

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Mecânica Quântica Quatérnica Unidimensional
Autor	SEBASTIAO NELSON DE ARAUJO MARTINS FILHO
Orientador	SERGIO AUGUSTO GIARDINO FILHO

MECÂNICA QUÂNTICA QUATÉRNICA UNIDIMENSIONAL

Universidade Federal do Rio Grande do Sul – S.I.C. 2020

Área: Física Matemática.

Orientador: Sergio Giardino.

Bolsista: Sebastião Nelson de Araújo Martins Filho.

Justificativa: A Mecânica Quântica tradicional que comumente é estudada, faz uso de funções de ondas complexas n - dimensionais para descrever os estados das partículas. Sabe-se, da teoria das álgebras de composição, que os números quaterniônicos possuem uma estrutura algébrico - vetorial que consegue generalizar os números complexos. Por este raciocínio, descrever sistemas quânticos utilizando funções de ondas quaterniônicas, pode nos dar um estudo mais completo sobre como funciona o mundo atômico e subatômico, podendo assim generalizar a mecânica quântica hoje conhecida. Objetivos: Resolver o problema do poço quadrado infinito (o caso da partícula livre) utilizando funções de ondas quatérnicas e um espaço de hilbert real para imergir os operadores lineares quânticos. Num primeiro momento, matematicamente demos ênfase no caso unidimensional e independente do tempo da Equação de Schrodinger. Metodologia: Começamos por um estudo satisfatoriamente completo sobre números complexos e números quaterniônicos, nos baseando em diferentes bibliografias. Após isso, estudamos a solução complexa para o caso da partícula livre, utilizando como base os autores Keith Hannabuss e David Griffiths. Finalmente, analisamos como se comporta uma solução quatérnica para esse problema tão conhecido em mecânica quântica, tendo como referência importantes artigos científicos já publicados sobre o assunto. Resultados: O problema foi resolvido utilizando uma função de onda análoga à forma polar - simplética de um quatérnio. Além disso, comparando com o caso complexo, a condição de contorno relacionada com a função teve de ser alterada para não se produzir uma solução trivial. Este último fato também nos mostrou que os níveis energéticos da partícula não possuem o mesmo formato nas duas descrições matemáticas aqui em questão. Finalmente, a esperança matemática das grandezas físicas também pôde ser desenvolvida em uma fórmula fechada, mas com algumas diferenças quando novamente comparada aos valores esperados no caso complexo.