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Abstract— Electroencephalography (EEG) has been the focus
of research and advances for many years, yet there are several
tasks to be explore and methods to be tested to improve analy-
sis and classification. Event-Related Potential (ERP) is one of the
brain responses measured with EEG, resulting from motor tasks
usually are related to motor imagery or real movement. This
study aims to analyze and classify event-related desynchroniza-
tion (ERD) and event-related synchronization (ERS) occurred
in tasks involving passive mobilization in Intensive Care Unit
(ICU) sedated patients and non-sedated volunteers. Our main
goal is to provide preliminary analysis and comparisons be-
tween sedated and non-sedated groups based on signal visual-
ization and a classifier. Common Spatial Pattern filtering (CSP)
and visual inspection of best band and time were used to verify
signal and phenomena. From that, specific features (i.e., Root
Mean Square, standard deviation, mean of Welch periodogram
and differential entropy) were extracted based on time and fre-
quency to apply a Linear Discriminant Analysis (LDA) classi-
fier. Once the two Intensive Care Unit sedated patients and the
two volunteers were analyzed, it was possible to observe the pro-
posed phenomena. Mean accuracy in the best scenario and best
person for each group (two people in each group) was found
higher than 80% and 77% to sedated and non-sedated partic-
ipants, respectively. Preliminary results, based on four partici-
pants (i.e., two sedated and two non-sedated patients), suggested
lateralization in tasks performed with passive mobilization and
provided accuracy comparable to previous studies involving mo-
tor tasks.

Keywords— EEG, Passive Mobilization, Event-Related Poten-
tial.

I. INTRODUCTION

New processing methods and advances in the knowledge
of brain functionality with electroencephalography (EEG)
employing Brain Computer Interfaces (BCI) have evolved to
more complex tasks in biomedical engineering and clinical
applications [1]. It is now possible to control prostheses [2],
wheelchair [3], consciousness levels [4] and diseases diag-
nostics [5] using EEG signals. Expected alterations in the
EEG signal, such as P300, somatosensory evoked potential

(SSEP) and event-related desynchronization (ERD)/event-
related synchronization (ERS), therefore can be used to con-
trol or activate a device.

The analysis of a specific sensory output, cognitive or mo-
tor event allows observation of an Event-Related Potential
(ERP) in different parts of the brain [6]. Executing or imag-
ining the movement in both hands cause the phenomena of
ERD in the contralateral side before movement and ERS in
the ipsilateral side after execution [7]. This phenomena is ob-
servable in α and β rhythms [1, 6]. ERD and ERS are ana-
lyzed to evaluate the difference between left and right hand
movements in passive mobilization in both sedated and non-
sedated participants, the use of ERD and ERS are analyzed.
The definition of the relative energy, used to identify ERD
and ERS was presented in [8].

This study presents a preliminary analysis of ICU se-
dated patients and non-sedated volunteer’s EEG signals dur-
ing passive mobilization in both hands were used to compare
the phenomena and classify different individuals and groups.
Such analysis can be applied to observe motor responses in
ICU based patients in passive mobilization, allowing in fu-
ture communication and alteration in state of consciousness
analysis. EEG signals are collected with an EPOC electrode
cap by EMOTIV with 14 electrodes based on 10-20 system
[6], this neuroheadset has been already used to ERD/ERS
phenomena in [9]. The signal is pre-processed using digital
and CSP filtering, features are extracted based in time and
frequency. RMS value, standard deviation, mean of Welch
periodogram and differential entropy are calculated. Finally,
the features are classified in two classes in a Linear Discrim-
inant Analysis (LDA) classifier.

II. METHODOLOGY

A. Experiment Format

Signal acquisition is performed in order to configure a syn-
chronous BCI system, therefore passive movements were car-
ried out by the physiotherapist at specific time. The first two
seconds were defined as the pre-stimulus interval, the next
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Table 1: Timing in a Trial

Events Reference Stimulus Post-Stimulus
Interval Time (s) 0-2 2-4 4-7

Table 2: Subjects and Respective quantity of Movements

Subject Non- Sedated 1 Non- Sedated 2 Sedated 1 Sedated 2
Movements 100 100 50 100

two seconds were movement time interval performed by the
physiotherapist and the last three seconds were defined as
the post-stimulus period, time intervals presented in Table
1. EEG signal are collected throughout the experiment. Each
trial consists of a randomly defined movement representing
the flexion of the left or right arm. Each section consists of
10 trials and n sections were performed per participant (10
sections for the two Non-Sedated and for ’Sedated 2’, and 5
to ’Sedated 1’). Table 2 indicates the number of movements
performed by each subject. Total number of trials is balanced
between right and left movements.

Signal acquisition is done using an Emotiv Epoc cap via an
interface with Labview 13, running in a laptop with Windows
10, at a rate of 128 Hz. Time intervals and a random sequence
of movements were generated in Labview. All data, channel-
acquired signals, and stimuli performed (setting the value ’1’
for the subject’s left arm stimulus and ’2’ for the right) were
saved in .lvm files. All the remaining signal processing was
done in Matlab 2012b running on Windows 10.

The Sedated Patient admitted to the ICU had to comply
with the following inclusion criteria:

• Adult patients of both genders;
• Patients over 18 years old;
• Patients using continuous sedoanalgesia with Richmond

Agitation Sedation Scale (RASS) -3 to -5;
• Patients on invasive mechanical ventilation between 48

and 72 hours;

For the control group, inclusion criteria was adult volun-
teers without previous neuromuscular disorders. The proce-
dure is performed to simulate the environment of an ICU,
therefore, the volunteer keeps their eyes closed while lying
down with neck support. A physiotherapist performed the
movements for both groups.

All procedures performed in the acquisition of this dataset
which involved human participants followed the ethical

standards of the institutional review board and the 1964
Helsinki declaration and its later amendments or compara-
ble ethical standards. All procedures performed were ap-
proved by the institutional research committee under the Cer-
tificate of Presentation for Ethical Appreciation (number:
11253312.8.0000.5347).

Other comparable trials stimuli formats can be found in
[7, 10, 11, 12, 13].

B. Emotiv Epoc Neuroheadset

An Emotiv Epoc neuroheadset was employed in the
present study. This is a commercially available EEG portable
cap based in 10-20 system, with 14 signal electrodes and two
reference electrodes, 14-bit, 1 LSB resolution. Positioning
was based on standard 75 electrodes, acquisition rate was 128
Hz. Signal was digitally filtered from 0.2 to 45Hz, notch fil-
tered at 50 and 60 Hz and range from 8400 uV.

C. Preprocessing

First, signal was filtered at the frequencies relative to the
analyzed phenomena. A fourth order digital Butterworth filter
in the 8 to 30 Hz range applying the filtfilt function was im-
plemented. The filftfilt function does not contribute to phase
changes in the data, only attenuates the signal in amplitude.
Second, the filter was centered in a frequency specific for
each subject, which was based on visual inspection of lat-
eralization index in the frequency domain. This was selected
using a Welch periodogram in channels FC5 and FC6 (chan-
nels next to motor cortex). Time window was set based on the
lateralization in these channels. This was a two-second time
window, which was set between “second 2” and “second 5”,
at movement start and one second after movement end (see
Table 3). Lateralization in frequency and time domain based
analysis was implemented in [11, 13].

The next step was to apply the CSP filter in all left and
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right hand trials in all electrodes. CSP filters are commonly
used in EEG experiments to minimize the effect of unwanted
signals captured from other regions of scalp which are not
of interest. So, the filter was applied to maximize discrimi-
nation from a sample space transformation, facilitating dif-
ferentiation between two classes. The filter application was
performed by a function developed in Matlab based on [14].
Two CSP channels with the largest discrimination between
classes were chosen after filtering and were defined as CSP1
and CSP2. This selection of two channels are used to com-
pare results with analysis of channels FC5 and FC6 without
CSP filter applied.

D. Feature Extraction

After Preprocessing we start with a Feature Extraction
to utilizy in classifier. Our signal classification characteris-
tics were based on previous work [15], which performed
classification with these features, but applied in a non-
combined way. Thus, the characteristics extracted presented
non-combined high hit rates when used in BCI systems,
namely: RMS value, standard deviation, power spectral den-
sity (PSD) and differential entropy (DE). These features are
calculated on signal preprocessed with digital filters and for
the selected channels processed with CSP filter.

RMS was calculated for each track using the rms function
and the standard deviation using the std statistics function.
The use of standard deviation and RMS values is interesting
when applying ERD / ERS detection, since these phenomena
alter the amplitudes more sharply on one side of the brain.

PSD was estimated using the Welch periodogram method,
Fourier transform dependent method. This method uses over-
lapping windows and is commonly used for EEG signals be-
cause it is not stationary in time but can be considered sta-
tionary in short periods of time (i.e., 1 to 2 s), so from the
overlapping window it is possible to decrease the random er-
ror for windows up to 50 % overlay [16, 17]. We applied the
function pwelch, with Hamming window function and fre-
quency one sided with interval [0, fs/2] (cycles/unit time),
available in Matlab and performed the average magnitude in
frequency.

The differential entropy method measures the complex-
ity of a continuous variable with a stochastic character. It is
shown in [18] that the EEG signal can be related to a Gaus-
sian distribution, from which DE can be roughly calculated
by the expression in (1). DE is used to extract characteris-
tics that are harder to find by using statistical metrics such as
mean and standard deviation.

DE =
1
2

log
(
2πeσ2

i
)

(1)

E. Classification

An LDA classifier with cross-validation utilizing 10 folds
was used for signal classification. Cross-validation was ap-
plied over the feature set, which randomly select a feature set
for training. Average test error over all folds was calculated.
For each subject the classifier was trained 100 times. Mean
and standard deviation for all trials during training was ob-
tained. A LDA classifier is commonly utilized to classify this
type of EEG data and presents good results [19].

III. RESULTS AND DISCUSSION

A. Preprocessing and Signal Visualization

For the proposed experiment and dataset, when compared
with others datasets using the same preprocessing and visu-
alization [10, 11, 13], the ERD and ERS was not so clear to
observe in α rhythms for all participants before CSP filters.
Fig. 1 shows the lateralization in channels (the Emotiv elec-
trodes FC5 and FC6 and the CSP generated channels CSP1
and CSP2) for each movement and subject. It is evident that
the channels generated by CSP filter are better to find the phe-
nomena. Therefore, CSP filter works well to maximize the
difference between these two classes of signal. When analyz-
ing lateralization, in frequency and time domains, the result
in CSP shows evident occurrence of these phenomena. The
electrodes positioning in the Emotiv Cap can be a reason for
the difficulty in finding the characteristics of ERD/ERS in
FC5 and FC6 channels. When analyzing the signal after all
preprocessing is possible to observe the phenomena in both
groups (sedated and non-sedated subjects).

Table 3 displays mean and standard deviation of central
frequency and time for each group defined after visual in-
spection and signal analysis. Statistical analysis showed that
there was no significant difference between non-sedated and
sedated participants.

B. Classifier

Classification accuracy results are presented in Table 4.
Mean of all 100 loops using different random training groups
in classifier was calculated for each subject. The method with
and without frequency and time windows selection was also
tested.

Sedated Subject 2 showed the best result, with 80.1±0.95
% average accuracy using the selected frequency and time
windows. All means were higher than 60% without the spe-
cific time and frequency and higher than 71% when used the
specific time and frequency windows. When comparing the
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Fig. 1: Mean of Relative energy for all trials for each movement using channels: FC5,FC6, CSP1 (CSP channels with the largest discrimination
for class left) and CSP2 (CSP channels with the largest discrimination for class right) for: a) Non-Sedated Subject 1 (50 movements each

hand), b) Non-Sedated Subject 2 (50 movements each hand), c) Sedated Subject 1(25 movements each hand) and d) Sedated Subject 2 (50
movements each hand). Movements starts at second 2 and ends at second 4

two groups all average accuracy was compatible to exper-
iments employing motor imagery or real movements. They
are also compatible with each other.

Visualization of ERD and ERS and accuracy are improved
when analyzing signal and accuracy in the specified best time
and best frequency for each subject. This suggests that set-
ting these parameters is necessary. Frequency and time win-
dow comparison for all subjects were significant parameters
to classify movements.

IV. CONCLUSIONS

The proposed method using CSP filter, frequency and time
windows analysis, RMS, standard deviation, PSD and DE
like features and LDA as classifier allowed ERD/ERS visual

analysis and classification for passive movements in the stud-
ied groups. Results of signal analysis and classification are
comparable to previous research [11, 12, 13].

More specifically, when comparing accuracy rates with
previous studies [7] using Emotiv headset and motor imagery.
Better results were around 85% for BCI Competition Dataset
II (motor imagery experiment datasets with 280 trials and one
volunteer) and 79% with two volunteers (motor imagery ex-
periment with 140 trials per volunteer), when applying CSP
filters to select two CSP channels and a Naive Bayes classi-
fier.

Based on the characteristics of signal and the difficulty to
analyze and classify, this kind of dataset and method can be
used for many other studies to improve the classification or
visualization of phenomena. For example, monitoring EEG
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Table 3: Mean Frequency and Time Window defined for each group

Group Initial Frequency (Hz) Final Frequency (Hz) Initial Time (s) Final Time (s)
Non-Sedated 11.5 ± 2.12 16.5 ± 2.12 2.25 ± 0.35 4.25 ± 0.35

Sedated 10.5 ± 3.54 15.5 ± 3.54 2.5 ± 0.35 4.5 ± 0.35

Table 4: Accuracy rate for each Subject

Subject Non-Sedated 1 Non-Sedated 2 Sedated 1 Sedated 2
Accuracy without Frequency and Time Windows selected (%) 67.7±1.1 60.5±1.0 64.9±2.7 69.5±1.6

Accuracy with Frequency and Time Windows selected (%) 77.8±0.6 71.6±1.0 74.9±1.5 80.1±0.95

signals in ICU or surgery settings, and physiotherapy proto-
col analysis (i.e., passive mobilization in sedated and non-
sedated patients).
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