
Revista de Informática Teórica e Aplicada - RITA - ISSN 2175-2745
Vol. 25, Num. 3 (2018) 89-101

RESEARCH ARTICLE

V: a language with extensible record accessors and a
trait-based type system
V: uma linguagem com acessores de registro extensı́veis e um sistema de tipos
baseado em traits

Arthur G. Vedana1*, Rodrigo Machado1, Álvaro Moreira1

Abstract: This article introduces the V language, a purely functional programming language with a novel
approach to records. Based on a system of type traits, V attempts to solve issues commonly found when
manipulating records in purely functional programming languages.

Keywords: Functional Programming Languages — Records — Traits

Resumo: Este artigo introduz a linguagem V, uma linguagem de programação puramente funcional com uma
nova abordagem a registros. Usando um sistema de traits de tipos, V tenta resolver problemas comumente
encontrados ao manipular registros em linguagens puramente funcionais.

Palavras-Chave: Linguagens de Programação Funcionais — Registros — Traits
1Instituto de Informática, UFRGS, Brasil
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1. Introduction

Functional programming languages, or simply functional lan-
guages, are the ones in which programs are primarily de-
fined by means of the definition and combination of func-
tions. Haskell[1], Ocaml[2], Scheme[3], F#[4], Elm[5], and
Scala[6] are examples of such languages. Using features such
as higher-order functions and currying, functional languages
can express complex operations in (generally) fewer lines of
code than imperative or object-oriented ones. Also, a strong
type system, featured in many functional languages, allows
the development of code that is free from some kinds of errors.

Purely functional languages are the ones in which referen-
tial transparency holds, meaning that the result of a function
application is uniquely defined by the its arguments. There
are fewer languages with this property, from which we can
mention Haskell and Elm. A consequence of referential trans-
parency is the absence of implicit side effects during function
evaluation, which means, among other things, that one can-
not modify values stored in memory. Because of this, purely
functional languages are known for not being as convenient
for dealing with records as languages that allow side effects.
This issue is so serious that, at least in Haskell, the use of a li-
brary to work with large nested records is practically required
(details are presented in Section 2). Although many differ-

ent approaches have been suggested to mitigate this problem,
these are usually limited. For instance, the popular Lenses[7]
approach for Haskell uses very complicated types (since it
exploits a specific type isomorphism) and requires template
meta-programming for its notation. These problems come
from the fact that lenses are implemented as a library and not
as a primitive construct of the language.

This paper presents V, a purely functional programming
language inspired by Haskell, with a new approach to record
manipulation. V introduces first-class accessors that focus on
a region of a given record. These accessors are used together
with getter and setter functions to read and modify records. It
is important to clarify that, when a modification or update of
a record is mentioned in a purely functional language, what
is meant is the construction of a new record based on an ex-
isting one. Accessors in V can be combined using primitive
operations, allowing to focus on very specific parts of large,
compound nested records. Accessors are polymorphic, allow-
ing the access and update of a record whenever the necessary
fields are present – which is verified by a trait-based type
system.

Although the V language is still under development, its
specification and implementation evolve in parallel with each
other and are kept as consistent as possible whenever changes
occur. The specification consists of a big-step operational
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semantics and a type system, and the implementation consists
of a working REPL (read-eval-print loop) interpreter and an
improvised library system (with a simple standard library),
implemented in F#. Both specification and implementation
can be found on the project page on Github1. This paper
presents the current status of the language and, in particular,
the record subsystem and how traits are used in the type
system.

The structure of this article is as follows. In Section 2, the
current state of records in purely functional languages is intro-
duced, showing what can be improved by the approach taken
in V. In Section 3, records and accessors in the V language
are introduced. In Section 4, the mechanism that supports
polymorphic accessors, Traits, is defined. In Section 5, the V
language as a whole is introduced, explaining its characteris-
tics, type system and operational semantics. In Section 6, we
discuss how V’s accessor system could be incorporated into
other languages. In Section 7, we discuss related work. Fi-
nally, in Section 8, the current state of the language is exposed,
along with known limitations and future work.

2. Motivation: Existing Record Systems

Purely functional languages are known for not providing an
easy way to manipulate records. To exemplify these difficul-
ties, we present a brief description of how Haskell and Elm
deal with record creation and manipulation.

Haskell In the Haskell language, the following code de-
clares a new named record type A with two fields (a and b)
of type Int, together with a value x of type A. Based on the
data declaration, the compiler creates two getter functions
a :: A→Int and b :: A→Int in the same scope.

One of the problems with this approach is that getters are
defined as simple functions in the current namespace. This
choice forbids two distinct record types from having the same
field names, as occurs commonly in real applications. For this
reason, the record type B, defined below, cannot have a field
named a, and the programmer is required to use a variation of
the name.

Haskell offers a special syntax for record update. By
providing a name and a value (or multiple names and values
separated by commas) between curly braces, one can treat
existing records as functions and “apply” any desired updates.
The code below creates a new record, y, which is created
exactly the same as x, except for the field a, which now has
value 7.

This syntax is not first-class, meaning that updates to
records cannot be bound to identifiers, passed as arguments
or returned as functions. This restriction limits the use of the
syntax, since one cannot compose updates or perform multiple
updates directly.

Another issue in Haskell is the cumbersome notation when
inner fields of records need to be updated. For instance, the

1〈https://github.com/AvatarHurden/V〉

following code would be required in order to update the inner
field a of record z to have value 8.

As the example shows, we are forced to expose the in-
termediate updates whenever we are trying to modify fields
within fields. This can be even worst when dealing with multi-
ple levels of nested records, as it becomes necessary to extract
and “repackage” every nested record individually.

Elm Elm’s records are anonymous, meaning that both record
values and record types are defined without an explicit name.
That being said, it is possible to associate a name to a type
(known as a type alias) for legibility and documentation pur-
poses.

Elm also creates getter functions for each field of the
record: .a::A→Int and .b::A→Int. Notice the function
names are preceded by a dot, and in Elm one can write x.a for
the getter function .a applied to the record x. One advantage
of Elm over Haskell is that getters in Elm are not restricted to
a single record type. This means that it is possible to define
the B type as follows:

Like Haskell, there is a special syntax for record update.
At the surface level, the only difference is that the existing
record is positioned inside the curly braces, separated from
the update fields by a pipe (|).

This syntax, however, has a limitation that makes updating
nested fields even more cumbersome than Haskell: it only
accepts names before the pipe (in other words, one cannot
write

in Elm). This means that, to update an inner field, it is
necessary to first bind the inner record to a name.

The V language attempts to improve the record access and
update mechanism by introducing polymorphic record acces-
sors. These accessors are used for both getting and setting the
value of a field, removing the necessity of a custom syntax
for record updates. Accessors in V are polymorphic, meaning
that the same accessor can be used with multiple records (and,
unlike Haskell, there is no issue of namespaces). Furthermore,
V accessors are extensible in the sense that it is possible to
combine them by means of operations named stack, join
and distort, which will be subsequently introduced. Finally,
since accessors in V are first-class (unlike the update syntax
in Elm and Haskell), they can be passed as arguments and
returned from functions, which allows great flexibility in their
use.

3. Record System in V

This section introduces, in an informal way, the approach
V takes for records and accessors. First, the structure and
construction of records are given. Second, accessors are de-
scribed, explaining their use, construction and manipulation.
Then, a few helper definitions are provided, allowing easier
use and manipulation of accessors. Finally, a complete exam-
ple of a small program in V which uses records and accessors
is given.

R. Inform. Teór. Apl. (Online) • Porto Alegre • V. 25 • N. 3 • p.90/101 • 2018

https://github.com/AvatarHurden/V


V language

Records Records are a comma-separated set of associations
between field names (also known as labels) and values, en-
closed in curly braces. Each field name can only appear once
in a given record. For example, the record below has three
fields named, respectively, name, level and health.

{ name: "Hero",
level: 6,
health: 100 }

The type of a record is defined completely by its field
names and associated types. Because of this, a record can be
constructed without declaring its type beforehand, such as is
required in Haskell. In the example above, the type of the
record is {name:String, level:Int, health:Int}.

Accessors In its most basic form, an accessor is a field
name preceded by an octothorp (#). To actually use accessors,
two built in functions, get and set, are defined:

1. get takes an accessor and a record, returning the value
associated with the accessor’s name in the record.

get #health {stamina: 30, health: 20}
// returns 20

2. set takes an accessor, a value and an initial record. It
returns a new record, replacing the value associated
with the accessor’s name in the initial record.

set #health 0 {stamina: 30, health: 20}
// {stamina: 30, health: 0}

An accessor can be used on any record that contains the
field name associated to it. In the example below, the #health
accessor is used on two records of different types, since both
contain a field named health.

get #health { name: "P1",
level: 6,
health: 20 }

// 20

get #health { stamina: 30,
health: 100 }

// 100

Manipulating Accessors V offers three ways to manipu-
late accessors: stacking, joining and distorting. All of them
take accessors as input and return a (composite) accessor as
output, which can then be used with the get and set func-
tions.

Stacking Updating the fields of a nested record in V
by using only basic accessors is still cumbersome and re-
quires exposing intermediate updates, as illustrated by the
following example, in which the inner field name is updated
to "Savior".

let player = { name: "Hero",
level: 6,
health: 100 };

let game = { player: player,
enemies: [] };

let oldPlayer = get #player game;

set #player
(set #name "Savior" oldPlayer)
game

// { player: { name: "Savior",
// level: 6,
// health: 100 },
// enemies: [] };

By using stacked accessors, however, it is possible to hide
the intermediate updates for an inner field, making the respec-
tive update syntax much more convenient. In the V language,
accessors are stacked with the built-in stack function. Using
this function with accessors acc1 and acc2 means that acc1 is
an accessor that refers to a field which itself contains a record,
and this record must have a field with the label specified by
acc2.

The following code presents how a stacked accessor is
used to perform the same update shown in the previous ex-
ample. As can be seen, the record game has a field player,
which is a record. This means that the #player accessor can
be stacked with the #name accessor to create a new accessor
that goes directly to the name subfield of the player field.

let player = { name: "Hero",
level: 6,
health: 100 };

let game = { player: player,
enemies: [] };

let playerName = stack #player #name;

set playerName "Savior" game
// { player: { name: "Savior",
// level: 6,
// health: 100 },
// enemies: [] };

The stack function can be used as many times as is re-
quired, allowing to focus on an inner field no matter how deep
it is located within a nested record structure. Each applica-
tion of the stack operations indicates that the structure being
manipulated has one extra level of inner records.

As an example, suppose that the name field of the player
record is changed into a record that separates first names from
surnames. In this scenario, using the playerName accessor
would give us the full record of the hero’s name. We can,
however, stack playerName with the #surname accessor to
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access the surname field, which is nested three levels deep in
the game record.

let heroName = { firstName: "Mighty",
surname: "Hero"};

let player = { name: heroName,
level: 6,
health: 100 };

let game = { player: player,
enemies: [] };

let playerName = stack #player #name;
let playerSurname = stack playerName #surname;

get playerSurname game
// "Hero"

As a side-note, stacking is associative, meaning that it
does not matter how stack operations are grouped. This
means that playerSurname and playerSurname’, defined
below, are exactly the same, and stacking can be done either
from inner to outer fields or vice-versa.

let playerSurname = stack #player (stack #name #surname);
let playerSurname' = stack (stack #player #name) #surname;

Joining Joined accessors operate on different fields of
the same record. The field values are treated as tuples, both
for setting new values and for getting the current field values.
Below is a simple example of accessing the fields level and
health in a record using a joined accessor.

get #(#level, #health) player
// (6, 100)

set #(#level, #health) (7, 80) player
// {name: "Hero", level: 7, health: 80}

When setting, joined accessors are “applied” from left to
right. This means that, if multiple components of the accessor
refer to the same field, the last component is used.

set #(#level, #level) (6, 7) player
// {name: "Hero", level: 7, health: 100}

When updating a record, joined accessors provide the
same functionality as the update syntax in Elm and Haskell,
allowing multiple updates to be performed simultaneously.

Distorting It is possible to distort accessors, defining
getter and modifier functions to be applied on the current
field value. These functions allow a field to “store” a value
in a different format (or even type) than the one used when
operating on it through accessors.

The modifier function receives two parameters: the value
provided by the caller of the accessor and the old value stored
in the field. The function can then use both values to generate
a new value to be stored.

Distorting is most useful when the value in a field rep-
resents structured data that is not a record, such as list or a

bitmask. By defining a function to destructure the data (the
getter function) and a function to reconstruct the data (the
modifier function), it is possible to create an accessor to
manipulate only a specific portion of this data.

As an example, the code below allows editing the first
enemy of a game. The getter function is defined as taking
the head (first element) of the list. This means that, when
using the get function with the distorted accessor, only the
first enemy of the list will be retrieved.

The modifier function is defined in terms of the existing
list of enemies and the new enemy being provided (enemy’).
Since the accessor is supposed to replace the first enemy of
the list, it first removes the first element of the existing enemy
list (tail enemies), and then adds the new enemy to the
front of this list. This makes it so that, when using the set
function with a single enemy, it can be transformed into the
correct list of enemies to be stored in the enemies field.

let enemy = { stamina: 20,
health: 40};

let game = { player: player,
enemies: [enemy]};

let getter enemies = head enemies;

let modifier enemy' enemies = enemy' :: (tail enemies);

let firstEnemy = distort #enemies
getter
modifier;

get firstEnemy game
// { stamina: 20, health: 40 }

Another use for distortion is to allow a different view of
the data in a field, such as transforming a number into a string.
In these cases, usually the stored value is not necessary to
generate a new value (i.e the new value is generated purely
based on the provided value), and so the second parameter
of the modifier function is ignored. As an example, the
accessor below shows health as a string, by using the built-in
parseInt and printInt functions.

let getter h = printInt h;

let modifier h _ = parseInt h;

let healthString = distort #health
getter
modifier;

get healthString player
// "100"

Modify In addition to the base set function, a built-in
modify function is also available. This function, instead of
taking a value to be inserted into the record, takes a function
to modify the existing value in the field. Using it, it is possible
to specify a new value for a field taking into account the
current value, such as in the following case:
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let player' = modify #level
(\x -> x + 1)
player;

// player' = { name: "Hero",
// level: 7,
// health: 100 };

Infix Operators Although the functions and expressions
shown above provide all the functionality needed to manip-
ulate records and accessors, using prefixed functions is not
ideal. For this reason, infix versions of each expression are
provided, aiming at a simpler and easier to understand syntax.
The following table presents the current infix syntax for the
operations responsible for manipulating accessors.

Prefix Infix
get #field record record .ˆ #field

set #field v record record & #field ˆ= v

modify #field f record record & #field ˆ˜ f

stack #outer #inner #outer :. #inner

distort #field f g #field ˜. (f, g)

In the code above, the & operator allows inverse application
(i.e x & f is equivalent to f x). This allows composing multiple
setting or modifying operations on the same record, as the
example below shows:

let player' = player
& #level ˆ= 8
& #health ˆ˜ (\x -> x + 30);

// player' = { name: "Hero",
// level: 8,
// health: 130}

This allows much cleaner code when using multiple ac-
cessors on a single record, removing the necessity of creating
intermediate bindings for every accessor used.

Another positive aspect is the flexibility obtained by al-
lowing arbitrary functions to manipulate accessors. As an
example, below are functions to increase the level field by
one and set the health field to 100:

let increaseLevel = #level ˆ˜ (\x -> x + 1);

let restoreHealth = #health ˆ= 100;

These functions can then be joined by using simple func-
tion composition (. operator), allowing the creation of com-
posable operations easily.

let levelUp = increaseLevel . restoreHealth;

let r = { health: 20,
level: 6 };

levelUp r
// { health: 100,
// level: 7 }

Maintaining the thematic of a game, Figure 1 presents a
more complete code example. A game state with one player
and multiple enemies is defined, together with functions to
update it. A few helper functions are defined to allow easier
manipulation of individual players and enemies, decreasing
either their stamina or their health. These functions are then
used to compose the final game manipulations: the player
attacking either all enemies or a single enemy. As shown in
the comments, the functions that implement record types do
not define specific record types as arguments. Instead, they
require that the records have at least a specific set of fields.
This is represented in the comments by adding ellipsis (...)
to the end of the record type, as in {health:Int,...}.

4. Types and Traits
This section introduces the types and traits available in V.

Types A fragment of the type language is shown below:

T ::= Int
| Bool
| (T1, . . . Tn) (n≥ 2)
| T1→ T2
| {l1 : T1, . . . ln : Tn} (n≥ 1)
| T1#T2 Accessor
| . . .

l, l1, l2, . . . ∈ Label

Types include integers, booleans, tuples, functions, and
record types, as they are usually presented in other functional
languages. The set Label consists of a countable collection of
field names for records. V introduces accessor types T1#T2,
where T1 is a record type and T2 is the type of the field being
accessed. This allows us to define the type signature of the
get and set function as follows:

1. get :: T1#T2→ T1→ T2

2. set :: T1#T2→ T2→ (T1→ T1)

For the sake of readability, the fragment above does not
include several primitive types. One important omission, type
variables, will be addressed in Section 5.4.

Traits The term trait was first introduced by [8] to denote
a parent object to which an object may delegate some of
its behavior. Since then, the term has been used to describe
systems of delegating and defining behavior by many different
languages, such as Squeak/SmallTalk[9] and Scala[6]. Other
languages have different names for similar tools, such as
interfaces in Java[10] and protocols in Swift. Most instances
of traits occur in object-oriented languages, but Type Classes
are a Haskell system that also defines specific behavior for
types[11][12].

In this article, traits are used to support ad-hoc polymor-
phism (or overloading). A trait defines one or more behavior
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let player = { health: 100,
level: 6,
name: "Hero",
stamina: 40 };

let enemies = [ { health: 20, stamina: 10 },
{ health: 30, stamina: 10 } ];

let game = { player: player,
enemies: enemies };

// This function takes any accessor that points to a field of type Int
// taking advantage of accessors being first-class expressions
// reduce :: X#Int -> Int -> (X -> X)
let reduce accessor byAmount =
accessor ˆ˜ (\x -> x - byAmount);

// damageBy :: Int -> (X -> X)
// X = { health: Int, ... }
let damageBy = reduce #health;

// staminaDrain :: Int -> (X -> X)
// X = { stamina: Int, ... }
let staminaDrain = reduce #stamina;

// Drains the stamina of an attacker and reduces the health of an attacked entity
// Both attacker and attacked can be players or enemies
// attack :: (X, Y) -> (X, Y)
// X = { stamina: Int, ... }, Y = { health: Int, ... }
let attack (attacker, attacked) =
(staminaDrain 10 attacker, damageBy 10 attacked);

// The player attacks all enemies in the game, draining all his stamina
// swipe :: X -> X
// X = { enemies: [{ health: Int, ... }], player: { stamina: Int, ... }}
let swipe game =
game & #enemies ˆ˜ map (damageBy 10)

& #player :. #stamina ˆ= 0;

// The player attacks one specific enemy
// lungeAt :: Int -> X -> X
// X = { enemies: { health: Int, ... }, player: { stamina: Int, ... }}
let lungeAt number game =
let getter ls = ls !! number;
let modifier enemy ls = setNth number enemy ls;
let accessor = #(#player, #enemies ˜. (getter, modifier));
game & accessor ˆ˜ attack;

Figure 1. A simple game in V.
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or characteristic (such as equality, comparison or accessing
fields in records), and is associated with a set of types. When
a type exhibits the behavior or characteristic defined by a trait
(and, therefore, is associated with it), it is said that the type
conforms to the trait, indicated by the ∈ symbol.

The formation of traits is presented by the following syn-
tax:

Trait ::= Equatable
| Orderable
| {l : T} (Record Label)

The traits Equatable and Orderable are used for equality
(= and 6=) and comparison (≥,>,<,≤) operations, respec-
tively. The other traits, named Record Label, specifies a single
name and associated type that a record type must have. Below
we present some of the rules that define the conforms relation
between types and traits. As an example, since integers can
be tested for equality, we have the following axiom.

Int ∈ Equatable

Composite types such as tuples and records conform
to Equatable if all of their component types conform to
Equatable, as the trait conformance rule for tuples, presented
below, shows.

∀i ∈ [1,n] . Ti ∈ Equatable
(T1, . . . Tn) ∈ Equatable

Functions, on the other hand, cannot be tested for equal-
ity. Therefore (T1→ T2) /∈ Equatable and there is no confor-
mance rule for Equatable regarding functional types.

Record types are the only types that can conform to Record
Label traits. Furthermore, the record must have a field with
the same name and type as the one defined in the trait. This
means that a record type with n fields automatically conforms
to n Record Label traits, one for every association between a
name and a type, as shown by the following rule.

∃ n ∈ [1,k] . ln = l ∧ Tn = T
{l1 : T1, . . . lk : Tk} ∈ {l : T}

To illustrate the use of traits and how they are deployed in
the language, below is the typing rule for the equality operator.
It specifies that the type T of the arguments must conform to
the Equatable trait.

Γ ` e1 : T Γ ` e2 : T T ∈ Equatable
Γ ` e1 = e2 : Bool

(T-=)

Traits and Accessors The polymorphism observed in ac-
cessors is due to their use of traits. Every basic accessor (that
is, an accessor for a single field) has a corresponding Record
Label trait. By checking trait conformance, a basic accessor

#l can be used with any record that conforms to a record label
trait (i.e has a field with the label l).

T2 ∈ {l : T1}
Γ ` #l : T2#T1

(T-ACCESSOR)

Traits have no structure in common, and there is no way to
compose traits. This means that, while traits may be used in V
to obtain a form of structural subtyping relationship between
records, there are subtle distinctions between the two systems.
We discuss one of the distinctions in Section 8.

5. The V Language

A reduced version of the V language is used is this article,
containing all the basic elements necessary to define and use
traits and records. This section presents aspects of the syn-
tax, operational semantics and type system of the reduced V
language. For information on the full language, see Section 8.

5.1 General Characteristics
V is a purely functional strict general purpose programming
language with strong inspirations from Haskell. It has a strong
and static type system, with support for parametric polymor-
phism through a Hindley-Milner style let-polymorphism[13];
and ad-hoc polymorphism, or overloading, through traits.
Complete type inference is supported for every expression,
although a few expressions allow explicit type annotations.

5.2 Syntax
Figure 2 shows the abstract syntax of the reduced V language.
The first few expressions are common to most functional pro-
gramming language. In order, we have integers and tuples;
then, identifiers and let binding with patterns, followed by
lambda abstraction (function), recursive function, function
application, and match expression; the error expression repre-
sents a run-time error or exception.These expressions have the
usual behavior, as seen in textbooks such as [13]. The builtin
meta-variable refers to any function that is directly built into
the language. This reduced language only has functions that
relate to records and accessors, while the full language defines
many more (such as arithmetic operators, comparisons, etc).
Every builtin function has a predefined arity, which represents
the number of arguments it takes to become fully evaluated.

Records and Accessors The expression {l1 : e1, . . . , ln :
en} denotes a record by explicitly presenting the association
between labels and expressions. There are two expressions
used to create accessors. The first, #l is the simple field
accessor, while the second, #(e1, . . . en) is used to create
joined accessors. The other kinds of accessors, stacked and
distorted, are created by using the builtin functions stack and
distort, respectively.
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e ::= n
| (e1, . . . en) (n≥ 2)
| x
| let p = e1 in e2
| fn x⇒ e
| rec f x⇒ e
| e1 e2
| match e with

match1, . . . ,matchn (n≥ 1)
| error
| builtin
| {l1 : e1, . . . ln : en} (n≥ 1)
| #l
| #(e1, . . . en) (n≥ 2)

x,x0,x1, . . . ∈ Ident (set of identifiers)

l, l1, l2, . . . ∈ Label (set of record labels)

match ::= p→ e
| p when e1→ e2

builtin ::= get (binary)
| set (ternary)
| stack (binary)
| distort (ternary)
| = (binary)

p ::= x
|
| n
| (p1, . . . pn) (n≥ 2)
| {l1 : p1, . . . ln : pn} (n≥ 1)
| {l1 : p1, . . . ln : pn, . . .}

(partial record,n≥ 1)

Figure 2. The V syntax.

Patterns Both match and let expressions use patterns,
which are denoted by the letter p in figure 2. The four first pat-
terns are straightforward: the first, x, is a pattern that always
succeeds and creates an identifier binding; the second, , al-
ways succeeds and creates no bindings; the third is an integer
pattern; and the fourth is the tuple pattern, which needs to be
matched recursively. The last two patterns, record and partial
record, are noteworthy. Both match record expressions, with
the distinction that the partial record pattern matches records
with at least the same fields as the pattern, while the record
pattern only matches records with exactly the same fields.

5.3 Operational Semantics
The operational semantics of V is specified by means of an
eager, big-step evaluation semantics with an evaluation en-
vironment and static scope. This environment is a mapping
from identifiers to values. Besides basic data values (numbers,
tuples and records), closures and accessors are also considered
values.

Environment and Values The definitions for environments
and values are depicted in Figure 3. We employ the notation
x to refer to an unordered collection of elements x. Since
V has static scope, closures 〈x,e,env〉 represent a function
fn x⇒ e under environment env, captured at the moment
of its evaluation. This environment is then used to evaluate
the function’s body when the function is applied. The value
〈〈builtin . v1, . . .vn 〉〉 represents partially applied built-in func-
tions. They are used when the arity of the function is greater
than 1, because application is performed one argument at a
time.

Paths are values to which accessor expressions evaluate.

env ::= x 7→ v

v ::= n
| (v1, . . . vn) (n≥ 2)
| {l1 : v1, . . . ln : vn} (n≥ 1)
| 〈x,e,env〉 (closure)
| 〈〈builtin . v1, . . .vn 〉〉

(n < arity of builtin)
| #path

path ::= l
| path . path
| (path1, . . . pathn) (n≥ 2)
| path [v1, v2]

Figure 3. Environment and Values

This is because accessors view records as trees and, therefore,
paths describe how to traverse these trees, from the outermost
structure towards the innermost fields. The basic accessor ex-
pressions #l and #(e1, . . . en) produce l and (path1, . . . pathn)
accessors, respectively. The built-in stack function evaluates
to path . path accessors. The distort function plays the
same role for the path [v1, v2] accessors, where v1 is the get-
ter distortion and v2 is the modifier distortion.

Evaluation Rules The judgement env ` e ⇓ v denotes that
the expression e evaluates to value v under environment env.
Below we present a few evaluation rules to give the reader a
sense of the semantics of the language. Section 8 contains a
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link to the complete list of evaluation rules.

The evaluation of functions is straightforward, producing
closures as the following rule shows.

env ` fn x⇒ e ⇓ 〈x,e,env〉 (BS-FN)

Records require all field expressions to be fully evaluated
in order to be considered values. If, at any point in the eval-
uation, an exception is encountered (error), then the whole
expression evaluates to error. The following rules present
record evaluation.

∀ k ∈ [1,n] env ` ek ⇓ vk

env ` {l1 : e1, . . . ln : en} ⇓ {l1 : v1, . . . ln : vn}
(BS-RECORD)

∃ k ∈ [1,n] env ` ek ⇓ error
env ` {l1 : e1, . . . ln : en} ⇓ error

(BS-RECORDERROR)

Pattern Matching A new identifier association is added to
the evaluation environment whenever a pattern x is matched
against a value. Pattern matching takes a pattern and a value
to match against, returning an environment if successful. As
was done for evaluation rules, only a few examples will be
given here, and the full list can be found in the link available
in Section 8.

Below is the matching rule for the simple x pattern.

match(x,v) = {x→ v}

If a match fails, it is represented by the negation of a
match.

¬ match(p,v)

In single-pattern expressions, such as let expressions, fail-
ing to match a pattern will result in a runtime exception and
will evaluate to error. In case expressions, every pattern is
matched, from left to right. When the first match succeeds,
the associated expression is evaluated. If all patterns fail, then
the whole case expression also evaluates to error.

env ` e1 ⇓ v match(p,v) = env1
env1∪ env ` e2 ⇓ v2

env ` let p = e1 in e2 ⇓ v2
(BS-LET)

env ` e1 ⇓ v ¬ match(p,v)
env ` let p = e1 in e2 ⇓ error

(BS-LETERROR)

Accessors As previously mentioned, accessors evaluate
to paths. To illustrate this, some of the rules for accessor
evaluation are presented as follows.

env ` #l ⇓ #l (BS-LABEL)

env ` e1 ⇓ 〈〈stack . #path1 〉〉 env ` e2 ⇓ #path2

env ` e1 e2 ⇓ #path1 . path2
(BS-STACKED)

∀ k ∈ [1,n] env ` ek ⇓ #pathk

env ` #(e1, . . . en) ⇓ #(path1, . . . pathn)
(BS-JOINED)

Get and Set Although most evaluation rules will be omitted
here for brevity, the rules for get and set deserve special
attention. Since these functions require multiple arguments,
their evaluation rules use partially applied built-in functions.

env ` e1 ⇓ 〈〈get . #path〉〉
env ` e2 ⇓ {l1 : v1, . . . ln : vn}

traverse(path,{l1 : v1, . . . ln : vn}) = v′,r′

env ` e1 e2 ⇓ v′
(BS-GET)

env ` e1 ⇓ 〈〈set . #path, v〉〉
env ` e2 ⇓ {l1 : v1, . . . ln : vn}

traverse(path,{l1 : v1, . . . ln : vn},v) = v′,r′

env ` e1 e2 ⇓ r′
(BS-SET)

These rules use a helper function, traverse, to evaluate
the result of applying the accessor to the record. The function
takes three arguments: a path, a record and an update value;
and returns two values: the value associated with the field
specified by the path; and an updated record. This updated
record uses the value provided as input to the function to
update the field specified by the path.

Traverse There are four cases for this function, one for each
path type: simple, stacked, joined and distorted.

Simple Path For simple paths, the function accesses
the field l specified by the path, creating a new record by
associating the same label to the input value.

1≤ k ≤ n
r = {l1 : v1, . . . lk : v, . . . ln : vn}

traverse(lk,{l1 : v1, ...ln : vn},v) = vk,r

Stacked Paths Stacked paths require three recursive
calls to the traverse function. The first call omits the update
value, and is used to extract a record rec associated with the
first component of the path. This record is then passed, along
with the second component of the path and the update value,
to the second call of traverse. Finally, the third call uses the
return rec′ of the second call to update the internal record,
returning a new updated outer record r′.

traverse(path1,{l1 : v1, ...ln : vn}) = rec,r
traverse(path2,rec,v) = v′,rec′

traverse(path1,{l1 : v1, ...ln : vn},rec′) = rec,r′

traverse(path1 . path2,{l1 : v1, ...ln : vn},v) = v′,r′
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Joined Paths Joined paths also require multiple calls
to traverse, but the exact number depends on the amount of
paths joined. Pairing the paths with the components of the
tuple provided as the update value, each pair is passed as input
to a call to traverse. This happens from left to right, and each
call returns a part of the old value and a partially updated
record. Every call uses the previous partially updated record,
and the last call to traverse returns the fully updated record.

path = (path1, . . . pathn) v = (v1, . . . vn)
r0 = {l1 : v1, ...ln : vn}

∀i ∈ [1, n] . traverse(pathi,ri−1,vi) = v′i,ri

traverse(path,{l1 : v1, ...ln : vn},v) = (v′1, . . . v′n),rn

Distorted Paths Distorted paths require two calls to
traverse, one before and one after applying the distortions.
First, the current value of the field is extracted. This value
is then passed to the first component (v1) of the accessor,
returning the distorted current value. Then, the new distorted
value v, along with the current value of the field, is passed
to the second component (v2) of the distorted accessor. This
value is then provided as the new update value for a call to
traverse, returning the updated record.

traverse(path,{l1 : v1, ...ln : vn}) = vold ,r
{} ` v2 v vold ⇓ v′ {} ` v1 vold ⇓ v′old

traverse(path,{l1 : v1, ...ln : vn},v′) = vold ,r
traverse(path [v1, v2],{l1 : v1, ...ln : vn},v) = v′old ,r

5.4 Type System
Most of the basic characteristics of the type system, such as
the available types, traits and their relationships, have already
been described in Section 4. This section will give more
specific characteristics of the system, such as the environment
and some typing rules.

V has a Hindley-Milner type inference system, which
means type annotations are not necessary to properly type
a term. With let-polymorphism, it also supports parametric
polymorphism. In other words, it allows functions to be
defined for all types (such as the identity function). With the
existence of traits, another type of polymorphism is allowed:
ad-hoc polymorphism. This kind of polymorphism allows
functions to accept some types (such as the equality function
or record accessor). As was explained in section 4, the same
system of traits creates the possibility of makeshift structural
subtyping.

Type Variables In section 4, a fragment of the syntax of
types was shown. However, a type needed for the type infer-
ence system was omitted: the type variable, used to represent
unknown types during the type inference algorithm. Each
type variable is associated with a set of traits which it must
satisfy, limiting the types which it can represent. If this set is
empty (or if the type variable is shown without any associated
traits), the type variable becomes universally quantified and
can be substituted for any type available in the language

T ::= · · ·
| XTrait

X ,X1,X2, . . . ∈ TypeVar (set of type variables)

Type Inference For the type inference system, V uses a
constraint-based approach, dividing the algorithm into three
parts: constraint collection, in which the abstract syntax tree
is traversed and both a type and a list of type equality con-
straints is generated; constraint unification, in which the list
of constraints is condensed into a type substitution; and sub-
stitution application, which applies the substitution to the type
to obtain a principle type. For the sake of clarity, only a brief
overview will be given for each part of the algorithm.

Constraint Collection The constraint collection stage
takes, as input, an expression e and a typing environment Γ,
and produces, as outputs, a type T and a set of constraints C.
Rules for constraint collection have the form

Γ ` e : T |C

The environment Γ used in constraint collection is a map-
ping between identifiers and type associations. The definition
of the environment, along with the two variations of type
associations, is given below.

Γ ::= x→ assoc

assoc ::= T (Simple Association)
| ∀X1, . . .Xn . T

(Universal Association)

Constraints are simply equations between two types. This
allows creating exact match between two types, as is necessary
when making sure the first term of an application is a function,
for example.

When it comes to trait conformance, however, exact
matching would not give the expect result. In order to adapt
the constraint system to allow the creation of these different
types of constraints, a slight workaround using type variables
is employed. By default, types in the V language do not carry
trait conformance information with them. The only exception
to this is type variables, each one having a declared set of traits
associated with it. By using this fact, it is possible to create
an equality constraint that only enforces trait requirements.

As an example, we present the constraint collection rule
for the equality function =. First, T1 and T2 are obtained as
the types of e1 and e2, respectively. The assertion

X{Equatable}is new

states the creation of a new type variable X associated with the
Equatable trait. Finally, two new constraints are generated:
the first guarantees that T1 is equal to T2; the second creates
an equality between T2 and X . Since X can represent any type
that conforms to the Equatable trait, this constraint will only
be satisfied if T2 is a type that conforms to Equatable.
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Γ ` e1 : T1 |C1 Γ ` e2 : T2 |C2 X{Equatable}
1 is new

Γ ` e1 = e2 : Bool |C1∪C2∪{T1 = T2;X{Equatable}
1 = T2}

(T-=)

To illustrate the constraints that accessors introduce, we
present below some of the constraint collection rules for ac-
cessors.

X1 is new X{{l:T1}}
2 is new

Γ ` #l : X{{l:T1}}
2 #X1 | {}

(T-LABEL)

X1 is new X2 is new X3 is new
Γ ` stack : X1#X2→ X2#X3→ X1#X3 | {}

(T-STACK)

X0 is new
∀ i ∈ [1,n] . Xi is new ∧ Γ ` ei : Ti |Ci

Γ ` #(e1, . . . en) : X0#(Xi, . . . Xn) |
n⋃

i=1

Ci∪{Ti = X0#Xi}

(T-JOINED)

The get and set built-in functions do not create con-
straints by themselves, as their constraint collection rules,
given below, show.

X1 is new X2 is new
Γ ` get : X2#X1→ X2→ X1 | {}

(T-GET)

X1 is new X2 is new
Γ ` set : X2#X1→ X1→ X2→ X2 | {}

(T-SET)

Unification Unification attempts to solve the set of
equalities defined by the constraints collected in the previ-
ous step. The algorithm takes, as input, a set of constraints C,
and produces a substitution σ as output. A substitution is a
mapping from variable types to types.

σ ::= {} | {X → T}∪σ

For most types, the unification process is straightforward:
if the types are the same, they are considered unified. If they
are composed types (such as tuples and records), constraints
between their components are added to the end of the con-
straint list, and they are considered unified. If the types do
not match, the unification process stops and the expression
is badly formed. When it comes to variable types, however,
unification is more complex. Since a variable type comes with
a set of traits associated with it, the conformance of the type
to which it is being equaled must be checked. This process
might create more constraints, and these must be added to
the end of the list. Every iteration of the unification process
might create more constraints but, since the types are reduced
at each step, the algorithm is guaranteed to terminate.

Application The last component of the type inference
algorithm is the application of a type substitution. This re-
places all variable types that are specified by the substitution,
resulting in a new instance of the input type. Application takes,
as input, a type T and a substitution σ , producing another type
T ′ as output. It is defined with rules of the form:

σ(T ) = T ′

5.5 Extended Language
As a way to facilitate actual programming in V , an extended
language (syntactic sugar) is defined on top of the basic terms
and expressions outlined previously. This language is then
used as the basis for the parser, and a translation algorithm is
used to generate the syntax tree for the core V language.

Some of the features that this extended language provides
are type aliases (renaming existing types to simplify type dec-
larations), multi-parameter functions with pattern matching
and multiple kinds of declarations. More details about what
expressions are available, along with the translation algorithm
from the extended to the core language, can be found in the
online documentation2.

6. Incorporating the accessor system in
other languages

We believe that the record system of V is interesting and
could be replicated in other pure functional languages. The
essential features that a language must have are parametric
polymorphism, some kind of ad-hoc polymorphism and a way
to declare records. Although V has records as anonymous
constructions, this is not a necessity to support V’s record
system. However, the language should allow distinct record
types to share the same field names.

As an example, let us look at how Haskell could go about
incorporating V’s record system. First, Haskell would need to
allow the creation of different record types with the same field.
This would be a necessity to allow the polymorphic behavior
seen in V’s accessors. Since the only reason Haskell does not
allow this currently is because of the generated getter func-
tions, implementing accessors would remove this restriction.

Another requirement for implementing accessors is creat-
ing the accessor functions themselves. One possible approach
is the one taken in [14], in which laziness and pattern match-
ing are used to allow both getting and setting the field of a
record in a single function.

Finally, accessors must be generated automatically and be
usable by multiple records. This can be done by generating
a type class for every field in any declared record. By using
pattern matching, multi-parameter type classes and functional
dependency, these type classes are simple and easy to generate.
In the example below, we show that the compiler would need
to generate for creating an accessor for the field code in the

2https://github.com/AvatarHurden/V-Documentation
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Record type (the same would need to be done for the age
field).

Any new record types that are declared with the same field
name (i.e code) would only require a new instance declara-
tion, since the type class CodeLabel is already declared. If
desirable, it would be possible to allow the programmer to
create custom instances of the generated type classes, granting
them the ability to use accessors on data distinct from records.

Finally, implementing all accessor related functions is
easy in Haskell. As an example, below would be the basic
implementations for get and set, and other functions could
be implemented just as easily.

7. Related Work
There are a few proposals to improve record manipulation in
Haskell. The most well-known of these is the Lenses library,
which provides easily composable functions to access and
modify fields of records. Another proposal is the Record
Access approach [14]. These approaches provide most of the
same functionalities of V’s accessors, but they are still built
upon the limitations imposed by the Haskell language.

MLSub [15] supports structural subtyping for record types.
Structural subtyping and V’s traits achieve the same results
when it comes to records, and our option for traits was due to
its simplicity when compared to subtyping.

Elm Records are extensible by default. This means that
functions that receive records only ever care about the fields
they specify and will always accept records with extra fields.

Furthermore, Elm allows creating type aliases for “partial
records”, i.e. records with at least the specified fields. This is
interesting, because it allows a clean composition for specify-
ing the fields that a parameter must have (or simply to specify
the type of a value).

Even though Haskell is not ideal with nested records, Elm
does not to seem to be much better in this regard, as seen
in Section 2. The update syntax does not allow arbitrary
expressions in the “source” record, only simple variables.
This means that, when updating subfields, it is necessary to
create a new variable for every level of the hierarchy.

V accessors are inspired by the more general concept of
views in databases. As far as we know, the first reference to
views as a way to view one type as another was made by [16].
In that paper, the author introduces a mechanism to create
an abstract type that, when used, is converted to a real type.
This mechanism is comparable to the “distort” function on V
accessors, allowing a field value to be viewed as a different
value. Both mechanisms use a pair of functions to convert
from one value to the other. In the case of Wadler, however,
the type defined by the view is abstract, and any use of a value
of that type is automatically converted to a value of the real
type.

Bidirectional programming [17][18] works with the same
principles as V accessors, allowing secure manipulating of
the internal structure of data. The data and possible manipula-
tions are limited to database records [19] and textual data [20].

Given the limited scope of the types a value can take, it is
possible to design accessor manipulators that always maintain
certain properties, such as complete bijection of every manipu-
lation. In a general-purpose programming language, however,
these properties are harder, if not impossible, to guarantee.
With the “distort” accessor manipulator, for example, it would
be necessary to determine that two arbitrary functions are in-
verses of each other. V limits itself to guaranteeing the correct
type for these functions, passing the responsibility of creating
inverse functions to the programmer.

8. Current Status and Future Work
The complete language and documentation can be found in
the following repositories.

https://github.com/AvatarHurden/V
https://github.com/AvatarHurden/V-Documentation

V is still under development. We believe that there is still
room for improvements in the syntax adopted for stacking,
distorting, getting, setting, and updating. Some option to be
considered are: dot-syntax for accessing fields of a record;
do-style notation for editing multiple fields; and left-arrow
(←) notation for setting field values.

Currently, the language has no support for IO of any kind.
Different approaches are being investigated to add input and
output while still maintaining the purity of the language. The
current Haskell approach of using an IO Monad is a good
candidate.

As already mentioned before, our choice of traits to allow
polymorphic accessors was due to our desire to keep things
as simple as possible when focusing on records. While traits
allow some form of ad-hoc subtyping, they are not a com-
plete replacement for actual structural subtyping and all the
flexibility it provides.

With structural subtyping, the following function, for in-
stance, could be defined and applied to lists of records of
different record types (as long as these record types have a
lowest common record type).

let extractNames ls =
map (get #name) ls

With the current system of traits, however, it is impossible
to create such a list. This is because different record types are
not connected in any way, and a list requires that the type of
every element be the same.

If the language had subtyping relations, it would be possi-
ble to find a lowest common type between every record type,
thus allowing the creation of lists with distinct types for every
element.

Author contributions
Arthur Vedana has contributed with the original conception
of the language V, including the idea of a new approach for
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record manipulation with extensible accessors and the adop-
tion of polymorphism based on traits, along with the imple-
mentation of its interpreter.

The design and implementation of the language evolved
into a graduation project advised by Rodrigo Machado and
Alvaro Moreira. Besides contributing to the design of the
language, they helped to improve the writing and presentation
of this text.
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