

Evento	Salão UFRGS 2020: FEIRA DE INOVAÇÃO TECNOLÓGICA DA
	UFRGS - FINOVA
Ano	2020
Local	Virtual
Título	CosmicPampa: Um detector de raios cósmicos com hardware
	e software abertos
Autores	VICTOR FERNANDES GANDARA
	BRUNO THOMAZI ZANETTE
	LEONARDO KRAMER PEZZIN
	RAFAEL PERETTI PEZZI
	JAN LUC SANTOS TAVARES
Orientador	GUSTAVO GIL DA SILVEIRA

PROGRAMA DE BOLSAS DE INICIAÇÃO TECNOLÓGICA DA UFRGS

RESUMO

TÍTULO DO PROJETO: CosmicPampa: Um detector de raios cósmicos com

hardware e software abertos Aluno: Víctor Fernandes Gandara Orientador: Gustavo Gil da Silveira

RESUMO DAS ATIVIDADES DESENVOLVIDAS PELO BOLSISTA

O CosmicPampa é um detector de raios cósmicos através da medicão do Efeito Cherenkov gerado pelos seus subprodutos ao interagirem com o meio. O Efeito gera um cone de luz azulada de baixíssima intensidade que podemos medir usando uma fotomultiplicadora (PMT). Como um dos meios em que o efeito pode ocorrer é a água, montamos um barril metálico onde a mesma fica armazenada. Em sua extremidade superior colocamos a fotomultiplicadora para que possamos medir a emissão de luz decorrente do Efeito assim que ele ocorra na água. Meu trabalho, então, deu-se início com a caracterização desta PMT, onde testamos sua resposta por meio de LEDs de baixa intensidade acoplados a um gerador de funções para, acompanharmos resposta da **PMT** em osciloscópio. assim, a um Paralelamente, foi-se projetando também o abrigo onde a PMT seria montada de face à água, visando a vedação contra gualguer fonte de luz externa e a existência de local apropriado à sua eletrônica. Com a impossibilidade da continuação do uso do laboratório devido à pandemia de COVID-19, houve a reformulação do trabalho. Com isto, deu-se início ao desenvolvimento da eletrônica que irá conectar a PMT a diversos outros sensores ambientais e realizar seu envio para um web-server através de um sinal Wi-fi. O planejamento da implementação do firmware desta eletrônica foi feito através do Git para manter o controle de versões do desenvolvimento de software. Como estamos utilizando um NodeMCU para o controle dos sensores e envio ao web-server. optamos por utilizar C++ como linguagem de programação. Com ele, estamos criando classes que englobam áreas da eletrônica e comunicação com o web-server, trazendo assim modularidade e trabalhando com conceitos de eletrônica embarcada que são utilizadas dentro da indústria. Atualmente, o projeto se encontra no desenvolvimento destas classes e dos algoritmos que serão utilizados pelo firmware.