

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Estudo da síntese de perovskitas a partir de líquidos iônicos
	como precursores e agentes de estabilização
Autor	LUIS HENRIQUE RICARDO DE ALMEIDA
Orientador	JACKSON DAMIANI SCHOLTEN

Estudo da síntese de perovskitas a partir de líquidos iônicos como precursores e agentes de estabilização

Luis R. Almeida e Jackson Damiani Scholten

Laboratório de Catálise Molecular, Instituto de Química, UFRGS.

O titanato de zinco (ZnTiO₃) é uma perovskita de estrutura cúbica ABO₃, sendo um composto não-tóxico e de baixo custo que pode ser aplicado em fotocatálise. Neste trabalho, os líquidos iônicos (LIs) BMI.ZnCl₃ e BMI.TiCl₅ (BMI = 1-n-butil-3metilimidazólio) foram utilizados como precursores na preparação do material híbrido ZnTiO₃-LI. Inicialmente, fez-se a reação entre BMI.Cl e ZnCl₂ (80 °C, 1 h) para formar o LI BMI.ZnCl₃ e em seguida adicionou-se TiCl₄ (80 °C, 1 h) para gerar o LI BMI.TiCl₅. Após a hidrólise em meio básico (NaOH 10 M, 80 °C, 20 h), o sólido formado foi isolado através de lavagens, centrifugação e seco sob vácuo. O material foi separado em duas amostras, onde uma delas foi submetida à um processo de calcinação (800 °C, 5 h). As amostras ZnTiO₃-LI e calcinada, foram caracterizadas por infravermelho (IV), ultravioleta-visível (UV-Vis) e análise termogravimétrica (TGA). Os resultados de IV mostraram as bandas da ligação M-O (M = Zn, Ti) em 501-509 e 516-530 cm⁻¹ para os materiais, sendo que na amostra híbrida aparece também a banda em 1634 cm⁻¹ referente à ligação C=C ou C=N do LI BMI.Cl remanescente e a banda em 3000-3500 cm⁻¹ de OH devido à água adsorvida. A amostra calcinada não apresentou os sinais relativos ao LI, sugerindo que o LI foi removido do material. Os valores de band gap dos materiais foram avaliados através de UV-Vis, onde se obteve 3,7 eV e 3,36 eV para o material ZnTiO₃-LI e calcinado, respectivamente. Por TGA, o composto ZnTiO₃-LI mostrou uma perda de massa de 13%, indicando ser esta a quantidade de LI na perovskita. Este resultado está de acordo com a perda de massa de 15% observada na amostra calcinada. Os materiais serão caracterizados para avaliar a morfologia, cristalinidade e composição superficial, e serão testados como catalisadores em sistemas fotocatalíticos.