

Arterial blood gases in the differential diagnosis of hypoxemia

José Alberto Neder¹, Danilo Cortozi Berton², Denis E. O'Donnell¹

BACKGROUND

Investigation of hypoxemia (low PaO₂) invariably benefits from a structured physiological approach based on a careful interpretation of arterial blood gas (ABG) analysis. Determining the underlying mechanism(s) might be particularly challenging when there are multiple potential causes changing over time, either spontaneously or secondary to treatment.

OVERVIEW

A 71 year-old woman with severe COPD (Figure 1A), GOLD classification B, and modified Medical Research Council scale score 2, presented to the emergency department with worsening dyspnea, productive cough, and abdominal pain. She was confused, lethargic, and hypoxemic (SpO₂ = 88% on room air), and presented with mild leukocytosis (12.6 x 10^3 cells/µL). Inhaled short-acting bronchodilators were optimized, and O₂ was administered by nasal cannula (2 L/min). Owing to an unremarkable chest X-ray in the supine position (as per the current pandemic precautions) plus a widened alveolar-arterial O₂ pressure gradient [P(A-a)O₂]—Figure 1B—a CT pulmonary angiogram was requested. Despite the absence of pulmonary embolism, an extensive retrocardiac consolidation was observed (Figure 1C). After 7 days of antibiotic therapy, she was discharged on O_2 at 1 L/ min aiming at a SpO₂ \approx 90-91%. Twenty days later, she returned to the emergency department presenting again with confusion and somnolence; however, her SpO₂ was 99%, O₂ flow was at 4 L/min, and ABG analysis revealed respiratory acidosis with improved $P(A-a)O_2$ (Figure 1D). After 3 days on noninvasive ventilation plus O₂ at 1 L/ min, she was discharged after marked improvement in respiratory acidosis and neurological status.

If PaO₂ is substantially lower than alveolar O₂ tension (PAO₂)—i.e., widened P(A-a)O₂—there are a number of disorders of the lung structure reducing the efficiency of O₂ transfer, e.g., diffusion, limitation across the alveolarcapillary membrane (rarely), ventilation-perfusion (V/Q) mismatch, or shunt. In these circumstances, PaCO₂ is usually low. Conversely, if PaO₂ is reduced in tandem with PAO₂ (i.e., normal P(A-a)O₂), PAO₂ is low due to reduced inspired PO₂ (e.g. altitude) and/or alveolar CO₂ tension is increased, suggesting respiratory depression (alveolar hypoventilation).^(1,2) The high P(A-a)O₂ in the first ABG analysis (Figure 1B) was secondary to a common cause of V/Q mismatch: an infectious pneumonic consolidation⁽³⁾

A	Pre-BD	%predicted	Post-BD	%predicted	Flow s (L/s) 6 Blue = Pre-BD Red = Post-BD
FVC	1.12	40	1.56	56	4
FEV ₁	0.65	30	0.73	33	
FEV ₁ /FVC	0.58		0.47		² 4- Volume (L)
B	1 nd ED Visit	0			D 2 nd ED Visit
рН	7.48			pt)	7.35
PaCO ₂ (mmHg)	44.4	t			72.5
HCO ₃ (mmol/L)	32.9		172	and the	39.7
PaO ₂ (mmHg)	73.5	1253	-40	12. 19.	124.0
SaO ₂ (%)	95.7	13	+	14 1 X X	98.9
O ₂ flow (L/min)	2		Des	- /	4
P(A-a)O ₂ (mmHg)	67.4		- A -		27.1

Figure 1. Baseline spirometry (in A) of a 71-year-old woman with a previous diagnosis of COPD who presented at the emergency department with worsening dyspnea and hypoxemia (baseline blood gas analysis in B). A CT pulmonary angiogram revealed pneumonia in the left lower lobe (Figure 1C), which explained an increased alveolar-arterial O, pressure gradient (expected value, $2.5 + [0.21 \times age] = 17.4 \text{ mmHg}$). A few days after the resolution of pneumonia, a second arterial blood gas analysis showed lower alveolar-arterial O, pressure gradient and hypercapnia, as well as respiratory acidosis induced by the currently excessive high offer of O_2 at 4 L/min (in D). BD: bronchodilator; ED: emergency department; HCO₃: bicarbonate; and P(A-a)O₂: alveolar-arterial O₂ pressure gradient.

2. Unidade de Fisiologia Pulmonar, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre (RS) Brasil.

^{1.} Pulmonary Function Laboratory and Respiratory Investigation Unit, Division of Respirology, Kingston Health Science Center & Queen's University, Kingston, ON, Canada.

(Figure 1C); in fact, the patient's hypoxemia responded well to a relatively low FiO_2 , which is not consistent with shunt. ABG analysis also revealed increased bicarbonate levels: when a patient with chronic hypercapnia and showing compensatory bicarbonate accumulation is exposed to a source of a high ventilatory drive (e.g. hypoxemia), PaCO₂ may drop down to the normal range; thus, metabolic alkalosis may emerge (Figure 1B).⁽¹⁾ The second ABG analysis showed a different scenario (Figure 1D): at that point in time, the extra source of V/Q mismatch was no longer present, i.e., pneumonia had been resolved. Consequentially, excessively high inspired O₂ flows for the improved $P(A-a)O_2$ increased

 $\rm O_2$ tension in the alveoli, causing low level of ventilation and inhibiting hypoxic pulmonary vasoconstriction, a well-known cause of hypercapnia (Figure 1D). $^{(4,5)}$

CLINICAL MESSAGE

Interpretation of ABG analysis in a hypoxemic patient should consider the clinical history, ongoing treatment, and recent/current inspired O_2 flows. The information provided by P(A-a) O_2 should be considered in association with PaCO₂ (and pH). A normal P(A-a) O_2 in the presence of hypoxemia signals reduced ambient oxygen or alveolar hypoventilation, shown by elevated PaCO₂.

REFERENCES

- Williams AJ. ABC of oxygen: assessing and interpreting arterial blood gases and acid-base balance. BMJ. 1998;317(7167):1213-1216. https://doi.org/10.1136/bmj.317.7167.1213
- Wagner PD. The physiological basis of pulmonary gas exchange: implications for clinical interpretation of arterial blood gases. Eur Respir J. 2015;45(1):227-243. https://doi.org/10.1183/09031936.00039214
- Theodore AC. Measures of oxygenation and mechanisms of hypoxemia. In: UpToDate. Parsons PE, Finlay G, editors. Waltam MA; 2017 [cited 2020 Sep 15]. Available from: https://www.

uptodate.com/contents/measures-of-oxygenation-and-mechanisms-of-hypoxemia

- Abdo WF, Heunks LM. Oxygen-induced hypercapnia in COPD: myths and facts. Crit Care. 2012;16(5):323. https://doi.org/10.1186/cc11475
- Hanson CW 3rd, Marshall BE, Frasch HF, Marshall C. Causes of hypercarbia with oxygen therapy in patients with chronic obstructive pulmonary disease. Crit Care Med. 1996;24(1):23-28. https://doi. org/10.1097/00003246-199601000-00007