recreational runner ran on a treadmill at different running velocities against wind velocities from 1.5 to $18.5 \mathrm{~m} . \mathrm{s}^{-1}$. He found the
energy cost to overcome air resistance on a calm day was 7.8% at $36 \mathrm{~km} \cdot \mathrm{~h}^{-1}, 4 \%$ at $21.6 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and 2% at $18 \mathrm{~km} . \mathrm{h}^{-1}$. Davies also reported changes in running technique with an increase of wind velocities. The recreational runner flexed his upper body forward with low wind velocities and slightly decreased his A_{f} from $0.430 \mathrm{~m}^{2}$ (wind velocities 1 to $15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) to $0.425 \mathrm{~m}^{2}$ (wind velocities $>15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$). In contrast, both two trained runners radically adopted the same body position of recreational, however, they also presented a forefoot strike technique resulting in a significant decrease in A_{f} from $0.466 \mathrm{~m}^{2}$ (wind velocities 1 to $15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$) to $0.425 \mathrm{~m}^{2}$ (wind velocities $>15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$).

Pugh (1970) evaluated the VO_{2} of seven runners on treadmill and overground at velocities up to $21.6 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. An increase of 9.2% in VO_{2} was found when they ran in another environment (treadmill to overground) with high values on overground trails. A side results crucial for understanding the effect of air resistive forces on VO_{2} in Pugh (1970) study was the cubic relationship between the increase in extra oxygen intake $\left(\Delta \mathrm{VO}_{2}\right)$ and running velocity at overground conditions (when running and wind velocities are equal). Therefore, an equation to estimate the increase in metabolic power at overground running was developed $\left(\Delta \mathrm{VO}_{2}=0.00354 \mathrm{Af}_{f} v^{\beta}\right)$, where $\Delta \mathrm{VO}_{2}$ is expressed in L. min^{-1}, A_{f} in m^{2} and v is the running velocity $\mathrm{m} . \mathrm{s}^{-1}$. Finally, it was estimated that 8% and 16% of total energy cost is due to overcome the air resistance at 21.5 and $36 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, respectively.

Regarding studies comparing running on treadmill and overground, there are no or little effects on physiological variables at low running velocities. Considering the running velocity increases the F in square proportion (HILL, 1928), it is not a surprise studies that evaluated VO_{2} requirements during treadmill and overground on a calm day and at low running velocities (i.e., up to $17 \mathrm{~km} \cdot \mathrm{~h}^{-1}$) do not found substantial differences (MCMIKEN and DANIELS, 1976; BASSETT et al., 1985). Contrary to findings described above, Jones and Doust (1996) found differences in VO_{2} between treadmill and overground in velocities from 13.5 to $16.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. In addition, contrary to Pugh (1970), the relationship between treadmill and overground was linear ($r=0.99$), and an interesting correspondence between $+1 \%$ on treadmill and running overground at running velocities of 10.5 to $18 \mathrm{~km} . \mathrm{h}^{-1}$ was reported.

An alternative method to quantify the effect of air resistive forces on energy expenditure and biomechanics outcomes is the use of horizontal impeding forces (Figure 4). The external impeding loads in horizontal direction are applied when the
aim is to know the headwind effects, while external aiding loads can be applied when the researcher aims to know the tailwind responses. These horizontal impeding forces are applied in the center of mass direction using rubber tubing connected to a pulley system to reduce the oscillation (LLOYD and ZACKS, 1972; ZACKS, 1973).

Figure 4. Horizontal impeding forces method (Lloyd and Zacks, 1972).

The study by Lloyd and Zacks (1972) was the first to assess the relationship between horizontal resistive forces and running energy expenditure. Three well-trained runners ran at $13 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ against horizontal impeding forces ranging between 12.2 and 53.9 N (2.2 and 9.6% of body weight, respectively). A linear relationship was found between the VO_{2} and external loads at running velocities evaluated. These linear relationship results between VO_{2} and horizontal impeding forces are in line with Zacks (1973) that applied horizontal impeding forces of 9.8 and 15.7 N (1.5 and 2.4% of their BW, respectively) in 4 runners. The apparent efficiency that represents the change in external mechanical power from unloaded running divided by the change in metabolic power from unloaded running was 36.1\% (LLOYD and ZACKS, 1972) and 39.1\% (ZACKS, 1973) without substantial differences between running velocities.

Years later, Chang and Kram (1999) investigated the effects of horizontal impeding forces during running and the mechanisms associated with energy expenditure. Eight well-trained reactional runners participated in metabolic and biomechanics experiments at $12 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ against 3 and 6% of BW. They found a linear relationship between VO_{2}, running velocity and all horizontal impeding forces
evaluated. There was a significant increase of 30.2% in VO_{2} with 6% BW of load in compared to the baseline condition. The propulsive impulses increased (47.5\%), whereas braking impulses decreases (51.1\%) without substantial differences in stride kinematics. It was suggested by the authors that generate propulsive forces are more metabolic expensive than braking forces.

In some cases, runners leaned the trunk forward and changed their technique from rearfoot to forefoot strike with increase at high wind velocities (PUGH, 1971; DAVIES, 1980), but only one study evaluated mechanical alteration for running at these conditions (MESQUITA et al., 2020). High horizontal impeding forces (up to 5, 10 and 15% of BW) modify the duration of positive ($t_{\text {push }}$) and negative work (tbrake) done to move BCoM forward (see Table 2), asymmetries of bouncing step and energies transduction (MESQUITA et al., 2020). More details of Mesquita et al. (2020) findings are discussed in section 1.4.3.

We summarized physiological and biomechanical responses of horizontal external loads, i.e., wind tunnel stimulus, treadmill versus overground, and horizontal impeding forces method are summarized in Table 1 and 2.

Table 1. Physiological responses of horizontal external loads

Study	Velocities	Conditions	Variables	Results	Difference
Pugh (1971)	16.0 km.h ${ }^{-1}$	Baseline	$\mathrm{VO}_{2}\left(\mathrm{~L} \cdot \mathrm{~min}^{-1}\right)$	3.05	0
	16.0 km.h ${ }^{-1}$	Wind 18.5 m.s ${ }^{-1}$	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	4.96	\uparrow
Davies (1980)	$12.9 \mathrm{~km} . \mathrm{h}^{-1}$	Baseline	$\mathrm{VO}_{2}\left(\mathrm{~L} \cdot \mathrm{~min}^{-1}\right)$	2.58	0
	$12.9 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 5.0 m. s^{-1}	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	2.61	\uparrow
	$12.9 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 8.0 m. s^{-1}	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	2.95	\uparrow
	$12.9 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 10.0 m. s^{-1}	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	3.26	\uparrow
	$12.9 \mathrm{~km} . \mathrm{h}^{-1}$	Wind $12.5 \mathrm{~m} . \mathrm{s}^{-1}$	$\mathrm{VO}_{2}\left(\mathrm{~L} \cdot \mathrm{~min}^{-1}\right)$	3.68	\uparrow
	$12.9 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 15.0 m. ${ }^{-1}$	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	4.07	\uparrow
	$12.9 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 18.1 m. s^{-1}	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	4.45	\uparrow
	$14.5 \mathrm{~km} . \mathrm{h}^{-1}$	Baseline	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	3.08	0
	$14.5 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 5.0 m. s^{-1}	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	3.18	\uparrow
	$14.5 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 8.0 m. s^{-1}	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	3.43	\uparrow
	$14.5 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 10.0 m. s^{-1}	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	3.78	\uparrow
	$14.5 \mathrm{~km} . \mathrm{h}^{-1}$	Wind $12.5 \mathrm{~m} . \mathrm{s}^{-1}$	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	4.23	\uparrow
	$14.5 \mathrm{~km} . \mathrm{h}^{-1}$	Wind 15.0 m.s ${ }^{-1}$	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {m min }}\right.$-1 $)$	4.60	\uparrow
Pugh (1970)	$21.5 \mathrm{~km} . \mathrm{h}^{-1}$	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	68.3	0
	21.5 km. ${ }^{-1}$	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	74.6	\uparrow
Bassett et al. (1985)	8.4 km. h^{-1}	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	32.4	0
	$8.4 \mathrm{~km} . \mathrm{h}^{-1}$	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	33.3	$=$
	16.8 km.h ${ }^{-1}$	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	60.2	0
	16.8 km. h^{-1}	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	59.5	=

Jones and Doust	$10.5 \mathrm{~km} . \mathrm{h}^{-1}$	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	29.6	O
(1996)	$10.5 \mathrm{~km} . \mathrm{h}^{-1}$	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	31.1	$=$
	12.0 km. h^{-1}	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	34.6	O
	12.0 km. h^{-1}	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	35.7	$=$
	$13.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	39.0	0
	$13.5 \mathrm{~km} . \mathrm{h}^{-1}$	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	41.7	\uparrow
	15.0 km. h^{-1}	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	44.9	0
	15.0 km. h^{-1}	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	48.1	\uparrow
	16.5 km. ${ }^{-1}$	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	51.0	0
	$16.5 \mathrm{~km} . \mathrm{h}^{-1}$	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	54.8	\uparrow
	18.0 km. h^{-1}	Treadmill	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	57.3	0
	18.0 km. h^{-1}	Overground	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	60.5	=
	$10.5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$	Treadmill	HR (beats min^{-1})	116	O
	$10.5 \mathrm{~km} . \mathrm{h}^{-1}$	Overground	HR (beats min^{-1})	119	$=$
	12.0 km. ${ }^{-1}$	Treadmill	HR (beats min ${ }^{-1}$)	124	O
	12.0 km. ${ }^{-1}$	Overground	HR (beats min ${ }^{-1}$)	128	$=$
	$13.5 \mathrm{~km} . \mathrm{h}^{-1}$	Treadmill	HR (beats min^{-1})	137	O
	$13.5 \mathrm{~km} . \mathrm{h}^{-1}$	Overground	HR (beats min^{-1})	140	$=$
	15.0 km. ${ }^{-1}$	Treadmill	HR (beats min^{-1})	149	O
	15.0 km. ${ }^{-1}$	Overground	HR (beats min^{-1})	153	$=$
	$16.5 \mathrm{~km} . \mathrm{h}^{-1}$	Treadmill	HR (beats min^{-1})	160	O
	$16.5 \mathrm{~km} . \mathrm{h}^{-1}$	Overground	HR (beats min^{-1})	165	$=$
	18.0 km. ${ }^{-1}$	Treadmill	HR (beats min^{-1})	171	O
	18.0 km.h ${ }^{-1}$	Overground	HR (beats min^{-1})	174	$=$
Lloyd and Zacks	12.6 km. ${ }^{-1}$	Baseline	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	3.20	0
(1972)	12.6 km. ${ }^{-1}$	53.9 N (HIF)	$\mathrm{VO}_{2}\left(\mathrm{~L}^{\text {min }}{ }^{-1}\right)$	3.96	\uparrow
Chang and Kram	12.0 km. h^{-1}	Baseline	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	35.7	0
(1999)	12.0 km.h ${ }^{-1}$	3 \% BW	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	39.7	$=$
	12.0 km. ${ }^{-1}$	6 \% BW	$\mathrm{VO}_{2}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	45.7	\uparrow

Body weight (BW); Oxygen consumption (VO_{2}); Heart rate (HR); Horizontal impeding forces (HIF); Symbol (O) is related to baseline, (\uparrow) significant increase in comparison to baseline, (\downarrow) significant decrease in comparison to baseline, and (=) no differences in comparison to baseline. Chang and Kram (1999) used HIF method.

Table 2. Biomechanical responses of horizontal external loads

Study	Velocities	Conditions	Variables	Results	Difference
Chang and Kram (1999)	12.0 km. h^{-1}	Baseline	$f_{\text {stride }}(\mathrm{Hz})$	1.40	0
	12.0 km. h^{-1}	3 \% BW	$f_{\text {stride }}(\mathrm{Hz})$	1.45	$=$
	12.0 km. h^{-1}	6 \% BW	$t_{\text {stride }}(\mathrm{Hz})$	1.46	=
	12.0 km. h^{-1}	Baseline	$t_{\text {c }}(\mathrm{s})$	0.263	0
	12.0 km. h^{-1}	3 \% BW	$t_{c}(\mathrm{~s})$	0.269	\uparrow
	12.0 km. h^{-1}	6 \% BW	tc (s)	0.268	\uparrow
	12.0 km. h^{-1}	Baseline	Duty Factor	0.37	0
	12.0 km. h^{-1}	3 \% BW	Duty Factor	0.39	$=$
	12.0 km. h^{-1}	6 \% BW	Duty Factor	0.39	=
	12.0 km. ${ }^{-1}$	Baseline	$\text { lorake }(\mathrm{N} / \mathrm{s})$	13.9	0
	12.0 km. h^{-1}	3 \% BW	lbrake (N / s)	10.1	\downarrow
	12.0 km. h^{-1}	6 \% BW	lorake (N / s)	6.8	\downarrow
	12.0 km. ${ }^{-1}$	Baseline	$l_{\text {prop }}(\mathrm{N} / \mathrm{s}$)	14.1	O
	12.0 km. h^{-1}	3 \% BW	$l_{\text {prop }}(\mathrm{N} / \mathrm{s}$)	16.9	\uparrow
	12.0 km. ${ }^{-1}$	6 \% BW	1 prop (N/s)	20.8	\uparrow
	12.0 km. h^{-1}	Baseline	Peak Fbrake (N)	227.2	\bigcirc
	12.0 km. h^{-1}	3 \% BW	Peak Fbrake (N)	189.3	\downarrow
	12.0 km. h^{-1}	6 \% BW	Peak $F_{\text {brake }}(\mathrm{N})$	147.4	\downarrow

	12.0 km. ${ }^{-1}$	Baseline	Peak $F_{\text {prop }}(\mathrm{N})$	193.3	O
	12.0 km. h^{-1}	3 \% BW	Peak $F_{\text {prop }}(\mathrm{N})$	210.9	\uparrow
	12.0 km. h^{-1}	6 \% BW	Peak $F_{\text {prop }}(\mathrm{N})$	238.0	\uparrow
	12.0 km. h^{-1}	Baseline	$F_{\mathrm{v}}(\mathrm{N})$	1670	O
	12.0 km. h^{-1}	3 \% BW	$F_{\mathrm{v}}(\mathrm{N})$	1583	$=$
	12.0 km. h^{-1}	6 \% BW	$F_{\mathrm{v}}(\mathrm{N})$	1574	=
	12.0 km. h^{-1}	3 \% BW	$E_{\text {ff (\%) }}$ (\%)	62.6	O
	12.0 km. ${ }^{-1}$	6 \% BW	$E_{\text {ff (\%) }}$	54.5	\downarrow
Mesquita et al.	8.0 km.h ${ }^{-1}$	Baseline	t_{c} (s)	0.291	O
(2020)	8.0 km. h^{-1}	5\% BW	t_{c} (s)	0.296	$=$
	8.0 km. h^{-1}	10\% BW	t_{c} (s)	0.301	=
	8.0 km. h^{-1}	15\% BW	t_{c} (s)	0.302	=
	10.0 km. h^{-1}	Baseline	t_{c} (s)	0.271	O
	10.0 km. ${ }^{-1}$	5\% BW	t_{c} (s)	0.271	=
	10.0 km.h ${ }^{-1}$	10\% BW	t_{c} (s)	0.271	=
	10.0 km.h ${ }^{-1}$	15\% BW	t_{c} (s)	0.276	=
	12.0 km. ${ }^{-1}$	Baseline	t_{c} (s)	0.247	O
	12.0 km. h^{-1}	5\% BW	t_{c} (s)	0.247	=
	12.0 km. h^{-1}	10\% BW	t_{c} (s)	0.243	=
	12.0 km. h^{-1}	15\% BW	t_{c} (s)	0.246	=
	14.0 km. ${ }^{-1}$	Baseline	t_{c} (s)	0.230	O
	14.0 km. h^{-1}	5\% BW	$t \mathrm{c}$ (s)	0.230	$=$
	14.0 km. h^{-1}	10\% BW	t_{c} (s)	0.224	=
	14.0 km. ${ }^{-1}$	15\% BW	tc (s)	0.221	=
	16.0 km. ${ }^{-1}$	Baseline	t_{c} (s)	0.209	O
	16.0 km. ${ }^{-1}$	5\% BW	t_{c} (s)	0.209	=
	16.0 km. h^{-1}	10\% BW	t_{c} (s)	0.204	=
	16.0 km.h ${ }^{-1}$	15\% BW	t_{c} (s)	0.199	=
	8.0 km. ${ }^{-1}$	Baseline	$t_{\text {a }}(\mathrm{s})$	0.089	O
	8.0 km. h^{-1}	5\% BW	$t \mathrm{a}$ (s)	0.078	\downarrow
	8.0 km. h^{-1}	10\% BW	$t \mathrm{a}$ (s)	0.073	\downarrow
	8.0 km. h^{-1}	15\% BW	$t \mathrm{a}$ (s)	0.055	\downarrow
	10.0 km. ${ }^{-1}$	Baseline	$t \mathrm{ta}$	0.105	O
	10.0 km. ${ }^{-1}$	5\% BW	$t \mathrm{a}$ (s)	0.092	\downarrow
	10.0 km. ${ }^{-1}$	10\% BW	$t \mathrm{a}$ (s)	0.088	\downarrow
	10.0 km.h ${ }^{-1}$	15\% BW	$t_{\text {a }}(\mathrm{s})$	0.069	\downarrow
	12.0 km. ${ }^{-1}$	Baseline	$t_{\text {a }}(\mathrm{s})$	0.114	O
	12.0 km. h^{-1}	5\% BW	$t_{\text {a }}(\mathrm{s})$	0.106	\downarrow
	12.0 km. ${ }^{-1}$	10\% BW	$t \mathrm{ta}$	0.098	\downarrow
	12.0 km. h^{-1}	15\% BW	$t \mathrm{ts}$)	0.078	\downarrow
	14.0 km. h^{-1}	Baseline	$t \mathrm{a}$ (s)	0.124	O
	14.0 km. h^{-1}	5\% BW	$t_{\text {a }}(\mathrm{s})$	0.116	\downarrow
	14.0 km. ${ }^{-1}$	10\% BW	$t \mathrm{a}$ (s	0.104	\downarrow
	14.0 km. ${ }^{-1}$	15\% BW	$t_{\text {a }}(\mathrm{s})$	0.087	\downarrow
	16.0 km. ${ }^{-1}$	Baseline	$t \mathrm{a}$ (s)	0.128	O
	16.0 km. h^{-1}	5\% BW	$t_{\text {a }}(\mathrm{s})$	0.121	\downarrow
	16.0 km.h ${ }^{-1}$	10\% BW	$t \mathrm{a}$ (s)	0.106	\downarrow
	16.0 km. ${ }^{-1}$	15\% BW	$t_{\text {a }}(\mathrm{s})$	0.086	\downarrow
	8.0 km. h^{-1}	Baseline	$t_{\text {ce }}(\mathrm{s})$	0.181	O
	8.0 km. h^{-1}	5\% BW	tce (s)	0.181	$=$
	8.0 km. h^{-1}	10\% BW	tce (s)	0.174	=
	8.0 km. h^{-1}	15\% BW	t ce (s)	0.176	=
	10.0 km. ${ }^{-1}$	Baseline	$t_{\text {ce }}(\mathrm{s})$	0.174	O
	10.0 km. h^{-1}	5\% BW	$t_{\text {ce }}(\mathrm{s})$	0.173	$=$
	10.0 km. h^{-1}	10\% BW	$t_{\text {ce }}(\mathrm{s})$	0.170	=
	10.0 km. ${ }^{-1}$	15\% BW	$t_{\text {ce }}(\mathrm{s})$	0.167	=
	12.0 km. h^{-1}	Baseline	$t_{\text {ce }}(\mathrm{s})$	0.168	O
	12.0 km. ${ }^{-1}$	5\% BW	$t_{\text {ce }}(\mathrm{s})$	0.167	$=$
	12.0 km. ${ }^{-1}$	10\% BW	$t_{\text {ce }}(\mathrm{s})$	0.161	$=$

12.0 km. h^{-1}	15\% BW	$t_{\text {ce }}(\mathrm{s})$	0.157	$=$
14.0 km. ${ }^{-1}$	Baseline	$t_{\text {ce }}(\mathrm{s})$	0.160	O
14.0 km. ${ }^{-1}$	5\% BW	$t_{\text {ce }}(\mathrm{s})$	0.160	=
14.0 km. h^{-1}	10\% BW	$t_{\text {ce }}(\mathrm{s})$	0.155	=
14.0 km. h^{-1}	15\% BW	$t_{\text {ce }}(\mathrm{s})$	0.148	=
16.0 km. ${ }^{-1}$	Baseline	$t_{\text {ce }}(\mathrm{s})$	0.150	O
16.0 km. ${ }^{-1}$	5\% BW	$t_{\text {ce }}(\mathrm{s})$	0.150	$=$
16.0 km. h^{-1}	10\% BW	$t_{\text {ce }}(\mathrm{s})$	0.145	=
16.0 km. ${ }^{-1}$	15\% BW	$t_{\text {ce }}(\mathrm{s})$	0.138	=
8.0 km.h ${ }^{-1}$	Baseline	$t_{\text {ae }}(\mathrm{s})$	0.194	O
8.0 km. h^{-1}	5\% BW	$t_{\text {ae }}(\mathrm{s})$	0.194	\downarrow
8.0 km. h^{-1}	10\% BW	$t_{\text {ae }}(\mathrm{s})$	0.194	\downarrow
8.0 km.h ${ }^{-1}$	15\% BW	$t_{\text {ae }}(\mathrm{s})$	0.186	\downarrow
10.0 km. ${ }^{-1}$	Baseline	$t_{\text {ae }}(\mathrm{s})$	0.196	O
10.0 km. ${ }^{-1}$	5\% BW	$t_{\text {ae }}(\mathrm{s})$	0.191	\downarrow
10.0 km.h ${ }^{-1}$	10\% BW	$t_{\text {ae }}(\mathrm{s})$	0.193	\downarrow
10.0 km.h ${ }^{-1}$	15\% BW	$t_{\text {ae }}(\mathrm{s})$	0.181	\downarrow
12.0 km. h^{-1}	Baseline	$t_{\text {ae }}(\mathrm{s})$	0.196	O
12.0 km. h^{-1}	5\% BW	$t_{\text {ae }}$ (s)	0.188	\downarrow
12.0 km. h^{-1}	10\% BW	$t_{\text {ae }}(\mathrm{s})$	0.184	\downarrow
12.0 km. ${ }^{-1}$	15\% BW	$t_{\text {ae }}(\mathrm{s})$	0.174	\downarrow
14.0 km. ${ }^{-1}$	Baseline	$t_{\text {ae }}(\mathrm{s})$	0.191	O
14.0 km. h^{-1}	5\% BW	$t_{\text {ae }}$ (s)	0.183	\downarrow
14.0 km. ${ }^{-1}$	10\% BW	$t_{\text {ae }}(\mathrm{s})$	0.171	\downarrow
14.0 km. ${ }^{-1}$	15\% BW	$t_{\text {ae }}(\mathrm{s})$	0.164	\downarrow
16.0 km. h^{-1}	Baseline	$t_{\text {ae }}(\mathrm{s})$	0.187	0
16.0 km. ${ }^{-1}$	5\% BW	$t_{\text {ae }}(\mathrm{s})$	0.178	\downarrow
16.0 km. ${ }^{-1}$	10\% BW	$t_{\text {ae }}$ (s)	0.167	\downarrow
16.0 km. ${ }^{-1}$	15\% BW	$t_{\text {ae }}(\mathrm{s})$	0.148	\downarrow
8.0 km.h ${ }^{-1}$	Baseline	t push (s)	0.179	0
8.0 km. h^{-1}	5\% BW	t tush (s)	0.175	$=$
8.0 km. h^{-1}	10\% BW	$t_{\text {push }}(\mathrm{s})$	0.180	=
8.0 km. h^{-1}	15\% BW	t push (s)	0.186	=
12.0 km. ${ }^{-1}$	Baseline	t tush (s)	0.130	0
12.0 km. h^{-1}	5\% BW	t push (s)	0.138	\uparrow
12.0 km. ${ }^{-1}$	10\% BW	t push (s)	0.144	\uparrow
12.0 km. ${ }^{-1}$	15\% BW	$t_{\text {push }}(\mathrm{s})$	0.151	\uparrow
16.0 km. h^{-1}	Baseline	t push (s)	0.112	0
16.0 km. h^{-1}	5\% BW	t push (s)	0.114	\uparrow
16.0 km. ${ }^{-1}$	10\% BW	$t_{\text {push }}(\mathrm{s})$	0.122	\uparrow
16.0 km. ${ }^{-1}$	15\% BW	$t_{\text {push }}(\mathrm{s})$	0.130	\uparrow
8.0 km. h^{-1}	Baseline	tbrake (s)	0.125	0
8.0 km. h^{-1}	5\% BW	tbrake (s)	0.125	$=$
8.0 km. h^{-1}	10\% BW	tbrake (s)	0.125	=
8.0 km.h ${ }^{-1}$	15\% BW	tbrake (s)	0.121	=
12.0 km. ${ }^{-1}$	Baseline	tbrake (s)	0.113	O
12.0 km. ${ }^{-1}$	5\% BW	tbrake (s)	0.110	\downarrow
12.0 km. ${ }^{-1}$	10\% BW	tbrake (s)	0.103	\downarrow
12.0 km. ${ }^{-1}$	15\% BW	tbrake (s)	0.096	\downarrow
16.0 km. h^{-1}	Baseline	tbrake (s)	0.098	0
16.0 km. ${ }^{-1}$	5\% BW	tbrake (s)	0.097	\downarrow
16.0 km. ${ }^{-1}$	10\% BW	tbrake (s)	0.087	\downarrow
16.0 km. h^{-1}	15\% BW	tbrake (s)	0.073	\downarrow

 Effective aerial time (t_{ae}); Effective contact time (t_{ae}); Horizontal impeding forces (HIF); Mechanical Efficiency (E_{ff}); Peak braking force (Peak $F_{\text {brake }}$); Peak propulsive force (Peak $F_{\text {prop }}$); Peak vertical force (F_{v}); Propulsive impulse ($l_{\text {prop }}$); Push duration ($t_{\text {push }}$); Step frequency ($f_{\text {stride }}$); Symbol (O) is related to baseline, (\uparrow) significant increase in comparison to baseline, (\downarrow) significant decrease in comparison to baseline, and (=) no differences in comparison to baseline. Chang and Kram (1999) and Mesquita et al. (2020) used HIF method.

1.4.3 Asymmetries of bouncing step during running

During running on level, in the first half contact (torake), the muscles produce negative work partially storing elastic energy in the muscle-tendon units when the center of mass (BCoM) is on downward oscillation phase. The elastic energy in part is released and converted into kinetic and potential energy in the second half contact ($t_{\text {push }}$), when muscles produce positive work, during upward oscillation phase of BCoM. Therefore, this extra energy added minimizes the energy cost to move forward (CAVAGNA, SAIBENE and MARGARIA, 1964). The potential and kinetic energies exchange from BCoM can differentiate walking to running. Inverted pendulum is the major mechanism to saving energy during walking changing potential into kinetic energy out of phase, while in running the spring-mass model save energy when the potential and kinetic energy oscillate symmetrically in phase at a frequency ($f_{\text {syst }}$), compressing the spring and storing elastic energy on each step and assisting to raise and accelerate the BCoM (BLICKHAN, 1989; MCMAHON and CHENG, 1990; CAVAGNA, HEGLUND and TAYLOR, 1977).

Cavagna et al. (1988) showed that there are deviations of the symmetrical elastic bouncing in human and animals during running. When the vertical oscillation of BCoM during contact (s_{c}) and aerial times (s_{a}) was analyzed considering vertical force during running greater (S_{ce}) and lower (S_{ae}) than body weight (BW) and when contact $\left(t_{c}\right)$ and aerial times (t_{a}) during running was considered effective or greater ($t_{c e}$) and lower ($t_{\text {ae }}$) than BW, they found there are asymmetries related to time and amplitude of BCoM oscillation that are dependent of running velocity. At lower running velocities, up to $11 \mathrm{~km} . \mathrm{h}^{-1}$, $\mathrm{sce}_{\mathrm{ce}}, t_{\text {ce }}$ and step frequency ($f_{\text {step }}$) are equal $\mathrm{sae}^{\text {, tae }}$ and $f_{\text {syst }}$ (see Figure 5). At higher running velocities, this relationship becomes asymmetrical with s_{ce}, $t_{c e}$ and $f_{\text {step }}$ are lower than sae, $t_{\text {ae }}$ and $f_{\text {syst }}$ (see Figure 6).

Figure 5. Symmetrical rebound (up to $11 \mathrm{~km} . \mathrm{h}^{-1}$) during vertical oscillation of BCoM (extracted from Cavagna, Heglund and Williams, 2005). Contact (t_{c}) and aerial times (t_{a}); effective contact (t_{ce}) and aerial times (t_{ae}), vertical oscillation of BCoM during contact (s_{c}) and aerial times $\left(s_{a}\right)$.

Figure 6. Asymmetrical rebound (above to $11 \mathrm{~km} . \mathrm{h}^{-1}$) during vertical oscillation of BCoM (extracted from Cavagna, Heglund and Williams, 2005). Contact (t_{c}) and aerial times (t_{a}); effective contact (t_{ce}) and aerial times (t_{ae}), vertical oscillation of BCoM during contact (s_{c}) and aerial times $\left(s_{a}\right)$.

Extending the Cavagna et al. (1988) findings, Cavagna (2006) described in detail the asymmetries in human running. The author evaluated running mechanical variables through ground reaction forces in 10 subjects (8 males and 2 female) at running velocities 2 to $21 \mathrm{~km} . \mathrm{h}^{-1}$. It was found at low and intermediate running velocities the landing-takeoff relation is asymmetrical (toush > torake) and becomes symmetrical (toush $=$ torake) at high running velocities (see Figure 7).

Figure 7. Push (tpush) and braking (tbrake) duration across running velocities (from Cavagna, 2009).

Conversely, the rebound is symmetrical ($t_{\mathrm{ae}}=t_{\mathrm{ce}}$) at low and intermediate velocities and t_{ae} values remain unchanged with increase of running velocity and t_{ce} decrease becoming this relationship asymmetrical ($t_{\mathrm{ae}}>t_{\mathrm{ce}}$) at high running velocities (CAVAGNA, 2009) (see Figure 8).

Figure 8. Effective contact (t_{ce}) and aerial times (t_{ae}) across running velocities (from Cavagna, 2009).

Regarding $t_{\text {ce }} / t_{\text {te }}$, at low running velocities due to vertical momentum lost and gained, the average of vertical acceleration during tce ($\bar{a}_{v, c e}$) is equal to vertical acceleration during $t_{\mathrm{ae}}\left(\bar{a}_{\mathrm{v}, \mathrm{ae}}\right)$. Additionally, at low running velocities step frequency ($f_{\text {step }}$) is similar to the natural frequency of bouncing system ($f_{\text {syst }}$) and ideal for saving energy. However, at high running velocities, the $t_{c e}$ decreases and tae remain constant and $t_{\text {step }}$ is lower than $f_{\text {syst }}$ because $\bar{a}_{\mathrm{v}, \text { ce }}$ increases beyond 1 g , while $\bar{a}_{\mathrm{v}, \text { ae }}$ cannot exceed 1 g . Therefore, to counterbalance the lower acceleration during t_{ae} in comparison to $t_{c e}$ a greater t_{ae} relative to $t_{c e}$ is needed ($t_{\mathrm{ae}}>t_{c \mathrm{c}}$).

In the $t_{\text {push }} /$ tbrake asymmetry, at low running velocities up to $14 \mathrm{~km} . \mathrm{h}^{-1}$, the muscles act with lower activation, force, and stiffness. Therefore, the muscles are responsible substantially for stretching and shortening of muscle-tendon units during the step. At this condition, the duration of work in torake is lower than $t_{\text {push }}$ and the force exerted during tbrake is greater than $t_{\text {push }}$ (momentum lost during $t_{\text {brake }}>t_{\text {push }}$). However, at high velocities, the $t_{\text {push }}$ is equal to torake (CAVAGNA, 2006; CAVAGNA, 2009). Cavagna suggests with increasing force and running velocity, there is an increase in $t_{c e} / t_{\mathrm{ae}}$ asymmetry and a decrease in $t_{\text {push }} / t_{\text {brake }}$ asymmetry resulting in an increase in the
role of tendons relative to muscle within muscle-tendon unit approaching optimal elastic bouncing in line with force-velocity muscle relation (CAVAGNA, 2009).

Some studies quantified the elastic contribution during running on aging (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008a; CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008b), level of running performance (DA ROSA et al., 2019), during human growth (LEGRAMANDI, SCHEPENS and CAVAGNA, 2013), gravity conditions (CAVAGNA, HEGLUND and WILLEMS, 2005), and against horizontal impeding forces (MESQUITA et al., 2020).

Old runners with their impaired muscle function have a loss in kinetic and potential energy transduction during upward and downward phases of BCoM oscillation in comparison to young runners. Particularly, during negative work, old runners do not have enough force to decelerate BCoM, storing less elastic energy and increasing the $t_{\text {push }} / t_{\text {brake }}$ asymmetry, with lower t_{a} and vertical and forward BCoM oscillation compared to young subjects. (CAVAGNA, LEGRAMANDI and PEYRÉTARTARUGA, 2008a; CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008b).

The elastic bouncing is also sensitive to detect differences in the level running performance. Runners with high performance present higher tae and lower $t_{c e}$ applying effectively more vertical force on the ground than runners with low performance (DA ROSA et al., 2019). The 3000 m level performance in these groups (low performance $=12.5 \mathrm{~min}$ and high performance $=10.9 \mathrm{~min}$) does not differentiate in $t_{\text {push }} / \mathrm{tbrake}$ due to a preserved neuromuscular function. These results are in line with the assumption that a reduced force and power output in the aging process harms $t_{\text {push }} /$ tbrake asymmetry (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008a), but runners with low performance and older runners resemble with low vertical oscillation of BCoM and t_{a}, and high step frequency ($f_{\text {step }}$) (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008a; DA ROSA et al., 2019).

Legramandi, Schepens and Cavagna (2013) compared children (2.5 years) at $8.8 \mathrm{~km} . \mathrm{h}^{-1}$ and adolescents (15.8 years) at $9.4 \mathrm{~km} . \mathrm{h}^{-1}$, and they found differences associated to maturation on mechanical variables. The $t_{\text {push }} / t_{\text {brake }}$ and $v_{v, \text { max, down }} / v_{v, \text { max, up }}$ asymmetries of children group were higher due to a shorter tbrake and a significant decrease of total mechanical energy fluctuations (total energy $=$ potential + kinetic vertical + kinetic forward) of BCoM during negative work phase in comparison to young
subjects. Additionally, with lower body dimensions, children have high-impact collision forces and need to increase more their $f_{\text {step }}$ than young subjects (LEGRAMANDI, SCHEPENS and CAVAGNA, 2013).

Mesquita et al. (2020) quantified the effect of high horizontal impeding forces (5, 10 and 15% of body weight) on landing-take off and rebound asymmetries during velocities from 8 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. The authors found that horizontal impeding force's increment impair the elastic bouncing ($t_{\mathrm{ae}}=t_{c e}$ and $t_{\text {push }}>t_{\text {tbake }}$) at high running velocities. However, paradoxically Mesquita et al. (2020) found that the highest load evaluated (15% of body weight) increased the recovery of external mechanical work by 16% at $8 \mathrm{~km} . \mathrm{h}^{-1}$ (the lowest running velocity).

1.4.4 Integrative analysis of running aerodynamics

An integrative approach to quantify the effect of air resistive forces on energy cost and time saving during marathon takes into account four combined fundamentals: 1°) We need to calculate the drag forces for an elite runner at marathon pace (i.e. 5.86 m. s^{-1} for running at 2-hr marathon) (RAYLEIGH, 1876; DU BOIS and DU BOIS, 1916; PUGH, 1970); 2°) Thereafter, we need to quantify the change (\%) in metabolic power to overcome small horizontal impeding forces in \% of body weight (BW) across a range of running velocities; 3°) We need to use the CFD simulation data to know how optimal drafting strategies can reduce the drag forces. Polidori et al. (2020) found that shielding Kenenisa Bekele at $20.7 \mathrm{~km} . \mathrm{h}^{-1}$, three runners can reduce Bekele drag force from 7.77 to 3.32 N , therefore, $7.77 / 3.32=0.427$ could be a good conversion number to apply in elite runner with similar body dimensions and running velocity; and finally, 4°) we need to quantify the energy cost and time saving of drag forces during running. The product of increase (\%) in metabolic power to overcome small horizontal impeding forces (HIF) in \% of BW multiplied the drag forces during running in \% BW yields the increase in metabolic cost associated to drag forces (\%). Additionally, with reduction in metabolic power due to drafting (- Wpower dratting) see the equation below, it is possible to estimate time saving.

$$
-w_{\text {power drafting }}(\%)=\frac{\% \text { in metabolic power to overcome } \mathrm{HIF}(\% \mathrm{BW})}{\text { reduction of drag forces due drafting }(\% \mathrm{BW})} \div 1 \quad \text { Equation } 6
$$

To know the time saving as result of drafting, Kipp, Kram and Hoogkamer (2019) developed a simple method to quantify the time saving in different races (10 km to Marathon events) using anthropometrics data of runner (height and body mass), the \% of improvement of running economy (or - $w_{\text {power drafting in } \% \text {), and race time as input. }}$ The authors used anthropometrics data to estimate $A_{f}\left(m^{2}\right)$ and SA (\%) that runners experiences air resistance during running (PUGH, 1970; DU BOIS and DU BOIS, 1916). Thereafter, they used Pugh (1971) for individualized coefficient for overcome air resistance $\left(\mathrm{VO}_{2} \mathrm{ml}^{2} \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}=\right.$ Pugh coefficient v^{3}), where Pugh coefficient is equal (3.54 / body mass A_{f}). Additionally, they combined Pugh coefficient and the curvilinear relationship between VO_{2} and running velocity to overcome air resistance (BATLINER et al., 2017):

$$
\mathrm{VO}_{2 \text { base }}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)=\text { Pugh coefficient } \mathrm{v}^{3}+1.5355 \mathrm{v}^{2}+1.5374 \mathrm{v}+15.661 \text { Equation } 7
$$

To know the improvements in running velocity, Kipp, Kram and Hoogkamer (2019) also calculated the new oxygen consumption requirements $\left(\mathrm{VO}_{2}\right.$ new $=\mathrm{VO}_{2}$ base / ($100-$ RE \%), where RE is \% of improvement of running economy (or - Wpower drafting in \%). Finally, $\mathrm{VO}_{2 \text { new }}$ was then set to VO_{2} base (Equation 7) to solve the new velocity in the following equations:

$$
\begin{aligned}
\mathrm{VO}_{2 \text { new }}\left(\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)=\text { Pugh coefficient } \mathrm{v}^{3}+1.5355 \mathrm{v}^{2}+1.5374 \mathrm{v}+15.661 & \text { Equation } 8 \\
\% \text { Improvement in velocity }=\left(\mathrm{vVO}_{2 \text { new }}-\mathrm{vVO}_{2 \text { base }}\right) / \mathrm{vVO}_{2 \text { new }} \times 100 & \text { Equation } 9
\end{aligned}
$$

In the Equation $9, \mathrm{VVO}_{2}$ new is the new running velocity at the new VO_{2}.
Several studies have simulated aerodynamics drag forces during long distance running (HOOGKAMER, KRAM and ARELLANO, 2017; HOOGKAMER, SNYDER and ARELLANO, 2018; HOOGKAMER, SNYDER and ARELLANO, 2019; KIPP, KRAM and HOOGKAMER, 2019), however, all these simulations rely on values of \% in metabolic power to overcome air resistive force of studies with limited sample size (PUGH, 1971; DAVIES, 1980), they are also based on studies that applied horizontal impeding force higher than air resistive forces and low running velocities (CHANG and KRAM, 1999), or using different methods for convert aerodynamic drag forces to metabolic cost (POLIDORI et al., 2020). Future studies should focus on improvements of drag force estimations and metabolic responses in large sample of competitive runners.

1.5 References

ALEXANDER, R. M. Mechanics of bipedal locomotion. Zoology, p. 493-504, 1976. http://dx.doi.org/10.1016/b978-0-08-018767-9.50047-0.

BASSETT, D. R.; GIESE, M. D.; NAGLE, F. J.; WARD, A.; RAAB, D. M.; BALKE, B. Aerobic requirements of overground versus treadmill running. Medicine \& Science in Sports \& Exercise, v. 17, n. 4, p. 477-481, Aug. 1985. http://dx.doi.org/10.1249/00005768-198508000-00013.

BATLINER, M.; KIPP, S.; GRABOWSKI, A.; KRAM, R.; BYRNES, W. Does Metabolic Rate Increase Linearly with Running Speed in all Distance Runners? Sports Medicine International Open, v. 02, n. 01, p. 1-8, 17 Nov. 2017. http://dx.doi.org/10.1055/s-0043-122068.

BEVES, C.; FERGUSON S. Uncovering the aerodynamic trickery behind Nike's breaking 2 project. Siemens PLM. 2017. https://www.linkedin.com/pulse/uncovering-aerodynamic-trickery-behind-nikes-breaking-ferguson/. Accessed 2 June 2020.

BLICKHAN, R. The spring-mass model for running and hopping. Journal of Biomechanics, v. 22, n. 11-12, p. 1217-1227, Jan. 1989. http://dx.doi.org/10.1016/0021-9290(89)90224-8.

BLOCKEN, B.; DEFRAEYE, T.; KONINCKX, E.; CARMELIET, J.; HESPEL, P. CFD simulations of the aerodynamic drag of two drafting cyclists. Computers \& Fluids. v. 71, p. 435-445, Jan. 2013. http://dx.doi.org/10.1016/j.compfluid.2012.11.012.

CAVAGNA, G. A. The landing-take-off asymmetry in human running. Journal of Experimental Biology, v. 209, n. 20, p. 4051-4060, 15 Oct. 2006. http://dx.doi.org/10.1242/jeb.02344.

CAVAGNA, G. A. The two asymmetries of the bouncing step. European Journal of Applied Physiology, v. 107, n. 6, p. 739-742, 1 Sept. 2009. http://dx.doi.org/10.1007/s00421-009-1179-2.

CAVAGNA, G. A.; HEGLUND, N. C.; TAYLOR, C. R. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 233, n. 5, p. 243-261, 1 Nov. 1977. http://dx.doi.org/10.1152/ajpregu.1977.233.5.r243.

CAVAGNA, G. A.; HEGLUND, N. C.; WILLEMS, P.A. Effect of an increase in gravity on the power output and the rebound of the body in human running. Journal of Experimental Biology, v. 208, n. 12, p. 2333-2346, 15 June 2005. http://dx.doi.org/10.1242/jeb.01661.

CAVAGNA, G. A.; SAIBENE, F. P.; MARGARIA, R. Mechanical work in running. Journal of Applied Physiology, v. 19, n. 2, p. 249-256, 1 Mar. 1964. http://dx.doi.org/10.1152/jappl.1964.19.2.249.

CAVAGNA, G. A.; LEGRAMANDI, M. A.; LATORRE, A. An analysis of the rebound of the body in backward human running. Journal of Experimental Biology, v. 215, n. 1, p. 75-84, 7 Dec. 2011. http://dx.doi.org/10.1242/jeb. 057562.

CAVAGNA, G.A; LEGRAMANDI, M.A; PEYRÉ-TARTARUGA, L.A. Old men running: mechanical work and elastic bounce. Proceedings of The Royal Society B: Biological Sciences, v. 275, n. 1633, p. 411-418, 12 Dec. 2008a. http://dx.doi.org/10.1098/rspb.2007.1288.

CAVAGNA, G. A.; LEGRAMANDI, M. A.; PEYRE-TARTARUGA, L. A. The landing-take-off asymmetry of human running is enhanced in old age. Journal of Experimental Biology, v. 211, n. 10, p. 1571-1578, 2 May. 2008b. http://dx.doi.org/10.1242/jeb.013805.

CHANG, Y.; KRAM, R. Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, v. 86, n. 5, p. 1657-1662, 1 May 1999. http://dx.doi.org/10.1152/jappl.1999.86.5.1657.

DA ROSA, R. G.; OLIVEIRA, H. B.; GOMEÑUKA, N. A.; MASIERO, M. P. B.; SILVA, E. S.; ZANARDI, A. P. J.; CARVALHO, A. R.; SCHONS, P.; PEYRÉ-TARTARUGA, L. A. Landing-Takeoff Asymmetries Applied to Running Mechanics: a new perspective for performance. Frontiers in Physiology, v. 10, p. 1-8, 16 Apr. 2019. http://dx.doi.org/10.3389/fphys.2019.00415.

DAVIES, C. T. Effects of wind assistance and resistance on the forward motion of a runner. Journal of Applied Physiology, v. 48, n. 4, p. 702-709, 1 Apr. 1980. http://dx.doi.org/10.1152/jappl.1980.48.4.702.

DEWOLF, A. H.; PEÑAILILLO, L. E.; WILLEMS, P. A. The rebound of the body during uphill and downhill running at different speeds. The Journal of Experimental Biology, p. 2276-2288, 20 May 2016. http://dx.doi.org/10.1242/jeb.142976.

DUBOIS, D.; DUBOIS, E. F. Clinical calorimetry, tenth paper. A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine, v. 17, n. 6_2, p. 863-871, 1 June 1916. http://dx.doi.org/10.1001/archinte.1916.00080130010002.

FISCHER, G. Efeitos da fadiga na mecânica da corrida humana. 2010. 109 f. Dissertação (Mestrado) - Curso de Ciências do Movimento Humano, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.

GOTTSCHALL, J. S.; KRAM, R. Ground reaction forces during downhill and uphill running. Journal of Biomechanics, v. 38, n. 3, p. 445-452, Mar. 2005. http://dx.doi.org/10.1016/j.jbiomech.2004.04.023.

HILL, A.V. The air-resistance to a runner. Proceedings of The Royal Society of London, v. 102, n. 718, p. 380-385, Feb. 1928. http://dx.doi.org/10.1098/rspb.1928.0012.

HOOGKAMER, W.; KRAM, R.; ARELLANO, C. J. How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier. Sports Medicine, v. 47, n. 9, p. 1739-1750, 3 Mar. 2017. http://dx.doi.org/10.1007/s40279-017-0708-0.

HOOGKAMER, W.; SNYDER, K. L.; ARELLANO, C. J. Modeling the Benefits of Cooperative Drafting: is there an optimal strategy to facilitate a sub-2-hour marathon performance?. Sports Medicine, v. 48, n. 12, p. 2859-2867, 8 Oct. 2018. http://dx.doi.org/10.1007/s40279-018-0991-4.

HOOGKAMER, W.; SNYDER, K. L.; ARELLANO, C. J. Reflecting on Eliud Kipchoge's Marathon World Record: an update to our model of cooperative drafting and its potential for a sub-2-hour performance. Sports Medicine, v. 49, n. 2, p. 167-170, 22 Jan. 2019. http://dx.doi.org/10.1007/s40279-019-01056-2.

JONES, A. M.; DOUST, J. H. A 1\% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences, v. 14, n. 4, p. 321327, Aug. 1996. http://dx.doi.org/10.1080/02640419608727717.

KIPP, S.; KRAM, R.; HOOGKAMER, W. Extrapolating Metabolic Savings in Running: implications for performance predictions. Frontiers in Physiology, v. 10, p. 1-8, 11 Feb. 2019. http://dx.doi.org/10.3389/fphys.2019.00079.

KYLE, C. R.; CAIOZZO, V. J. The effect of athletic clothing aerodynamics upon running speed. Medicine \& Science in Sports \& Exercise, v. 18, n. 5, p. 509-515, Oct. 1986. http://dx.doi.org/10.1249/00005768-198610000-00003.

LEGRAMANDI, M. A.; SCHEPENS, B.; CAVAGNA, G. A.. Running humans attain optimal elastic bounce in their teens. Scientific Reports, v. 3, n. 1, p. 1-4, 19 Feb. 2013. http://dx.doi.org/10.1038/srep01310.

LLOYD, B. B.; ZACKS, R. M. The mechanical efficiency of treadmill running against a horizontal impeding force. The Journal of Physiology, v. 223, n. 2, p. 355-363, 1 June. 1972. http://dx.doi.org/10.1113/jphysiol.1972.sp009851.

MCCOLE, S. D.; CLANEY, K.; CONTE, J. C.; ANDERSON, R.; HAGBERG, J. M. Energy expenditure during bicycling. Journal of Applied Physiology, v. 68, n. 2, p. 748-753, 1 Feb. 1990. http://dx.doi.org/10.1152/jappl.1990.68.2.748.

MCMAHON, T. A.; CHENG, G. C. The mechanics of running: how does stiffness couple with speed?. Journal of Biomechanics, v. 23, p. 65-78, Jan. 1990. http://dx.doi.org/10.1016/0021-9290(90)90042-2.

MCMIKEN, D.F.; DANIELS, J. T. Aerobic requirements and maximum aerobic power in treadmill and track running. Medicine Science in Sports, v. 8, n. 1, p. 14-17, 1976.

MESQUITA, R. M.; DEWOLF, A. H.; CATAVITELLO, G.; OSGNACH, C.; PRAMPERO, P. E. di; WILLEMS, P. A. The bouncing mechanism of running against hindering, or with aiding traction forces: a comparison with running on a slope. European Journal of Applied Physiology, v. 120, n. 7, p. 1575-1589, 11 May 2020. http://dx.doi.org/10.1007/s00421-020-04379-5.

POLIDORI, G.; LEGRAND, F.; BOGARD, F.; MADACI, F.; BEAUMONT, F. Numerical investigation of the impact of Kenenisa Bekele's cooperative drafting strategy on its running power during the 2019 Berlin marathon. Journal of Biomechanics, v. 107, In press, June. 2020. http://dx.doi.org/10.1016/j.jbiomech.2020.109854.

PUGH, L. G. C. E. Oxygen intake in track and treadmill running with observations on the effect of air resistance. The Journal of Physiology, v. 207, n. 3, p. 823-835, 1 May 1970. http://dx.doi.org/10.1113/jphysiol.1970.sp009097.

PUGH, L. G. C. E. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. The Journal of Physiology, v. 213, n. 2, p. 255-276, 1 Mar. 1971. http://dx.doi.org/10.1113/jphysiol.1971.sp009381.4.

RAYLEIGH, L. LIII. On the resistance of fluids. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, v. 2, n. 13, p. 430-441, Dec. 1876. http://dx.doi.org/10.1080/14786447608639132.

SCHMIDT-NIELSEN, K. Locomotion: energy cost of swimming, flying, and running. Science, v. 177, n. 4045, p. 222-228, 21 July 1972. http://dx.doi.org/10.1126/science.177.4045.222.

SHANEBROOK, J. R.; JASZCZAK, R. D. Aerodynamic drag analysis of runners. Medicine and Science in Sports, v. 8, n. 1, p. 43-45, 1976.
WEIMERSKIRCH, H.; MARTIN, J.; CLERQUIN, Y.; ALEXANDRE, P.; JIRASKOVA, S. Energy saving in flight formation. Nature, v. 413, n. 6857, p. 697-698, Oct. 2001. http://dx.doi.org/10.1038/35099670.

ZACKS, R. M. The mechanical efficiencies of running and bicycling against a horizontal impeding force. Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie, v. 31, n. 4, p. 249-258, 1973. http://dx.doi.org/10.1007/bf00693710.

CHAPTER 2

The metabolic cost of overcoming air resistive forces in distance running in competitive male runners: a randomized crossover study

Abstract

The benefits of drafting for elite marathon runners are intuitive, but the energetic and time savings are still unclear due different methods assumed for converting aerodynamic drag force reductions to metabolic power savings. We aimed to quantify how small horizontal impeding forces affect metabolic power over a range of velocities in competitive runners. Twelve male runners (age: 26.1 ± 3.5 years, mass: 66.5 ± 5.6 kg , height $1.79 \pm 0.09 \mathrm{~m}$) completed three data collection sessions. Subjects ran six 5minute trials with 5 minutes of recovery in-between. We tested one velocity per session (12, 14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$), at three horizontal impeding force conditions (0,4 and 8 N). On average, metabolic power increased by 6.13% per 1% body weight (BW) of horizontal impeding force. With increasing horizontal impeding force, braking impulses decreased while propulsive impulses increased ($p<0.001$). Across running velocities, the changes in braking and propulsive impulses with greater impeding force were correlated ($r=-0.97 ; p<0.001$), however, these respective changes in propulsive and braking impulses were not related to individual changes in metabolic power. Based on our results, we estimate that at ~ 2-hour marathon pace, the metabolic cost of overcoming air resistive force comprises 8.52% of the gross metabolic power.

Keywords: drafting; horizontal impeding forces; metabolic power; performance

KEYPOINTS

- When running against horizontal impeding forces, the metabolic power requirement increases by 6.1% per 1% body weight.
- At ~ 2-hour marathon pace, overcoming air resistance represents about 8.5% of the total metabolic cost of running.
- At ~ 2-hour marathon pace, running behind an optimal practical drafting formation would be about ~ 4 min faster than running solo.
- Without any air resistance at all, a 2-hr marathoner could run ~7 min faster than when running solo with air resistance.

2.1 Introduction

In 2018, Eliud Kipchoge ran the official world marathon record of 2:01:39 in Berlin, and in 2019, he ran a 1:59:40 marathon in Vienna. One of the major differences between the two marathons was air resistance. In Berlin, Kipchoge ran the last 17 km without any aerodynamic drafting. In contrast, in Vienna, for the first 41 km, Kipchoge had interchanging teams of runners specifically positioned to provide substantial drafting. Drafting is the practice of having runners positioned in front of a designated runner to reduce the air resistance and hence the metabolic power requirement of the designated runner (HOOGKAMER, KRAM and ARELLANO, 2017). Drafting allows the designated athlete to run at a faster velocity with the same sustainable metabolic power (PUGH, 1971), and thereby enhancing performance (KIPP, KRAM and HOOGKAMER, 2019). Several recent studies have performed calculations and run computer simulations on the aerodynamics and energetics of running drafting (BEVES and FERGUSON, 2017; HOOGKAMER, SNYDER and ARELLANO, 2018; HOOGKAMER, SNYDER and ARELLANO, 2019; POLIDORI et al., 2020). However, each study used a different method for converting aerodynamic force to the metabolic cost of running and, hence, running performance. Given the uncertainty in previous studies, our goal was to develop an empirical equation for the metabolic power required to overcome aerodynamic drag forces and infer the performance effects.

Classic and modern methods yield remarkably similar estimates of aerodynamic drag force acting on an elite runner and the corresponding mechanical power. For a runner of Kipchoge's size running solo at $5.86 \mathrm{~m} . \mathrm{s}^{-1}$ (2-hour marathon pace) in still air, the equations of Hill (1928) predict a force of 8.06 N (see Appendix S1), whereas Beves and Ferguson (2017) arrived at a value of 6.6 N using modern computational fluid dynamic (CFD) modelling. Polidori et al. (2020) also used CFD and found a value of 7.77 N for a similar-sized athlete, Kenenisa Bekele, running solo at $5.75 \mathrm{~m} . \mathrm{s}^{-1}$. A force of 7 N is just over 1% of the runners' body weights (see Appendix S 1 for details). The product of the force and running velocity yields the mechanical power required to overcome aerodynamic drag. Thus, the corresponding values for mechanical power at 5.86 m.s ${ }^{-1}$ are also similar: 47.2 W for Hill (1928), 38.6 W for Beves and Ferguson (2017) and 44.7 W for Polidori et al. (2020). However, because these each one of these three studies used a different method for converting metabolic power, they surmised that overcoming aerodynamic drag requires 3\% (HILL, 1928), 9 - 10\%
(BEVES and FERGUSON, 2017), and 2.8\% (POLIDORI et al., 2020) of the metabolic cost of running (see Appendix S1 for details).

A second and much more direct method of estimating the metabolic cost of overcoming air resistance involves having a runner on a treadmill in a wind tunnel with the fans turned off and on, as required, with the wind tunnel air velocity matching the treadmill belt speed. Pugh (1971) pioneered this approach and estimated that at $6 \mathrm{~m} . \mathrm{s}^{-}$ ${ }^{1}, 7.5 \%$ of the gross oxygen uptake rate is devoted to overcoming aerodynamic drag. Later, using the same method (and wind tunnel), Davies (1980) estimated that air resistance accounted for only 2% of the gross metabolic rate at $5 \mathrm{~m} . \mathrm{s}^{-1}$ and 4% at 6 $\mathrm{m} . \mathrm{s}^{-1}$. While the wind tunnel studies have provided valuable insights, they were performed with very small sample sizes ($n=1$ (Pugh, 1971) and $n=3$ (Davies, 1980)) and thus prior to our study, we lacked an understanding of the inter-individual variation in responses.

A third conceptually very similar approach compares the metabolic power required during treadmill (i.e., no air resistance) vs. overground running. This method reveals no or little effect of air resistance at slow running velocities (MCMIKEN and DANIELS, 1976; BASSETT et al., 1985; JONES and DOUST, 1996). However, Jones and Doust (1996) found that overground running was 7% expensive at $5 \mathrm{~m} . \mathrm{s}^{-1}$. Similarly, Pugh (1970) found that at $6 \mathrm{~m} . \mathrm{s}^{-1}$, overground running required 9.2% higher oxygen uptake than treadmill running $(\mathrm{n}=7)$.

Finally, scientists directly measured the increase in metabolic power consumption when horizontal impeding forces are applied to the waists of runners on a treadmill. We interpolated the results of each of these studies to quantify the per cent increase in metabolic power in response to an impeding force of 1% of body weight (BW), (see Appendix S2 for details). At a running velocity of $3.6 \mathrm{~m} . \mathrm{s}^{-1}$, Lloyd and Zacks (1972) found a 7.9% increase in metabolic power in response to an impeding force of 1% BW ($n=3$). Soon thereafter, Zacks (1973) found a similar average of 7.9% increase per 1% BW impeding force at running velocities between 3.88 and $7.72 \mathrm{~m} . \mathrm{s}^{-1}$ but with individual responses ranging from 5.3 to $10.6 \%(n=3)$. However, when running at 3.3 $\mathrm{m} . \mathrm{s}^{-1}$, the results of Chang and Kram (1999) revealed an average increase in metabolic power of only 4.7% in response to 1% increase in BW impeding force ($n=10$).

Given the differences in experimental approaches, the variable findings, small sample sizes, and considerable inter-subject variability in metabolic power responses to resistive forces in previous studies, we aimed to systematically quantify how small impeding forces (comparable to air resistance) affect metabolic power in a large sample of competitive runners over a range of velocities. We hypothesized that metabolic power increases linearly with increasing horizontal impeding forces. These data should facilitate accurate calculations of the effect of altered aerodynamic forces on distance running performance.

2.2 Methods

2.2.1 Participants

Twelve male runners (age: 26.1 ± 3.5 years, mass: $66.5 \pm 5.6 \mathrm{~kg}$, height $1.79 \pm$ 0.09 m) participated. They all had recently run a sub-32 minute $10-\mathrm{km}$ race or an equivalent performance in another distance running event. The study was performed in accordance with the ethical standards of the Declaration of Helsinki. Ethics approval was obtained from the University of Colorado Institutional Review Board (Protocol\#180110).

2.2.2 Experimental protocol

The study consisted of three data collection sessions. During session 1, the subjects completed a health screening form and signed the informed consent form. During all three sessions, we measured the height and body weight; thereafter, the subjects warmed-up by running on a custom-built force-instrumented treadmill (KRAM et al., 1998) for 3 min at $3.33 \mathrm{~m} . \mathrm{s}^{-1}\left(12 \mathrm{~km} . \mathrm{h}^{-1}\right)$, followed by 3 min at $3.89 \mathrm{~m} . \mathrm{s}^{-1}$ (14 $\mathrm{km} . \mathrm{h}^{-1}$). The subjects then ran six 5 -minute trials with a 5 min recovery period in between. We tested one velocity per session (3.33, 3.89, or $4.44 \mathrm{~m} . \mathrm{s}^{-1}\left[16 \mathrm{~km} . \mathrm{h}^{-1}\right]$), at three horizontal impeding force conditions (0,4 , and 8 N). The subjects ran with each horizontal impeding force condition twice per visit, in a mirrored order, which was counterbalanced and randomly assigned. We averaged the two values for each condition.

2.2.3 Horizontal pulling apparatus

To simulate running with air resistance, we applied small horizontal impeding forces at the waist of the runners, near their center of mass (Figure 9). These forces resulted from a hanging mass that was connected via rubber tubing around pulleys to a waist belt. We used long pieces of low-stiffness natural latex rubber to minimize the bouncing of the hanging mass and force fluctuations due to length changes in the rubber tubing from slight anterior-posterior movements of the runner on the treadmill. The rubber tubing was first passed under a low-friction pulley that could be positioned vertically to match the height of the subject's waist, ensuring that the impeding force was horizontal. The tubing was then attached to an S-beam force transducer (LCCB50, OMEGA Engineering, INC., Norwalk, CT, USA) which measured the pulling force and fluctuations throughout the running stride. Another piece of rubber tubing was attached to the force transducer and passed over a second low-friction pulley, positioned approximately 6 m high. Hanging masses of 408 and 815 g applied impeding forces of 4 and 8 N , respectively. To counterbalance the weight of the force transducer, we added 305 grams of lead to the hanging mass. The rubber tubing dimensions differed for the two resistive force conditions: for 4 N , we used 3.2/1.2 mm (outer diameter/inner diameter); for 8 N , we used 5.6/1.2 mm. The unstretched lengths of the rubber tubing also differed such that during the running trials, the hanging mass hovered approximately 0.3 m above the floor.

Figure 9. Experimental set-up.

2.2.4 Metabolic power protocol

During each trial, we measured the oxygen uptake $\left(\dot{\mathrm{VO}}_{2}\right)$ and carbon dioxide production $(\dot{\mathrm{VCO}} 2)$ using a breath-by-breath expired air analysis system (True One 2400, Parvo Medics, Salt Lake City, UT, USA) and calculated the metabolic power for the last 2 min of each trial using the Péronnet and Massicotte (1991) equation. The respiratory exchange ratios $\left(\dot{\mathrm{VCO}}_{2} / \dot{\mathrm{VO}}_{2}\right)$ remained at <0.95 for all trials. Body mass was carefully monitored between trials, and the subjects sipped water to maintain a constant starting body mass for all trials.

2.2.5 Force measurements and analyses

We recorded the vertical $\left(F_{z}\right)$ and anteroposterior $\left(F_{y}\right)$ ground reaction forces and impeding force fluctuations at 1000 Hz sampling frequency for 30 s during the $2^{\text {nd }}$ and $5^{\text {th }}$ minutes using LabView software (National Instruments, Austin, TX, USA). In MATLAB (The MathWorks, Inc., Natick, MA, USA) we filtered the signals (low-pass $4^{\text {th }}$ order Butterworth with a cutoff frequency of 25 Hz) and we used the $\mathrm{F}_{\mathrm{z}}=30 \mathrm{~N}$ threshold to determine touchdown and takeoff events (HOOGKAMER et al., 2018). We calculated peak braking and propulsive forces, peak of vertical force, braking and propulsive impulses, step frequency, duty factor, and contact time.

2.2.6 Apparent mechanical efficiency

We calculated the external mechanical power (W) by multiplying the horizontal impeding force (N) by the running velocity $\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$. For each runner, we calculated the "apparent mechanical efficiency" for each impeding force at all three running velocities as the change in external mechanical power (W/kg) from unloaded running over the change in metabolic power (W/kg) from unloaded running (LLOYD and ZACKS, 1972).

2.2.7 Statistics

We compared the metabolic power, temporal and kinetic variables between the three running velocities and the three horizontal impeding force conditions using twoway ANOVA with repeated measures. When significant main or interaction effects were detected, we performed Bonferroni corrected paired t-tests to determine post-hoc which velocity and/or horizontal impeding force comparisons differed significantly. We also explored whether inter-individual difference in the increases in metabolic power with horizontal impeding force were related to changes in braking or propulsive impulses with horizontal impeding force using linear regression analysis. We used traditional levels of significance $\left(\alpha=0.05\right.$ and $\alpha_{\text {post-hoc }}=0.0167$) and performed analyses with Statistical Package for the Social Sciences 22.0 (IBM Corporation, Inc., New York, United States).

2.3 Results

Metabolic power was significantly high at fast running velocities ($p<0.001$), and with large horizontal impeding forces ($p<0.001$), with a significant interaction effect (p < 0.001); Figure 10, see Electronic Supplementary Material Appendix S3 for a Table with individual data)). The interaction effects were that in response to a specific horizontal impeding force, metabolic power increased more at faster running velocities (12, 14, and $16 \mathrm{~km} . \mathrm{h}^{-1} ; \mathrm{p}<0.001$) and at a specific velocity, metabolic power increased more with larger horizontal impeding force [baseline, 4 N , and $8 \mathrm{~N}(\mathrm{p}<0.001)$].

Figure 10. Metabolic power (W/kg) vs. horizontal impeding force (N) for each runner (gray) and the group means (colored symbols) for each of the three velocities tested.

At each velocity, metabolic power increased linearly with increasing horizontal impeding force expressed relative to BW (Figure 11); second order polynomial fitting did not substantially improve the R^{2} values.

Figure 11. Metabolic power (W/kg) vs. horizontal impeding force (HIF) (\% body weight). Blue circles represent individual subjects at $12 \mathrm{~km} . \mathrm{h}^{-1}$, red squares $14 \mathrm{~km} . \mathrm{h}^{-1}$ and green diamonds 16 $\mathrm{km} . \mathrm{h}^{-1}$. Dotted lines are the linear best fit regressions at each velocity: at $12 \mathrm{~km} . \mathrm{h}^{-1}$ [W/kg $=0.6977$ $\left.\mathrm{HIF}+11.996\left(\mathrm{R}^{2}=0.2004\right)\right]$, at $14 \mathrm{~km} \cdot \mathrm{~h}^{-1}\left[\mathrm{~W} / \mathrm{kg}=0.8386 \mathrm{HIF}+14.594\left(\mathrm{R}^{2}=0.3193\right)\right]$ and at 16 $\mathrm{km} \cdot \mathrm{h}^{-1}\left[\mathrm{~W} / \mathrm{kg}=1.1048 \mathrm{HIF}+16.993\left(\mathrm{R}^{2}=0.4478\right)\right]$.

Across the runners, the average increase in metabolic rate was 6.13% per 1% BW horizontal impeding force. This was consistent across the three tested running velocities with $6.14,5.87$, and 6.37% slopes for 12,14 , and $16 \mathrm{~km} . \mathrm{h}^{-1}$, respectively. Notably, relative changes in metabolic power with horizontal impeding force varied substantially between individual runners (Figure 12), ranging from 4.75 to 8.14%.

Figure 12. Per cent increase in metabolic power (\%) with horizontal impeding force (HIF) (\% body weight). Blue circles represent individual subjects at $12 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, red squares $14 \mathrm{~km} . \mathrm{h}^{-1}$ and green diamonds $16 \mathrm{~km} . \mathrm{h}^{-1}$. For each individual, the best linear fit through the origin is shown in gray. The black line represents the best fit through
all the data [\% change $=6.13 \mathrm{HIF}\left(\mathrm{R}^{2}=0.68\right)$]. Regressions were forced to go through the origin but zero HIF data points were not included in the regression analysis.

Apparent mechanical efficiency was also consistent across the tested velocities ($p=0.401$). At the slowest running velocity ($12 \mathrm{~km} \cdot \mathrm{~h}^{-1}$), the apparent mechanical efficiency was $43.6 \pm 10.1 \%$ from 0 to 4 N and $46.5 \pm 5.9 \%$ for 0 to 8 N . At intermediate and fast running velocities, the apparent mechanical efficiencies were numerically lower for the stronger impeding forces ($14 \mathrm{~km} . \mathrm{h}^{-1}: 55.2 \pm 22.6 \%$ for 0 to 4 N and 46.6 $\pm 11.3 \%$ for 0 to $8 \mathrm{~N} ; 16 \mathrm{~km} . \mathrm{h}^{-1}: 50.1 \pm 15.5 \%$ for 0 to 4 N and $40.0 \pm 7.0 \%$ for 0 to 8 N), but these effects were not significant (main effect of impeding force: $\mathrm{p}=0.062$; interaction effect of velocity impeding force: $p=0.066$).

Table 3. Temporal kinematic data for different horizontal impeding force (HIF) conditions

Running Velocity (km. h^{-1})	HIF (N)	Step Frequency (Hz)	Contact Time (s)	Duty Factor
12	0	2.91 ± 0.12	0.228 ± 0.011	0.33 ± 0.02
	-4	2.91 ± 0.12	0.228 ± 0.012	0.33 ± 0.02
	-8	2.92 ± 0.11	0.227 ± 0.012	0.33 ± 0.02
	0	2.95 ± 0.12	0.210 ± 0.010	0.31 ± 0.02
14	-4	2.95 ± 0.11	0.210 ± 0.010	0.31 ± 0.02
	-8	2.96 ± 0.09	0.210 ± 0.010	0.31 ± 0.02
	0	2.98 ± 0.10	0.193 ± 0.009	0.29 ± 0.02
	-4	2.99 ± 0.10	0.192 ± 0.009	0.29 ± 0.02
	-8	3.01 ± 0.09	0.192 ± 0.010	0.29 ± 0.02

Step frequency, contact time, and duty factor were all independent of horizontal impeding forces $(p=0.061, p=0.091$, and $p=0.786$, respectively), but the step frequency increased, and the contact time and duty factor decreased with running velocity ($p=0.010, p<0.001$, and $p<0.001$, respectively; Table 3).

Table 4. Kinetic data for different horizontal impeding force (HIF) conditions

Running Velocity (km. h^{-1})	HIF (N)	Braking Impulse (N•s)	Propulsive Impulse (N.s)	Peak Braking Force (N)	Peak Propulsive Force (N)	Peak Vertical Force (N)
12	0	12.7 ± 1.3	12.7 ± 1.3	232 ± 31	183 ± 24	1663 ± 222
	-4	12.0 ± 1.0	13.4 ± 1.0	226 ± 29	190 ± 25	1666 ± 223
	-8	10.8 ± 1.3	13.6 ± 1.3	215 ± 30	195 ± 25	1662 ± 218
	0	13.9 ± 1.2	13.9 ± 1.2	264 ± 28	224 ± 28	1752 ± 229
14	-4	12.9 ± 1.1	14.2 ± 1.1	257 ± 29	227 ± 25	1741 ± 220
	-8	12.1 ± 1.2	14.8 ± 1.2	249 ± 28	232 ± 27	1738 ± 225
	0	14.9 ± 0.9	14.9 ± 0.9	302 ± 30	266 ± 27	1878 ± 218
16	-4	14.1 ± 1.4	15.4 ± 1.4	289 ± 27	273 ± 30	1867 ± 206
	-8	13.1 ± 1.3	15.8 ± 1.3	279 ± 34	278 ± 25	1857 ± 212

With increasing horizontal impeding force, braking impulses decreased while propulsive impulses increased (both $p<0.001$; Table 4). Braking and propulsive impulses both increased with fast running velocities (both $p<0.001$). Peak braking and propulsive forces paralleled those changes (all $p<0.001$) (Figure 13). Peak vertical force was independent of horizontal impeding force ($p=0.140$) and increased at fast running velocities ($p<0.001$). Across the running velocities, the changes in braking and propulsive impulses with high impeding forces were correlated ($r=-0.97$; $p<$ 0.001), indicating that runners who overcame the horizontal impeding forces without reducing their braking impulses substantially, increased their propulsive impulses to a large extent. However, these changes in propulsive and braking impulses were not related to individual changes in metabolic power ($p=0.554$ and $p=0.640$, respectively).

Figure 13. Mean and standard deviation of vertical and anteroposterior ground reaction forces at the three running velocities (12,14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$) and horizontal impeding forces (0,4 and 8 N).

2.4 Discussion

The purpose of our study was to quantify how small resistive forces, similar in magnitude to aerodynamic forces, affect the metabolic power required to run across a range of running velocities. We applied horizontal impeding forces of 0,4 , and 8 N while 12 competitive male runners ran at 12,14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$. On average, metabolic
power increased by 6.13% per 1% BW horizontal impeding force, but with substantial inter-individual differences, whereby the values ranged from 4.75% to 8.14%.

What does this mean for elite marathon running performance? First, we estimated that the drag force experienced by Eliud Kipchoge running solo at 2-hr pace ($5.86 \mathrm{~m} . \mathrm{s}^{-1}$) equates to 7.75 N or $1.52 \% \mathrm{BW}$, using Lord Rayleigh's drag force equation (RAYLEIGH, 1876) and surface and projected frontal area estimates (DU BOIS and DU BOIS, 1916; PUGH, 1971) (see Appendix S4). A drag force of 1.52\% BW indicates that 8.52% of metabolic power during overground running is devoted to overcoming aerodynamic drag. Polidori et al. (2020), using CFD found that with an optimal practical drafting formation, drag forces would be reduced by 57.3%. Our data indicates that at 2-hr marathon pace such a reduction in drag force would result in a 5.34% metabolic savings (see Appendix S4). Using the metabolic savings to time savings conversion from Kipp, Kram and Hoogkamer (2019), at 2-hr marathon pace, running behind an optimal practical drafting formation would be about 4 min (4:03) faster than solo running. In the theoretical scenario of zero air resistance, our data predict that a $2-\mathrm{hr}$ marathoner could run about 7 min (7:05) faster than running solo without drafting.

For an elite female runner with dimensions of world record holder Brigid Kosgei, running at $2: 15$ marathon pace ($5.21 \mathrm{~m} . \mathrm{s}^{-1}$), overcoming air resistance constitutes 7.09\% of her total metabolic power. Using similar calculations suggests that at 2:15 marathon pace, optimal realistic drafting is also about 4 min (3:57) faster than solo running and running with zero air resistance would save 6:53 minutes (see Appendix S4).

When Eliud Kipchoge broke the 2-hr marathon barrier in Vienna, he was able to draft for the full marathon distance by having teams of pacers take turns in shielding him. Similarly, in mixed gender races, elite women can theoretically draft behind men for the full marathon distance. However, in major marathons with separate races for the elite men and women, the top finishers rarely can draft beyond the first 32 km because designated pacers become exhausted. Our data imply that an additional 10 km of optimal practical drafting could result in a 1-minute faster marathon time. This suggests that substantial time savings might be possible with creative drafting strategies such as a rotating pace line which is common in cycling (HOOGKAMER, SNYDER and ARELLANO, 2018).

For perspective, we applied our results to recreational marathoners running 3, 4, or 5 hours (using mean body mass (65.6 kg) and height (1.75 m)) for a 3-hr marathoner (GORDON et al., 2017). The overall metabolic cost associated with overcoming drag force at these slower marathon paces equates to, respectively, 3.61, 2.06 and 1.33% of the total metabolic power. Similarly, the time reductions from hypothetical optimal drafting (no air resistance) are 1.77, 1.26 and 1.01% for 3, 4 and 5-hr marathon pace, respectively. These substantial differences in the relative metabolic cost of overcoming the air resistive force between $5-\mathrm{hr}\left(2.37 \mathrm{~m} . \mathrm{s}^{-1}\right)$ and $2-\mathrm{hr}$ pace ($5.86 \mathrm{~m} . \mathrm{s}^{-1}$) can be attributed mainly to the increase in air drag force which is proportional to in velocity squared (HILL, 1928). Interesting, the actual time savings in minutes are fairly similar for $2-\mathrm{hr}$ and 5 -hr marathoners (between 4 and 3 min).

We found that metabolic power increased by 6.13% for each 1% BW of horizontal impeding forces. Our results are well within the range of previous results of studies using horizontal impeding forces during running, which found 4.7\% to 7.9\% increase per 1\% BW (CHANG and KRAM, 1999; LLOYD and ZACKS, 1972; ZACKS, 1973). For an air drag force of 1.52% BW at $5.86 \mathrm{~m} . \mathrm{s}^{-1}$, our data indicates a 9.32% increase in metabolic power, slightly higher than the 7% (at $5{\mathrm{~m} . \mathrm{s}^{-1}}^{\text {) }}$) and very close to the 9.2% (at $6.0 \mathrm{~m} . \mathrm{s}^{-1}$) increases in oxygen uptake reported by Jones and Doust (1996) and Pugh (1970), respectively. Additionally, as mentioned before, our data indicates that 8.52% of metabolic power during overground running is devoted to overcoming aerodynamic drag, which is close to wind tunnel results from Pugh (1971) who calculated 7.5% at $6.0 \mathrm{~m} . \mathrm{s}^{-1}$ (extrapolated from observations at $4.47 \mathrm{~m} . \mathrm{s}^{-1}$), but substantially higher than the 4% at $6 \mathrm{~m} . \mathrm{s}^{-1}$ that Davies (1980) reported based on experiments in the same wind tunnel.

In the present study, we found that braking impulses decreased while propulsive impulses increased with horizontal impeding force. Peak braking and propulsive forces paralleled those changes. In addition, there were no effects of horizontal impeding force on the step frequency, contact time or duty factor. These results are in line with Chang and Kram (1999), who evaluated the effect of horizontal impeding forces (0, 3, and $6 \% \mathrm{BW}$) at $3.3 \mathrm{~m} . \mathrm{s}^{-1}$ on oxygen uptake and ground reaction forces in well-trained runners. They found the same relation between horizontal impeding forces and braking and propulsive impulses and between peak of braking and propulsive forces, without effects on the peak of vertical forces, stride frequency, contact time or duty factor.

It has been suggested that running with horizontal impeding forces is like to uphill running (JONES and DOUST, 1996; BIJKER, GROOT and HOLLANDER, 2001). During steady state, level treadmill running braking and propulsive impulses must be equal and opposite; however, on an incline, propulsive impulses increase while braking impulses decrease (GOTTSCHALL and KRAM, 2005), similarly to what we and Chang and Kram (1999) observed for running with horizontal impeding forces. Furthermore, apparent mechanical efficiency is similar between uphill at a 1% incline and running with horizontal impeding forces like to the gravitational component parallel to the surface during uphill running (BIJKER, GROOT and HOLLANDER, 2001).

Substantial variations in apparent mechanical efficiency have been reported in the literature for running, mainly related to different methods of mechanical power calculation, muscle efficiency (relation between phosphorylation and contraction coupling), baseline assumption for energy cost and elastic energy storage (CAVANAGH and KRAM, 1985a; CAVANAGH and KRAM, 1985b; KANEKO, 1990). We did not find systematic effects of horizontal impending force and running velocity on apparent efficiency with values ranging from 40% to 55%. Our results are in line with Bijker, Groot and Hollander (2001), who observed an apparent efficiency of 46% with extra mechanical power up to 120 W at a running velocity of $8 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and Asmussen and Bonde-Petersen (1974) who observed an apparent efficiency of 54\% for running velocity of $10 \mathrm{~km} . \mathrm{h}^{-1}$ and extra mechanical power of 69.7 W . However, Lloyd and Zacks (1972) found a lower apparent efficiency (36\%) than the abovementioned authors during $13 \mathrm{~km} . \mathrm{h}^{-1}$ and extra mechanical power up to 190 W , which is close to Zacks (1973) who reported 39% apparent efficiency for running velocities between 14 and $17 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and external mechanical power of $46-61 \mathrm{~W}$. Still, all these apparent efficiency values are substantially higher than in cycling (BIJKER, GROOT and HOLLANDER, 2001) and higher than efficiency values for concentric muscle contractions (SMITH, BARCLAY and LOISELLE, 2005). For uphill running, Hoogkamer, Taboga and Kram (2014) explained this discrepancy by accounting for the fact that during uphill running, braking impulses decrease, and thus smaller propulsive impulses are needed to compensate for these smaller braking impulses. During uphill running, the metabolic power associated with generating these smaller braking impulses and the smaller cost of the propulsive compensating impulses, will be lower than during level running. As a result, the change in metabolic power from
level to uphill running underestimates the actual metabolic power required to generate the external mechanical power. Future research should address if this concept can also explain the high efficiency values found for running with horizontal impeding forces.

Our study has some limitations worthy of mention. We applied horizontal impeding forces applied at the waist (center of mass), but air resistive forces during running are spread out over the body. The different shapes of body segments can produce different drag coefficients in specific areas of the body and therefore drag forces vary between segments (SHANEBROOK and JASZCZAK, 1976). Future wind tunnel studies are needed to fully validate our findings. In addition, we used fixed horizontal impeding forces (4 and 8 N) across subjects, which represent an average of 0.62 and 1.23% of BW for our subjects (respectively), but ranged from 0.57 to 0.72% BW for 4 N and from 1.15 to 1.44% BW for 8 N . Our predictions for marathon running performance used specific assumptions to calculate air drag force (sea level, $20^{\circ} \mathrm{C}$, see Electronic Supplementary Material Appendix S4) and should be adjusted for other conditions. Finally, for our calculations, we assumed that the relative air velocity was equal to the running velocity, but even on calm days, air is never perfectly stationary. Related to this, future studies should evaluate the metabolic cost of running with different wind directions, such as cross wind and tailwind effects, either using an experiment set-up similar to ours or when feasible in a wind tunnel.

2.5 Conclusion

We found that metabolic power increased by 6.13\% per 1\% BW of horizontal impeding force. Based on our results, we estimate the metabolic cost for overcoming air resistive force at 2 -hour marathon pace comprises 8.52% of the total metabolic power, and that for a marathon at this pace, the difference between the optimal practical drafting formation and solo running is $\sim 4 \mathrm{~min}$.

Acknowledgements

We thank Clarissa Whiting, Shalaya Kipp, Christian Carmack, Tripp Hurt and Randy Hutchison for their help with data collection. We thank the CAPES/Brazil for the financial assistance for the accomplishment of this study.

2.6 References

ASMUSSEN, E.; BONDE-PETERSEN, F. Apparent Efficiency and Storage of Elastic Energy in Human Muscles during Exercise. Acta Physiologica Scandinavica, v. 92, n. 4, p. 537-545, Dec. 1974. http://dx.doi.org/10.1111/j.1748-1716.1974.tb05776.x.

BASSETT, D. R.; GIESE, M. D.; NAGLE, F. J.; WARD, A.; RAAB, D. M.; BALKE, B. Aerobic requirements of overground versus treadmill running. Medicine \& Science in Sports \& Exercise, v. 17, n. 4, p. 477-481, Aug. 1985. http://dx.doi.org/10.1249/00005768-198508000-00013.

BEVES, C.; FERGUSON S. Uncovering the aerodynamic trickery behind Nike's breaking 2 project. Siemens PLM. 2017. https://www.linkedin.com/pulse/uncovering-aerodynamic-trickery-behind-nikes-breaking-ferguson/. Accessed 2 June 2020.

BIJKER, K. E.; GROOT, G.; HOLLANDER, A. P. Delta efficiencies of running and cycling. Medicine \& Science in Sports \& Exercise, v. 33, n. 9, p. 1546-1551, Sept. 2001. http://dx.doi.org/10.1097/00005768-200109000-00019.

CAVANAGH P.R.; KRAM, R. Mechanical and muscular factors affecting the efficiency of human movement. Medicine and Science in Sports and Exercise, v. 17, n. 3, p. 326-331, 31 May 1985a.

CAVANAGH P.R.; KRAM, R. The efficiency of human movement -a statement of the problem. Medicine and Science in Sports and Exercise, v. 17, n. 3, p. 304-308, June 1985b.

CHANG, Y.; KRAM, R. Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, v. 86, n. 5, p. 1657-1662, 1 May 1999. http://dx.doi.org/10.1152/jappl.1999.86.5.1657.

DAVIES, C. T. Effects of wind assistance and resistance on the forward motion of a runner. Journal of Applied Physiology, v. 48, n. 4, p. 702-709, 1 Apr. 1980. http://dx.doi.org/10.1152/jappl.1980.48.4.702.

DUBOIS, D.; DUBOIS, E. F. Clinical calorimetry, tenth paper. A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine, v. 17, n. 6_2, p. 863-871, 1 June 1916. http://dx.doi.org/10.1001/archinte.1916.00080130010002.

GORDON, D.; WIGHTMAN, S.; BASEVITCH, I.; JOHNSTONE, J.; ESPEJOSANCHEZ, C.; BECKFORD, C.; BOAL, M.; SCRUTON, A.; FERRANDINO, M.; MERZBACH, V. Physiological and training characteristics of recreational marathon runners. Open Access Journal of Sports Medicine, v. 8, p. 231-241, Nov. 2017. http://dx.doi.org/10.2147/oajsm.s141657.

GOTTSCHALL, J. S.; KRAM, R. Ground reaction forces during downhill and uphill running. Journal of Biomechanics, v. 38, n. 3, p. 445-452, Mar. 2005. http://dx.doi.org/10.1016/j.jbiomech.2004.04.023.

HILL, A.V. The air-resistance to a runner. Proceedings of The Royal Society of London, v. 102, n. 718, p. 380-385, Feb. 1928. http://dx.doi.org/10.1098/rspb.1928.0012.

HOOGKAMER, W.; KIPP, S.; FRANK, J. H.; FARINA, E. M.; LUO, G.; KRAM, R. A Comparison of the Energetic Cost of Running in Marathon Racing Shoes. Sports Medicine, v. 48, n. 4, p. 1009-1019, 16 Nov. 2018. http://dx.doi.org/10.1007/s40279-017-0811-2.

HOOGKAMER, W.; KRAM, R.; ARELLANO, C. J. How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier. Sports Medicine, v. 47, n. 9, p. 1739-1750, 3 Mar. 2017. http://dx.doi.org/10.1007/s40279-017-0708-0.

HOOGKAMER, W.; SNYDER, K. L.; ARELLANO, C. J. Modeling the Benefits of Cooperative Drafting: is there an optimal strategy to facilitate a sub-2-hour marathon performance? Sports Medicine, v. 48, n. 12, p. 2859-2867, 8 Oct. 2018. http://dx.doi.org/10.1007/s40279-018-0991-4.

HOOGKAMER, W.; SNYDER, K. L.; ARELLANO, C. J. Reflecting on Eliud Kipchoge's Marathon World Record: an update to our model of cooperative drafting and its potential for a sub-2-hour performance. Sports Medicine, v. 49, n. 2, p. 167-170, 22 Jan. 2019. http://dx.doi.org/10.1007/s40279-019-01056-2.

HOOGKAMER, W.; TABOGA, P.; KRAM, R. Applying the cost of generating force hypothesis to uphill running. Peerj, v. 2, p. 1-17, 15 July. 2014. http://dx.doi.org/10.7717/peerj. 482.

JONES, A. M.; DOUST, J. H. A 1\% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences, v. 14, n. 4, p. 321327, Aug. 1996. http://dx.doi.org/10.1080/02640419608727717.

KANEKO, M. Mechanics and energetics in running with special reference to efficiency. Journal of Biomechanics, v. 23, p. 57-63, Jan. 1990. http://dx.doi.org/10.1016/0021-9290(90)90041-z.

KIPP, S.; KRAM, R.; HOOGKAMER, W. Extrapolating Metabolic Savings in Running: implications for performance predictions. Frontiers in Physiology, v. 10, p. 1-8, 11 Feb. 2019. http://dx.doi.org/10.3389/fphys.2019.00079.

KRAM, R.; GRIFFIN, T. M.; DONELAN, J. M.; CHANG, Y. H. Force treadmill for measuring vertical and horizontal ground reaction forces. Journal of Applied Physiology, v. 85, n. 2, p. 764-769, 1 Aug. 1998. http://dx.doi.org/10.1152/jappl.1998.85.2.764.

LLOYD, B. B.; ZACKS, R. M. The mechanical efficiency of treadmill running against a horizontal impeding force. The Journal of Physiology, v. 223, n. 2, p. 355-363, 1 June 1972. http://dx.doi.org/10.1113/jphysiol.1972.sp009851.

MCMIKEN, D.F.; DANIELS, J. T. Aerobic requirements and maximum aerobic power in treadmill and track running. Medicine Science in Sports, v. 8, n. 1, p. 14-17, 1976.

PÉRONNET, F.; MASSICOTTE, D. Table of nonprotein respiratory quotient: an update. Canadian Journal of Sport Sciences, v. 16, n. 1, p. 23-29, 28 Feb. 1991.

POLIDORI, G.; LEGRAND, F.; BOGARD, F.; MADACI, F.; BEAUMONT, F. Numerical investigation of the impact of Kenenisa Bekele's cooperative drafting strategy on its running power during the 2019 Berlin marathon. Journal of Biomechanics, v. 107, In press, June. 2020. http://dx.doi.org/10.1016/j.jbiomech.2020.109854.

PUGH, L. G. C. E. Oxygen intake in track and treadmill running with observations on the effect of air resistance. The Journal of Physiology, v. 207, n. 3, p. 823-835, 1 May 1970. http://dx.doi.org/10.1113/jphysiol.1970.sp009097.

PUGH, L. G. C. E. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. The Journal of Physiology, v. 213, n. 2, p. 255-276, 1 Mar. 1971. http://dx.doi.org/10.1113/jphysiol.1971.sp009381.4.

SHANEBROOK, J. R.; JASZCZAK, R. D. Aerodynamic drag analysis of runners. Medicine and Science in Sports, v. 8, n. 1, p.43-45, 1976.

SMITH, N. P.; BARCLAY, C. J.; LOISELLE, D. S. The efficiency of muscle contraction. Progress in Biophysics and Molecular Biology, v. 88, n. 1, p. 1-58, May 2005. http://dx.doi.org/10.1016/j.pbiomolbio.2003.11.014.

ZACKS, R. M. The mechanical efficiencies of running and bicycling against a horizontal impeding force. Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie, v. 31, n. 4, p. 249-258, 1973. http://dx.doi.org/10.1007/bf00693710.

2.7 Appendix S1

This Appendix addresses several topics. First, we explain in detail how we derived the aerodynamic drag force values from the previous articles which we presented in the Introduction section of this paper. Second, we discuss in more detail how previous articles converted mechanical power estimates to metabolic energy savings.

In a classic study, Hill (1928) measured the air resistance forces acting on a scaled physical model of a runner (0.2 m tall) in a small wind tunnel and provided generalized equations for the aerodynamic drag force using only the runner's height (H) and velocity (v) as inputs. Hill provided the formula $0.15 \mathrm{~h}^{2}$ for frontal area (A_{f}). Using Kipchoge's height of 1.67 m yields a frontal area of $0.418 \mathrm{~m}^{2}$. The standard equation for aerodynamic drag force (F) (RAYLEIGH, 1876) in N is:

$$
\mathrm{F}=0.5 \mathrm{~A}_{\mathrm{f}} \mathrm{C}_{\mathrm{d}} \rho \mathrm{v}^{2}
$$

Equation A1
Hill used a C_{d} (coefficient of drag) of 0.9 and air density (ρ) of $1.247 \mathrm{~kg} / \mathrm{m}^{3}$. Applying Hill's equation to Kipchoge running solo at a velocity (v) of $5.86 \mathrm{~m} . \mathrm{s}^{-1}$ (2-hr marathon pace) yields a force of 8.06 N . Beves and Ferguson (2017) used computational fluid dynamic (CFD) modelling to estimate the force acting on Kipchoge running solo at $5.86 \mathrm{~m} . \mathrm{s}^{-1}$ as 6.6 N but they did not provide the details behind that value and their simulated depiction of Kipchoge was unrealistically corpulent. Polidori et al. (2020) used CFD to calculate the air resistance acting on Kenenisa Bekele (the second fastest marathoner to date) running solo at $5.75 \mathrm{~m} . \mathrm{s}^{-1}$. They determined a frontal area of $0.475 \mathrm{~m}^{2}$ and used a C_{d} of 0.812 and air density of $1.219 \mathrm{~kg} / \mathrm{m}^{3}$. Bekele is slightly shorter and heavier (1.65 m and 56 kg) than Kipchoge. Thus, Polidori et al. (2020) calculated an aerodynamic drag force of 7.77 N for Bekele.

All three studies described above converted their similar force values first to external mechanical power to then use mechanical efficiency to calculate metabolic power. Multiplying aerodynamic drag force by the running velocity yields mechanical power. Hill's (1928) equations yield 47.2 W of mechanical power for Kipchoge running solo at 5.86 m.s ${ }^{-1}$, Beves and Ferguson (2017) calculated 38.6 W for Kipchoge solo at 5.86 m.s ${ }^{-1}$ and Polidori et al. (2020) found 44.7 W for Bekele solo at the slightly slower velocity ($5.75 \mathrm{~m} . \mathrm{s}^{-1}$).

Each of the three studies used different efficiency values. Efficiency is typically calculated as the mechanical power produced divided by the metabolic power required. Hill estimated that a 72.5 kg runner "at longer distances" (unspecified velocity) would have an oxygen uptake of $\sim 4 \mathrm{~L} \mathrm{O}_{2} / \mathrm{min}\left(\sim 55 \mathrm{mlO}_{2} / \mathrm{kg} / \mathrm{min}\right)$ to provide metabolic power for all of the physiological processes involved in running. That is considerably lower than the $\sim 70 \mathrm{ml}^{\left(\mathrm{kg}^{-1} . \mathrm{min}^{-1} \text { of modern, world-class marathoners (JONES et al., 2020). }\right.}$ Hill converted that oxygen uptake of $\sim 4 \mathrm{~L} \mathrm{O}_{2} /$ min to metabolic power assuming exclusively glycogen as the fuel substrate, arriving a value of 1459 W . Hill then divided 47.2 W of mechanical power for just aerodynamic power by the 1459 W of total metabolic power required (implicitly, incorrectly assuming an apparent mechanical efficiency of 100%) and concluded that overcoming air resistance comprises only ~3\% of the total metabolic power.

Beves and Ferguson's (2017) model found that when optimally drafting, Kipchoge only needed to produce 10.5 W of mechanical power to overcome drag (a reduction of 28.1 W from solo). Beves and Ferguson then used a value of 300 W for Kipchoge's sustainable mechanical power which was based on a blogger who used typical values for bicycling. Beves and Ferguson divided the reduction of 28.1 W of mechanical power due to drafting by 300 W of total (cycling) mechanical power yielding a 9 to 10\% improvement in running performance compared to running solo. Clearly it is inappropriate to apply a value for cycling to a running.

Polidori et al. (2020) took yet another approach. They began with the CFD estimate for the total mechanical power requirement of 899.6 W when running solo from an equation of Cavagna and Kaneko (1977) and 874.0 W in the optimal drafting configuration (from subtracting their CFD simulation results for aerodynamic power from that number). They then used a 63% value for human running efficiency (CAVAGNA and KANEKO, 1977) and arrived at 2.8% savings in metabolic power possible with optimal drafting. However, the 63% efficiency value is probably high, in part because it ignores the importance of elastic energy storage and recovery from the tendons in human running (CAVANAGH and KRAM, 1985).

Regardless of the details, the Hill (1928), Beves and Ferguson (2017) and Polidori et al. (2020) approaches are intrinsically flawed because the metabolic cost of running is determined by muscular force (KRAM and TAYLOR, 1990; KIPP, GRABOWSKI and KRAM, 2018) and not mechanical power (HEGLUND et al., 1982).

2.9 Appendix S2

Relative increase in metabolic power per \%BW

To be able compare the findings of Lloyd and Zacks (1972), Zacks (1973) and Chang and Kram (1999), we calculated the relative increases in metabolic power per \% BW of resistive force. For Lloyd and Zacks (1972) and Zacks (1973), we used values for apparent efficiency, metabolic power during "zero-load" running and running velocity reported in Table 2 of each study (as LRE, Ek and mean speed, respectively). For Chang and Kram (1999), we converted oxygen uptake to metabolic power.

These calculations were straight forward for Chang and Kram (1999). They reported data for 8 well-trained recreational runners (5 men and 3 women; 65.8 ± 9.3 $\mathrm{kg})$ that ran at a fixed velocity of $3.3 \mathrm{~m} . \mathrm{s}^{-1}\left(11.9 \mathrm{~km} . \mathrm{h}^{-1}\right)$ with horizontal impeding forces of 3 and 6% BW. We converted oxygen uptake expressed in $\mathrm{ml} . \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ into metabolic power (W/kg) by multiplying the average values of oxygen uptake for each condition by $20.9 \mathrm{~J} / \mathrm{ml}$ oxygen and dividing by 60 seconds $/ \mathrm{min}$. Based on the changes in metabolic rate for horizontal impeding forces of 3 and 6% BW we calculated an average relative increase of 4.7% in metabolic power per 1\%BW.

Lloyd and Zacks (1972) reported data of 3 male well trained cross-country and track athletes ($57.2 \pm 0.9 \mathrm{~kg}$) who ran at velocities up to $13 \mathrm{~km} . \mathrm{h}^{-1}$ with horizontal impeding forces ranging from 2.2 to 9.6 \%BW (12.2 to 54.0 N). Zacks (1973) reported data for 3 athletes ($62.3 \pm 9.7 \mathrm{~kg}$) who ran at velocities ranging from 14 to $17 \mathrm{~km} . \mathrm{h}^{-1}$ with horizontal impeding forces ranging from 1.6 to 2.6 \% BW (9.8 to 15.7 N). Each athlete ran at several different velocities, and with multiple loads at each velocity. For each velocity, the runner's metabolic cost during running without resistive forces (E_{k} in $\mathrm{kcal} / \mathrm{kg} / \mathrm{km}$) and the average apparent efficiency (\%) were reported.

First, we converted E_{k} to $\mathrm{J} / \mathrm{kg} / \mathrm{km}$ (factor of $4184 \mathrm{~J} / \mathrm{kcal}$). Then, we calculated metabolic power in W/kg by multiplying E_{k} in $\mathrm{J} / \mathrm{kg} / \mathrm{km}$ by the running velocity in km / s. Next, we set out to determine the resistive force in \% BW and the external mechanical power in W/kg, but Lloyd and Zacks (1972) did not provide detailed information about their hanging mass conditions. Instead, we assumed a maximum reported external mechanical power of 70 W for all speeds and calculated the hanging mass that would provide that at each velocity. Zacks (1973) states that "At speeds of 14 and $17 \mathrm{~km} . \mathrm{h}^{-1}$ the maximum loads were about 1.6 and 1 kg respectively". We assumed a linear
relation between velocity and hanging mass to determine the maximum loads at the other velocities. For each velocity, we then calculated the external mechanical power.

Based on the maximum external mechanical power and the reported average apparent efficiency, we calculated the increase in metabolic power beyond unloaded running. Next, we calculated the relative increase in metabolic power. Finally, we calculated the relative increase in metabolic power per \% BW of resistive force. For both studies these calculations resulted in an average relative increase of 7.9% in metabolic power per 1\% BW.

2.8 Appendix S3

Supplementary Table

Table S1. Mean gross metabolic power (W/kg) data for different horizontal impeding forces at the three velocities for each of the 12 subjects tested in the present study.

	$12 \mathrm{~km} . \mathrm{h}^{-1}$			$14 \mathrm{~km} . \mathrm{h}^{-1}$			$16 \mathrm{~km} . \mathrm{h}^{-1}$		
	0 N	-4 N	$-8 \mathrm{~N}$	0 N	-4N	$-8 \mathrm{~N}$	0 N	-4 N	-8N
1	13.05	13.39	13.88	15.03	15.35	15.99	17.55	18.32	18.92
2	12.22	12.56	12.88	14.48	15.18	15.62	17.66	18.12	18.90
3	11.19	12.02	12.24	13.77	14.88	15.21	16.22	16.71	17.79
4	12.65	13.05	13.61	14.97	15.41	15.84	17.26	17.80	18.77
5	12.54	13.25	13.57	14.99	15.36	15.69	17.79	18.50	19.16
6	11.27	11.72	12.07	13.59	14.16	14.62	16.11	16.81	17.46
7	12.93	13.41	13.73	15.54	15.86	16.44	18.19	18.46	19.08
8	-	-	-	-	-	-	16.25	16.90	17.90
9	11.64	12.19	12.51	14.36	15.09	15.77	16.69	17.39	18.51
10	12.02	12.38	12.89	15.02	15.28	16.05	17.17	17.75	18.34
11	11.30	11.76	12.07	15.39	15.68	16.30	16.45	16.87	17.65
12	10.86	11.36	11.92	13.37	13.88	14.57	16.95	17.56	18.36

2.9 Appendix S4

Drag forces at marathon pace

First, we calculated the surface area (SA) for different marathoners using height (H) in cm and body mass (M) in kg, using the Du Bois and Du Bois (1916) equation:

$$
\mathrm{SA}=0.007184 \mathrm{H}^{0.725} \mathrm{M}^{0.425}
$$

Next, we calculated the projected frontal area $\left(A_{f}\right)$ based on Pugh (1970):

$$
\mathrm{A}_{\mathrm{f}}=26.6 \% \mathrm{SA}
$$

Equation A2
In Table S2, the surface and frontal area for an elite male runner with dimensions of Eliud Kipchoge and an elite female runner with dimensions of Brigid Kosgei are presented. Additionally, we used anthropometric data (mass and height) for a typical recreational runner from Gordon et al. (2017).

Table S2. Surface and frontal area of marathon runners:

Runners	Body mass (kg)	Height (cm)	Surface area $\left(\mathrm{m}^{2}\right)$	Frontal area $\left(\mathrm{m}^{2}\right)$
Eliud Kipchoge	52	167	1.567	0.417
Brigid Kosgei	50	170	1.561	0.415
3-hr	65.6	175	1.788	0.476
$4-\mathrm{hr}$	65.6	175	1.788	0.476
5-hr	65.6	175	1.788	0.476

Finally, we used Lord Rayleigh's drag force equation (RAYLEIGH, 1876):

$$
\mathrm{F}=0.5 \mathrm{~A}_{\mathrm{f}} \mathrm{C}_{\mathrm{d}} \rho \mathrm{v}^{2}
$$

Equation A3
Where A_{f} is projected frontal area (m), C_{d} is the coefficient of drag, ρ is air density (in $\mathrm{kg} / \mathrm{m}^{3}$), v is running velocity (in $\mathrm{m} . \mathrm{s}^{-1}$). At sea level the density of air at 20° C is 1.204 (KYLE and CAIOZZO, 1986); for C_{d}, we used 0.9 (HILL, 1928). Additionally, we calculated the drag force (F) in \% of body weight (BW). The results are presented in Table S3:

Table S3. Drag force (F) for marathon runners:

Runners	Time (hr/min/sec)	Velocity $\left(\mathrm{m} . \mathrm{s}^{-1}\right)$	Drag force (N)	Drag force (\% BW)
Eliud Kipchoge	$2: 00: 00$	5.86	7.75	1.52

Brigid Kosgei	$2: 15: 00$	5.21	6.10	1.24
3-hr	$3: 00: 00$	3.91	3.93	0.61
4-hr	$4: 00: 00$	2.93	2.21	0.34
5-hr	$5: 00: 00$	2.34	1.42	0.22

Drafting, metabolic cost and time saving of drag forces

To estimate drag forces of running during drafting, we used reference values of Computational Fluid Dynamics simulations for an elite male runner with a best marathon performance very similar to Eliud Kipchoge (Kenenisa Bekele) (POLIDORI et al., 2020). Polidori et al. (2020) simulated different drafting scenarios, such as running alone (7.77 N) and running behind the middle pacer of three side-by-side pacers (3.32 N). We divided both values (3.32 / $7.77=0.427$) to estimate the drag forces during "optimal practical drafting" for the five different scenarios in Table S3.

Next, we calculated the reduction in drag forces due to drafting (N) in \% BW. Based on our main findings we calculated the metabolic savings from drafting by multiplying this by 6.13% (the relative increase in metabolic power for running with 1% of BW of horizontal impeding forces (Figure 12). To predict the time savings from drafting at marathon pace, we used the simple method proposed by Kipp, Kram and Hoogkamer (2019), using height (m), body mass (kg), improvement in running economy (\%) and marathon time as inputs. Additionally, we used the same equations described above to calculate elite marathon performances in the hypothetical scenario of running with zero air resistance, for example in a vacuum or on treadmill (less hypothetical). In this scenario, the reduction in metabolic power of drafting is 9.32% and the time saving would be about $7 \mathrm{~min}(7: 05)$ for a 2-hr male marathoner and 7.63% or 6:53 min for a 2:15 female marathoner, respectively (Table S4).

Finally, we calculated how much of the total the metabolic cost of running is due to overcoming air resistance, based on the air drag force experienced when running solo:

$$
\frac{\text { Additional metabolic cost of overcoming air resistance (\%) }}{100 \%+\text { Additional metabolic cost of overcoming air resistance (\%) }} * 100 \%
$$

Table S4. Metabolic cost and time savings for marathon runners:

Runner	Drag force while drafting (N)	Reduction in metabolic power while drafting (\%)	New velocity $\left(\mathrm{m}^{-1}\right)$	Time savings min:sec	Relative metabolic cost of overcoming air resistance $(\%)$
Eliud Kipchoge	3.31	5.34	6.07	$4: 03$	8.52
Eliud Kipchoge (Treadmill)	0	9.32	6.23	$7: 05$	8.52
Brigid Kosgei	2.61	4.37	5.37	$3: 57$	7.09
Brigid Kosgei (Treadmill)	0	7.63	5.49	$6: 53$	7.09
3-hr	1.68	2.15	3.98	$3: 08$	3.61
4-hr	0.94	1.21	2.97	$2: 59$	2.06
5-hr	0.60	0.77	2.37	$3: 00$	1.33

2.10 References

BEVES, C.; FERGUSON S. Uncovering the aerodynamic trickery behind Nike's breaking 2 project. Siemens PLM. 2017. https://www.linkedin.com/pulse/uncovering-aerodynamic-trickery-behind-nikes-breaking-ferguson/. Accessed 2 June 2020.

CAVAGNA, G. A.; KANEKO, M. Mechanical work and efficiency in level walking and running. The Journal of Physiology, v. 268, n. 2, p. 467-481, 1 June 1977. http://dx.doi.org/10.1113/jphysiol.1977.sp011866.

CAVANAGH P.R.; KRAM, R. Mechanical and muscular factors affecting the efficiency of human movement. Medicine and Science in Sports and Exercise, v. 17, n. 3, p. 326-331, 31 May 1985.

CHANG, Y.; KRAM, R. Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, v. 86, n. 5, p. 1657-1662, 1 May 1999. http://dx.doi.org/10.1152/jappl.1999.86.5.1657.

DU BOIS, D.; DU BOIS, E. F. Clinical calorimetry, tenth paper. A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine, v. 17, n. 6_2, p. 863-871, 1 June 1916. http://dx.doi.org/10.1001/archinte.1916.00080130010002.

GORDON, D.; WIGHTMAN, S.; BASEVITCH, I.; JOHNSTONE, J.; ESPEJOSANCHEZ, C.; BECKFORD, C.; BOAL, M.; SCRUTON, A.; FERRANDINO, M.; MERZBACH, V. Physiological and training characteristics of recreational marathon runners. Open Access Journal of Sports Medicine, v. 8, p. 231-241, Nov. 2017. http://dx.doi.org/10.2147/oajsm.s141657.

HEGLUND, N. C.; FEDAK, M. A.; TAYLOR, C. R.; CAVAGNA, G. A. Energetics and mechanics of terrestrial locomotion. IV. Total mechanical energy changes as a function of speed and body size in birds and mammals. Journal of Experimental Biology, v. 97: p. 57-66, Apr. 1982.

HILL, A.V. The air-resistance to a runner. Proceedings of The Royal Society of London, v. 102, n. 718, p. 380-385, Feb. 1928. http://dx.doi.org/10.1098/rspb.1928.0012.

JONES, A. M.; KIRBY, B. S.; CLARK, I. E.; RICE, H. M.; FULKERSON, E.; WYLIE, L. J.; WILKERSON, D. P.; VANHATALO, A.; WILKINS, B. W. Physiological demands of running at 2-hour marathon race pace. Journal of Applied Physiology, p. 1-42, 5 Nov. 2020. http://dx.doi.org/10.1152/japplphysiol.00647.2020.

KIPP, S.; GRABOWSKI, A. M.; KRAM, R. What determines the metabolic cost of human running across a wide range of velocities? The Journal of Experimental Biology, v. 221, n. 18, p. 1-8, 31 July 2018. http://dx.doi.org/10.1242/jeb. 184218.

KIPP, S.; KRAM, R.; HOOGKAMER, W. Extrapolating Metabolic Savings in Running: implications for performance predictions. Frontiers in Physiology, v. 10, p. 1-8, 11 Feb. 2019. http://dx.doi.org/10.3389/fphys.2019.00079.

KYLE, C. R.; CAIOZZO, V. J. The effect of athletic clothing aerodynamics upon running speed. Medicine \& Science in Sports \& Exercise, v. 18, n. 5, p. 509-515, Oct. 1986. http://dx.doi.org/10.1249/00005768-198610000-00003.

KRAM, Rodger; TAYLOR, C. Richard. Energetics of running: a new perspective. Nature, v. 346, n. 6281, p. 265-267, July 1990. http://dx.doi.org/10.1038/346265a0.

LLOYD, B. B.; ZACKS, R. M. The mechanical efficiency of treadmill running against a horizontal impeding force. The Journal of Physiology, v. 223, n. 2, p. 355-363, 1 June 1972. http://dx.doi.org/10.1113/jphysiol.1972.sp009851.

POLIDORI, G.; LEGRAND, F.; BOGARD, F.; MADACI, F.; BEAUMONT, F. Numerical investigation of the impact of Kenenisa Bekele's cooperative drafting strategy on its running power during the 2019 Berlin marathon. Journal of Biomechanics, v. 107, In press, June. 2020. http://dx.doi.org/10.1016/j.jbiomech.2020.109854.

PUGH, L. G. C. E. Oxygen intake in track and treadmill running with observations on the effect of air resistance. The Journal of Physiology, v. 207, n. 3, p. 823-835, 1 May 1970. http://dx.doi.org/10.1113/jphysiol.1970.sp009097.

RAYLEIGH, L. LIII. On the resistance of fluids. The London, Edinburgh, And Dublin Philosophical Magazine and Journal of Science, v. 2, n. 13, p. 430-441, Dec. 1876. http://dx.doi.org/10.1080/14786447608639132.

ZACKS, R. M. The mechanical efficiencies of running and bicycling against a horizontal impeding force. Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie, v. 31, n. 4, p. 249-258, 1973. http://dx.doi.org/10.1007/bf00693710.

CHAPTER 3

The effect of small horizontal impeding force on spring-mass model and asymmetries of bouncing step in long-distance runners: a randomized crossover study

Abstract

Running against heavy horizontal impeding forces (15\% of body weight) changes kinetic and potential energy transduction and then recovery up to 16\% external mechanical work. There is a lack of evidence regarding energy saving with small impeding forces comparable to air resistance. We aimed to quantify how small horizontal impeding forces can save energy by spring-mass model and asymmetries of bouncing step (rebound and landing take-off) in long-distance runners. Twelve male runners (age: 26.1 ± 3.5 years, mass: $66.5 \pm 5.6 \mathrm{~kg}$, height $1.79 \pm 0.09 \mathrm{~m}$) completed three data collection sessions. Subjects ran six 5 -minute trials with 5 minutes of recovery in-between. We tested one velocity per session (12, 14 and $16 \mathrm{~km}^{-\mathrm{h}^{-1}}$), at three horizontal impeding force conditions (0, 4 and 8 N). The asymmetries between push and braking duration and effective aerial and contact times were not affected with horizontal impeding forces ($p=0.265$ and $p=0.678$, respectively). Vertical force and step length decreased when was applied 8 N of horizontal impeding forces ($p=0.027$ and $p=0.019$, respectively). Vertical velocity of the center of mass during downward and upward ratio becomes symmetrical with increase of horizontal impeding forces. With 8 N of horizontal impeding forces the vertical displacement of center of mass during effective aerial downward and upward phases and the vertical displacement of center of mass during effective contact downward and upward phases becomes symmetrical ($p=0.022$ and $p=0.017$, respectively). Elastic energy storage decreased with increase of all running velocities $(p=0.040)$ without any effect of horizontal impeding forces ($p=0.267$). We concluded that horizontal impeding forces can mechanically optimizes the spring mass-model without any changes in landing-takeoff and rebound asymmetries. However, adjustments in vertical forces and step length to minimize the step-average force exerted by the muscle on the ground with increased horizontal impeding forces impair the elastic energy storage into the system.

Keywords: elastic energy; center of mass; drafting; running performance.

KEYPOINTS

- Horizontal impeding forces become the maximal vertical velocity ratio during downward and upward phases symmetrical which optimized the spring-mass model.
- At 8 N of horizontal impeding forces, the vertical displacement of center of mass during effective aerial downward and upward phases and the vertical displacement of center of mass during effective contact downward and upward phases becomes symmetrical.
- Landing-takeoff and rebound asymmetries are not affected by small horizontal impeding forces.
- Vertical forces and step length decrease to minimize the step-average force exerted by the muscle on the ground at 8 N of horizontal impeding forces.

3.1 Introduction

During running on level, the elastic energy is stored and released when muscletendon units are stretched (CAVAGNA, SAIBENE and MARGARIA, 1964). During the first half of the contact (tbrake), muscles absorb mechanical work (eccentric contraction) and store elastic energy in muscle-tendon units. In the second half of the contact phase (tpush), in turn, some part of the elastic energy dissipates as heat, and another part is converted into potential and kinetic energy, adding positive mechanical work (concentric contraction) needed to raise and accelerate the center of mass (BCoM) forward (BLICKHAN, 1989). This elastic energy storage and return occur in elastic tissues such as the Achilles tendon (35% at $16.2 \mathrm{~km} . \mathrm{h}^{-1}$), plantar arch of the foot (17% at $16.2 \mathrm{~km} \cdot \mathrm{~h}^{-1}$) and iliotibial band (14% in comparison to Achilles tendon capacity at 18 km. h^{-1}) (ENG et al., 2015; KER et al., 1987).

Running mechanics has been modeled as a spring-mass system in which the BCoM oscillates on a spring passively with a natural frequency ($f_{\text {syst }}$) with the same height and velocity at landing and take-off (BLICKHAN, 1989; MCMAHON and CHENG, 1990). Cavagna et al. (1988) showed that these assumptions did not hold over a wide range of running speeds. Dividing the step cycle in inferior and superior trajectories of the vertical oscillation of BCoM (s_{v}), which the vertical force are, respectively, higher and lower than body weight (BW), there are on-off-ground symmetry and asymmetry of the rebound according the running speed. At low speeds, the time of the lower part of the vertical oscillation, $t_{c e}$, is like that of the superior trajectory, tae (on-off-ground symmetric rebound). At speeds higher than $11 \mathrm{~km} . \mathrm{h}^{-1}$, the tce turns out lower than tae resulting in an on-off-ground asymmetric rebound. The vertical displacement of BCoM during effective contact phase (lower part of trajectory), $S_{c e}$, and step frequency ($f_{\text {step }}$) equals the vertical displacement of BCoM during effective aerial phase (upper part of trajectory), sae, and $f_{\text {syst }}$, respectively. At high speeds (above $11 \mathrm{~km} \cdot \mathrm{~h}^{-1}$), these relationships become asymmetrical with $\mathrm{S}_{\text {ce }}$ and $f_{\text {step }}$ lower than Sae and $f_{\text {syst }}$.

Later, Cavagna (2006), besides defining the ratio of t_{ae} and $t_{c e}$ as rebound asymmetry, defined the tbrake/tpush ratio as landing-takeoff asymmetry in humans and other animals. In the first approach ($t_{\mathrm{ae}} / t_{\mathrm{ce}}$), at low speeds, the ratio is symmetrical (t_{ae} $=t_{\mathrm{ce}}$) and becomes asymmetrical ($t_{\mathrm{ae}}>t_{\mathrm{ce}}$) at high speeds due to vertical momentum lost and gained. In the second approach ($t_{\text {push }} / t_{\text {brake }}$), at lower speeds, the ratio is
asymmetrical (tpush $>$ tbrake), means that forces during tbrake are greater than during tpush, and at high speeds, the ratio becomes symmetrical (tpush $\left.=t_{\text {brake }}\right)($ CAVAGNA, 2006; CAVAGNA, 2009). Additionally, due to gravity and tbrake/t $t_{\text {push }}$, the maximal vertical velocity of BCoM during downward phase ($v_{v, \text { max,down }) \text { is higher than the maximal }}$ vertical velocity of BCoM during upward phase ($v_{v, \text { max,up }}$) (LEGRAMANDI; SCHEPENS and CAVAGNA, 2013). Indeed, recent findings have proved that at high running speeds ($t_{\mathrm{ae}}>t_{\mathrm{ce}}$ and $t_{\text {push }}=t_{\text {brake }}$), the elastic mechanism is optimized (MONTE et al., 2020), condition in which $V_{v, \text { max,down } / V, \text { max,up }}$ asymmetry becomes symmetrical (CAVAGNA, 2006).

Elastic energy during running historically has been measured for level treadmill running without air resistance. It is reasonable that mechanical work needed to overcome wind at lower velocities (at $10 \mathrm{~km}_{\mathrm{k}} \mathrm{h}^{-1}$) is minimal (MARGARIA, 1968). However, air resistive forces during running become relevant at higher speeds since the drag force varies as the square of velocity (RAYLEIGH, 1876). Elite distance runners sustain a metabolic steady above $20 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ during the marathon (HOOGKAMER, KRAM and ARELLANO, 2017; JONES et al., 2020). At these running speeds, computational fluid dynamics simulations suggest that an elite athlete experiences drag forces of 6.6 N to 7.8 N (1.29 and 1.42% of their BW , respectively) (BEVES and FERGUSON, 2017; POLIDORI et al., 2020). It has been suggested that while running outside, drag forces increase propulsive impulses while braking impulses decrease them (CHANG and KRAM, 1999), however, the elastic energy responses are unclear.

The gold-standard method to evaluate the effect of drag forces experimentally during running is the use of wind tunnels on treadmills (PUGH, 1970; PUGH, 1971; DAVIES, 1980). Alternatively, it possible to compare the effect of drag forces during running comparing treadmill versus overground (BASSETT et al., 1985; JONES and DOUST, 1996; MCMIKEN and DANIELS, 1976) and applying horizontal impeding forces similar to drag forces during treadmill (CHANG and KRAM, 1999; LLOYD and ZACKS, 1972; MESQUITA et al., 2020; ZACKS, 1973). Previous studies with wind tunnel and comparing treadmill versus overground are limited to metabolic cost perspective. However, it was indirectly reported running against air resistive forces, runners leaned their trunk forward, and in some cases, they changed their technique from rearfoot to forefoot strike (DAVIES, 1980; PUGH, 1971). Horizontal impeding
forces methods applied heavy external loads ranging 3 to 6% BW at $12 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ (CHANG and KRAM, 1999), and 5, 10 and 15% BW at velocities between 8 and $16 \mathrm{~km} . \mathrm{h}^{-1}$ (MESQUITA et al., 2020).

Interestingly, there is evidence of "free-ride" phenomena (MALOIY et al., 1986) with an increase of external load of 4% BW in the vertical direction of BCoM and saving metabolic energy during running (ABE et al., 2011). In the vertical direction, the vertical load increases the utilization of stored elastic energy by increasing the ratio between negative and positive work activation (with high activation on tbrake) of vastus lateralis (ABE et al., 2011). For horizontal impeding force, this effect also seems to be confirmed with heavy load (from 10% BW) in the horizontal direction of BCoM (MESQUITA et al., 2020). However, the energy recovery with an increase of horizontal impeding forces is related to energy transduction between potential and kinetic energy ($\sim 16 \%$ with 15% BW) when the trunk is leaned forward (MESQUITA et al., 2020). The use of horizontal impeding forces similar to drag force in the running would clarify the overground running mechanics.

The purpose of this study was to quantify how small horizontal impeding forces can save energy by spring-mass model and asymmetries of bouncing step (rebound and landing take-off) in long-distance runners. We hypothesized that horizontal impeding forces will affect the four phases of spring-mass model: downward acceleration and deceleration, and upward acceleration and deceleration (CAVAGNA, 2006). Therefore, with an increase of horizontal impeding forces, the spring-mass
 decreasing the asymmetry between Sae during downward and upward (Sae,down/Sae,up), and increasing the asymmetry between $s_{c e}$ during downward and upward (Sce,down/Sce,up), becomes all symmetrical. We also expect improvements in spring-mass model will directly translate to the elastic storage with increment in horizontal impeding forces. Finally, the landing-takeoff and rebound asymmetries (tpush/tbrake and $t_{c e} / t_{\mathrm{ae}}$, respectively) will not be improved with horizontal impeding forces (MESQUITA et al., 2020). Here we expect the small horizontal impeding forces will not heavy enough to affect mechanical at the local level.

3.2 Methods

3.2.1 Participants

Twelve male runners (age: 26.1 ± 3.5 years, mass: $66.5 \pm 5.6 \mathrm{~kg}$, height $1.79 \pm$ 0.09 m) participated. They all had recently run a sub-32 minute $10-\mathrm{km}$ race or an equivalent performance in another distance-running event. The study was performed in accordance with the ethical standards of the Declaration of Helsinki. Ethics approval was obtained from the University of Colorado Institutional Review Board (Protocol\#180110).

3.2.2 Experimental protocol

The study consisted of three data collection sessions. During session 1, the subjects completed a health screening form and signed the informed consent form. During all three sessions, we measured the height, leg length and body weight; thereafter, the subjects warmed-up by running on a custom-built force-instrumented treadmill (KRAM et al., 1998) for 3 min at $3.33 \mathrm{~m} . \mathrm{s}^{-1}\left(12 \mathrm{~km} . \mathrm{h}^{-1}\right)$, followed by 3 min at $3.89 \mathrm{~m} . \mathrm{s}^{-1}$ ($14 \mathrm{~km} . \mathrm{h}^{-1}$). The subjects then ran six 5 -minute trials with a 5 min recovery period in between. We tested one velocity per session (3.33, 3.89, or $4.44 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ [16 $\mathrm{km} . \mathrm{h}^{-1} \mathrm{~J}$), at three horizontal impeding force conditions (0,4 , and 8 N). The subjects ran with each horizontal impeding force condition twice per visit, in a mirrored order, which was counterbalanced and randomly assigned. We averaged the two values for each condition.

3.2.3 Horizontal impeding forces

To simulate running with air resistance, we applied small horizontal impeding forces at the waist of the runners, near their center of mass (CHANG and KRAM, 1999; LLOYD and ZACKS, 1972). These forces resulted from a hanging mass that was connected via rubber tubing around pulleys to a waist belt. We used long pieces of low-stiffness natural latex rubber to minimize the bouncing of the hanging mass and force fluctuations due to length changes in the rubber tubing from slight anteriorposterior movements of the runner on the treadmill. The rubber tubing was first passed under a low-friction pulley that could be positioned vertically to match the height of the subject's waist, ensuring that the impeding force was horizontal. The tubing was then
attached to an S-beam force transducer (LCCB-50, OMEGA Engineering, INC., Norwalk, CT, USA) which measured the pulling force and fluctuations throughout the running stride. Another piece of rubber tubing was attached to the force transducer and passed over a second low-friction pulley, positioned approximately 6 m high. Hanging masses of 408 and 815 g applied impeding forces of 4 and 8 N , respectively. To counterbalance the weight of the force transducer, we added 305 grams of lead to the hanging mass. The rubber tubing dimensions differed for the two resistive force conditions: for 4 N , we used 3.2/1.2 mm (outer diameter/inner diameter); for 8 N , we used 5.6/1.2 mm. The unstretched lengths of the rubber tubing also differed such that during the running trials, the hanging mass hovered approximately 0.3 m above the floor.

3.2.4 Force measurements

We recorded the vertical $\left(\mathrm{F}_{\mathrm{z}}\right)$ and anteroposterior $\left(\mathrm{F}_{\mathrm{y}}\right)$ ground reaction forces and impeding force fluctuations at 1000 Hz sampling frequency for 30 s during the $2^{\text {nd }}$ and $5^{\text {th }}$ minutes using LabView software (National Instruments, Austin, TX, USA). Force traces on LabView were filtered through a forward and reverse low-pass, $4^{\text {th }}$ order Butterworth filter with a cut-off frequency of 30 Hz (DA ROSA et al., 2019). We used the sum of F_{z} and F_{y} for the analysis (CAVAGNA, 1975).

3.2.5 Landing-takeoff asymmetries

The signal forces (vertical and anteroposterior) were transformed into acceleration using dynamic general equation of Newton-Euler (acceleration = sum of forces / body mass). The acceleration signals were integrated numerically using the trapezoidal method. The first integration plus the integration constants (average speed in the anteroposterior component and vertical gravitational acceleration) indicated the body speed. This speed curve in its vertical component was integrated again to obtain the vertical position of the body during running (CAVAGNA, 1975).

Twenty steps of each speed were selected for analysis. The brake (tbrake) and push (tpush) durations were calculated as the time intervals in which the $\mathrm{d} E_{\mathrm{cm}}(\mathrm{t}) / \mathrm{d} t$ signals were below (for tbrake), and above (for tpush) of zero. The time interval where the $\mathrm{d} E_{\mathrm{cm}}(\mathrm{t}) / \mathrm{dt}$ signal \sim zero was considered the aerial time (t_{a}) (CAVAGNA et al., 1988).

3.2.6 Vertical oscillation of the center of mass

Traditionally, step period (\mathcal{T}) and vertical oscillation of the center of mass (s_{v}) during running are divided into their fractions take placing during the contact (t_{c} and s_{c}) and aerial times (t_{a} and s_{a}). However, considering the spring-mass model acting during running (BLICKHAN, 1989), \mathcal{T} and S_{v} are also divided into their faction in two part: lower and upper parts that depend on equilibrium point (equal to body weight) and vertical force (F_{v}). A lower part take placing when the F_{v} is greater than the body weight (t_{ce} and S_{ce}), and when the F_{v} is lower than body weight (t_{ae} and S_{ae}) at upper part (CAVAGNA et al., 1988). In a total step period was calculated ($T=t_{c}+t_{\mathrm{a}}$ equal $t_{c e}+$ t_{ae}), while a total vertical oscillation of the center of mass ($s_{\mathrm{v}}=s_{\mathrm{c}}+s_{\mathrm{a}}$ equal $s_{\mathrm{ce}}+S_{\mathrm{ae}}$) were considered in the analysis (CAVAGNA, LEGRAMANDI and PEYRÉTARTARUGA, 2008a). Finally, sv without effective contact and aerial phase were divided into ascending phase (when BCoM is rising, $s_{c e, u p}$ and $S_{\text {ae,up }}$) and descending phase (when BCoM is falling, $s_{c e, \text { down }}$ and $S_{\text {ae, down) }}$. Maximal vertical acceleration (avmax) was calculated as the maximal value during the effective contact phase. The maximal vertical velocity during an upward ($v_{v, \text { max, up }}$) and downward ($v_{v, \text { max, down }}$) phases of the oscillation were determined as the maximal values in these respective phases (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008b).

3.2.7 Vertical stiffness and system frequency

The mass specific vertical stiffness $\left(k / M_{b}\right)$ was calculated as $\left(k / M_{b}=\left(a_{v}, \max / s_{c e}\right)\right.$ where (a_{v}) is vertical acceleration in m. s^{-2} and $s_{c e}$ is related to vertical displacement of the center of mass during effective contact time from $a_{v}=0$ to $a_{v, \max }$ (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008). The natural frequency of the springmass model was considered as $f_{\text {syst }}=1 / 2\left(t_{c e}\right)$ equal to $(\mathrm{k} / \mathrm{Mb})^{0.5} /(2 T)$, where T is the step period $\left(T=t_{\mathrm{ae}}+t_{\mathrm{ce}}\right)$ (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008). Additionally, we calculated the step frequency $f_{\text {step }}$ dividing the T by 1 ($f_{\text {step }}=1$ / ($t_{\mathrm{ae}}+t_{\mathrm{ce}}$).

3.2.8 Elastic energy storage

Elastic energy (EL) storage during running (J/kg) was calculated:

$$
\mathrm{EL}=\mathrm{F}_{\max } \Delta \mathrm{S}_{\mathrm{ce}} / 2
$$

where $F_{\text {max }}$ is the peak of vertical ground reaction force during contact (N) and $\Delta S_{\text {ce }}$ is the vertical displacement BCoM during contact time (m). Therefore, EL value was divided by the step length (m) and body mass (kg) to obtain EL per kg and unit distance (J. $\mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$) (CARRARD, FONTANA and MALATESTA, 2018).

3.2.9 Statistics

Data are presented as mean and standard deviation. We performed a two-way ANOVA with repeated measures to compare the effect of running velocity and horizontal impeding force on spring-mass model variables and asymmetries of bouncing step. When significant main or interaction effects were detected, we performed Bonferroni corrected paired t-tests to determine post-hoc which velocity and/or horizontal impeding force comparisons differed significantly. It was adopted for all comparison $\alpha=0.05$ on Statistical Package for the Social Sciences (SPSS) (IBM Corporation, Inc., New York, United States). Additionally, we calculated partial etasquared $\left(\eta^{2}\right)$ to determining the effect size of impeding horizonal force (COHEN, 1973). It was considered the effect size up to 0.020 small, 0.021 to 0.130 medium, and large for value higher than 0.260 (SANTO and DANIEL, 2018).

3.3 Results

Figure 14 shows the effect of running velocity and horizontal impeding force on aerial (t_{a}) and contact times (t_{c}), and effective aerial (t_{ae}) and contact times (t_{ce}). The t_{a} and t_{c} were both affected with running velocity ($\mathrm{p}<0.001$), but t_{a} increased while t_{c} decreased with the increase of all running velocities ($p=0.007$ and $p<0.001$; respectively). There was no effect of horizontal impeding forces ($p=0.217$ and $p=$ 0.816), and interaction between running velocity and horizontal impeding force ($p=$ 0.988 and $\mathrm{p}=0.718$) for t_{a} and t_{c}, respectively.

The $t_{c e}$ was affected with running velocity ($p<0.001$), without effect of horizontal impeding force ($p=0.258$) and interaction between running velocity and horizontal impeding force $(p=0.437)$. The $t_{c e}$ values decreased with increase of all running velocities ($p<0.001$). tae was not affected with running velocity ($p=0.091$), horizontal impeding force $(p=0.200)$ and interaction between running velocity and horizontal impeding force $(p=0.870)$ (see Figure 14).

Figure 14. Step period (T), aerial times (t_{a}), contact times (t_{c}), effective aerial times (t_{ae}) and effective contact times (t_{ce}) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are illustrated. Open circles with solid lines are related to τ. Circles with dashed lines are related to t_{ae} above and $t_{c e}$ below, while circles with solid lines are related to t_{c} above and t_{a} below. Blue, red and green colors represent the horizontal impeding force of 0,4 and 8 N , respectively.

The effect of running velocity and horizontal impeding force on the vertical displacement of BCoM $\left(s_{v}\right)$ during contact time $\left(s_{c}\right)$, aerial time $\left(s_{\mathrm{a}}\right)$, effective contact time (S_{ce}) and effective aerial time (S_{ae}) are presented in Figure 15.

Figure 15. Vertical displacement of $\mathrm{BCoM}\left(s_{\mathrm{v}}\right)$ during contact time $\left(s_{\mathrm{c}}\right)$, aerial time (s_{a}), effective contact time (S_{ce}) and effective aerial time ($\mathrm{Sae}_{\mathrm{ae}}$) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) and horizontal impeding force (0,4 and 8 N) are presented. Black circles with solid lines are related to vertical displacement of BCoM (sv), red circles with dashed lines are $s_{c e}$, red circles with solid lines are s_{c}, blue circles with dashed lines are $S_{a e}$ and blue circles with solid lines are S_{a}.

The S_{a} and $S_{a e}$ values increased with increase of running velocities from 12 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}\left(\mathrm{p}=0.002\right.$ and $\mathrm{p}=0.022$; respectively), and s_{a} increased with increase of running velocities 14 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}(p=0.020)$. There was not effect of horizontal impeding force $(p=0.053$ and $p=0.126)$ and interaction between running velocity and horizontal impeding force $(p=1.000$ and $p=0.924)$ for s_{a} and $s_{a e}$, respectively. Additionally, s_{v}, s_{c} and $s_{c e}$ were not affected with running velocity ($p=0.166 ; p=0.244$; $p=0.135$; respectively), horizontal impeding force ($p=0.122 ; p=0.286 ; p=0.226$; respectively) and interaction between running velocity and horizontal impeding force ($p=0.957 ; p=0.932 ; p=0.919 ;$ respectively).

The step length (L) values were affected by running velocity ($p<0.001$) and horizontal impeding forces $(p=0.009)$ (see Figure $3 A)$, without interaction between running velocity and horizontal impeding forces $(p=0.889)$. There was an increase of L with increase of all running velocities ($p<0.001$), whereas L decreased 0.8% with a large effect size ($\eta^{2}=0.347$) when was applied from 0 to 8 N of horizontal impeding force ($p=0.019$) (see Figure 2A, Appendix S5).

Figure 16. Push (t $t_{\text {push }}$) and brake duration (tbrake) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are illustrated. Circles with dashed lines are related to $t_{\text {push }}$ and circles with solid lines is related to torake. Blue, red and green colors represent the horizontal impeding force of 0,4 and 8 N , respectively. Symbol (*) represent statistical difference in horizontal impeding force.

The main effect of running velocity and horizontal impeding force on push (tpush) and brake duration (tbrake) are presented in Figure 16. The $t_{\text {push }}$ and $t_{\text {brake }}$ were affected with running velocity ($p<0.001$ and $p=0.004$; respectively). With increase of running velocities (12 to $16 \mathrm{~km} . \mathrm{h}^{-1}$ and 14 to $16 \mathrm{~km} . \mathrm{h}^{-1}$; both $\mathrm{p}<0.001$), $t_{\text {push }}$ decreased, while tbrake also decreased with increase of velocities (12 to $14 \mathrm{~km} \cdot \mathrm{~h}^{-1} ; \mathrm{p}=0.011$, and 12 to $\left.16 \mathrm{~km} \cdot \mathrm{~h}^{-1} ; \mathrm{p}=0.015\right)$.

A reduction of 2.6% was observed in $t_{\text {push }}$ when was applied 0 to $8 \mathrm{~N}(p=0.047)$ with large effect size ($\eta^{2}=0.294$). There was no effect of horizontal impeding force (p $=0.702$) for tbrake, and interaction between running velocity and horizontal impeding force ($p=0.602$ and $p=0.181$) for both $t_{\text {push }}$ and torake respectively.

Figure 17. Step frequency ($f_{\text {step }}$) and natural frequency of the system ($f_{\text {syst }}$) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are illustrated. Circles with dashed lines are related to $f_{\text {syst }}$ and circles with solid lines are related to $f_{\text {syst. }}$ Blue, red and green colors represent the horizontal impeding force of 0,4 and 8 N , respectively.

The step frequency ($f_{\text {step }}$) and natural frequency of the system ($f_{\text {syst }}$) were independent of horizontal impeding force ($p=0.061$ and $p=0.223$; respectively) (Figure 17). The $f_{\text {step }}$ increased with increase of running velocities 12 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ ($\mathrm{p}=$ 0.010), and $f_{\text {syst }}$ increased with increase of all running velocities ($p<0.001$). There was not significant interaction between running velocity and horizontal impeding force for $f_{\text {step }}$ and $f_{\text {syst }}(p=0.114$ and $p=0.329$; respectively).

Figure 18. Mass-specific stiffness (kvert) and vertical force (F_{v}) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are illustrated. Circles with dashed lines and solid lines are related to $k_{\text {vert }}$ and F_{v}, respectively. Blue, red and green colors represent the horizontal impeding force of 0,4 and 8 N , respectively. Symbol (*) represent statistical difference in horizontal impeding force.

There was effect of running velocity on mass-specific stiffness (kvert) and vertical force (F_{v}) (both $\mathrm{p}<0.001$) (Figure 18). The k_{vert} and F_{v} values increased with increase of all running velocities ($p<0.001$ and $p=0.003$; respectively). In addition, F_{v} reduced 1% when was applied 0 to $8 \mathrm{~N}(\mathrm{p}=0.027)$ with large effect size $\left(\eta^{2}=0.296\right)$. There was no effect of horizontal impeding force ($p=0.383$) for kvert, and interaction between running velocity and horizontal impeding force ($\mathrm{p}=0.810$ and $\mathrm{p}=0.701$) for both kvert and F_{v}, respectively.

In Table 5, asymmetries between maximal vertical velocity during downward and upward phase ($v_{v, \text { max, down }} / v_{v, \text { max,up }}$), vertical displacement of BCoM during effective aerial downward and upward phases (Sae,down/sae,up), vertical displacement of BCoM during effective contact downward and upward phases ($s_{\text {ce,down }} / s_{\text {ce,up }}$), effective contact and aerial times ($t_{\mathrm{ce}} / \mathrm{tae}_{\mathrm{a}}$); push and brake duration ($t_{\text {push }} / t_{\text {brake }}$) are described:

Table 5. Asymmetries of bouncing step during running against horizontal impeding forces:

Running Velocity (km. h^{-1})	IHF (N)	$V_{\text {v, max,down }} / V_{V, \text { max,up }}$	$S_{\text {ae,down }} / S_{\text {ae, up }}$	$S_{\text {ce,down }} / S_{\text {ce, up }}$	$t_{\text {cee }} / t_{\text {ae }}$	$t_{\text {push }} /$ tbrake
12	0	$1.065 \pm 0.025^{\#}$	$1.022 \pm 0.062^{\#}$	0.974 ± 0.068 \#	1.262 ± 0.177	1.162 ± 0.334
	- 4	$1.062 \pm 0.022^{\text {\# }}$	1.020 ± 0.054	0.977 ± 0.059	1.261 ± 0.156	1.111 ± 0.249
	-8	$1.057 \pm 0.022^{\#}$	$1.018 \pm 0.057{ }^{\text {\# }}$	$0.979 \pm 0.063^{\#}$	1.261 ± 0.151	1.152 ± 0.354
14	0	$1.054 \pm 0.021^{\#}$	$1.043 \pm 0.049^{\text {\# }}$	0.950 ± 0.056 \#	1.350 ± 0.142	1.176 ± 0.244
	-4	$1.050 \pm 0.021^{\#}$	1.038 ± 0.051	0.955 ± 0.058	1.343 ± 0.162	1.147 ± 0.259
	- 8	$1.048 \pm 0.021^{\#}$	$1.036 \pm 0.051^{\#}$	0.957 ± 0.057 \#	1.333 ± 0.143	1.113 ± 0.221
16	0	$1.044 \pm 0.020^{\text {\# }}$	$1.063 \pm 0.042^{\#}$	$0.924 \pm 0.051^{\#}$	1.451 ± 0.127	1.104 ± 0.124
	-4	$1.043 \pm 0.023^{\text {\# }}$	1.060 ± 0.045	0.928 ± 0.054	1.473 ± 0.133	1.125 ± 0.119
	- 8	$1.041 \pm 0.021^{\#}$	$1.058 \pm 0.042^{\#}$	$0.930 \pm 0.051^{\#}$	1.457 ± 0.133	1.089 ± 0.127

Horizontal impeding force (IHF); asymmetries between maximal vertical velocity during downward and upward phases ($v_{v, \text { max, down }} / V_{v, \text { max, up }}$); vertical displacement of BCoM during effective aerial downward and upward phases ($S_{\text {ae,down }} / S_{\text {ae,up }}$), vertical displacement of BCoM during effective contact downward and upward phases ($S_{\text {ce,down }} / S_{\text {ce,up }}$), effective contact and aerial times ($t_{c e} / t_{\mathrm{ae}}$); push and brake duration ($t_{\text {push }} / t_{\text {brake }}$) are presented as mean and standard deviation. Symbol (\#) represent statistical difference in horizontal impeding force.

In relation to $V_{v, m a x, d o w n} / V_{v, m a x, u p,} S_{a e, d o w n} / S_{a e, u p}$, and $S_{c e, d o w n} / S_{c e, u p}$ asymmetries, there was effect of running velocity (all $p<0.001$), and horizontal impeding force ($p<$ $0.001 ; p=0.016 ; p=0.012$, respectively). There was no interaction effect of running velocity and horizontal impeding force for $v_{v, \text { max,down }} / v_{v, m a x, u p}, S_{a e, d o w n} / S_{a e}$, up, and $S_{c e, d o w n} / S_{\text {ce, up }}$ asymmetries ($p=0.199 ; p=0.929 ; p=0.972$, respectively). The $V_{v, \text { max, down }} / V_{v, \text { max,up }}$ and $S_{c e, d o w n} / S_{c e, u p}$ asymmetries decreased with increase of all running velocities ($p=0.004$; and $p<0.001$, respectively) and $S_{\text {ae,down }} / S_{\text {ae,up }}$ asymmetries increased with increase of all running velocities ($\mathrm{p}<0.001$). The v,max,down $/ v_{v, \text { max,up }}$ asymmetry decreased 0.5% when was applied 0 to $8 \mathrm{~N}(\mathrm{p}=0.001)$ with large effect size $\left(\eta^{2}=0.578\right)$ and decreased 0.3% when was applied 4 to $8 N(p=0.043)$ with large effect size $\left(\eta^{2}=0.578\right)$. The $S_{c e, d o w n} / s_{c e, u p}$ asymmetry increased 0.6% when was applied 0 to $8 \mathrm{~N}(\mathrm{p}=0.017)$ with large effect size ($\eta^{2}=0.332$), and $S_{\text {ae,down }} / s_{\text {ae, up }}$ asymmetry decreased 0.6% when was applied 0 to $8 \mathrm{~N}(\mathrm{p}=0.022)$ with large effect size $\left(\eta^{2}=\right.$
0.311). Differences between $V_{v, m a x, d o w n, ~} V_{v, m a x, u p,} S_{\text {ae, down, }} S_{a e, u p,} S_{c e, d o w n ~ a n d ~} S_{c e, u p}$ are reported in detail in Appendix S5.

The $t_{\text {ce }} / t_{\text {ae }}$ asymmetry was independent of horizontal impeding forces ($p=$ 0.678), but $t_{\mathrm{ce}} / t_{\text {ae }}$ asymmetry increased with increase of all running velocities ($\mathrm{p}=$ 0.012), without significant interaction effect of running velocity and horizontal impeding force ($p=0.634$). The tpush/tbrake asymmetry was not affected with running velocities (p $=0.641$), horizontal impeding force $(p=0.265)$ and interaction between running velocity and horizontal impeding force ($p=0.248$).

Figure 19. Individual values of elastic energy storage ($\mathrm{J}^{\mathrm{kg}}{ }^{-1} \cdot \mathrm{~m}^{-1}$) vs. horizontal impeding force (0,4 and 8 N) during different running velocities (12, 14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are illustrated. Blue, red, and green circles are related to horizontal impeding force of 0,4 and 8 N .

Elastic energy storage decreased with the increase of all running velocities ($p=$ 0.040). However, it was not affected by horizontal impeding force ($p=0.267$) and interaction between running velocity and horizontal impeding force ($p=0.967$) (Figure 19).

3.4 Discussion

The purpose of the study was to investigate how small horizontal impeding forces can save energy by spring-mass model and asymmetries of bouncing step
(rebound and landing take-off) in long-distance runners. Our main results were an overall effect of horizontal impeding forces on spring-mass model variables without changes in $t_{c e} / t_{\text {ae }}$ and $t_{\text {push }} / t_{\text {brake }}$ asymmetries with increased horizontal impeding forces. The $v_{v, \text { max, down }} / V_{v, \text { max, up }}$ and $S_{\text {ae,down }} / S_{\text {aee,up }}$ asymmetries decreased, whereas $S_{c e, d o w n ~} / S_{\text {ce,up }}$ asymmetry increased with the increment of horizontal impeding forces in line with our hypothesis that spring-mass would be optimized. However, the improvement of in spring-mass model did not reflect the EL with increment in horizontal impeding forces.

Potential and kinetic energies of BCoM during running oscillate in phase during the stride, in which the potential energy in part is transformed to elastic energy during t_{a} and then it is stored during tbrake and released in $t_{\text {push }}$ (SAIBENE and MINETTI, 2003). The running velocities above $11 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, the gravity during $S_{c e}$ increases the vertical velocity of $B C o M\left(v_{v, \max }\right)$ greater than during $S_{a e}$, reaching maximal values of kinetic energy at $S_{\text {ce,down, }}$ and becoming this relation asymmetrical ($v_{v, \text { max,down }}>v_{v, \text { max,up }}$) (CAVAGNA, 2006). It has been demonstrated that in a harmonic elastic system, $v_{v, \text { max, down }}$ and $v_{v, \text { max, up }}$ oscillate in similar proportions, i.e. representing a ratio of $V_{\text {v,max,down }} / V_{V, \text { max, up }}$ equal to 1 (CAVAGNA, 2006).

Our results are in line with the assumption there is an asymmetry ($v_{v, \text { max, down }}>$ $v_{v, \text { max,up }}$) during human running (Table 1) with values higher than 1 at baseline conditions (CAVAGNA, 2006). Also, horizontal impeding forces 0 to 8 N (ratio of 1.054 to 1.049) and 4 and 8 N (ratio of 1.052 to 1.049) were able to decrease the $v_{v, \text { max, down }} / V_{v, \text { max, up }}$ asymmetries values close to 1 , confirming our hypothesis that small horizontal impeding forces could optimize the spring-mass model. Therefore, when the athlete run against external horizontal forces, tpush decreases their values close to torake (Figure 16), when tendon instead muscles sustain the ideally elastic bounce (CAVAGNA, 2009; MONTE et al., 2020), as result, the elastic energy stored during tbrake effectively increases $v_{v, \text { max, up }}$ assisting BCoM to move forward during $t_{\text {push }}$, since in the second part of contact phase the work is produced against the gravity by muscular contraction when the muscle is shortening and is capable of lower force (LEGRAMANDI; SCHEPENS and CAVAGNA, 2013). In addition, the adjustments in the position of BCoM represented by our symmetrical findings in $S_{a e, d o w n ~} / S_{a e, u p}$ and $S_{\text {ce, down }} / S_{\text {ce, up }}$ paralleled $v_{v, \text { max }}$ changes.

The division of step period into $s_{c e}$ and $s_{a e}$ successfully describes better the elastic system during human running than traditional variables t_{c} and t_{a} (BLICKHAN,

1989, DA ROSA et al., 2019). Our results showed that with increasing speed, both t_{c} and $t_{c e}$ decreased, $t_{\text {ae }}$ values were maintained, and t_{a} increased, resulting in a $t_{c e} / t_{\text {ae }}$ ratio asymmetrical (Table 5), however, without significant effect of horizontal impeding forces applied. The effect of running velocity on the asymmetry of rebound is expected in agreement with Cavagna et al. (1988) that showed at running velocities above 11 $\mathrm{km} . \mathrm{h}^{-1}$ the $t_{\mathrm{ce}}<t_{\mathrm{ae}}$ and $s_{\mathrm{ce}}<S_{\mathrm{ce}}$, due to the vertical momentum lost and gained during $t_{c e}$ is greater than t_{ae}. As a result, at high running velocities, there is an increase of vertical acceleration of BCoM greater than 1 g during $t_{c e}$ while during tae it cannot exceed 1 g , and therefore longer t_{a} is needed to counterbalance the momentum gained at $t_{c e}$ (CAVAGNA et al., 1998).

Landing-takeoff and rebound asymmetries ($t_{\text {push }} / t_{\text {brake }}$ and $t_{\text {ce }} / t_{\text {ae }}$) as well t_{c} and t_{a} were not affected by the increase of horizontal impeding forces (0 to 8 N). The asymmetries ($t_{\text {push }}>t_{\text {brake }}$) and ($t_{\mathrm{ae}}>t_{\mathrm{ce}}$) unchanged with an increase of running speeds. Mesquita et al. (2020) compared the effect of horizontal impeding forces equal to 5, 10 and 15% BW on landing-takeoff and rebound asymmetries in eight recreational runners and found that these asymmetries are harmed with high loads. They found that with the increase of horizontal impeding forces, t_{a} drastically reduced, and therefore with a short T, t_{ae} also decreases toward $t_{c e}$ (see Figure 20), confirming the energy lost due to gravity during t_{a}.

Figure 20. Aerial times (t_{a}), contact times $\left(\mathrm{t}_{\mathrm{c}}\right)$ in panel A ; and effective aerial (t_{ae}) and effective contact times (t_{ce}) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are presented in panel B. Circles with dashed lines are related to t_{c} in panel A and $t_{c e}$ in panel B, while circles with solid lines are related to t_{a} in panel A and t_{ae} in panel B. Blue, red and green colors represent the horizontal impeding force of $0,0.6$ and 1.2% of body weight (BW), respectively. Our results were plotted with Mesquita et al. (2020) results that evaluated heavy horizontal impeding forces
corresponding of $0,5,10$ and 15% BW and represented with black color (baseline or $0 \% \mathrm{BW}$), and three more shades of gray for the other conditions (5, 10 and 15% BW).

Regarding the impairment in landing-takeoff asymmetry with high horizontal impeding forces, Mesquita et al. (2020) found an increase in $t_{\text {push }}$ and decrease of tbrake, which becomes this relation asymmetrical (Figure 21). The $t_{\text {push }} / t_{\text {brake }}$ and $t_{c e} / t_{\text {ae }}$ findings with high horizontal impeding forces are in line with Dewolf, Peñailillo and Willems (2016) that compared spring-mass model variables during level and uphill running (0 to 9°) on treadmill at running velocities from 5 to $18 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ and found the elastic bouncing $t_{\mathrm{ae}}=t_{\mathrm{ce}}$ and $t_{\text {push }}>t_{\text {brake }}$ with an increase of inclination. It seems that despite of significant decreases $t_{\text {push }}$, in our small horizontal forces (between 0 to 1.2% of BW) were not hard enough to modify those asymmetries.

Figure 21. Push ($t_{\text {push }}$) and brake duration (tbrake) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are presented. Circles with dashed lines are related to $t_{\text {push }}$ and circles with solid lines is related to tbrake. Blue, red and green colors represent the horizontal impeding force of $0,0.6$ and 1.2% of body weight (BW), respectively. Our results were plotted with Mesquita et al. (2020) results that evaluated heavy horizontal impeding forces corresponding of 0,5, 10 and 15% BW and represented with black color (baseline or 0\% BW), and three more shades of gray for the other conditions (5,10 and 15% BW).

At low running speeds (up $11 \mathrm{~km} . \mathrm{h}^{-1}$), the $f_{\text {step }}$ and $f_{\text {syst }}$ Oscillate symmetrically. Above this speed, both frequencies increase in high running velocities, however, $f_{\text {syst }}$ is greater than $f_{\text {step }}$ (CAVAGNA et al., 1988). We did not find the effect of horizontal impeding forces on $f_{\text {step }}$ and $f_{\text {syst }}(p=0.061$ and $p=0.223$, respectively). Our results regarding the effect of speed are in line with previous studies with young subjects indicating $f_{\text {syst }}>f_{\text {step }}$ with an increase of running velocity (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008a). This asymmetry between $f_{\text {syst }}$ and $f_{\text {step }}$ is due to the duration and amplitude of the lower part of vertical oscillation of BCoM are greater than the upper part of vertical oscillation. In this case, the vertical acceleration is greater than 1 g , differently from the upper part of the vertical oscillation of BCoM that cannot exceed 1 g (CAVAGNA et al., 1991). Old runners with sarcopenia process and lower muscular power in comparison to young runners adopt high $f_{\text {step }}$ close to $f_{\text {syst }}$ with low vertical oscillation due a t_{a} (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008), whereas the group low level of training compared to high level of training present low vertical oscillation and t_{a} and high $f_{\text {step }}$ but not associated to $f_{\text {syst }}$ (DA ROSA et al., 2019).

The $K_{\text {vert }}$ is the ratio of F_{v} to $S_{c e}$, increasing due high $f_{\text {syst }}$ and reduced $t_{\text {ce }}$ with increase of running velocities (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008). We found the effect of running velocity on Kvert without effect of horizontal impeding forces. The F_{v} increased at high velocities, but with 8 N of impeding forces F_{v} reduces probably due also reduction of L. We suggest here that the reduced F_{v} applied against air resistive forces could impair the spring-mass compression and low energy is stored (BLICKHAN,1989). It was demonstrated that at 800 m self-paced track running, the running velocity, F_{v} and Kvert drastically decreases between the first 100 to the last 700 m (GIRARD; MILLET; MICALLEF, 2017).

The "free-ride" phenomena related to recovery of energy at running with heavy horizontal impeding forces occurs when the energy of BCoM due to fore-aft movements exchange with vertical movement of BCoM when the period is out of phase. With increase of the work to maintain forward motion of BCoM, the energy transduction can reach 16% at $8 \mathrm{~km} . \mathrm{h}^{-1}$ when runner horizontal impeding forces of 15% BW (MESQUITA et al., 2020). Contrary to our hypothesis, the improvements in springmass model represented by the reduction of $t_{\text {push }}$ toward tbrake values with 8 N and symmetrical ratios between $v_{v, \text { max,down }} / v_{v, \text { max,up, }} S_{\text {ae,down }} / S_{\text {ae,up }}$ and $s_{c e, \text { down }} / s_{c e, u p}$ did not
directly translate to $E L$. The $E L$ values decreased with the increase of running speeds without any effect of horizontal impeding forces. A possible explanation for the absence of changes in EL against horizontal impeding forces could be the fact that L values increased significantly with increase of all running speeds (see Appendix S5; Figure $2 A)$.

Interestingly, F_{v} and L both reduced when was applied 8 N . Our runners probably adapted the running technique choosing their L close to lower energy expenditure (CAVANAGH and WILLIAMS, 1982). Regarding decreased F_{v} against 8 N , the vertical force normalized by BW decreased 1.4% from unloaded to 8 N . Our results are in line with Chang and Kram (1999) who found a decrease of 5.4 and 5.8% of F_{v} when runners performed against horizontal impeding forces of 3 and 6% BW, respectively. We suggest that runners decreased F_{v} and L to minimize the stepaverage force exerted by the muscle on the ground at 8 N of horizontal impeding forces (CAVAGNA et al., 1991).

Our study has some limitations worthy of mention. Our findings of spring-mass model and bouncing step asymmetries are limited to running speeds up to $16 \mathrm{~km} . \mathrm{h}^{-1}$. Future studies should add on horizontal impeding forces methods a kinematic analysis and running speeds above $16 \mathrm{~km} . \mathrm{h}^{-1}$ to confirm our results and elucidate technique effects such as trunk inclination and changes in rearfoot to forefoot strike (DAVIES, 1980; PUGH, 1971) that can explain the decrease of $t_{\text {push }}$ with increase of 8 N of horizontal impeding force.

3.5 Conclusion

We concluded that horizontal impeding forces mechanically optimize the spring mass-model without any changes in landing-takeoff and rebound asymmetries. However, adjustments in vertical forces and step length to minimize the step-average force exerted by the muscle on the ground with increased horizontal impeding forces impair the elastic energy storage into the system.

Acknowledgements

We thank Clarissa Whiting, Shalaya Kipp, Christian Carmack, Tripp Hurt and Randy Hutchison for their help with data collection. We thank Rodrigo Gomes da Rosa and Leonardo Alexandre Peyré Tartaruga from LOCOMOTION research group who
developed and systematized mechanical equations on LabVIEW. We thank the CAPES/Brazil for the financial assistance for the accomplishment of this study.

3.6 References

ABE, D.; FUKUOKA, Y.; MURAKI, S.; YASUKOUCHI, A.; SAKAGUCHI, Y.; NIIHATA, S. Effects of Load and Gradient on Energy Cost of Running. Journal of Physiological Anthropology, v. 30, n. 4, p. 153-160, 2011. http://dx.doi.org/10.2114/jpa2.30.153.

BASSETT, D. R.; GIESE, M. D.; NAGLE, F. J.; WARD, A.; RAAB, D. M.; BALKE, B. Aerobic requirements of overground versus treadmill running. Medicine \& Science in Sports \& Exercise, v. 17, n. 4, p. 477-481, Aug. 1985. http://dx.doi.org/10.1249/00005768-198508000-00013.

BEVES, C.; FERGUSON S. Uncovering the aerodynamic trickery behind Nike's breaking 2 project. Siemens PLM. 2017. https://www.linkedin.com/pulse/uncovering-aerodynamic-trickery-behind-nikes-breaking-ferguson/. Accessed 2 June 2020.

BLICKHAN, R. The spring-mass model for running and hopping. Journal of Biomechanics, v. 22, n. 11-12, p. 1217-1227, Jan. 1989. http://dx.doi.org/10.1016/0021-9290(89)90224-8.

CARRARD, A.; FONTANA, E.; MALATESTA, D. Mechanical Determinants of the UShaped Speed-Energy Cost of Running Relationship. Frontiers in Physiology, v. 9, p. 1-13, 18 Dec. 2018. http://dx.doi.org/10.3389/fphys.2018.01790.

CAVAGNA, G. A. Force platforms as ergometers. Journal of Applied Physiology, v. 39, n. 1, p. 174-179, 1 July 1975. http://dx.doi.org/10.1152/jappl.1975.39.1.174.

CAVAGNA, G. A; LEGRAMANDI, M. A; PEYRÉ-TARTARUGA, L. A. Old men running: mechanical work and elastic bounce. Proceedings of The Royal Society B: Biological Sciences, v. 275, n. 1633, p. 411-418, 12 Dec. 2008a. http://dx.doi.org/10.1098/rspb.2007.1288.

CAVAGNA, G. A.; LEGRAMANDI, M. A.; PEYRE-TARTARUGA, L. A. The landing-take-off asymmetry of human running is enhanced in old age. Journal of Experimental Biology, v. 211, n. 10, p. 1571-1578, 2 May. 2008b. http://dx.doi.org/10.1242/jeb.013805.

CAVAGNA, G. A. The landing-take-off asymmetry in human running. Journal of Experimental Biology, v. 209, n. 20, p. 4051-4060, 15 Oct. 2006. http://dx.doi.org/10.1242/jeb.02344.

CAVAGNA, G. A. The two asymmetries of the bouncing step. European Journal of Applied Physiology, v. 107, n. 6, p. 739-742, 1 Sept. 2009. http://dx.doi.org/10.1007/s00421-009-1179-2.

CAVAGNA, G. A.; SAIBENE, F. P.; MARGARIA, R. Mechanical work in running. Journal of Applied Physiology, v. 19, n. 2, p. 249-256, 1 Mar. 1964. http://dx.doi.org/10.1152/jappl.1964.19.2.249.

CAVAGNA, G. A.; MANTOVANI, M.; WILLEMS, P. A.; MUSCH, G. The resonant step frequency in human running. Pflügers Archiv European Journal of Physiology, v. 434, n. 6, p. 678-684, 29 Sept. 1997. http://dx.doi.org/10.1007/s004240050451.

CAVAGNA, G. A.; FRANZETTI, P.; HEGLUND, N. C.; WILLEMS, P. The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. The Journal of Physiology, v. 399, n. 1, p. 81-92, 1 May 1988. http://dx.doi.org/10.1113/jphysiol.1988.sp017069.

CAVAGNA, G. A.; WILLEMS, P. A.; FRANZETTI, P.; DETREMBLEUR, C. The two power limits conditioning step frequency in human running. The Journal of Physiology, v. 437, n. 1, p. 95-108, 1 June 1991. http://dx.doi.org/10.1113/jphysiol.1991.sp018586.

CAVANAGH, P. R.; WILLIAMS, K. R. The effect of stride length variation on oxygen uptake during distance running. Medicine \& Science in Sports \& Exercise, v. 14, n. 1, p. 30-35, 1982. http://dx.doi.org/10.1249/00005768-198214010-00006.

CHANG, Y.; KRAM, R. Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, v. 86, n. 5, p. 1657-1662, 1 May 1999. http://dx.doi.org/10.1152/jappl.1999.86.5.1657.

COHEN, J. Eta-Squared and Partial Eta-Squared in Fixed Factor Anova Designs. Educational and Psychological Measurement, v. 33, n. 1, p. 107-112, Apr. 1973. http://dx.doi.org/10.1177/001316447303300111.

DA ROSA, R. G.; OLIVEIRA, H. B.; GOMEÑUKA, N. A.; MASIERO, M. P. B.; SILVA, E. S.; ZANARDI, A. P. J.; CARVALHO, A. R.; SCHONS, P.; PEYRÉ-TARTARUGA, L. A. Landing-Takeoff Asymmetries Applied to Running Mechanics: a new perspective for performance. Frontiers in Physiology, v. 10, p. 1-8, 16 Apr. 2019. http://dx.doi.org/10.3389/fphys.2019.00415.

DAVIES, C. T. Effects of wind assistance and resistance on the forward motion of a runner. Journal of Applied Physiology, v. 48, n. 4, p. 702-709, 1 Apr. 1980. http://dx.doi.org/10.1152/jappl.1980.48.4.702.

DEWOLF, A. H.; PEÑAILILLO, L. E.; WILLEMS, P. A. The rebound of the body during uphill and downhill running at different speeds. The Journal of Experimental Biology, p. 276-288, 20 May 2016. http://dx.doi.org/10.1242/jeb. 142976.

ENG, C. M.; ARNOLD, A. S.; LIEBERMAN, D. E.; BIEWENER, A. A. The capacity of the human iliotibial band to store elastic energy during running. Journal of Biomechanics, v. 48, n. 12, p. 3341-3348, Sept. 2015. http://dx.doi.org/10.1016/j.jbiomech.2015.06.017.

GIRARD, O.; MILLET, G.; MICALLEF, J. Mechanical Alterations during 800-m SelfPaced Track Running. International Journal of Sports Medicine, v. 38, n. 04, p. 314321, 1 Mar. 2017. http://dx.doi.org/10.1055/s-0042-121262.

HOOGKAMER, W.; KRAM, R.; ARELLANO, C. J. How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier. Sports Medicine, v. 47, n. 9, p. 1739-1750, 3 Mar. 2017. http://dx.doi.org/10.1007/s40279-017-0708-0.

JONES, A. M.; DOUST, J. H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. Journal of Sports Sciences, v. 14, n. 4, p. 321327, Aug. 1996. http://dx.doi.org/10.1080/02640419608727717.

JONES, A. M.; KIRBY, B. S.; CLARK, I. E.; RICE, H. M.; FULKERSON, E.; WYLIE, L. J.; WILKERSON, D. P.; VANHATALO, A.; WILKINS, B. W. Physiological demands of running at 2-hour marathon race pace. Journal of Applied Physiology, p. 1-42, 5 Nov. 2020. http://dx.doi.org/10.1152/japplphysiol.00647.2020.

KER, R. F.; BENNETT, M. B.; BIBBY, S. R.; KESTER, R. C.; ALEXANDER, R. M. The spring in the arch of the human foot. Nature, v. 325, n. 6100, p. 147-149, Jan. 1987. http://dx.doi.org/10.1038/325147a0.

KRAM, R.; GRIFFIN, T. M.; DONELAN, J. M.; CHANG, Y. H. Force treadmill for measuring vertical and horizontal ground reaction forces. Journal of Applied Physiology, v. 85, n. 2, p. 764-769, 1 Aug. 1998. http://dx.doi.org/10.1152/jappl.1998.85.2.764.

LEGRAMANDI, M. A.; SCHEPENS, B.; CAVAGNA, G. A. Running humans attain optimal elastic bounce in their teens. Scientific Reports, v. 3, n. 1, p. 1-4, 19 Feb. 2013. http://dx.doi.org/10.1038/srep01310.

LLOYD, B. B.; ZACKS, R. M. The mechanical efficiency of treadmill running against a horizontal impeding force. The Journal of Physiology, v. 223, n. 2, p. 355-363, 1 June 1972. http://dx.doi.org/10.1113/jphysiol.1972.sp009851.

MALOIY, G. M. O.; HEGLUND, N. C.; PRAGER, L. M.; CAVAGNA, G. A.; TAYLOR, C. R. Energetic cost of carrying loads: have african women discovered an economic way?. Nature, v. 319, n. 6055, p. 668-669, Feb. 1986. http://dx.doi.org/10.1038/319668a0.

MARGARIA, R. Capacity and power of the energy processes in muscle activity: Their practical relevance in athletics. Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie. v. 25, p. 352-360, 1968.

MCMAHON, T. A.; CHENG, G. C. The mechanics of running: how does stiffness couple with speed? Journal of Biomechanics, v. 23, p. 65-78, Jan. 1990. http://dx.doi.org/10.1016/0021-9290(90)90042-2.

MCMIKEN, D.F.; DANIELS, J. T. Aerobic requirements and maximum aerobic power in treadmill and track running. Medicine Science in Sports, v. 8, n. 1, p. 14-17, 1976.

MESQUITA, R. M.; DEWOLF, A. H.; CATAVITELLO, G.; OSGNACH, C.; PRAMPERO, P. E. di; WILLEMS, P. A. The bouncing mechanism of running against hindering, or with aiding traction forces: a comparison with running on a slope. European Journal
of Applied Physiology, v. 120, n. 7, p. 1575-1589, 11 May 2020. http://dx.doi.org/10.1007/s00421-020-04379-5.

MONTE, A.; MAGANARIS, C.; BALTZOPOULOS, V.; ZAMPARO, P. The influence of Achilles tendon mechanical behaviour on "apparent" efficiency during running at different speeds. European Journal of Applied Physiology, v. 120, n. 11, p. 24952505, 25 Aug. 2020. http://dx.doi.org/10.1007/s00421-020-04472-9.

POLIDORI, G.; LEGRAND, F.; BOGARD, F.; MADACI, F.; BEAUMONT, F. Numerical investigation of the impact of Kenenisa Bekele's cooperative drafting strategy on its running power during the 2019 Berlin marathon. Journal of Biomechanics, v. 107, In press, June. 2020. http://dx.doi.org/10.1016/j.jbiomech.2020.109854.

PUGH, L. G. C. E. Oxygen intake in track and treadmill running with observations on the effect of air resistance. The Journal of Physiology, v. 207, n. 3, p. 823-835, 1 May 1970. http://dx.doi.org/10.1113/jphysiol.1970.sp009097.

PUGH, L. G. C. E. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. The Journal of Physiology, v. 213, n. 2, p. 255-276, 1 Mar. 1971. http://dx.doi.org/10.1113/jphysiol.1971.sp009381.4.

RAYLEIGH, L. LIII. On the resistance of fluids. The London, Edinburgh, And Dublin Philosophical Magazine and Journal of Science, v. 2, n. 13, p. 430-441, Dec. 1876. http://dx.doi.org/10.1080/14786447608639132.

SAIBENE, F.; MINETTI, A. E. Biomechanical and physiological aspects of legged locomotion in humans. European Journal of Applied Physiology, v. 88, n. 4, p. 297316, Jan. 2003. http://dx.doi.org/10.1007/s00421-002-0654-9.

SANTO, H. M. A. E.; DANIEL, F. Calcular e apresentar tamanhos do efeito em trabalhos científicos (3): guia para reportar os tamanhos do efeito para análises de regressão e anovas. Revista Portuguesa de Investigação Comportamental e Social, v. 4, n. 1, p. 43-60, 28 fev. 2018. http://dx.doi.org/10.31211/rpics.2018.4.1.72.

ZACKS, R. M. The mechanical efficiencies of running and bicycling against a horizontal impeding force. Internationale Zeitschrift für Angewandte Physiologie Einschliesslich Arbeitsphysiologie, v. 31, n. 4, p. 249-258, 1973. http://dx.doi.org/10.1007/bf00693710.

3.4 Appendix S5

Here we detail the results: 1) Comparison between maximal vertical velocity during downward ($v_{v, \text { max,down })}$ and upward ($v_{v, \text { max,up }}$) (Figure 1A); 2) Vertical displacement of BCoM during effective aerial time and downward phase (Sae,down) and upward phase (Sae,up) (Table 1A); 3) Vertical displacement of BCoM during effective contact time and downward phase (Sce,down) and upward phase (Sce,up) (Table 2A), and 4) The effect of running velocity and horizontal impeding forces on step length (L) (Figure 2A).

Figure 1A - Maximal vertical velocity during downward ($v_{v, \text { max, down }}$) and upward phase ($v_{v, \text { max,up }}$) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are illustrated. Filled circles are related to v_{v},max,down and empty circles with solid lines are related to $v_{v, \text { max, up. }}$ Blue, red, and green colors represent the horizontal impeding force of 0,4 and 8 N , respectively.

The $v_{v, \text { max, down }}$ and $v_{v, \text { max, up }}$ are both affected by running velocity ($p<0.001$). V v,max,down increased with increase of running velocities (12 to $16 \mathrm{~km} . \mathrm{h}^{-1} ; \mathrm{p}=0.003$ and 14 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1} ; \mathrm{p}=0.027$), while $v_{v, \text { max, up }}$ increased with increase running velocities (12 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1} ; \mathrm{p}=0.001$ and 14 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1} ; \mathrm{p}=0.015$). The $v_{v, \text { max,down }}$ and $v_{v, \max , \text { up }}$ were not affected with horizontal impeding force ($p=0.225$ and $p=0.434$, respectively), and interaction between running velocity and horizontal impeding force ($p=0.940$ and $p=$ 0.968 , respectively).

Table 1A. Differences between vertical displacement of BCoM during effective aerial downward and upward phases.

Running Velocities (km. ${ }^{\text {-1 }}$)	HIF (N)	Sae,up (m)	Sae,down (m)	p	Outcome
12	0	0.043 ± 0.008	0.045 ± 0.010	0.765	$S_{\text {ae, up }}<S_{\text {ae, down }}$
	4	0.044 ± 0.008	0.045 ± 0.009	0.798	Sae,up < Sae,down
	8	0.043 ± 0.007	0.044 ± 0.008	0.789	$S_{\text {ae, up }}<S_{\text {ae, down }}$
14	0	0.045 ± 0.007	0.047 ± 0.008	0.496	$S_{\text {ae, up }}<S_{\text {ae, down }}$
	4	0.045 ± 0.007	0.047 ± 0.008	0.573	Sae,up < Sae,down
	8	0.044 ± 0.007	0.046 ± 0.008	0.535	$S_{\text {ae, up }}<S_{\text {ae,down }}$
16	0	0.047 ± 0.006	0.050 ± 0.007	0.277	$S_{\text {ae,up }}<S_{\text {ae,down }}$
	4	0.047 ± 0.006	0.050 ± 0.007	0.322	$S_{\text {ae,up }}<S_{\text {ae, down }}$
	8	0.047 ± 0.006	0.050 ± 0.007	0.272	Sae,up < Sae,down

Vertical displacement of BCoM during effective aerial downward phase (Sae,down) and upward phase (Sae,up) vs. running velocities (12,14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$) and horizontal impeding force (0,4 and 8 N).

The $s_{\text {ae,down }}$ and $s_{\text {ae, up }}$ were both affected with running velocities ($p=0.004$ and $p=0.031$, respectively). Bonferroni post- hoc identified $s_{a e}$,down increased with increase of running velocity 12 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}(\mathrm{p}=0.022)$, however, no effect on $S_{\text {ae, up }}$ for all running velocities (12 to $14 \mathrm{~km} \cdot \mathrm{~h}^{-1}, \mathrm{p}=1.000 ; 14$ to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}, \mathrm{p}=0.444 ; 12$ to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}, \mathrm{p}=$ 0.615). There was no effect of running velocity for $s_{c e, \text { down }}$ and $s_{c e, u p}(p=0.135$ and $p=$ 0.911, respectively). In addition, there was no effect of horizontal impeding forces for $S_{c e, d o w n,} S_{c e, u p}, S_{a e, d o w n}$ and $S_{\text {ae,up }}(p=0.226 ; p=0.198 ; p=0.126$, and $p=0.196$, respectively), and interaction effect between running velocity and horizontal impeding forces for $S_{\text {ce,down }} S_{\text {ce, up, }} S_{\text {ae,down }}$ and $S_{\text {ae,up }}(p=0.919 ; p=0.964 ; p=0.924$, and $p=$ 0.878 , respectively).

Table 2A. Differences between vertical displacement of BCoM during effective contact downward and upward phases.

Running Velocities (km. ${ }^{-1}$)	HIF (N)	$S_{\text {ce, up (}}(\mathrm{m}$)	Sce,down (m)	p	Outcome
12	0	0.039 ± 0.005	0.038 ± 0.004	0.527	$S_{\text {ce, up }}>S_{\text {ce,down }}$
	4	0.039 ± 0.005	0.038 ± 0.005	0.665	$S_{\text {ce, up }}>S_{\text {ce,down }}$
	8	0.039 ± 0.004	0.038 ± 0.004	0.628	$S_{\text {ce, up }}>S_{\text {ce,down }}$
14	0	0.039 ± 0.004	0.037 ± 0.004	0.195	$S_{\text {ce, up }}>S_{\text {ce,down }}$
	4	0.040 ± 0.004	0.038 ± 0.004	0.332	$S_{\text {ce, up }}>S_{\text {ce,down }}$
	8	0.039 ± 0.003	0.037 ± 0.004	0.182	$S_{\text {ce, }, \text { p }}>S_{\text {ce,down }}$
16	0	0.040 ± 0.003	0.037 ± 0.004	0.052	$S_{\text {ce, }}$ up $>S_{\text {ce,down }}$
	4	0.040 ± 0.003	0.037 ± 0.003	0.040	
	8	0.039 ± 0.003	0.037 ± 0.003	0.024	$S_{\text {ce, }}$ up $=S_{\text {ce,down }}$

Vertical displacement of BCoM during effective contact downward phase ($S_{c e, \text { down }}$) and upward phase ($S_{c e, \text { up }}$) vs. running velocities (12,14 and $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$) and horizontal impeding force (0,4 and 8 N).

The effect of horizontal impeding forces on L across running velocities are presented in Figure 2A:

Figure 2A. Step length (L) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are illustrated. Circles with solid lines is related to L. Blue, red and green circles with solid lines represent the horizontal impeding force of 0,4 and 8 N , respectively. Symbol (*) represent statistical difference in horizontal impeding force.

CHAPTER 4

INTEGRATIVE ANALYSIS OF RESULTS

4.1 General discussion

The metabolic cost of running in a synergistic task-by-task point of view can be attributed to 80% for body weight support and forward propulsive forces, 7% for leg swing, 2% for lateral balance, however, 11% of total metabolic cost is still unexplained (ARELLANO and KRAM, 2014). Our dissertation results suggest that during running against air resistive forces, the partition those abovementioned more affected is the propulsive forces. The propulsive (lprop) and braking impulses (lbrake) are equal and opposite in level running (GOTTSCHALL and KRAM, 2005), but /prop increases while lorake decreases with increments horizontal impeding forces (CHANG and KRAM, 1999). Importantly, our findings show that lbrake was not changed according HIF. It has been suggested that metabolic cost of generating horizontal propulsive forces is $1 / 3$ of total metabolic cost (CHANG and KRAM, 1999). We found the metabolic power increased 6.1% per 1% body weight (BW) of horizontal impeding force. Runners in our study who overcame the horizontal impeding forces without reducing their lbrake substantially, increased their $l_{\text {prop }}$ to a larger extent. Further, there is a negative relation between $I_{\text {brake }}$ and $I_{\text {prop }}$ (Figure 22). However, we did not found association between changes in metabolic power and changes in Iprop $(p=0.554)$ or $l_{\text {brake }}(p=0.640)$. Future studies should understand the repercussions of these specific force applications in distance runners.

Figure 22. Relationship between delta propulsive and braking impulse ($p<0.001$).

The increase in metabolic cost associated to aerodynamics drag forces can be also explained to changes muscle efficiency participation during running. According to Alexander (1976) with increase of work associated to drag forces (WD) during a complete step, the negative work done (eccentric contraction) will decrease $\frac{1}{2} W_{D}$ and the positive work (concentric contraction) will increase $\frac{1}{2} W_{D}$. Therefore, runners apply a greater amount of propulsive forces against air resistive forces and these forces are energetically costly due to muscular work and respective muscular efficiency employed.

Other studies estimated the variation of metabolic cost with increase of air resistive forces. Pugh (1970) comparing running versus overground (when wind and running velocity is equal), he found the variation oxygen consumption in L.min ${ }^{-1}$ was dependent of projected frontal area $\left(\mathrm{A}_{\mathrm{f}}\right)$ in m^{2} and running velocity (v) in $\mathrm{m} \cdot \mathrm{s}^{-1}\left(\Delta \mathrm{VO}_{2}=\right.$ $\left.0.00354 A_{f} V^{\beta}\right)$. Our method, the hanging masses were applied on the center of mass to know the relation between the increase of metabolic power with increase of horizontal impeding forces expressed relative to \% of BW. In our results, the metabolic power varies 6.1% per 1% body weight of horizontal impeding force, but our method is limited to running velocities between 12 to $16 \mathrm{~km}_{\mathrm{k}} \mathrm{h}^{-1}$. Therefore, we combined our results with drag forces calculations and metabolic power extrapolation at running velocities above $16 \mathrm{~km} . \mathrm{h}^{-1}$ (i.e., drag force of 7.75 N and running velocity of $21.1 \mathrm{~km} . \mathrm{h}$ ${ }^{1}$ for Eliud Kipchoge run the marathon in 2-hour), to estimate the energy cost and time saving of drafting strategies. We suggest for the next studies, the improvement of Pugh (1970) cubic equation with our results.

The cost of transport (C) expressed in J. $\mathrm{kg}^{-1} . \mathrm{m}^{-1}$ represents the energy spent per unit distance covered (SAIBENE and MINETTI, 2003). We combined here the metabolic power and elastic energy storage results from Chapter 2 and 3 to compare the relation between spend and saving energy running against horizontal impeding forces (comparable to air resistance). These integrative results are presented in Figure 23.

The C during level running ($\sim 4 \mathrm{~J} . \mathrm{kg}^{-1} . \mathrm{m}^{-1}$) are independent of velocity and increases with increase of air resistance forces at high running velocities (DI PRAMPERO, 1986). Here we found values of 3.6, 3.8 and $3.9 \mathrm{~J}^{\mathrm{Kg}} \mathrm{kg}^{-1} . \mathrm{m}^{-1}$ for 12, 14 and
$16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ respectively, on baseline, values of $3.7,3.9$ and $4.0 \mathrm{~J} . \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$ for 12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$ respectively, with 4 N and values of 3.9, 4.0 and $4.2 \mathrm{~J}^{\mathrm{kg}} \mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1}$ for 12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$ respectively, with 8 N . On baseline, C increased with increase of running velocity, contrary the assumption C is independent of running velocities. It can be explained in our results because we calculated the metabolic power not extracting the oxygen consumption of resting (SAIBENE and MINETTI, 2003). However, the increases of C with increase of horizontal impeding forces agree with previous results showing increments of 9.2% in oxygen consumption for running overground at 21.6 $\mathrm{km} . \mathrm{h}^{-1}$ in comparison to treadmill (PUGH, 1971).

The elastic energy storage ($E L$) represented 11.7, 9.7 and 8.7% of C total during baseline at 12, 14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$, respectively. In comparison with horizontal impeding forces conditions, the $E L$ represented $11.4,9.5$ and 8.5% of C with 4 N at 12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$, respectively; and for 8 N of impeding forces, it was 10.8, 9.2 and 7.1% at 12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$, respectively. The EL was independent of horizontal impeding forces ($p=0.267$) and decreased with increase of running velocities ($p=0.040$). As discussed in Chapter 3, reduces of step length (L) and vertical forces $\left(F_{\mathrm{v}}\right)$ with increases of horizontal impeding forces are strategies to minimize the step-average force exerted by the muscle on the ground and running technique changes to low oxygen consumption at 8 N of horizontal impeding forces (CAVAGNA et al., 1991; CAVANAGH and WILLIAMS, 1982). We suggest the energy cost to overcome propulsive forces are more costly than energies saving due improvements in springmass model associated to velocity and displacement of the center of mass.

Figure 23. Cost of transport (C) and elastic energy storage ($E L$) vs. running velocities (12,14 and $16 \mathrm{~km} . \mathrm{h}^{-1}$) are presented. Circles with solid lines are related to C and the dashed lines are related to $E L$. Blue, red and green colors represent the horizontal impeding force of 0,4 and 8 N , respectively. For calculate the $C\left(\mathrm{~J}_{\mathrm{kg}}{ }^{-1} \cdot \mathrm{~m}^{-1}\right)$ we divided the metabolic power data in W/kg (see Chapter 2) by the running velocity in $\mathrm{m} . \mathrm{s}^{-1}$. We used the estimated EL results from Chapter 3 . The C was significantly high at fast running velocities ($p<0.001$), and with large horizontal impeding forces ($p<0.001$), with a significant interaction effect ($p=0.026$). The interaction effects were that in response to a specific horizontal impeding force, C increased with increasing running velocity (12, 14, and $16 \mathrm{~km} . \mathrm{h}^{-1} ; \mathrm{p}<0.001$) and at a specific velocity, C increased with increasing horizontal impeding force [baseline, 4 N , and $8 \mathrm{~N}(\mathrm{p}<0.001)]$. The EL decreased with increase of all running velocities ($p=0.040$) and was independent of horizontal impeding forces ($p=0.267$).

We developed a general model to explain how horizontal impeding forces affect the spring-mass model, the muscle efficiency (eff musc) and running performance using our main results (see Figure 24). Starting from the bottom to top, the horizontal impeding forces (comparable to air resistance) can save (blue lines path) and spend (red lines path) energy at the same time. The influence on each level is describe below:

Figure 24. Conceptual model of energy cost to overcome air resistive forces. Asymmetries between effective contact and aerial times ($t_{\text {ce }} / t_{\text {ae }}$); push and brake duration ($t_{\text {push }} / t_{\text {brake }}$); maximal vertical velocity during downward and upward phase ($V_{v, \text { max,down }} / V_{v, \text { max,up }}$); vertical displacement of the center of mass during effective contact downward and upward phases ($s_{\text {ce,down }} / s_{c e, u p}$), and vertical displacement of the center of mass during effective aerial downward and upward phases ($S_{\text {ae,down }} / S_{a e}, u p$). Cost of transport (C); energy consumption per unit of time (\dot{E}); elastic energy storage ($E L_{\text {storage }}$); mass-specific stiffness ($k_{v e r t}$); maximal vertical acceleration ($a_{v, \text { max }}$); maximal vertical velocity during downward ($v_{v, \text { max,down }}$) and upward phase ($v_{v, \text { max,up }}$); muscle efficiency (eff musc $)$; natural frequency of the system ($f_{\text {syst }}$); positive mechanical work ($\mathrm{W}+$); propulsive ($i_{\text {prop }}$) and braking impulses (ibrake); push (tpush) and brake duration (tbrake); running velocity (v); step frequency $\left(f_{\text {step }}\right)$; step length (L); vertical $\left(F_{\mathrm{v}}\right)$ and anteroposterior forces ($F_{\text {ant }}$). Vertical displacement of the center of mass (S_{v}) during effective aerial (S_{ae}), contact time (S_{ce}), effective aerial downward phase (Sae,down); effective contact downward phase (Sce,down). Effective aerial ($t_{\text {ae }}$) and contact times ($t_{c e}$).

The step frequency ($f_{\text {step }}$) is affected with changes of effective contact ($t_{c e}$) and aerial times ($t_{\text {ae }}$) ($f_{\text {step }}=1 /\left(t_{c e}+t_{\mathrm{ae}}\right)$, whereas the natural frequency of spring-mass ($f_{\text {syst }}$) is sensitive to changes in $t_{c e}\left(f_{\text {syst }}=1 / 2 t_{c e}\right)$ (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008). The $f_{\text {step }}$ and $f_{\text {syst }}$ are symmetrical $\left(f_{\text {step }} \sim f_{\text {syst }}\right)$ at low and intermediate velocities and becomes asymmetrical at high velocities ($f_{\text {step }}<f_{\text {syst }}$). We found $t_{\text {step }}<f_{\text {syst }}$ with increase of running velocities without any effect of horizontal impeding forces. Runners adopted higher $f_{\text {syst }}$ than $f_{\text {step }}$ increasing their tae relative to $t_{c e}$ (see Figure 14). Additionally, we suggest that runners adapt the $f_{\text {step }}$ (lower than to $f_{\text {syst }}$)
reduce the oxygen consumption requirements at high velocities (CAVAGNA et al., 1991). More details about $f_{\text {syst }}$ and $f_{\text {step }}$ chances are described in Chapter 3.

The L and F_{v} values reduced with 8 N of horizontal impeding forces. Runners decreases L and exhibit the pattern to minimize the oxygen consumption (CAVANAGH and WILLIAMS, 1982) with increase of impeding forces. The F_{v} paralleled this change in line with previous studies using 3 and 6\% of BW (CHANG and KRAM, 1999). The reduction of F_{v} can be associated increases of $f_{\text {step }}$.

Total vertical oscillation of the center of mass (S_{v}) is composed of the sum of vertical oscillation of the center of mass during $t_{\mathrm{ce}}\left(S_{\mathrm{ce}}\right)$ and $t_{\mathrm{ae}}\left(S_{\mathrm{ae}}\right)$ (see all components of s_{v} in Figure 15). It is expected that s_{v} and $s_{c e}$ reduces from $10 \mathrm{~km} \cdot \mathrm{~h}^{-1}$, while $s_{a e}$ remains unchanged with increases of running velocities in young subjects (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008). The sae increases with increase of running velocities and small horizontal impeding forces does not affect directly S_{v} or its components. With increment of horizontal impeding forces $f_{\text {step }}$ sightly increases and L significantly decreases may cause lower S_{v} and variation of external energy (CAVAGNA, HEGLUND and WILLEMS, 2005), but we suggest that the increase of Sae can counterbalance S_{v} expected reductions.

The mass-specific vertical stiffness (k / M_{b}) is affected by vertical acceleration (av_{v}) and vertical oscillation of the center of mass during $t_{c e}\left(s_{c e}\right)$ since $\left(k / M_{b}=\left(a_{v}, \max / s_{c e}\right)^{0.5}\right.$ $/\left(2\left(t_{c e}+t_{a e}\right)\right)$. The k / M_{b} increases due high $f_{\text {syst }}$ and reduced $t_{c e}$ with increase of running velocities (CAVAGNA, LEGRAMANDI and PEYRÉ-TARTARUGA, 2008) without effect of horizontal impeding forces. The a_{v} represented by F_{v} increases at high velocities, but with 8 N of impeding forces reduces F_{v} due changes of L. We suggest that the F_{v} reduced against air resistive forces could impair the spring-mass compression and low energy is stored (BLICKHAN,1989), but it is counterbalance with high $f_{\text {syst }}$ and low $t_{c e}$ at fast running velocities.

Small horizontal impeding forces improves some asymmetries related velocity and displacement of the center of mass. The asymmetries between maximal velocity of the center of mass during downward and upward ($V_{v, \text { max,down }} / v_{v, \text { max,up }}$), vertical oscitation of the center of mass during effective contact phase downward and upward (Sce,down/Sce,up) and vertical oscitation of the center of mass during effective aerial phase downward and upward (Sae,down/Sae,up) becomes symmetrical with increase of horizontal
impeding forces, that are close ideal elastic bouncing (CAVAGNA, 2006). However, landing-takeoff ($t_{\text {push }} / t_{\text {brake }}$) and rebound ($t_{\text {cel }} / t_{\text {ae }}$) asymmetries are not affect with horizontal impeding forces (0.6 and 1.2 \% BW), in line with previous studies (DEWOLF, PENAILILLO and WILLEMS, 2016; MESQUITA et al., 2020). Here it is possible affirm that improvements on spring-mass model (blue lines path) that could reduce C using mechanical energy are lower than the energy cost to overcome propulsive forces (red lines path) (see Figure 23).

The primary function of muscles during locomotion is produce positive mechanical work (W_{+}, concentric contractions) to move the body forward, but W_{+} require energy. The ratio between W_{+}and energy cost (C) needed to produce this mechanical work yields the muscle efficiency (eff musc) (PEYRÉ-TARTARUGA and COERTJENS, 2018). The C during running can be calculated with the energy consumption per unit of time (\dot{E}) divided by running velocity (v) (DI PRAMPERO, 1986). These relations are also described in Figure 24.

Our findings of $I_{\text {prop }}$ and $I_{\text {brake }}$ are in line with Chang and Kram (1999) regarding running against horizontal impeding forces (comparable with air resistive forces), reinforce the propulsive forces requirements at this condition. Alexander (1976) indicated eff musc to overcome W+ against the air resistive forces increases $\frac{1}{2}$, while eff $_{\text {musc }}$ related to negative work (W-, eccentric contraction) decreases $\frac{1}{2}$. We suggest that as W_{+}and C increases with horizontal impeding forces, does not change the eff musc. In Chapter 2, the apparent efficiency was not affected with increase of running velocities and horizontal impeding forces, but apparent efficiency $\mathrm{W}+$ and W - were not analyzed apart. Therefore, for the conceptual model we only considered effmusc being affected with horizontal impeding forces.

Using an optimal drafting a runner with dimensions of Eliud Kipchoge can improve his time at 2 -hour marathon in $\sim 4 \mathrm{~min}$ (see Chapter 2). According to Kipp, Kram and Hoogkamer (2019) the improvement in time is achieved with increase of v associated to oxygen consumption. If $I_{\text {prop }}$ and $W+$ are reduced with optimal drafting for the same task, the C need to produce mechanical work will decrease (eff musc $=\downarrow \mathrm{W}+/$ $\downarrow C)$. Therefore, more energy is available on the system to increase v and running performance ($C=\uparrow \dot{E} / \uparrow v$), in line with Kipp, Kram and Hoogkamer (2019) study.

4.2 General Conclusion

We concluded that spring-mass model can be optimized with high horizontal impeding forces. This optimization is related with increases of high horizontal impeding forces (8 N), becoming the ratio of $S_{\text {ae,down }} / S_{a \mathrm{ae}, \text { up }}, S_{c e, d o w n /} / S_{c e, u p}$ and $V_{\mathrm{v}, \text { max, down }} / V_{v, \text { max, up }}$ symmetrical. However, the energy cost to overcome propulsive forces against horizontal impeding forces increases the metabolic cost 6.13\% per 1\% BW of horizontal impeding force between 12 to $16 \mathrm{~km} \cdot \mathrm{~h}^{-1}$.

4.3 References

ALEXANDER, R. M. Mechanics of bipedal locomotion. Zoology, p. 493-504, 1976. http://dx.doi.org/10.1016/b978-0-08-018767-9.50047-0.

ARELLANO, C. J.; KRAM, R. Partitioning the Metabolic Cost of Human Running: a task-by-task approach. Integrative and Comparative Biology, v. 54, n. 6, p. 10841098, 16 May 2014. http://dx.doi.org/10.1093/icb/icu033.

BLICKHAN, R. The spring-mass model for running and hopping. Journal of Biomechanics, v. 22, n. 11-12, p. 1217-1227, Jan. 1989. http://dx.doi.org/10.1016/0021-9290(89)90224-8.

CAVAGNA, G. A. The landing-take-off asymmetry in human running. Journal of Experimental Biology, v. 209, n. 20, p. 4051-4060, 15 Oct. 2006. http://dx.doi.org/10.1242/jeb.02344.

CAVAGNA, G. A.; HEGLUND, N. C.; WILLEMS, P.A. Effect of an increase in gravity on the power output and the rebound of the body in human running. Journal of Experimental Biology, v. 208, n. 12, p. 2333-2346, 15 June 2005. http://dx.doi.org/10.1242/jeb.01661.

CAVAGNA, G.A; LEGRAMANDI, M.A; PEYRÉ-TARTARUGA, L.A. Old men running: mechanical work and elastic bounce. Proceedings of The Royal Society B: Biological Sciences, v. 275, n. 1633, p. 411-418, 12 Dec. 2008. http://dx.doi.org/10.1098/rspb.2007.1288.

CAVAGNA, G. A.; WILLEMS, P. A.; FRANZETTI, P.; DETREMBLEUR, C. The two power limits conditioning step frequency in human running. The Journal of Physiology, v. 437, n. 1, p. 95-108, 1 June 1991. http://dx.doi.org/10.1113/jphysiol.1991.sp018586.

CAVANAGH, P. R.; WILLIAMS, K. R. The effect of stride length variation on oxygen uptake during distance running. Medicine \& Science in Sports \& Exercise, v. 14, n. 1, p. 30-35, 1982. http://dx.doi.org/10.1249/00005768-198214010-00006.

CHANG, Y.; KRAM, R. Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, v. 86, n. 5, p. 1657-1662, 1 May 1999. http://dx.doi.org/10.1152/jappl.1999.86.5.1657.

DI PRAMPERO, P. E. The Energy Cost of Human Locomotion on Land and in Water. International Journal of Sports Medicine, v. 07, n. 02, p. 55-72, Apr. 1986. http://dx.doi.org/10.1055/s-2008-1025736.

DEWOLF, A. H.; PEÑAILILLO, L. E.; WILLEMS, P. A. The rebound of the body during uphill and downhill running at different speeds. The Journal of Experimental Biology, p. 276-288, 20 May 2016. http://dx.doi.org/10.1242/jeb. 142976.

GOTTSCHALL, J. S.; KRAM, R. Ground reaction forces during downhill and uphill running. Journal of Biomechanics, v. 38, n. 3, p. 445-452, Mar. 2005. http://dx.doi.org/10.1016/j.jbiomech.2004.04.023.

KIPP, S.; KRAM, R.; HOOGKAMER, W. Extrapolating Metabolic Savings in Running: implications for performance predictions. Frontiers in Physiology, v. 10, p. 1-8, 11 Feb. 2019. http://dx.doi.org/10.3389/fphys.2019.00079.

MESQUITA, R. M.; DEWOLF, A. H.; CATAVITELLO, G.; OSGNACH, C.; PRAMPERO, P. E. di; WILLEMS, P. A. The bouncing mechanism of running against hindering, or with aiding traction forces: a comparison with running on a slope. European Journal of Applied Physiology, v. 120, n. 7, p. 1575-1589, 11 May 2020. http://dx.doi.org/10.1007/s00421-020-04379-5.

PEYRÉ-TARTARUGA, L. A.; COERTJENS, M. Locomotion as a Powerful Model to Study Integrative Physiology: efficiency, economy, and power relationship. Frontiers in Physiology, v. 9, p. 1-16, 11 Dec. 2018. http://dx.doi.org/10.3389/fphys.2018.01789.

PUGH, L. G. C. E. Oxygen intake in track and treadmill running with observations on the effect of air resistance. The Journal of Physiology, v. 207, n. 3, p. 823-835, 1 May 1970. http://dx.doi.org/10.1113/jphysiol.1970.sp009097.

PUGH, L. G. C. E. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces. The Journal of Physiology, v. 213, n. 2, p. 255-276, 1 Mar. 1971. http://dx.doi.org/10.1113/jphysiol.1971.sp009381.4.

SAIBENE, F.; MINETTI, A. E. Biomechanical and physiological aspects of legged locomotion in humans. European Journal of Applied Physiology, v. 88, n. 4, p. 297316, Jan. 2003. http://dx.doi.org/10.1007/s00421-002-0654-9.

CHAPTER 5

5.1 The published studies during master's degree

5.1.1 Abstracts presented

MONTEIRO, E. P.; PEYRÉ-TARTARUGA, L. A.; ZANARDI, A. P. J.; SOARES, E.; MORIN, J. B.; PAGNUSSAT, A. S. MOTOR STADIING INFLUENCES SPRINT MECHANICS OF PEOPLE? V Brazilian Congress of Neurofunctional Physiotherapy and I International Congress of ABRAFIM, 2018, Florianópolis - SC.

MONTEIRO, E. P.; PEYRÉ-TARTARUGA, L. A..; ZANARDI, A. P. J.; SOARES, E.; MORIN, J. B.; PAGNUSSAT, A. S. Correlation between the elderly age with mechanical variables in sprint. Physical Activities for the Elderly - SIAFTI, 2018, Porto Alegre- RS.

DA SILVA, E. S.; MASIERO M. B.; DA ROSA, R. G.; MELO, O. U. M.; PEYRÉTARTARUGA L. A. Mechanical work and energy cost of uphill running. XVIII Brazilian Congress of Biomechanics and II Latin American Meeting of Biomechanics, 2019, Manaus-AM.

MACHADO, E.; DA SILVA, E. S.; SONDA, F. C. S.; LANFERDINI, F. J.; VAZ, M. A.; PEYRÉ-TARTARUGA L. A. Relação entre arquitetura muscular dos flexores plantares e a potência de saltos verticais. XVIII Brazilian Congress of Biomechanics and II Latin American Meeting of Biomechanics, 2019, Manaus-AM.

MACHADO, E.; DA SILVA, E. S.; LANFERDINI, F. J.; PEYRÉ-TARTARUGA L. A. Efeitos da terapia de fotobiomodulação sobre o custo metabólico de corredores fundistas. Il Simpósio de Fisiomecânica da Locomoção Terrestre, 2019, Florianópolis - SC.

DIAS, J. S. J.; DA SILVA, E. S.; MACHADO, E.; PEYRÉ-TARTARUGA L. A. O tempo de corrida é determinante para o desempenho final em provas de aquathlon. II Simpósio de Fisiomecânica da Locomoção Terrestre, 2019, Florianópolis - SC.

DA SILVA, P. R.; DA SILVA, E. S.; GUIMARÃES, P. S.; PEYRÉ-TARTARUGA L. A. Como se comportam as variáveis fisiológicas, antropométricas e biomecânicas de corredores recreacionais? II Simpósio de Fisiomecânica da Locomoção Terrestre, 2019, Florianópolis - SC.

LEAL, A. H.; ZANARDI, A. P. J.; DA SILVA, E. S.; AIRES, A.; BAPTISTA, R. R.; PEYRÉ-TARTARUGA L. A. Mecanismo pendular e caminhada Nórdica: Estudo piloto. Il Simpósio de Fisiomecânica da Locomoção Terrestre, 2019, Florianópolis - SC.

ZANCHI, B., DA SILVA, E. S.; BLOEDOW, L. L. S.; PEYRÉ-TARTARUGA L. A. A percepção subjetiva de esforço no planejamento de treinamento de corredores recreacionais. II Simpósio de Fisiomecânica da Locomoção Terrestre, 2019, Florianópolis - SC.

5.1.2 Papers published

BERRIEL, G. P.; COSTA, R. R.; SILVA, E. S.; SCHONS, P.; VARGAS, G. D.; PEYRÉTARTARUGA, L. A.; KRUEL, L. F. M. Stress and recovery perception, creatine kinase levels, and performance parameters of male volleyball athletes in a preseason for a championship. Sports Medicine - Open, v. 6, n. 1, p. 1-12, 26 June. 2020. http://dx.doi.org/10.1186/s40798-020-00255-w.

DA ROSA, R. G.; OLIVEIRA, H. B.; GOMEÑUKA, N. A.; MASIERO, M. P. B.; SILVA, E. S.; ZANARDI, A. P. J.; CARVALHO, A. R.; SCHONS, P.; PEYRÉ-TARTARUGA, L. A. Landing-Takeoff Asymmetries Applied to Running Mechanics: a new perspective for performance. Frontiers in Physiology, v. 10, p. 1-8, 16 Apr. 2019. http://dx.doi.org/10.3389/fphys.2019.00415.

GOMEÑUKA, N. A.; OLIVEIRA, H. B.; SILVA, E. S.; COSTA, R. R.; KANITZ, A. C.; LIEDTKE, G. V.; SCHUCH, Felipe Barreto; PEYRÉ-TARTARUGA, Leonardo A. Effects of Nordic walking training on quality of life, balance and functional mobility in elderly: a randomized clinical trial. Plos One, v. 14, n. 1, p. 1-21, 30 Jan. 2019. http://dx.doi.org/10.1371/journal.pone.0211472.

GOMEÑUKA, N. A.; OLIVEIRA, H. B.; SILVA, E. S.; PASSOS-MONTEIRO, E.; ROSA, R. G.; CARVALHO, A. R.; COSTA, R. R.; PAZ, M. C. R.; PELLEGRINI, B.; PEYRÉTARTARUGA, L. A. Nordic walking training in elderly, a randomized clinical trial. Part II: biomechanical and metabolic adaptations. Sports Medicine - Open, v. 6, n. 1, p. 119, 13 Jan. 2020. http://dx.doi.org/10.1186/s40798-019-0228-6.

LANFERDINI, F. J.; SILVA, E. S.; MACHADO, E.; FISCHER, G.; PEYRÉTARTARUGA, L. A. Physiological predictors of maximal incremental running performance. Frontiers in Physiology, v. 11, p. 1-7, 5 Aug. 2020. http://dx.doi.org/10.3389/fphys.2020.00979.

LANFERDINI, F. J.; SILVA, E. S.; BUENO F. P.; SONDA, F. C.; ROSA, R. G; QUEVEDO, R.; BARONI, B. M.; REISCHAK-OLIVEIRA A.; VAZ, M. A.; PEYRÉTARTARUGA, L. A. Effect of photobiomodulation therapy on performance and running economy in runners: a randomized double-blinded placebo-controlled trail. Journal of Sports Sciences, Accepted, Jan. 2021.

PASSOS-MONTEIRO, E.; PEYRÉ-TARTARUGA, L. A.; ZANARDI, A. P. J.; SILVA, E. S.; JIMENEZ-REYES, P.; MORIN, J.; PAGNUSSAT, A. S. Sprint exercise for subjects with mild-to-moderate Parkinson's disease: feasibility and biomechanical outputs. Clinical Biomechanics, v. 72, p. 69-76, Feb. 2020. http://dx.doi.org/10.1016/j.clinbiomech.2019.11.012.

ZANARDI, A. P. J.; MARTINEZ, F. G.; SILVA, E. S.; CASAL, M. Z.; MARTINS, V. F.; PASSOS-MONTEIRO, E.; HAAS, A. N.; PEYRÉ-TARTARUGA, L. A. Effects of Nordic walking on gait symmetry in mild Parkinson's disease. Symmetry, v. 11, n. 12, p. 110, 4 Dec. 2019. http://dx.doi.org/10.3390/sym11121481.

ZANARDI, A. P. J.; SILVA, E. S.; COSTA, R. R.; PASSOS-MONTEIRO, E.; DOS SANTOS I. O.; KRUEL, L. F. M; PEYRÉ-TARTARUGA, L. A. Gait parameters of Parkinson's Disease compared with Healthy controls: A systematic review and metaanalysis. Scientific Reports, Accepted, Dec. 2020.

5.2 Appendix S6

Subject Screening Form
How Do Small Resistive Forces affect the Energetics and Biomechanics of Running?
Investigator: Wouter Hoogkamer, Integrative Physiology Dept.
Name (please print): \qquad
Date of Birth: Day: \qquad Month \qquad Year \qquad
Height \qquad Weight \qquad

1. Describe briefly your typical weekly physical exercise. Indicate approximate duration frequency and intensity. For example: " I run 5 miles, 3 times per week at 7 minute per mile." or "I walk to school every day, about a mile", or "no regular exercise".
\qquad
\qquad
\qquad
\qquad
To the best of your knowledge:
2. Are you in good general health?

Please circle one. yes no
If no, please specify any known problems:
\qquad
\qquad
\qquad
3. Do you have any difficulty with walking, running or mobility in general?

Please circle: yes or no
If yes, please specify: \qquad
\qquad
\qquad
4. Do you have any problem with balance or dizziness?

Please circle: yes or no
If yes, please specify: \qquad
5. Do you currently have lingering symptoms or pain related to a serious musculoskeletal injury to your legs, feet, or back?

Please circle: yes or no
If yes, please specify: \qquad
\qquad
6. Have you ever experienced chest pain or shortness of breath with exertion? It is normal and healthy to breathe rapidly and deeply when exercising intensely. In contrast, "shortness of breath" refers to sudden difficulty with breathing, such as an asthma attack.
Please circle: yes or no
7. Has a doctor told you that you have high blood pressure?

Please circle: yes or no
If yes, please specify:
8. Have you ever had a heart attack?

Please circle: yes or no
9. Has a doctor told you that your cholesterol is at a high risk-level?

Please circle: yes or no
10. Do you have diabetes or has a doctor told you that you have pre-diabetes?

Please circle: yes or no
11. Do you have renal (kidney) disease?

Please circle: yes or no

Please sign your name: \qquad
Today's Date: \qquad

5.3 Appendix S7

Runners needed for Physiology Study

The Locomotion Lab of the Integrative Physiology Department at CU-Boulder is studying how to air drag forces affects the energy cost of running. Our experiments involve running on a force measuring treadmill while small horizontal resistive forces are applied around the waist.

To be eligible, you must be:

- 18+ years old
- In good health
- Able to run 10 km in less than 32 minutes

The study consists of up to 3 visit that takes up to 2 hours.
All experiments are completely non-invasive, but you will need to wear a mask that captures your breath. Participants will receive a $\$ 25$ Amazon gift card per visit.

If you are interested in participating, please contact: curunningstudy@gmail.com

5.3 Appendix S8

Permission to Take Part in a Human Research Study
Title of research study: How Do Small Resistive Forces affect the Energy Cost of Running?
IRB Protocol Number: 18-0023
Investigator: Wouter Hoogkamer, Ph.D.

Purpose of the Study

The purpose of the study is to find out how energy usage (calories) is affected by small resistive forces during running. These resistive forces will be of a similar magnitude as experienced when running outside, or into a slight head wind.

We invite you to take part in this research study because you are a healthy adult runner over the age of 18 and capable of running 10 km in less than 32 minutes.

We expect that you will be in this research study for three visits, each up to 2 hrs.
We expect about 16 people will be in this research study.

Explanation of Procedures

Taking part in this study is completely voluntary. You do not have to participate if you don't want to. You may also leave the study at any time.

Location: University of Colorado Locomotion Laboratory.
During each visit, you will run up to eight 5 -minute trials at either 12,14 or $16 \mathrm{~km} / \mathrm{h}$ ($8: 03,6: 54$ or $6: 02$ mile pace), while small resistive forces (up to 3% of body weight) will be applied at your waist.
During the running trials, we will collect and analyze the air you breathe out to calculate the rate at which you burn calories. This involves a mouthpiece, very similar to a SCUBA or skin diving snorkel. You will also wear a nose clip that prevents air from entering or leaving your nose.

Between running trials, you will have a 5-minute breaks, during which the resistive force will be adjusted, using different hanging masses.

Voluntary Participation and Withdrawal

Whether or not you take part in this research is your choice. You can leave the research at any time and it will not be held against you.

You have the right to withdraw your consent or stop participating at any time. You have the right to refuse to answer any question(s) or refuse to participate in any procedure for any reason. Refusing to participate in this study will not result in any penalty or loss of benefits to which you are otherwise entitled.

If you are a CU Boulder student or employee, taking part in this research is not part of your class work or duties. You can refuse to enroll, or withdraw after enrolling at any time, with no effect on your class standing, grades, or job at CU Boulder. You will not be offered or receive any special consideration if you take part in this research.

Risks and Discomforts

The study will take place in the Locomotion Lab, Room 111c Clare Small Building. This room is not open to the general public, but other studies may be taking place in the room while you are taking part in this study. Thus, we cannot assure you of complete privacy because other investigators and their subjects will be able to observe your participation in this study.

There are some potential risks if you choose to take part in this study. These may include: falling on the treadmill, as well as some mild fatigue or soreness. It is important to follow all safety instructions regarding the treadmill. Participating in these experiments does not present any greater cardiac risk than your regular exercise. Nonetheless, if as a direct result of participating in this study, you experience a nonlife threatening injury (for example: a cut, scratch or ankle sprain) that requires medical treatment, the experimenters will provide reasonable assistance in getting you to Wardenburg Health Center, or Urgent Care at the Boulder Medical Center. Professor Kram has more than 25 years of experience conducting these sorts of experiments and has never had a subject experience a serious injury.

Fortunately, for an adult without heart disease, who exercises regularly, the risk of a cardiac event (heart attack) during exercise is very small, less than 1 chance in every 400,000 person-hours of exercising (approximately equal to running for 45 years, 24 hours per day). In the unlikely event of a life-threatening event (e.g. cardiac arrest), the investigators would call 911, begin CPR and await EMS arrival. Accordingly, a person trained in CPR will be present during these experiments.

It is important that you tell the Principal Investigator, Wouter Hoogkamer if you think you have been injured as a result of taking part in this study. You can call him/her at 720-526-1552.

Potential Benefits

The direct benefits of being in this study are minimal. You will get a significant amount of vigorous physical exercise. We intend to prepare the results of this study for presentation at scientific conferences and for publication in peer-reviewed journals. In these ways, the study results will be made part of public record and will be made accessible to participants.

Confidentiality

Information obtained about you for this study will be kept confidential to the extent allowed by law. Research information that identifies you may be shared with the University of Colorado Boulder Institutional Review Board (IRB) and others who are responsible for ensuring compliance with laws and regulations related to research, including people on behalf of the Office for Human Research Protections. The information from this research may be published for scientific purposes; however, your identity will not be given out.

We will make every effort to maintain the confidentiality of your data. Confidentiality of personal records will be strictly maintained in all published reports and oral presentations resulting from this study. All participants will be given an alphabetical code as an identifier for the study. Subject information will be kept in locked cabinets in a locked office (Clare Small Building, room 106) under the supervision of Dr. Wouter Hoogkamer. Identifiable data will not be shared with anyone outside of the immediate research team, except as noted below. Data security for storage and transmission for electronic data stored on desktop computers will be managed via a secure network and password access. Power-on passwords will be established for all portablecomputing devices.

Payment for Participation

We will give you a \$25 Amazon gift card after participating in each visit of this study. If you choose to not finish your participation in the study, we will still give you a $\$ 25$ gift card for every visit that you attented.
It is important to know that payment for participation is taxable income.

Contact for Future Studies

We would like to keep your contact information on file so we can notify you if we have future research studies we think you may be interested in. This information will be used by only the principal investigator of this study and only for this purpose. Please initial your choice below:
\qquad Yes, you may contact me for future research studies. The best way to contact me is: (enter preferred telephone number and/or email address)

> __ No, you may not contact me for future research studies.

Questions

If you have questions, concerns, or complaints, or think the research has hurt you, talk to the research team at (303) 492-7984.

This research has been reviewed and approved by an Institutional Review Board (IRB). You may talk to them at (303) 735-3702 or irbadmin@colorado.edu if:

- Your questions, concerns, or complaints are not being answered by the research team.
- You cannot reach the research team.
- You want to talk to someone besides the research team.
- You have questions about your rights as a research subject.
- You want to get information or provide input about this research.

Signatures

Your signature documents your permission to take part in this research.

Signature of subject

Printed name of subject

Signature of person obtaining consent
Date

Printed name of person obtaining consent

5.4 Appendix S9

Figure 1A. Running with horizontal impeding forces

Figure 2A. Testing different hanging masses and rubber tubing

Figure 3A. Building the horizontal impeding force method

