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ABSTRACT 
 

The use of data-driven models may be an important alternative in several scientific fields, especially when the available 

data do not allow utilizing physical hydrologic models because these data must be measured in the basin. . This paper 

explores important aspects of ANN use: initial training conditions, performance assessment, partitioning of the strong 

seasonal component in short-term samples and ranking results by a weighted score. Sequential partitioning of the sample was 

shown to be adequate for cases where the data series has a strong seasonal component and short time response. The non-

exceeded error was associated with its frequency, giving a measure of performance that is easily understood and which does 

not depend on the long familiarity required by traditional methods to evaluate results. A weighted score calculated from sev-

eral indices removed the difficulty of how to reconcile several statistical measures of performance. The need for repeated artifi-

cial neural network training using random starting conditions is established, and the ideal number of repetitions to ensure 

good training was investigated. A straightforward approach to visualization of forecasting errors is presented, and a pseudo-

extrapolation region at the domain extremes is identified. The methods were explored using the Quaraí river basin, whose 

specific characteristics include a rapid response to precipitation events. It therefore provides a good test of artificial neural 

network methods, including the use of rainfall forecasts which, to be combined with existing data resources, required novel 

methodological approaches. 
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INTRODUCTION 
 
 

The hydroinformatics is being increased 
since end of 1980’s due the fast evolution of com-
puter process capacity (ABBOT, 2008), in especial 
the data-driven modelling and computational intel-
ligence, that have proven their applicability to vari-
ous water-related problems: modelling, short-term 
forecasting, data classification, reservoir optimisa-
tion, building flood severity maps based on aerial or 
satellite photos, etc. Data-driven models would be 
useful in solving a practical problem or modelling a 
particular system or process if a considerable 
amount of data describing this problem is available;  
 
 
 

*IPH - Instituto de Pesquisas Hidráulicas — UFRGS 

 

there are no considerable changes to the modelled 
system during the period covered by the model. 
Such models are especially effective if it is difficult to 
build knowledge-driven simulation models (e.g. due 
to lack of understanding of the underlying process-
es), or the available models are not adequate 
enough (SOLOMATINE; SEE; ABRAHART, 2008).  

Nestes casos, as redes neurais artificiais pro-
gressivas são candidatas naturais, por serem identifi-
cadas como aproximadores universais de funções 
(HORNIK; STINCHCOMBE; WHITE, 1989). 

Focusing on the mathematical methods for 
the multi-layer neural networks empirical modelling 
this paper deals with important aspects of this tech-
nique, such as the problem of convergence, the 
identification of optimum architecture, sample par-
titioning, and indices of model performance. In 
most published work, these topics either receive 
little. 
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Figure 1 — Example of neural network structure 

 

 
 

Figure 2 — Training scheme for training by back-propagation 

 
 

Difficulties in the use of neural networks 
arise particularly where there is strong seasonality 
and where data are limited: a situation commonly 
encountered when modelling hydrological phe-
nomena. The objective of the paper is therefore to 
establish whether the mathematical and strategic 
resources available for use can contribute, when 
correctly used, to the solution of some of the prob-
lems that occur where artificial neural networks are 
used to forecast river levels. To illustrate the applica-
tion of mathematical methods for neural network 
modeling, a small hydrologic basin was chosen for 
which forecasting is inherently difficult and for 
which data series are short. 

On this way the aim here is not compare re-
sults of different models, the application case was 
employed just to show the effects of the techniques 
proposed. 
 
 

ARTIFICIAL NEURAL NETWORKS 
 
 

Neural networks are computational models 
inspired by the way in which biological neurons 
function, and consist of processing layers with each 

layer having several neurons. Data are received by 
the neurons in the first layer (the entry layer) and 
produce output signals which in turn stimulate neu-
rons in the next layer, until the final layer (the out-
put layer) is reached, as illustrated in figure 1. 

The principal characteristics of artificial 
neural networks are that they learn and generalize. 
They learn in terms of their capacity to extract in-
formation from a sample of observations of input 
vectors and their corresponding outputs; they gen-
eralize through their capacity to respond to situa-
tions not previously encountered during the learn-
ing process. 

The most widely-used training method for a 
multi-layer network is by error back-propagation 
(RUMELHART; HINTON; WILLIAMS, 1986). The 
weights of each neuron are updated by using what is 
termed the “delta rule” separately for each neuron: 
 

))((1 kkk wEww  
      (1)

 

 

where η is the magnitude of the learning step, taken 
with a negative sign; w are the neuron synaptic 
weights, and E is the quadratic error of the network 

output. 



RBRH – Revista Brasileira de Recursos Hídricos Volume 18 n.4 –Out/Dez 2013,45-54 

  47 

The procedure used in what follows is de-
scribed by Kovacs (2002). The inputs to each neu-
ron are the outputs from the preceding layer, and its 
errors, when the neuron is not an output neuron, 
are found from the product of the weights in the 
following layer with the derivative of the activation 
function, and from the errors of that layer (Figure 
2). 

Convergence of this method can be speeded 
up by using a variable learning step which is in-
creased (decreased) when the error in the previous 
iteration is smaller (greater) than in the current 
iteration. An inertial term, momentum, can also be 
introduced which reduces oscillation towards con-
vergence by effectively maintaining the most recent-
ly observed trend. 

When training a neural network it is possi-
ble for overfit to occur; this is when a model is fitted 
to noise terms in the training sample, generating 
unsatisfactory results when the fitted network is ap-
plied to new data not used for training. Giustolisi 
and Laucelli (2005) observed that this problem al-
ways produces negative effects on generalization, 
which are worse if the noise is non-Gaussian. The 
problem can be avoided by using a cross-validation 
sample which is used to respond in parallel whilst 
the network is being trained. In the case of the train-
ing sample the mean error always becomes smaller 
as the number of iteration increases, but for the 
cross-validation sample there will be a number of 
iterations for which the error is a minimum (Figure 
3). 
 

 
 

Figure 3 — Quadratic error function for training and 

validation samples 

 
 

In the case of supervised training with both 
input and output data available, the cross-validation 
method divides the total available sample into three 
parts: one part for training, one for cross-validation, 
and one for verification. 

Neural networks have been used successfully 
for hydrological forecasting (ACHELA; JAYAWAR- 

DENA, 1998; BRAVO et al., 2009; TOKAR; MAR- 
KUS, 2000), but many methodological aspects re-
main to be explored, such as the initial training 
conditions, error evaluation and partitioning of the 
strong seasonal component when the available rec-
ords are short. In this paper, these aspects are ex-
plored using as an example the forecasting of river 
water-levels in a drainage basin with short hydrologi-
cal records. 
 
 

APPLICATION 
 

Characteristics of the system 

 
The drainage basin lies upstream of the cit-

ies Quaraí and Artigas, in Brazil and Uruguay re-
spectively, and has an area of roughly 4500 km². Its 
soil is shallow (~50cm), giving a high mean runoff 
coefficient (~ 0.46) for a rural basin. Its time of con-
centration is about 28h, and the time between peak 
rainfall and peak discharge is about 12h. These 
characteristics are such that 90% of the total annual 
runoff from the basin occurs in 30% of the time 
(PPGICBRQ, 2005). 
 

Characteristics of the system 

 
The region for which water-level forecasts 

are required has a telemetered water-level gauge 
monitored by the DNH (Dirección Nacional de 
Hidrologia del Uruguay), giving measurements of 
river level that are continuously updated. A 
hydrometeorological forecast, downloaded from the 
internet, is issued twice daily (at 0h and 12h) by the 
Brazilian agency CPTEC (Centro de Previsão do 
Tempo e Estudos Climáticos). This quantitative 
forecast is generated for a network of points on a 
40km grid and with a 5-day time horizon. Four grid-
points were selected that lie within the basin and a 
forecast of mean daily rainfall was calculated using 
the areas of Thiessen polygons as weights.  

The raw data were organized to obtain the 
samples used by the neural network, and consisted 
of three inputs and one output variable. The inputs 
to the neural network used to explore the proposed 
method were the river levels one and two days prior 
to the day on which the forecast is issued, together 
with the sum of rainfall forecasts for the basin, up to 
the day for which the water level is forecast. The 
period for which rainfall forecasts were available 
began on 5 January 2005 and ended 5 January 2007. 
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Sample partition 

 
Each of the five sample series (one for each 

forecast horizon) was divided into three parts: one 
for training, another for validation and the third for 
verification. The partitioning that is normally used, 
in which the sample is divided into three separate 
sub-samples that are each contiguous in time, gives 
rise to problems (LACHTERMACHER; FULLER, 
1994) as, due to the possible existence of anomalous 
periods, the samples will be not homogeneous, lead-
ing to an inadequate neural network training. So 
that an alternative procedure was sought, in which 
the separation was effected by taking four samples, 
the first and third for training, the second for valida-
tion and the fourth for verification, in the scheme 
shown in figure 4. 
 

 
 

Figure 4 — Sequential partitioning of samples 

 
The reason for this form of partitioning was 

to obtain samples that were more representative of 
the whole data-set. The usual method of partitioning 
samples would have led to very heterogeneous sub-
samples, because of the pronounced seasonality in 
basin hydrological regime. Another method for 
sample partition was used by Dawson et al. (2006), 
where the three parts was obtained with a random 
selection that produced reasonable samples with 
different catchment types and sizes in each sub-set. 
To ensure that the training sample is as representa-
tive as possible, it is larger than those for cross-
validation and verification, so that the proportions 
of records allocated to training, cross-validation and 
verification were 50%, 25% and 25%, respectively. 
 

Characteristics of the neural networks used 

 
Neural networks can have various configura-

tions according to the combination of their charac-
teristics. A three-layer configuration was used here, 
since by virtue of the Kolmogorov-Nielsen theorem 
of 1957, cited by Kovacs (2002), this is adequate for 
approximating functions by means of neural net-
works.   

In an initial trial, both the activation func-
tions and the training parameters (step-size, number 
of iterations, stopping criteria, minimum error and 

decrease in its slope) were fixed, with only the num-
ber of neurons in the intermediate level being al-
lowed to vary by trial and error. The activation func-
tions were TANSIG (sigmoid with response values 
between +1 and -1) for the input layer, and POSLIN 
(linear with response values equal to or greater than 
zero) for the output layer (DEMUTH; BEALE, 
2004). The function used for the output avoids the 
occurrence of negative values without imposing an 
upper limit, so that forecasts in the verification sam-
ple can have values greater than those found in the 
training sample (Figure 5). 

These functions take values only over their 
permitted ranges, so that data samples must be 
scaled so that they too lie within these ranges. The 
stopping criteria were that the mean square error 
should be less than 0.001 and that the number of 
iterations should be less than 20,000. This limit was 
adopted by observing the decrease in mean square 
error, which is almost irrelevant beyond this number 
of iterations. Another stopping criterion was to set 
the value of least gradient at 1x10-10, which would 
indicate non-converging trend. The value of the 
training step was set at 0.02. 
 

 
 

Figure 5 — Graphs of the activation functions TANSIG 

(left) and POSLIN (right) 

 
A number of inflections due to increase in 

error calculated in the validation sample was permit-
ted, the maximum being set at 50. This value was 
chosen because oscillations were observed shortly 
after training began, which interrupt the conver-
gence process, still giving very large mean square 
errors. 
 

Criteria for evaluating performance 

 
Results for evaluation of comparative per-

formance used the same verification sample for both 
models analyzed in this paper. This sample had 122 
values from which the following performance 
measures were calculated: error mean square 
(EMS), absolute mean error (AME), absolute stand-
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ard error (ASE), coefficient of linear correlation 
(R), coefficient of persistence (CP) and indices 
made of absolute error non-exceeded for frequen-
cies 50%, 75% and 90%. The efficiency coefficient is 
the proportion of variation in the observed variable 
that is explained by the model, and the “non-
exceeded error” for a given frequency is the numer-
ical value which is not exceeded by a specified per-
centage of model errors, giving a simple intuitive 
measure of the quality of model predictions 
(PEDROLLO, 2005). Symbolically, 
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where PC , PO  and n are the forecast level, ob-
served level and number of values in the sample 
respectively. The “non-exceeded error” is the p-
quantile of the absolute errors |Po-Pc| for a given 
frequency p.  

The use of a single measure of fit to evaluate 
performance of a neural network invariably favours 
one single characteristic, such as the magnitude of 
extreme events, or the magnitude of a mean value 
over time. Taking several such indices together gives 
a better idea of network performance, but analyzing 
them singly can be time-consuming. The approach 
used in this paper is to combine a number of per-
formance indices into a single weighted value; by 
judicious selection of weights, greater emphasis can 
be allocated to (for example) extreme values, with-
out discarding all other aspects of model fit.  
 

Definition of the smallest number of training 

repetitions 

 
There is no way to be sure that good initial 

values of the synaptic weights (i.e., weights given to 
the links between inputs and activation functions) 
have been chosen, and usually they have been ini-

tialized with small and random values (ASCE TASK 
COMMITTEE, 2000), so that distinct paths were 
always traced out on the errors surface at each new 
initiation, thus repeatedly ending up at a different 
local minimum. It is desirable that training be re-
peated with the best results being selected, but there 
is little guidance about how many repetitions should 
be used; this aspect was therefore analyzed in this 
study with a view to ascertaining the number of rep-
etitions needed for which no further improvement 
in results occurs when this number is exceeded. 
Anctil et al. (2006) evaluated performance variabil-
ity, which depends of the random initial values of 
the neural network weights, by repeating the com-
plete neural network training 50 times and then 
using the median result as a reference performance, 
but they did not show the behaviour of other train-
ing runs. The median may also not be the most ap-
propriate measure.  
 

 

 
 

Figure 6 — Behaviour of the index as a function of the 

number of training runs 
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To find a more robust measure of the influ-
ence of number of training runs, the present study 
used ten simulations for each initialization set of 10, 
30, 50, 100 and 200, resulting in the mean values of 
EMS shown in figure 6(b). Values were also ob-
tained for other measures of fit (AME, ASE, R, CP 
and percentage non-exceeded), giving 100, 300, 
500, 1000 and 2000 trained networks for the 10, 30, 
50, 100 and 200 initialization sets respectively. 
 

Combination of indices of model performance 

 
An obvious first approach to judging which 

training run gave the best result would be to choose 
the run giving the best indices; however it is rare for 
one training run to give the best values for all indi-
ces of performance, and a run that is best for some 
indices may show mediocre values for others. 
Further, the contradictory indices results may 
indicate different neural networks or neuron 
synaptic weights implying on a dilemmas problem to 
choice the best model. 

To deal of the dilemmas of ranking the re-
sults performance and to limit the time required 
both to select the best neural network architecture 
and to compare results from different models, a 
combined index was calculated by weighting the 
statistics obtained, with the weights selected so as to 
place more importance on those indices which pe-
nalize errors in peak levels (Table 1). 

The combined index goal is to give a more 
robust statistic than analyse just the set of indexes, 
once, frequently, the indexes indicate discrepant 
conclusions, although near with each other. 
 

Table 1 — Weights applied to indices of neural network 

performance 

 

Error mean square (EMS) 3 

Absolute mean error (AME) 2 

Absolute standard error (ASE) 1 

Coefficient of linear correlation (R) 2 

Coefficient of persistence (CP) 3 

90% non-exceeded error 3 

75% non-exceeded error 2 

50% non-exceeded error 1 

 
The scaled value Vi,j, for each index is 
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where wi is the weight given to the i-th index; I is the 
vector containing the results of the i-th indices that 
are to be weighted; j is the number of the training 
run. 

The score NPj for each training run is then 
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These indexes were developed placing big-

ger importance to peak level errors; consequently, 
they will be appropriate only for applications where 
the estimation of the peak levels and their recur-
rences is the main goal. If the main objective is dif-
ferent, other indexes can be necessary. For example, 
when applying the methodology to a flood warning 
system, the main variables would be alert and flood-
ing levels and their respective times of occurrence. 
In this case, the above presented indexes are not the 
most appropriate; to penalize a specific water level 
in the judging which training run gave the best re-
sult, it is necessary to create an exclusive index and 
to attribute a high weight to the selected water level 
target. 
 

RESULTS AND ANALYSES 
 

Table 2 shows the best mean indices, for 10, 
30, 50, 100 and 200 training runs. These were ob-
tained from the ten simulations made for each 
number of training runs, with a one-day-ahead fore-
cast horizon. 

Based on the test results, the minimum of 
50 training runs was used for each of neural network 
architecture, since there was little evidence of any 
useful increase in precision beyond that number. 
The best training run from the sets of 50 was there-
fore identified, and having chosen the best architec-
ture for the forecasting model, the selected network 
was applied to the verification sample which had 
played no part in either training or cross-validation 
of the selection stages, and so was totally independ-
ent of them. Table 3 shows the results obtained from 
the verification sample using the best model select-
ed for each forecast horizon. 

The performance indices can be interpreted 
individually. Whilst, for example, the coefficient of 
linear correlation R for one-day-ahead forecasts was 
0.899, the 90% non-exceeded error was 0.48m. 
Based on this value of R, a decision-maker familiar 
with the model results could decide whether this 
result is favourable or not, taking account of basin 
size and other factors. But even without  any  familia- 
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Table 2 — Best index for set of 10, 30, 50, 100 and 200 training runs 

 

N° training 

runs  

EMS 

(m²) 

AME 

(m) 

ASE 

(m) 
R CP 

90% non-

exceeded 

error (m) 

75% non-

exceeded 

error (m) 

50% non-

exceeded 

error (m) 

10 0.124 0.170 0.352 0.951 0.579 0.401 0.181 0.073 

30 0.119 0.164 0.344 0.953 0.597 0.374 0.171 0.068 

50 0.111 0.160 0.333 0.956 0.623 0.369 0.166 0.069 

100 0.111 0.159 0.333 0.956 0.623 0.359 0.164 0.067 

200 0.111 0.159 0.332 0.957 0.625 0.359 0.164 0.068 

         

 
 
 

Table 3 — Results from the verification sample — neural network with forecasts of rainfall 

 

Horizon 
EMS 

(m²) 

AME 

(m) 

ASE 

(m) 
R CP 

90% non-

exceeded 

error (m) 

75% non-

exceeded 

error (m) 

50% non-

exceeded 

error (m) 

Score 

Day 1 0.255 0.227 0.505 0.899 0.361 0.480 0.204 0.079 0.824 

Day 2 0.436 0.345 0.660 0.812 0.414 0.795 0.333 0.157 0.494 

Day 3 0.546 0.422 0.739 0.757 0.442 0.946 0.486 0.207 0.275 

Day 4 0.545 0.425 0.738 0.759 0.503 0.991 0.515 0.219 0.324 

Day 5 0.637 0.477 0.798 0.735 0.475 1.073 0.541 0.276 0.142 

 
 
 

 
 

Figure 7 — Observed water-levels and one-day-ahead forecasts 
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Figure 8 — One-day-ahead forecasts and corresponding observations, in increasing order of magnitude 

 
 
rity with index usage, a decision-maker could con-
sider whether a  model in  which the  error in fore 
casts will not be greater than 48cm for 90% of the 
time is adequate for his/her needs. 

However, a better comparison may be ob-
tained by using the weighted score in order to re-
duce ambiguities. The decline in performance as a 
function of increasing forecast horizon shown by the 
indices given above is reversed between Days 3 and 
4. The quality of the rainfall forecasts when they are 
placed in rank order of days is found to be 1, 2, 5, 4 
and 3, which suggests some hypotheses that explain 
this result. The water-level forecast uses forecast 
values of accumulated rainfall, so that the drop in 
rainfall forecast accuracy on Day 3 exerts a greater 
influence than when the forecast horizon is 4 days. 

Figure 7 shows a graph of observed and 
predicted water-levels for a one-day forecast horizon. 

A look at values plotted in time order is a 
useful first step for showing whether the model has 
identified a false fit. 

One way to evaluate the errors in water-level 
forecasts for events of greater magnitude is to graph 
the forecast level against the magnitude of the level 
that the model should have shown, i.e., the observed 
level. This is shown in figure 8. 
 

 

CONCLUSIONS 
 
 

The research reported in the paper was un-
dertaken to explore modelling techniques, which 
were applied to a small drainage basin for which 

forecasting water-levels is very difficult, since short 
hydrological records limit the flexibility in modeling 
approach. Although the final numerical results were 
not particularly encouraging for an water-level fore-
casting operational use in the specific drainage ba-
sin of the river Quaraí, the purpose of the work was 
to explore and develop methodology without com-
pare with results in other basins, that can be an issue 
for future papers to prove the effectiveness of the 
techniques here proposed. The particular character-
istics of the Quaraí basin include a high runoff coef-
ficient, a concentration time of about 28h, and a 
time between peak rainfall and peak runoff of 12h, 
showing that the basin response to rainfall is rapid. 
Thus it presents a challenging test for artificial neu-
ral network modelling even with the correct use of 
existing methods, whilst some novel developments 
were also needed. 

Sequential partitioning of the data record 
was found to be convenient because the data se-
quences were strongly seasonal and fairly short. This 
sequential method ensured that the three sample 
groups, for training, validation and verification, 
maintained the same statistical characteristics, which 
is a convenient basis for training and testing neural 
networks. The statistical equivalence of the samples 
was also important for determining the band of 
random variation during cross-validation.  

The use of non-exceeded error values for 
different frequencies was found to be particularly 
useful for evaluating model results, giving direct 
measures of error magnitudes for frequencies 50, 75 
and 90%. Such measures provide a very convenient 
description of forecast qualities because they are 
easy to understand even by users who have not seen 
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them before. This is in contrast to more traditional 
measures of model fit for which a certain experience 
is needed before their use comes naturally. The non-
exceeded errors also agree with the other indices 
used which show that forecast performance falls off 
as the forecast horizon increases.  

The use of a weighted score of several indi-
ces was shown to be useful in that it removed the 
dilemma of which among several different indices 
should be used for comparing the performance of 
alternative models. 

The problem of convergence to local mini-
ma when training a neural network was investigated 
using repeated training runs and analysis of their 
results. It was established that about 10% of training 
runs reach minimum values that gave much poorer 
model fits than the best training run. It was also 
found that the best performance measure from 50 
runs was roughly equal to that given by 100 and 200 
runs, independent of network architecture and the 
training algorithm used.  

A firm conclusion from the study, therefore, 
is that a number of training runs are needed with 
randomized initial conditions, since it was shown 
that results from a single training run, used in much 
published work, are unreliable. 

It would be very desirable to have a general 
recommendation concerning the number of train-
ing runs needed, and the results given here are a 
step towards achieving this end, although further 
confirmation is required by tests with data from 
other case studies. If such research shows that no 
general recommendation is possible, more complex 
guidelines will need to be developed. 

Presenting the results of model forecasts, in 
the usual way, by plotting observed and forecast 
water-levels in time sequence may obscure model 
errors, in particular for events where water levels are 
high. The alternative of showing results in order of 
increasing water levels gave a very clear picture of 
the poor fit obtained at high water levels. 

With these tools, a decision-maker can look 
at a graph similar to those shown and decide wheth-
er the errors that will occur, particularly at higher 
water levels, are such that his/her objectives will fail 
to be met, even though statistical indices look rea-
sonably satisfactory, in their bands of variation. 

It can be further concluded from this test-
case that neural networks are unable to extrapolate 
outside the domains observed, where functions are 
to be approximated. This is already accepted by 
many, but the present work confirms that neural 
networks have difficulty even in approximating re-
gions that occur only infrequently within the do-

main of observation. Or, expressed another way, 
there is a region of pseudo-extrapolation near do-
main extremes which needs much further study. 
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RESUMO 

 
A utilização de modelos orientados pelos dados 

(“data-driven models”) pode ser uma alternativa importan-

te, principalmente quando não se dispõe de dados que 

permitam a utilização de modelos de base física, providos 

de parâmetros estabelecidos em função das propriedades 

medidas no sistema. O presente trabalho explora aspectos 

importantes na utilização das redes neurais artificiais: 

Condições iniciais aleatórias do treinamento, a avaliação 

do desempenho, o particionamento dos dados para amos-

tras pequenas com forte sazonalidade e o ordenamento dos 

resultados por meio de um índice ponderador de diversas 

estatísticas. Uma técnica de particionamento seqüencial 

mostrou-se adequada para casos em que a série de dados 

apresenta forte sazonalidade e rápida resposta temporal. Os 

quantis das amostras dos erros, utilizados como índices de 

não-excedência associados à frequência de ocorrência forne-

cem uma estatística de desempenho de fácil percepção, cujo 

significado, em termos absolutos, permite interpretação 

direta, independentemente da experiência prévia, como 

acontece com os tradicionais métodos de avaliação de de-

sempenho de resultados. Um índice ponderado calculado 

com base em vários índices de desempenho removeu a difi-

culdade de como conciliar a contradição entre diversas 

estatísticas de medição de desempenho. A necessidade de 

repetir o treinamento da rede neural artificial usando 

condições iniciais aleatórias é confirmada, e foi investigado 

o número ideal de repetições necessárias para garantir um 

bom treinamento. Uma visualização dos erros em função 

do nível d’água em ordem crescente é apresentada, e uma 

região de pseudo-extrapolação para os valores extremos é 

identificada. Os métodos foram explorados em uma aplica-

ção para a bacia do rio Quaraí, que apresenta uma rápida 

resposta para eventos de precipitação. As dificuldades 

resultantes da rapidez das respostas, por um lado, limita o 

desempenho que é possível alcançar, porém, por outro, 

constitui uma oportunidade para avaliar as metodologias 

aplicadas, incluindo o uso de previsões de precipitação, 

que, combinada com os dados de monitoramento existentes, 

acabam por requerer uma nova metodologia de abordagem.  

Palavras-chave: Redes neurais. Quantidade de água. 

Previsões. Nível de água. 

 


