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1PGMAT, Departamento de Matemática, CCNE, Universidade Federal de Santa Maria, Av. Roraima 1000, 97105-900,
Santa Maria, RS, Brazil
2PPGMAp-IME, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91509-900, Porto Alegre, RS, Brazil
3Centro de Engenharias, CENG, Universidade Federal de Pelotas, Almirante Barroso, 1734, Pelotas, RS, 96010-280, Brazil

Correspondence should be addressed to Julio Claeyssen; jcrclaeyssen@yahoo.com

Received 22 July 2018; Accepted 16 September 2018; Published 18 October 2018

Academic Editor: Phuc Phung-Van

Copyright © 2018 Julio Claeyssen et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Vibration dynamics of elastic beams that are used in nanotechnology, such as atomic force microscope modeling and carbon
nanotubes, are considered in terms of a fundamental response within a matrix framework. The modeling equations with
piezoelectric and surface scale effects are written as amatrix differential equation subject to tip-sample general boundary conditions
and to compatibility conditions for the case of multispan beams. We considered a quadratic and a cubic eigenvalue problem related
to the inclusion of smart materials and surface effects. Simulations were performed for a two stepped beam with a piezoelectric
patch subject to pulse forcing terms. Results with Timoshenko models that include surface effects are presented for micro- and
nanoscale. It was observed that the effects are significant just in nanoscale. We also simulate the frequency effects of a double-
span beam in which one segment includes rotatory inertia and shear deformation and the other one neglects both phenomena.
The proposed analytical methodology can be useful in the design of micro- and nanoresonator structures that involve deformable
flexural models for detecting and imaging of physical and biochemical quantities.

1. Introduction

Atomic force microscopy (AFM) is a scanning probe
microscopy (SPM) technique to obtain images of surface
topography at the atomic scale, in a noninvasive manner,
from a wide variety of samples on a scale from angstroms to
100 microns [1]. A typical AFM consists of a microcantilever
with a sharp tip, a sample positioning system, a detection
system, and a control system. The associated length scales
are sufficiently small to call the applicability of classical
continuum models into question [2]. In this work, we seek
to develop a vibration dynamics framework for beams that
include smart materials and subject to surface effects. This
framework is also considered in the case of a two-span beam
in which the first segment is governed by the Timoshenko
model and the second segment is an Euler-Bernoulli beam
model [3].

Recently, new generations of active microcantilevers
have included piezoelectric materials locally attached at

the microbeam with the role of sensors and/or actuators
linear and nonlinear [4–9], among others. This has led
to the study of multispan beams for AFM. The inclusion
of smart materials layers will modify material properties
between neighboring segments, producing discontinuities
and fulfilling compatibility conditions for the continuity of
the displacement and rotation of the beam and for the equi-
librium of bending moment and shear at the discontinuity
points.

Surface effects often play a significant role in the physical
properties of micro- and nanosized materials and structures.
Since the atoms within a very thin layer near surfaces experi-
ence a different local environment form that is experienced
by atoms in bulk, the physical properties and mechanical
response of surfaces will be distinct from those of bulk
materials. Contrary tomacroscopic structures, surface effects
can strongly influence the stress and deformation properties
of nanodevices. This latter is due to the increasing ratio
between surface/interface area and volume. For instance, for
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a bulk deformation energy 𝑈𝑏 ≈ 𝐸𝑑3 (𝐸 elastic stiffness)
and 𝑈𝑠 ≈ 𝛾𝑑2 (𝛾 surface energy per area), we shall have𝑈𝑠 > 𝑈𝑏 with distance 𝑑 < 𝛾/𝐸. In [10], it has been shown
that with a modified Timoshenko beam model the dynamics
of nanoscaled tubes with surface effects deviate considerably
from results obtained with classic theories.

In some models, considering effective properties (𝐷) of
nanosized beams when compared with standard continuum
mechanics (𝐷𝑐), the relative error (𝐷 −𝐷𝑐)/𝐷𝑐 scale is found
as 𝛼𝑆/𝐸𝑑, where 𝛼 is a geometrical constant depending upon
the nanobeam considered, 𝑆 is a surface elastic constant, 𝐸 is a
bulk elastic modulus, and 𝑑 is a length defining the size of the
structural element [11]. Here we shall consider free vibration
of a nanoscale continuum beam models which incorporates
surface energy [12–14]. The search for time exponential
solutions leads to a quadratic and cubic eigenvalue problems
associated with a second-order modal differential system and
a singular third-order differential system, respectively.

Simulations have been performed for triple span beams
with andwithout a patch in the first segment andwith loads in
the first and last segment with tip-sample interaction. These
loads included a uniform pulse load and its second derivative
associated with the moment due to a piezoelectric patch. It is
observed how the inclusion of piezoelectric materials absorbs
vibrations when compared with classical multispan beams.
Also, the robustness of the impulse response method with
varying parameters and its influence in the behavior of the
responses are observed.

The size dependence effects in Timoshenko microbeams
with surface effects (TMB) have been simulated for the
nondimensional natural frequency and compared with those
of the classical Timoshenko beam model (TB). It has been
observed that for beam length on the order of nanometer to
microns, the difference between natural frequencies is appar-
ent, and by increasing the length of themicrobeam, the results
tend to Timoshenko classical theory; that is, the surface
effects are significant only in nanoscale. This same behavior
was observed in [14] for a microbeam simply supported.

This work involves a methodology that may be ade-
quately adapted to study recent advances inmicro-/nanosized
structures that are intensively used to design advanced
micro-/nanosensors and molecular transportation systems
devices for various engineering and medical applications.
These sensors due to their ultrahigh resonant frequencies
are important in sensitive sensing, molecular transportation,
molecular separation, high-frequency signal processing, and
biological imaging. Some deposited processes in the for-
mation of thin-film composite membranes can be similar
to types of multispan vibrating beams. However, the com-
plex configuration of materials used in real world devices
requires the study of material properties stemming from
their atomically thin layered structures. Chemical deposited
processes in the manufacturing of thin films on semiconduc-
tors can involve low temperatures with silicon rich nitride.
Conventional structural analysismethods assume ideal struc-
tures (free of irregularities) but material and/or geometrical
variations in a structure may result in drastic changes in
its dynamical behaviors. Diffusion- and reaction-controlled

interfacial polymerization is an important and practical topic
that is beyond our scope [15–19].

This paper is organized as follows. In Section 2, we
consider the Euler-Bernoulli multispan beam model, their
compatibility conditions, and the boundary conditions in
a matrix form. In Section 3, the dynamic response of the
matrix Euler-Bernoulli multispan beammodel subject to tip-
sample interactions and external forcing is given in terms
of the distributed matrix impulse response. The case of a
microcantilever with a piezoelectric layer is discussed in
Section 4. In Section 5 are presented the results of a double-
span beam, obtained by the expansion of the first segment
of the triple piezoelectric beam. In Sections 6 and 7 is con-
sidered the eigenanalysis of Timoshenko beam models with
surface effects and their comparison with the Timoshenko
classical model, for micro- and nanoscale. In Section 8, we
consider the multispan Timoshenko beam model. AFM-
based nanoscale processing with continuum surrounding
media such as that found in biology and nanomachining
applications [20–22] suggests observing frequency effects
that arise with an academic two span beam model in which
one segment includes rotatory inertia and shear deformation
and the other one neglects both effects.

2. Flexural Vibrations Using the
Euler-Bernoulli Multispan Beam Model

We consider a multispan microcantilever of length 𝐿 com-
posed of 𝑁 segments in which the displacement V𝑗(𝑡, 𝑥) in
the segment 𝑥𝑗−1 ≤ 𝑥 ≤ 𝑥𝑗 is governed by the Euler-Bernoulli
model 𝑚𝑗

𝜕2V𝑗 (𝑡, 𝑥)𝜕𝑡2 + k𝑗
𝜕4V𝑗 (𝑡, 𝑥)𝜕𝑥4 = 𝑓𝑗 (𝑡, 𝑥) , (1)

where 𝑚𝑗 = 𝜌𝑗𝐴𝑗 is the mass per unit length, 𝐴𝑗 is the cross
section area, 𝜌𝑗 is the mass density, k𝑗 = 𝐸𝑗𝐼𝑗 is the flexural
stiffness, and 𝑓𝑗(𝑡, 𝑥) is the transverse dynamic load at the 𝑗−𝑡ℎ station, 𝑗 = 1 : 𝑁. Here 𝑥0 = 0 and 𝑋𝑁 = 𝐿.
2.1. Matrix Formulation. The stepped Euler-Bernoulli model
(1) can be written as a second-order differential equation

Mk̈ + Kk = F, (2)

with diagonal matrix coefficients

M = (M1 0
d0 M𝑁

),
K = EI

𝜕4𝜕𝑥4 = (EI1 0
d0 EI𝑁

) 𝜕4𝜕𝑥4 ,
(3)

where
M𝑗 = 𝜌𝑗𝐴𝑗,
EI𝑗 = 𝐸𝑗𝐼𝑗. (4)
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Here the displacement and the dynamic load v(𝑡, 𝑥) and
F(t, x), at the multispan beam, are given in vector form as

v (𝑡, 𝑥) = (V1 (𝑡, 𝑥)
V2 (𝑡, 𝑥)...
V𝑁 (𝑡, 𝑥)),

F = (𝑓1 (𝑡, 𝑥)𝑓2 (𝑡, 𝑥)...𝑓𝑁 (𝑡, 𝑥)).
(5)

2.2. Boundary and Internal Conditions for a Multispan Can-
tilever Beam. For a cantilever beam, the boundary conditions
can be written in a compact matrix form

B0v0 = 0,
B𝐿v𝐿 = 0, (6)

where

B0 = (1 0 0 00 1 0 0) ,
B𝐿 = (0 0 1 00 0 0 1) , (7)

v0 = ( V1 (𝑡, 0)
V󸀠1 (𝑡, 0)
V󸀠󸀠1 (𝑡, 0)
V󸀠󸀠󸀠1 (𝑡, 0)),

v𝐿 = (V𝑁 (𝑡, 𝐿)
V󸀠𝑁 (𝑡, 𝐿)
V󸀠󸀠𝑁 (𝑡, 𝐿)
V󸀠󸀠󸀠𝑁 (𝑡, 𝐿)).

(8)

At the points 𝑥𝑖, 𝑖 = 1, 2, . . . ,𝑁 − 1, located between two
consecutive segments, the compatibility conditions for the
displacement, slope, bending moment, and shear lead to the
compatibility matrix relationship

C1,𝑖v𝑖 (𝑡, 𝑥𝑖) = C2,𝑖v𝑖+1 (𝑡, 𝑥𝑖) , (9)

with

C1,𝑖 = (1 0 0 00 1 0 00 0 1 00 0 0 1) ,
C2,𝑖 = (1 0 0 00 1 0 00 0 𝛼𝑖 00 0 0 𝛼𝑖),
v𝑖 = ( V𝑖 (𝑡, 𝑥𝑖)

V󸀠𝑖 (𝑡, 𝑥𝑖)
V󸀠󸀠𝑖 (𝑡, 𝑥𝑖)
V󸀠󸀠󸀠𝑖 (𝑡, 𝑥𝑖)),

(10)

being 𝛼𝑖 = 𝐸𝐼𝑖+1/𝐸𝐼𝑖 for 𝑖 = 1, . . . , 𝑁 − 1.
3. Forced Vibrations

The dynamic response of a forced multispan Euler-Bernoulli
model Mk̈ + Kk = F given in (2), subject to homogeneous
boundary conditions, could be described in terms of the 𝑁×𝑁 diagonal matrix impulse response or initial-value Green
function h(𝑡, 𝑥, 𝜉) satisfying the initial-value problem
Mḧ (𝑡, 𝑥, 𝜉) + Kh (𝑡, 𝑥, 𝜉) = 0,0 < 𝑥 < 𝐿, 0 < 𝜉 < 𝐿, 𝑡 > 0,

h (0, 𝑥, 𝜉) = 0,
Mh𝑡 (0, 𝑥, 𝜉) = 𝛿 (𝑥 − 𝜉) I,

B0h0 = 0,
B𝐿h𝐿 = 0,

C1,𝑖h𝑖 (𝑡, 𝑥−𝑖 , 𝜉) = C2,𝑖h𝑖 (𝑡, 𝑥+𝑖 , 𝜉) ,
(11)

where I is the 𝑁 × 𝑁 identity matrix and C1,𝑖,C2,𝑖, hi are as
given in (10), by using the i-th diagonal component of h.

To work on the frequency domain, we need to introduce
transfer function H(𝑠, 𝑥, 𝜉) as being the Laplace transform
of h(𝑡, 𝑥, 𝜉) with respect to time (For inputs 𝑒𝜆𝑡𝐹(𝑥) we seek
outputs 𝑒𝜆𝑡𝑉(𝑥) where𝑉(𝑥) = H𝐹(𝑥) with H defined in (17)).
Thus(𝑠2M + K) H (𝑠, 𝑥, 𝜉) = 𝛿 (𝑥 − 𝜉) I, 0 < 𝑥, 𝜉 < 𝐿,

B0H0 = 0,
B𝐿H𝐿 = 0,

C1,𝑖H𝑖 (𝑡, 𝑥−𝑖 , 𝜉) = C2,𝑖H𝑖 (𝑡, 𝑥+𝑖 , 𝜉) .
(12)

It turns out that h(𝑡 − 𝜏, 𝑥, 𝜉) acts as an integrating factor
in Lagrange’s adjoint method for the forced equation (2).
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Multiplying (2) by h(𝑡 − 𝜏, 𝑥, 𝜉) and integrating by parts, we
obtain the dynamic response

v (𝑡, 𝑥) = ∫𝑡
0
∫𝐿
0

(h𝑡 (𝜏, 𝑥, 𝜉)Mv𝑜 (𝜉)+ h (𝜏, 𝑥, 𝜉)Mv1 (𝜉)) 𝑑𝜉𝑑𝜏 + ∫𝑡
0
∫𝐿
0

h (𝑡− 𝜏, 𝑥, 𝜉) F (𝜏, 𝜉) 𝑑𝜉𝑑𝜏,
(13)

where v𝑜(𝑥) = v(0, 𝑥) and v1(𝑥) = v𝑡(0, 𝑥) are given initial
conditions.

The procedure mentioned above is also related to the
Riemann function method for integrating partial differential
equations. Dynamic responses have been considered in the
field of control of distributed systems and in elastodynamics
in connection with vibrations and cracking problems [23–
26].

In practice, when computing the convolution integral,
which corresponds to the forced response v(𝑡, 𝑥), with null
initial values v(0, 𝑥) = 0, v𝑡(0, 𝑥) = 0, we actually have
v(𝑡, 𝑥) = vℎ(𝑡, 𝑥) + v𝑝(𝑡, 𝑥), where vℎ(𝑡, 𝑥) is a free vibration
introduced by the system, whose initial values are a priori
unknown, and v𝑝(𝑡, 𝑥) is a particular response.When v𝑝(𝑡, 𝑥)
can be determined by other means, then those initial values
can be supplied as vℎ(0, 𝑥) = −v𝑝(0, 𝑥) and (vℎ)𝑡(0, 𝑥) =−(v𝑝)𝑡(0, 𝑥) [27].Thus, the induced system free response, due
to a permanent response v𝑝(𝑡, 𝑥), is given by

vℎ (𝑡, 𝑥) = −∫𝐿
0

h (𝑡, 𝑥, 𝜉)Mv̇𝑝 (0, 𝜉) 𝑑𝜉
− ∫𝐿

0

𝜕h (𝑡, 𝑥, 𝜉)𝜕𝑡 Mv𝑝 (0, 𝜉) 𝑑𝜉. (14)

3.1. Frequency Response. Harmonic and piecewise linear
forcing are of interest in frequency analysis. When seeking a
response of the same type, the transfer function is introduced.
Given the harmonic input𝑓 (𝑡, 𝑥) = 𝑒𝑖𝜔𝑡V (𝑥) , (15)

we have the harmonic output response

v𝑝 (𝑡, 𝑥) = 𝑒𝑖𝜔𝑡H (𝑖𝜔) V (𝑥) , (16)

where

H (𝑖𝜔) V (𝑥) = ∫𝐿
0

H (𝑖𝜔, 𝑥, 𝜉) V (𝜉) 𝑑𝜉. (17)

In particular, for a concentrated force at a point 𝑥 = 𝑎, of
spatial amplitude v(𝑥) = V(𝑥)𝛿(𝑥−𝑎), we have the permanent
response

v𝑝 (𝑡, 𝑥) = 𝑒𝑖𝜔𝑡H (𝑖𝜔, 𝑥, 𝑎) V (𝑎) . (18)

With the initial values v𝑝(0, 𝜉) = H(𝑖𝜔, 𝜉, 𝑎)V(𝑎), v̇𝑝(0, 𝜉) =𝑖𝜔v𝑝(0, 𝜉), the induced free response is given by

vℎ (𝑡, 𝑥) = −∫𝐿
0
r (𝑡, 𝑥, 𝜉, 𝜔)MH (𝑖𝜔, 𝑎, 𝜉) V (𝑎) 𝑑𝜉, (19)

where

r = h𝑡 (𝑡, 𝑥, 𝜉) + 𝑖𝜔h (𝑡, 𝑥, 𝜉) . (20)

For a pulse amplitude

v (𝑥) = v𝑜 (𝑢 (𝑥 − 𝑎) − 𝑢 (𝑥 − 𝑏)) , (21)

where 𝑢(𝑥) is the unit step function, the permanent response
turns out

v𝑝 (𝑡, 𝑥) = 𝑒𝑖𝜔𝑡 ∫𝑏
𝑎

H (𝑖𝜔, 𝑥, 𝜉) v𝑜𝑑𝜉. (22)

As before, by substituting the initial values in (14), the
induced free response will now be

vℎ (𝑡, 𝑥) = −∫𝐿
0
r (𝑡, 𝑥, 𝜉, 𝜔)MH (𝑖𝜔, 𝑥, 𝜉) v (𝜉) 𝑑𝜉, (23)

with r given as in (20).

3.2. Closed Form of the Transfer Function for a Multispan
Cantilever Beam. The Green function of a multispan Euler-
Bernoulli can be determined by using an appropriate solution
basis in each segment. From (12), H(𝑠, 𝑥, 𝜉) is a diagonal
matrix, with entries 𝐻𝑗 that satisfy the differential equation𝑋(𝑖V) (𝑥) − 𝜀4𝑗𝑋(𝑥) = 𝛿 (𝑥 − 𝜉) , (24)

where

𝜀4𝑗 = −𝜌𝑗𝐴𝑗𝑠2𝐸𝑗𝐼𝑗 , 𝑗 = 1, 2, ⋅ ⋅ ⋅ ,𝑁. (25)

The functions {ℎ(𝑥− 𝑥𝑗−1), ℎ󸀠(𝑥 − 𝑥𝑗−1), ℎ󸀠󸀠(𝑥 − 𝑥𝑗−1), ℎ󸀠󸀠󸀠(𝑥 −𝑥𝑗−1)} constitute a solution basis of the equation 𝑋(𝑖V)(𝑥) −𝜀4𝑗𝑋(𝑥) = 0. Here
ℎ (𝑥) = sinh (𝜀𝑗𝑥) − sin (𝜀𝑗𝑥)2𝜀3𝑗 (26)
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is the solution of the initial-value problemℎ(𝑖V) (𝑥) − 𝜀4𝑗ℎ (𝑥) = 0,ℎ (0) = 0,ℎ󸀠 (0) = 0,ℎ󸀠󸀠 (0) = 0,ℎ󸀠󸀠󸀠 (0) = 1.
(27)

By denotingℎ0 (𝑥) = ℎ󸀠󸀠󸀠 (𝑥) = 12 (cosh 𝜀𝑗𝑥 + cos 𝜀𝑗𝑥) ,ℎ1 (𝑥) = ℎ󸀠󸀠 (𝑥) = 12𝜀 (sinh 𝜀𝑗𝑥 + sin 𝜀𝑗𝑥) ,ℎ2 (𝑥) = ℎ󸀠 (𝑥) = 12𝜀2𝑗 (cosh 𝜀𝑗𝑥 − cos 𝜀𝑗𝑥) ,
ℎ3 (𝑥) = ℎ (𝑥) = 12𝜀3𝑗 (sinh 𝜀𝑗𝑥 − sin 𝜀𝑗𝑥) ,

(28)

in each segment we have

H (𝑠, 𝑥, 𝜉) = (𝐻0 0 ⋅ ⋅ ⋅ 00 𝐻1 ⋅ ⋅ ⋅ 0... ... ... ...0 0 ⋅ ⋅ ⋅ 𝐻𝑁−1

), (29)

for 𝑗 = 0, .., 𝑁 − 1𝐻𝑗 (𝑠, 𝑥, 𝜉) = ℎ0 (𝑥 − 𝑥𝑗)𝐻 (𝑠, 𝑥𝑗, 𝜉)+ ℎ1 (𝑥 − 𝑥𝑗)𝐻𝑥 (𝑠, 𝑥𝑗, 𝜉)+ ℎ2 (𝑥 − 𝑥𝑗)𝐻𝑥𝑥 (𝑠, 𝑥𝑗, 𝜉)+ ℎ3 (𝑥 − 𝑥𝑗)𝐻𝑥𝑥𝑥 (𝑠, 𝑥𝑗, 𝜉)+ ℎ3 (𝑥 − 𝑥𝑗) 𝑢 (𝑥 − 𝜉) , 𝑥𝑗 ≤ 𝑥 ≤ 𝑥𝑗+1.
(30)

In order to determine H(𝑠, 𝑥, 𝜉), we need to find the initial-
value vectors

H = ( 𝐻(𝑠, 𝑥𝑗, 𝜉)𝐻𝑥 (𝑠, 𝑥𝑗, 𝜉)𝐻𝑥𝑥 (𝑠, 𝑥𝑗, 𝜉)𝐻𝑥𝑥𝑥 (𝑠, 𝑥𝑗, 𝜉)). (31)

By using the compatibility conditions

C1,𝑖H (𝑠, 𝑥−𝑗 , 𝜉) = C2,𝑖H (𝑠, 𝑥+𝑗 , 𝜉) ,𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 1, (32)

given similarly to (9), and by deriving (30) with respect to 𝑥.
The above process will be carried out for the case of a two

stepped cantilever beam with the intermediate discontinuity
point 𝑥1 = 𝑙1.

The boundary conditions and the initial values of ℎ(𝑥)
lead to a simplification of 𝐻 in the first and last segments.
We have two null initial values at 𝑥 = 0, and we can use
the boundary conditions at 𝑥 = 𝐿 as initial values, instead of
those at 𝑥𝑁−1. This is possible by changing the solution basis
at the last segment in (30) to the one generated by ℎ(𝐿 − 𝑥).

Thus, for 0 ≤ 𝜉 ≤ 𝐿𝐻 (𝑠, 𝑥, 𝜉) = ℎ2 (𝑥)𝐻𝑥𝑥 (𝑠, 0, 𝜉) + ℎ3 (𝑥)𝐻𝑥𝑥𝑥 (𝑠, 0, 𝜉)+ ℎ3 (𝑥 − 𝜉) 𝑢 (𝑥 − 𝜉) , 0 ≤ 𝑥 ≤ 𝑥1,𝐻 (𝑠, 𝑥, 𝜉) = ℎ0 (𝐿 − 𝑥)𝐻 (𝑠, 𝐿, 𝜉)+ ℎ1 (𝐿 − 𝑥)𝐻𝑥 (𝑠, 𝐿, 𝜉)+ ℎ3 (𝜉 − 𝑥) 𝑢 (𝜉 − 𝑥) , 𝑥1 ≤ 𝑥 ≤ 𝐿.
(33)

By applying the compatibility conditions𝐻(𝑠, 𝑙−1 , 𝜉) = 𝐻 (𝑠, 𝑙+1 , 𝜉) ,𝐻𝑥 (𝑠, 𝑙−1 , 𝜉) = 𝐻𝑥 (𝑠, 𝑙+1 , 𝜉) ,𝐸1𝐼1𝐻𝑥𝑥 (𝑠, 𝑙−1 , 𝜉) = 𝐸2𝐼2𝐻𝑥𝑥 (𝑠, 𝑙+1 , 𝜉) ,𝐸1𝐼1𝐻𝑥𝑥𝑥 (𝑠, 𝑙−1 , 𝜉) = 𝐸2𝐼2𝐻𝑥𝑥𝑥 (𝑠, 𝑙+1 , 𝜉) ,
(34)

we get the algebraic system

(((((((
(

ℎ2 (𝑙1) ℎ3 (𝑙1) − (ℎ0 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨𝑥=𝑙1 − (ℎ1 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨𝑥=𝑙1ℎ󸀠2 (𝑙1) ℎ󸀠3 (𝑙1) − (ℎ󸀠0 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1 − (ℎ󸀠1 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1ℎ󸀠󸀠2 (𝑙1) ℎ󸀠󸀠3 (𝑙1) −(𝐸2𝐼2𝐸1𝐼1ℎ󸀠󸀠0 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1 −(𝐸2𝐼2𝐸1𝐼1 ℎ󸀠󸀠1 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1ℎ󸀠󸀠󸀠2 (𝑙1) ℎ󸀠󸀠󸀠3 (𝑙1) − (𝐸2𝐼2𝐸1𝐼1 ℎ󸀠󸀠󸀠0 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1 −(𝐸2𝐼2𝐸1𝐼1ℎ󸀠󸀠󸀠1 (𝐿 − 𝑥))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1
)))))))
)

(𝐻󸀠󸀠 (𝑠, 0, 𝜉)𝐻󸀠󸀠󸀠 (𝑠, 0, 𝜉)𝐻 (𝑠, 𝐿, 𝜉)𝐻󸀠 (𝑠, 𝐿, 𝜉))
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= (((((((
(

ℎ(𝑙1 − 𝜉) 𝑢 (𝑙1 − 𝜉) − ℎ (𝑙1 − 𝜉) 𝑢 (𝑙1 − 𝜉)ℎ󸀠 (𝑙1 − 𝜉) 𝑢 (𝑙1 − 𝜉) − ℎ󸀠 (𝑙1 − 𝜉) 𝑢 (𝑙1 − 𝜉)𝐸2𝐼2𝐸1𝐼1 (ℎ󸀠󸀠 (𝜉 − 𝑥))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1 𝑢 (𝜉 − 𝑙1) − ℎ󸀠󸀠 (𝑙1 − 𝜉) 𝑢 (𝑙1 − 𝜉)𝐸2𝐼2𝐸1𝐼1 (ℎ󸀠󸀠󸀠 (𝜉 − 𝑥))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑙1 𝑢 (𝜉 − 𝑙1) − ℎ󸀠󸀠󸀠 (𝑙1 − 𝜉) 𝑢 (𝑙1 − 𝜉)
)))))))
)

,
(35)

for determining 𝐻𝑗(𝑠, 𝑥, 𝜉) from (30).

Remark. The case of axially loaded stepped beams has been
investigated in [28] with nonclassical conditions. There, the
Green functionwas obtained byworkingwith a solution basis
that considers hyperbolic and trigonometric functions in the
general solution. These functions depend upon simple roots
of a complete quadratic polynomial due to the inclusion of a
second derivative spatial term in (24). When the axial load is
removed, the solution basis reduces to the one considered for
particular cases of vibrating beams. We observe that through
a limit process the use of ℎ(𝑥), which involves a division by
root parameters, can also handle the case of repeated roots,
which is of interest in the static case or critical frequencies.

4. A Cantilever Beam with a Piezoelectric
Layer in AFM

Active microcantilever beams due to their structural flex-
ibility and sensitivity to atomic and molecular forces have
received increased attention in a variety of nanoscale sens-
ing and measuring applications, including atomic force
microscopy, thermal scanningmicroscopy, and biomass sens-
ing.

In [9], amicrocantilevermodelwas proposed for studying
atomic forcemicroscope. It was formulated as a three stepped
beam with a piezoelectric layer patch in the first segment
and the other two segments were simple beams with different
cross-sectional areas according to Figure 1(a).

The governing equations can be written as a system
of three second-order partial differential equations with
constant coefficients𝑚1

𝜕2𝑢1 (𝑡, 𝑥)𝜕𝑡2 + (𝐸𝐼)1 𝜕4𝑢1 (𝑡, 𝑥)𝜕𝑥4 = 𝜕2𝑀𝑝 (𝑡, 𝑥)𝜕𝑥2 ,0 ≤ 𝑥 ≤ 𝑙1,𝑚2

𝜕2𝑢2 (𝑡, 𝑥)𝜕𝑡2 + (𝐸𝐼)2 𝜕4𝑢2 (𝑡, 𝑥)𝜕𝑥4 = 0, 𝑙1 < 𝑥 ≤ 𝑙2,𝑚3

𝜕2𝑢3 (𝑡, 𝑥)𝜕𝑡2 + (𝐸𝐼)3 𝜕4𝑢3 (𝑡, 𝑥)𝜕𝑥4 = 0 𝑙2 < 𝑥 ≤ 𝐿,
(36)

subject to cantilever boundary conditions (7) and compati-
bility conditions (9) at the discontinuity points 𝑥1, 𝑥2. The

parameters 𝑚𝑗 and (𝐸𝐼)𝑗 for each segment of the beam are
given by 𝑚1 = (𝜌𝐴)1 = 𝜌𝑝𝑤𝑝𝑡𝑝 + 𝜌𝑏𝑤𝑏1𝑡𝑏,𝑚2 = (𝜌𝐴)2 = 𝜌𝑏𝑤𝑏1𝑡𝑏,𝑚3 = (𝜌𝐴)3 = 𝜌𝑏𝑤𝑏2𝑡𝑏, (37)

(𝐸𝐼)1 = 𝐸𝑝𝐼𝑝𝑝 + 𝐸𝑏𝐼𝑝𝑏 + 𝐸𝑏𝐼𝑏1,(𝐸𝐼)2 = 𝐸𝑏𝐼𝑏1,(𝐸𝐼)3 = 𝐸𝑏𝐼𝑏2. (38)

Theparameters𝜌𝑝,𝜌𝑏 are themass density of piezoelectric
material andmass density of beammaterial; 𝑤𝑝,𝑤𝑏1, and𝑤𝑏2
are the piezoelectric layer width, the width of the second,
and third beam segments, respectively; 𝑡𝑝 and 𝑡𝑏 are the
piezoelectric layer thickness and beam thickness. 𝐸𝑝 and 𝐸𝑏
are the Young modulus of piezoelectric layer material and
Young modulus of second and third segment material. 𝐼𝑏1,𝐼𝑏2, 𝐼𝑝𝑝, 𝐼𝑝𝑏 are the beam moment of inertia, layer moment of
inertia, and layer-beam moment of inertia and are calculated
as 𝐼𝑏1 = 𝑤𝑏1𝑡3𝑏/12, 𝐼𝑏2 = 𝑤𝑏2𝑡3𝑏/12, 𝐼𝑝𝑝 = 𝑧2𝑛𝑡𝑝𝑤𝑝 + ((1/3)𝑡3𝑝 +(1/2)𝑡𝑏𝑡2𝑝+(1/4)𝑡2𝑏𝑡𝑝)𝑤𝑝−𝑧𝑛(𝑡2𝑝+𝑡𝑏𝑡𝑝)𝑤𝑝; 𝐼𝑝𝑏 = 𝑧2𝑛𝑡𝑏𝑤𝑏1. And𝑧𝑛 is the neutral axis of the beam on the composite portion
expressed by

𝑧𝑛 = 12 𝐸𝑝𝑡𝑝𝑤𝑝 (𝑡𝑝 + 𝑡𝑏)𝐸𝑝𝑡𝑝𝑤𝑝 + 𝐸𝑏𝑡𝑏𝑤𝑏1 . (39)

Thevalues of these parameters [9] are presented inTable 1.
The distributed cross-sectional moment 𝑀𝑝(𝑥, 𝑡) =𝑀𝑝𝑜(𝑡)(1 − 𝑢(𝑥 − 𝑙1)) in the first segment induces a forcing

term. Its time amplitude is given by

𝑀𝑝𝑜 (𝑡) = 12𝑤𝑝𝐸𝑝𝑑31 (𝑡𝑏 + 𝑡𝑝) V (𝑡) , (40)

where 𝑑31 and V(𝑡) are the coefficients of the converse
piezoelectric effect and the applied voltage, respectively.
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Figure 1: Schematic representation of the (a) triple span and (b) double-span piezoelectric beams.

4.1. Forced Responses. For homogeneous boundary condi-
tions and null initial data, we have from (13) the forced
response

v (t, x) = ∫t

0
∫L

0
h (t − 𝜏, x, 𝜉) F (𝜏, 𝜉) d𝜉d𝜏,

F (t, x) = (𝜕2𝑀𝑝 (𝑡, 𝑥)𝜕𝑥200 ) , (41)

where 𝜕2𝑀𝑝(𝜏, 𝜉)/𝜕𝜉2 = −𝑀𝑝𝑜(𝜏)𝛿󸀠(𝜉 − 𝑙1). Thus

v (t, x) = ∫𝑡
0
∫𝐿
0

h (𝑡 − 𝜏, 𝑥, 𝜉) 𝜕2𝑀𝑝 (𝜏, 𝜉)𝜕𝜉2 𝑑𝜉𝑑𝜏
= ∫𝑡

0
𝑀𝑝𝑜 (𝜏) 𝜕h𝜕𝜉 (𝑡 − 𝜏, 𝑥, 𝑙1) 𝑑𝜏. (42)

By assuming a discrete complete spectrum of natural fre-
quencies 𝜔𝑗 and the normal mode property, the Galerkin
method can be used for determining approximate forced
vibrations. We have the modal series

h (𝑡, 𝑥, 𝜉) = ∞∑
𝑛=1

𝑋(𝑛) (𝑥, 𝜉) sin𝜔𝑛𝑡𝜔𝑛 , 0 ≤ 𝑥, 𝜉 ≤ 𝐿, (43)

and the spatial Green function

H (𝑡, 𝑥, 𝜉) = ∞∑
𝑛=1

𝑋(𝑛) (𝑥, 𝜉) 1𝑠2 + 𝜔2𝑛 , (44)

where

𝑋(𝑛) (𝑥, 𝜉) = (
(

𝑋(𝑛)
1 (𝑥)𝑋(𝑛)

1 (𝜉) 0 ⋅ ⋅ ⋅ 00 𝑋(𝑛)
2 (𝑥)𝑋(𝑛)

2 (𝜉) ⋅ ⋅ ⋅ 0... ... ... ...0 0 ⋅ ⋅ ⋅ 𝑋(𝑛)
𝑁−1 (𝑥)𝑋(𝑛)

𝑁−1 (𝜉)
)
)

. (45)

Here𝑋(𝑥)
𝑋 (𝑥) = (𝑋1 (𝑥)𝑋2 (𝑥)...𝑋𝑁 (𝑥)) (46)

is the spatial amplitude of exponential solutions v(𝑡, 𝑥) =𝑒𝜆𝑡𝑋(𝑥) of the unforced Euler-Bernoulli modelMk̈ + Kk = 0
that satisfy the boundary conditions (6), and the compatibil-
ity conditions (9) at the discontinuity points 𝑥1 and 𝑥2.

The modal approximation𝜕h𝜕𝜉 (𝑡 − 𝜏, 𝑥, 𝜉) = 𝑚∑
𝑛=1

𝜕𝑋(𝑛)𝜕𝜉 (𝑥, 𝜉) sin𝜔𝑛 (𝑡 − 𝜏)𝜔𝑛 (47)

has been used in simulations with and without the
inclusion of a piezoelectric layer. Expansions were truncated
with a small number 𝑚 of terms, usually between 5 and 10
[30].

In Table 2 are showed the first six natural frequencies
obtained in this work for a triple span beam with piezo-
electric patch and without it. The first three frequencies are
compared with those obtained experimentally in [9]. There
is an agreement with the methodology of this work and it
can be observed that the elimination of piezoelectric layers
diminishes the frequency values. In Figure 2 are shown the
corresponding vibration modes; in the first segment the
modes of piezoelectric beam have smaller amplitude.

The effects of the inclusion of a piezoelectric patch are
appreciated by applying a harmonic rectangular pulse load in
the first segment and in the third segment for a three stepped
beam with and without piezoelectric layer. It is observed
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Table 1: Parameters of piezoelectric multispan beam.

Parameter Numeric Value Unity
Length 𝐿 486 × 10−6 m
Length 𝑙1 325 × 10−6 m
Length 𝑙2 360 × 10−6 m
Width 𝑤𝑏1 250 × 10−6 m
Width 𝑤𝑏2 55 × 10−6 m
Width 𝑤𝑝 130 × 10−6 m
Thickness 𝑡𝑝 4 × 10−6 m
Thickness 𝑡𝑏 4 × 10−6 m
Density 𝜌𝑏 2330 𝐾𝑔/𝑚3

Density 𝜌𝑝 6390 𝐾𝑔/𝑚3

Young’s modulus 𝐸𝑏 105 𝐺𝑃𝑎
Young’s modulus 𝐸𝑝 104 𝐺𝑃𝑎
Table 2: Comparative natural frequencies between cases of double and triple span beams with and without piezoelectric patch on the first
segment.

Case Piezoelectric path Natural frequencies 𝜔𝑖 (Hz)𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6
Triple span [9]∗ with piezoelectric path 52.3 203.0 382.5 - - -
Triple span (Figure 1(a)) with piezoelectric path 50.6 209.2 393.7 910.7 1412.5 2016.7
Double span (Figure 1(b)) with piezoelectric path 46.2 222.9 376.2 875.3 1537.5 1948.6
Double/Triple span without piezoelectric path 27.3 142.9 320.1 618.9 1073.0 1579.4∗Experimentally obtained

that the spatial amplitude diminishes with the inclusion of
a piezoelectric patch when the pulse is positioned in the
piezoelectric layer segment; this effect does not appear when
the pulse is positioned in the third segment (Figure 3).

In Figure 4 are compared the forced responses due to
forcing terms only in the first segment. The first output
tracks the forcing input 𝑓1(𝑡, 𝑥) = 𝑀𝑝0(𝑡)(1 − 𝑢(𝑥 − 𝑙1)).
For the original forcing term proposed in [9] 𝑓1(𝑡, 𝑥) =𝜕2𝑀𝑝(𝑡, 𝑥)/𝜕𝑥2 = −𝑀𝑝0(𝑡)𝛿󸀠(𝑥 − 𝑙1), we can observe that
the effect of doublet due to derivation of Heaviside function
is to concentrate the output at the point 𝑥 = 𝑙1. Also, the
amplitudes of forced response are smaller for three stepped
beam with piezoelectric layer.

5. Double-Span Microbeam with Material and
Geometric Discontinuities

We consider a double-span beam of length 𝐿 = 486 × 10−6𝑚,
formed for two segments with different rectangular transver-
sal section area, according to Figure 1(b). For simulation
purposes, we consider the same parameters utilized in [9]
for the three stepped beam with a piezoelectric patch in the
first segment, and now for the double-span beam, obtained by
removing the second segment of the first three stepped beam,
which means extending the piezoelectric layer from 𝑙1 to 𝑙2.
In our methodology, this amounts to consider the limit case

when 𝑙1 tends to 𝑙2 , so that the flexural stiffness (𝐸𝐼)1 andmass
density (𝜌𝐴)1 will be valid on the first segment [0, 𝑙2], since 𝑙1
was extended to 𝑙2, and on the new second segment [𝑙2, 𝐿] we
will have (𝐸𝐼)3 and (𝜌𝐴)3, described in (37) and (38).

The first six natural frequencies of this beam, with and
without piezoelectric patch, were given in the third and
fourth rows of Table 2 and were obtained by the modal
method. We observed that the reduction of three segments
for two segments, maintaining the others material and geo-
metric properties, influences the magnitude of the natural
frequencies. When the piezoelectric patch is removed, then
the frequencies also decrease. The results were the same as
those of the case of three stepped beam when removing the
piezoelectric patch.

In Figure 5, by using the methodology described from
(24) to (35), is presented a 3D graphic of the Green function𝐻(𝑠, 𝑥, 𝜉) of the two stepped piezoelectric beam, for the sixth
natural frequency. The amplitude of this Green function has
peaks at the same natural frequencies obtained by the modal
method (Table 2, third row).

6. Surface Elasticity and Residual Surface
Tension in the Timoshenko Beam Model

The Timoshenko beam model has been modified with the
inclusion of the residual tension and surface elastic modulus
[14]. By using the energy method with the elastic strain
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Figure 2: First six beam vibration modes: beam with piezoelectric layer (black line); beam (gray line) 1st segment (dash) [0, 𝑙1], 𝑙1 = 325 ×10−6𝑚; 2nd segment (dot) [𝑙1, 𝑙2], 𝑙2 = 360 × 10−6𝑚; 3rd segment (solid) [𝑙2, 𝐿], 𝐿 = 486 × 10−6𝑚.

energy of surface induced in the potential energy and residual
surface tensions, expressed by Laplace-Young equations, it
was obtained the modified Timoskenko model𝜌𝐴𝑤𝑡𝑡 − 𝜅𝐺𝐴𝑤𝑥𝑥 + 𝜅𝐺𝐴𝜓𝑥 = 𝑓 (𝑡, 𝑥) ,𝜌𝐼𝜓𝑡𝑡 − 𝐸𝐼𝜓𝑥𝑥 − 𝜅𝐺𝐴 (𝑤𝑥 − 𝜓) = 𝑞 (𝑡, 𝑥) , (48)

for the flexural deflection𝑤(𝑡, 𝑥) of the beam and the rotation
angle 𝜓(𝑡, 𝑥) of the cross section of the beam. Here 𝑓(𝑡, 𝑥)
denotes a transverse dynamic load and 𝑞(𝑡, 𝑥) amoment load.

The values 𝜅𝐺𝐴 = 𝜅𝐺𝐴 − (𝜏𝑢 + 𝜏𝑏) 𝑏,𝐸𝐼 = (𝐸𝐼 + 2𝑏ℎ2𝐸𝑠) (49)

are the effective curvature effect and flexural rigidity, respec-
tively. Here 𝜏𝑢 and 𝜏𝑏 denote the upper and lower surfaces
residual tensions and 𝐸𝑠 is a surface elastic modulus.Without
these later parameters, the model (48) that includes surface
effects becomes the classical Timoshenko model. As usual,
Young’s modulus, moment of inertia of the cross section area,
shear modulus, mass density area, and shear deformation
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Figure 3: Left: forced response v(t, x)with fixed 𝑡 for f1(x) = sin(𝜔t)(u(x− a) − u(x− b)), 𝑎 = 100×10−6𝑚, and 𝑏 = 150×10−6𝑚. Right: forced
response V(𝑡, 𝑥) with fixed 𝑡 for 𝑓3(𝑡, 𝑥) = sin(𝜔𝑡)(𝑢(𝑥 − 𝑐) − 𝑢(𝑥 − 𝑑)), 𝑐 = 430 × 10−6𝑚, and 𝑑 = 440 × 10−6𝑚. Solid black line: beam with
piezoelectric layer. Dashed gray line: beam without piezoelectric layer.
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factor of the beamare denoted as𝐸, 𝐼,𝐺,𝜌, and 𝜅, respectively.
It is assumed that the beam has length 𝐿 and area 𝐴 = 2𝑏ℎ,
where 𝑏, 2ℎ are the width and thickness of the beam and𝐼 = 2𝑏ℎ3/3.The boundary conditions are those of a cantilever
beam or subject to balance of the moment and shear at the
free end 𝑥 = 𝐿 [31].

6.1. Matrix Formulation. The coupled Timoshenko model
(48) can be written as a second-order differential equation
with matrix coefficients

Mv̈ + Kv = F, (50)

where

v = (𝑤 (𝑡, 𝑥)𝜓 (𝑡, 𝑥)) ,
F = (𝑓 (𝑡, 𝑥)𝑞 (𝑡, 𝑥)) ,
M = (𝜌𝐴 00 𝜌𝐼) ,
K = K2

𝜕2𝜕𝑥2 + K1

𝜕𝜕𝑥 + K0,
(51)

with

K2 = (−𝜅𝐺𝐴 00 −𝐸𝐼) ,
K1 = ( 0 𝜅𝐺𝐴−𝜅𝐺𝐴 0 ) ,
K0 = (0 00 𝜅G𝐴) .

(52)

For amicrocantilever beamof length𝐿, we have the boundary
conditions in a matrix formulation(1 00 1) v (𝑡, 0) + (0 00 0) v𝑥 (𝑡, 0) = 0,

(0 00 −1) v (𝑡, 𝐿) + (0 11 0) v𝑥 (𝑡, 𝐿) = 0, (53)

or in a more compact form

Av (𝑡, 0) + Bv𝑥 (𝑡, 0) = 0,
Pv (𝑡, 𝐿) + Qv𝑥 (𝑡, 𝐿) = 0. (54)

6.2. Eigenanalysis. The search of exponential solutions

v (𝑡, 𝑥) = 𝑒𝜆𝑡k (𝑥) ,
k (𝑥) = (𝑤 (𝑥)𝜓 (𝑥)) , (55)

of the unforced Timoshenko model

M
𝜕2v𝜕𝑡2 + Kv = 0, (56)

subject to general separated homogeneous boundary condi-
tions (54), results in that k is the general solution of a second-
order matrix differential equation and is given by

k (𝑥) = h (𝑥) c1 + h󸀠 (𝑥) c2, (57)

for constant 2 × 1 vectors c1 and c2. Here h(𝑥) is the 2 × 2
matrix solution of the initial-value problem𝑀h󸀠󸀠 (𝑥) + 𝐶h󸀠 (𝑥) + 𝐾 (𝜆) h (𝑥) = 0,

h (0) = 0,𝑀h󸀠 (0) = I, (58)

where 0 denotes the 2 × 2 null matrix and I the 2 × 2 identity
matrix. The matrix coefficients are𝑀 = (−𝜅𝐺𝐴 00 −𝐸𝐼) ,

𝐶 = ( 0 𝜅𝐺𝐴−𝜅𝐺𝐴 0 ) ,
𝐾 (𝜆) = (𝜌𝐴𝜆2 00 𝜆2𝜌𝐼 + 𝜅𝐺𝐴) .

(59)

By using the initial values of h(x) in (57) and the clamped
boundary condition k(0) = 0, b, it turns out that c2 = 0. Thus
we have to determine 𝜆 so that

k (𝑥) = h (𝑥, 𝜆) c1 (60)

satisfies the boundary condition at the free end 𝑥 = 𝐿. By
assuming homogeneous boundary conditions, we have the
nonlinear eigenmatrix problem

U (𝜆) c = (Ph (𝐿, 𝜆) + Qh󸀠 (𝐿, 𝜆)) c1 = 0. (61)

From this, it turns out the characteristic equationΔ (𝜆) = det (U) = 0. (62)

We thus have the reduced system

U𝐷c1 = 0,
c1 = (𝑐11𝑐12)𝑇 , (63)

with

U𝐷= ( 𝑎𝑑󸀠󸀠 (𝐿) −𝑎𝑑󸀠󸀠󸀠 (𝐿) + 𝜆2𝑐𝑑󸀠 (𝐿)−𝑏𝑚𝑑󸀠󸀠󸀠 (𝐿) + 𝜆2𝑒𝑑󸀠 (𝐿) 𝑎𝑑󸀠󸀠 (𝐿) − 𝜆2𝑐𝑑 (𝐿) − 𝑎𝑚𝑑󸀠󸀠 (𝐿)) . (64)
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where 𝑑 (𝑥) = 𝛿senh (𝜀𝑥) − 𝜀 sen (𝛿𝑥)𝑎𝑏𝑚𝜀𝛿 (𝛿2 + 𝜀2) (65)

is the solution of the initial-value problem𝑎𝑏𝑚𝑑(𝑖V) (𝑥) + (−𝑎𝑒𝜆2 − 𝑐𝜆2𝑏𝑚 − 𝑎2 + 𝑎𝑚𝑎) 𝑑󸀠󸀠 (𝑥)+ (𝑐𝜆2𝑎 + 𝑐𝜆4𝑒) 𝑑 (𝑥) = 0,𝑑 (0) = 𝑑󸀠 (0) = 𝑑󸀠󸀠 (0) = 0,𝑎𝑏𝑚𝑑󸀠󸀠󸀠 (0) = 1,
(66)

with

𝜀 = 12√−2𝑔2 + 2√𝑔4 + 4𝑟4,
𝛿 = 12√2𝑔2 + 2√𝑔4 + 4𝑟4, (67)

𝑔2 = 𝑔2𝑚 + 𝑠2,𝑔2𝑚 = −( 𝑒𝑏𝑚 + 𝑐𝑎)𝜆2,
𝑠2 = 1𝑏𝑚 (𝑎𝑚 − 𝑎) ,
𝑟4 = −𝑐𝜆2 (𝑎 + 𝑒𝜆2𝑎𝑏𝑚 ) .

(68)

Here 𝑎 = 𝜅𝐺𝐴,𝑐 = 𝜌𝐴,𝑒 = 𝜌𝐼,𝑎𝑚 = 𝜅𝐺𝐴 = 𝜅𝐺𝐴 − (𝜏𝑢 + 𝜏𝑏) 𝑏,𝑏𝑚 = 𝐸𝐼 = (𝐸𝐼 + 2𝑏ℎ2𝐸𝑠) .
(69)

From (62), the natural frequencies 𝜆 = 𝑖𝜔 will satisfyΔ (𝑖𝜔)= −𝜔4𝑐𝑒 (𝑑󸀠 (𝐿))2+ 𝜔2 [𝑎𝑐𝑑 (𝐿) 𝑑󸀠󸀠 (𝐿) − (𝑎𝑒 + 𝑐𝑏𝑚) 𝑑󸀠 (𝐿) 𝑑󸀠󸀠󸀠 (𝐿)]+ (𝑎2 − 𝑎𝑎𝑚) (𝑑󸀠󸀠 (𝐿))2 − 𝑎𝑏𝑚 (𝑑󸀠󸀠󸀠 (𝐿))2 = 0.
(70)

The fundamental matrix response h(𝑥) is obtained in a
similar way to the classical case [32]

h (𝑥)= ((𝑎 + 𝑒𝜆2) 𝑑 (𝑥) − 𝑏𝑚𝑑󸀠󸀠 (𝑥) −𝑎𝑚𝑑󸀠 (𝑥)𝑎𝑑󸀠 (𝑥) −𝑎𝑑󸀠󸀠 (𝑥) + 𝑐𝜆2𝑑 (𝑥)) . (71)

We observe from Figure 6 that for frequencies not above
the critical frequency, the fundamental response 𝑑(𝑥) has
lower amplitude when considering surface effects, while for
higher frequencies the oscillatory behavior of𝑑(𝑥) follows the
classical one.

For amicrocantilever beamdescribed by the Timoshenko
model with surface effects, the size dependence in the natural
frequency of Timoshenko classical model and Timoshenko
model including surface effects is illustrated in Figure 7.
The solutions based on classical Timoshenko beam theory
and Timoshenko beam theory including surface effects are
denoted by TB and TMB, respectively. The fundamental nat-
ural frequencies are normalized to fundamental frequency of
cantilever Euler-Bernoulli beam. In this figure are considered
the parameters utilized in [14] for the same purposes. The
parameters of surface elasticity and residual surface tension
can be determined by molecular dynamics simulations or
experiments. Residual surface stresses can be either positive
or negative, depending on the crystallographic structure [33].
For an anodic alumina 𝐴𝑙 (Young’s modulus 𝐸 = 70𝐺𝑃𝑎,
Poisson’s ratio ] = 0.3 and 𝜌 = 2700𝑘𝑔/𝑚3) are considered
two types of crystallographic direction𝐴𝑙 [100] :𝐸𝑠 = −7.9253𝑁/𝑚 and𝜏 = 0.5689𝑁/𝑚,𝐴𝑙 [111] :𝐸𝑠 = 5.1882𝑁/𝑚 and𝜏 = 0.9108𝑁/𝑚. (72)

In Figure 7, the size dependence effects in the nondimen-
sional natural frequency of TMBmicrobeams in comparison
to the classical TB are illustrated. We can observe that for
beam length on the order of nanometer to microns, the
difference between natural frequencies is apparent and, by
increasing the length of the microbeam, the results tend
to Timoshenko classical theory; that is, the surface effects
are significant only in nanoscale. This same behavior was
observed in [14] for a microbeam simply supported.

7. Timoshenko Model with Surface Energy in
Thick Nanobeams

In [13], the surface effects are included in the Timoshenko
beam model following Gurtin-Murdoch continuum theory
[34], in which is considered an elastic surface with zero
thickness fully bonded to its bulk material. This elastic
surface adds a set of specific constitutive equations relative
to distinct material properties of the surface and surface
energy effects. Let us denote an isotropic material beam, with
rectangular transversal section, length 𝐿, width 𝑏, thickness
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for 2h=0.2L, b=0.4L, and 𝜅 = 5/6.
𝐻 = 2ℎ, moment of inertia 𝐼 = 2𝑏ℎ3/3, and 𝐴 = 2𝑏ℎ
which is the transversal sectional area. The equations for the
bulk are the same constitutive equations of classical theory
of elasticity. The government equations of transverse and
angular displacement, 𝑤(𝑡, 𝑥) and 𝜙(𝑡, 𝑥), respectively, are
then given by(𝜌𝐴 + 𝜌0𝑠∗)𝑤𝑡𝑡 − (𝜅𝐺𝐴 + 𝜏0𝑠∗) 𝑤𝑥𝑥 + 𝜅𝐺𝐴𝜙𝑥 = 0,(𝜌𝐼 + 𝜌0𝐼∗) 𝜙𝑡𝑡 − (𝐸𝐼 + (2𝜇0 + 𝜆0) 𝐼∗) 𝜙𝑥𝑥− 2]𝐼𝜌0𝐻 𝑤𝑥𝑡𝑡 + 2]𝐼𝜏0𝐻 𝑤𝑥𝑥𝑥 − 𝜅𝐺𝐴 (𝑤𝑥 − 𝜙) = 0. (73)

In a compact notation we have

Mv̈ + Kv = 0, (74)

where

v = (𝑤𝜙) ,
M = 𝑀0 + 𝑀1

𝜕𝜕𝑥 ,
𝑀0 = (𝑐𝑚 00 𝑒𝑚) ,
𝑀1 = ( 0 0−𝐼0 0) ,

(75)

and K is a sum of matrix differential operators

K = 𝐾3 𝜕3𝜕𝑥3 + 𝐾2 𝜕2𝜕𝑥2 + 𝐾1 𝜕𝜕𝑥 + 𝐾0, (76)

𝐾3 = (0 0𝐼1 0) ,
𝐾2 = (−𝑎𝑚 00 −𝑏𝑚) ,
𝐾1 = ( 0 𝑎−𝑎 0) ,
𝐾0 = (0 00 𝑎) ,

(77)

with 𝑐𝑚 = 𝜌𝐴 + 𝜌0𝑠∗, 𝑎𝑚 = 𝜅𝐺𝐴 + 𝜏0𝑠∗, 𝑎 = 𝜅𝐺𝐴, 𝑒𝑚 = 𝜌𝐼 +𝜌0𝐼∗, 𝐼0 = 2]𝐼𝜌0/𝐻, 𝐼1 = 2]𝐼𝜏0/𝐻.
The material parameters of bulk are 𝐸, ], and 𝜌, which

represent Young’s modulus, Poisson’s ratio, and mass density,
respectively. Also, we have beam surface parameters𝜆0 ,𝜇0, 𝜏0,𝜌0, Lamé constants, surface residual stress, and mass density
of surface. 𝐼∗ is the moment of inertia relative to the surface



14 Advances in Mathematical Physics𝐼∗ = 2𝑏ℎ2 + 4ℎ3/3, and for rectangular transversal section𝑠∗ = 2𝑏. 𝜅 is the shear correction coefficient.
Rewriting (74), we have

( 𝑐𝑚 𝜕2𝜕𝑡2 − 𝑎𝑚 𝜕2𝜕𝑥2 𝑎 𝜕𝜕𝑥−𝐼0 𝜕3𝜕𝑡2𝜕𝑥 + 𝐼1 𝜕3𝜕𝑥3 − 𝑎 𝜕𝜕𝑥 𝑒𝑚 𝜕2𝜕𝑡2 − 𝑏𝑚 𝜕2𝜕𝑥2 + 𝑎) v

= 0. (78)

Considering exponential solutions in the form v =𝑒𝜆𝑡+𝛽𝑥w, then

Lv = 0 (79)

where

L = ( 𝑐𝑚𝜆2 − 𝑎𝑚𝛽2 𝑎𝛽−𝐼0𝜆2𝛽 + 𝐼1𝛽3 − 𝑎𝛽 𝑒𝑚𝜆2 − 𝑏𝑚𝛽2 + 𝑎) . (80)

In order to guarantee w nonzero, we must have det(L) =0. Thus we obtain the characteristic equationΔ (𝛽, 𝜆) = 𝑐𝑚𝑒𝑚𝜆4+ [(𝑎𝐼0 − 𝑏𝑚𝑐𝑚 − 𝑎𝑚𝑒𝑚) 𝛽2 + 𝑎𝑐𝑚] 𝜆2+ (𝑎2 − 𝑎𝑎𝑚) 𝛽2 + (𝑎𝑚𝑏𝑚 − 𝑎𝐼1) 𝛽4 = 0. (81)

7.1. Singular Eigenvalue Problem. By assuming exponential
solutions v(𝑡, 𝑥) = 𝑒𝜆𝑡w(𝑥), w(𝑥) = (𝑊(𝑥)Ψ(𝑥) ) in (74), it follows
the eigenvalue problem(𝜆2M + K) w (𝑥) = 0, (82)

which can be written as a singular third-order differential
matrix equation

Rw󸀠󸀠󸀠 (𝑥) +Mw󸀠󸀠 (𝑥) + C (𝜆) w󸀠 (𝑥) + K (𝜆) w (𝑥)= 0, (83)

with

R = (0 0𝐼1 0) ,
M = (−𝑎𝑚 00 −𝑏𝑚) ,

C (𝜆) = ( 0 𝑎− (𝜆2𝐼0 + 𝑎) 0) ,
K (𝜆) = (𝜆2𝑐𝑚 00 𝜆2𝑒𝑚 + 𝑎) .

(84)

We observe that the nature of the matrix R characterizes
the problem (83) as being singular. Following the spectral

methodology, we seek exponential solutions w(𝑥) = 𝑒𝛽𝑥v,
v ̸= 0, of (83). It follows thatΓ (𝛽, 𝜆) v = (𝛽3R + 𝛽2M + 𝛽C (𝜆) +K (𝜆)) v = 0, (85)

whereΓ (𝛽, 𝜆)= ( −𝛽2𝑎𝑚𝑐𝑚𝜆2 𝛽𝑎𝛽3𝐼1 − 𝛽 (𝐼0𝜆2 + 𝑎) −𝛽2𝑏𝑚 + 𝑒𝑚𝜆2 + 𝑎) . (86)

For each 𝜆, non-zero solutions v can be obtained whenever 𝛽
is a root of the characteristic polynomial𝑃 (𝛽, 𝜆) = det (𝛽3R + 𝛽2M + 𝛽C (𝜆) +K (𝜆)) . (87)

The characteristic equationΔ (𝛽, 𝜆) = 𝑃 (𝛽, 𝜆) = 𝛽4 + 𝑔2 (𝜆) 𝛽2 − 𝑟4 (𝜆) = 0, (88)

with

𝑔2 (𝜆) = 𝑏2𝑏0 = (𝐼0𝑎 − 𝑏𝑚𝑐𝑚 − 𝑎𝑚𝑒𝑚) 𝜆2 + 𝑎2 − 𝑎𝑎𝑚(𝑎𝑚𝑏𝑚 − 𝑎𝐼1) ,
𝑟4 (𝜆) = −𝑏4𝑏0 = −𝜆2 (𝑎𝑐𝑚 + 𝑐𝑚𝑒𝑚𝜆2)(𝑎𝑚𝑏𝑚 − 𝑎𝐼1) (89)

has the roots 𝛽1,2 = ±𝜀 and 𝛽3,4 = ±𝑖𝛿, where
𝜀 = √−𝑔2 (𝜆) + √(𝑔2 (𝜆))2 + 4𝑟4 (𝜆)2 ,
𝛿 = √𝑔2 (𝜆) + √(𝑔2 (𝜆))2 + 4𝑟4 (𝜆)2 . (90)

The case of simple roots can be characterized from the
condition 𝑃󸀠 = 2𝛽3 + 𝑔2(𝜆), 𝛽 ̸= 0. This excludes the
possibility of 𝛽 = 0 to be a simple root. Moreover, we can
determine the eigenvectors satisfying (85). We summarize
these results in the following.

Lemma 1. 𝛽 is a simple root of 𝑃(𝛽, 𝜆) if and only if 𝛽 ̸= 0 and𝛽2 ̸= −𝑔2(𝜆)/2. For simple roots, the eigenvectors satisfying
(85) are given by

v𝑗 = ( V1𝑗(𝛽2𝑗𝑎𝑚 − 𝜆2𝑐𝑚𝛽𝑗𝑎 ) V1𝑗
), (91)

where V1𝑗 is an arbitrary constant.
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For the case of distinct roots 𝛽, the general solution
w (𝑥) = 𝑐1𝑒𝛽1𝑡v1 + 𝑐2𝑒𝛽2𝑡v2 + 𝑐3𝑒𝛽2𝑡v3 + 𝑐4𝑒𝛽4𝑡v4

= ( 𝑐1 𝑐2 𝑐3 𝑐4𝑐1 (𝜀2𝑎𝑚 − 𝜆2𝑐𝑚𝑎𝜀 ) 𝑐2 (𝜀2𝑎𝑚 − 𝜆2𝑐𝑚−𝑎𝜀 ) 𝑐3𝑖 (−𝛿2𝑎𝑚 − 𝜆2𝑐𝑚𝑎𝛿 ) 𝑐4𝑖 (−𝛿2𝑎𝑚 − 𝜆2𝑐𝑚−𝑎𝛿 ))( 𝑒𝜀𝑥𝑒−𝜀𝑥𝑒𝛿𝑖𝑥𝑒−𝛿𝑖𝑥), (92)

and can be also presented in the form

w (𝑥)
= ( 𝐶1 𝐶2 𝐶3 𝐶4𝐶2𝐾𝑎 𝐶1𝐾𝑎 𝐶4𝐾𝑏 −𝐶3𝐾𝑏)(cosh (𝜀𝑥)

sinh (𝜀𝑥)
cos (𝛿𝑥)
sin (𝛿𝑥) ) , (93)

where 𝐶1 = 𝑐1 + 𝑐2, 𝐶2 = 𝑐1 − 𝑐2, 𝐶3 = 𝑐3 + 𝑐4, 𝐶4 = (𝑐3 − 𝑐4)𝑖
and 𝐾𝑎 = 𝑎𝑚𝜀2 − 𝜆2𝑐𝑚𝑎𝜀 ,

𝐾𝑏 = 𝑎𝑚𝛿2 − 𝜆2𝑐𝑚𝑎𝛿 . (94)

The above representation of w(x) in terms of hyperbolic
and trigonometric functions follows by introducing in (92)
the basic change

( 𝑒𝜀𝑥𝑒−𝜀𝑥𝑒𝑖𝛿𝑥𝑒−𝑖𝛿𝑥) = (1 1 0 01 −1 0 00 0 1 𝑖0 0 1 −𝑖)(cosh (𝜀𝑥)
sinh (𝜀𝑥)
cos (𝛿𝑥)
sin (𝛿𝑥) ) . (95)

7.1.1. Repeated Roots Analysis. From the given characteriza-
tion of simple roots, it is clear that the repeated roots can be
only 𝛽 = 0 and 𝛽2 = −𝑔2(𝜆)/2.The conditions 𝑃󸀠󸀠󸀠 = 12𝛽 = 0
and 𝑃(𝑖V) = 12 exclude the possibility of having nonzero third
roots. In such a case, 𝛽 = 0 will be a quadruple root. More
precisely, we have the following.

Lemma 2. (1) If 𝛽 = 0 is a root of 𝑃(𝛽, 𝜆), then it is a double
root if 𝑔2(𝜆) ̸= 0, or quadruple if 𝑔2(𝜆) = 0.(2) If 𝛽 = √−𝑔2(𝜆)/2 and 𝛽 = −√−𝑔2(𝜆)/2 are roots,
with 𝑔2(𝜆) ̸= 0, then they will be double roots.(3) The characteristic polynomial 𝑃(𝛽, 𝜆) does not have
triple roots.

From the above lemmas, critical frequencies values will
arise for natural frequencies 𝜆 = 𝑖𝜔.

(i) 𝛽 = 0 is a root of 𝑃(𝛽, 𝑖𝜔), if and only if 𝑟4(𝜔) = 0.That
is, 𝑟4(𝑖𝜔) = 0 for 𝜔 = 0 or 𝜔 = 𝜔𝑐, with 𝜔𝑐 = √𝑎/𝑒𝑚.

(ii) 𝛽 = ±√−𝑔2(𝜔)/2, 𝑔2(𝜔) ̸= 0, is a root of𝑃(𝛽, 𝑖𝜔) if and only if (𝑔2(𝑖𝜔))2 + 4𝑟4(𝜔) = 0, with𝑟4(𝜔) ̸= 0. We have 𝑔2(𝜔) = 0 when 𝜔 = 𝜔𝑔 =√(𝑎2 − 𝑎𝑎𝑚)/(𝑏𝑚𝑐𝑚 + 𝑎𝑚𝑒𝑚 − 𝐼0𝑎).
7.2. Frequency Equations. Frequency equations will arise
when applying boundary conditions as given below.

7.2.1. Simply Supported Beam. In this case we have the
following boundary conditions, at 𝑥 = 0𝑤 (0) = 0,𝜔2𝐼0𝑤 (0) − 𝑏𝑚𝜙󸀠 (0) + 𝐼1𝑤󸀠󸀠 (0) = 0, (96)

and at 𝑥 = 𝐿 𝑤 (𝐿) = 0,𝜔2𝐼0𝑤 (𝐿) − 𝑏𝑚𝜙󸀠 (𝐿) + 𝐼1𝑤󸀠󸀠 (𝐿) = 0. (97)

Using the first boundary condition at 𝑥 = 0, we obtain 𝐶2 +𝐶4 = 0 󳨐⇒ 𝐶4 = −𝐶2. From the second boundary condition
we have 𝐼1𝑤󸀠󸀠 (0) + 𝑏𝑚𝜙󸀠 (0) = 0,−𝐶2𝐼1 (𝛿2 + 𝜀2) + 𝐶2𝑏𝑚 (𝐾𝑎𝛿 + 𝐾𝑏𝜀) = 0, (98)

replacing 𝐾𝑎 and 𝐾𝑏 and using that 𝑎𝑚𝑏𝑚 − 𝐼1𝑎 > 0 [13], 𝜀2 +𝛿2 ̸= 0, results in 𝐶2 = 𝐶4 = 0.
From the boundary conditions at 𝑥 = 𝐿, written inmatrix

form

( 1 0 0𝜔2𝐼0 𝐼1 −𝑏𝑚)( 𝑊(𝐿)𝑊󸀠󸀠 (𝐿)𝜓󸀠 (𝐿) ) = 0 (99)

the system Uc = 0 is obtained, described by

( 1 0 0𝜔2𝐼0 𝐼1 −𝑏𝑚)( sin (𝛿𝐿) sinh (𝜀𝐿)− sin (𝛿𝐿) 𝛿2 𝜀2 sinh (𝜀𝐿)−𝐾𝑎 sin (𝛿𝐿) 𝛿 𝜀𝐾𝑏 sinh (𝜀𝐿))(𝐶1𝐶3)= 0. (100)
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Since 𝑏𝑚𝑎𝑚 − 𝐼1𝑎 > 0 and 𝜀2 + 𝛿2 ̸= 0, the frequency
equation

Δ (𝜔) = det (U)
= (𝐼1𝑎 − 𝑏𝑚𝑎𝑚) (𝜀2 + 𝛿2)𝑎 sinh (𝜀𝐿) sin (𝛿𝐿)= 0

(101)

reduces to

sinh (𝜀𝐿) sin (𝛿𝐿) = 0. (102)

7.2.2. Cantilever Beam. In this case the boundary conditions
are given by

𝑤 (0) = 0𝜓 (0) = 0,𝑎𝑚𝑤󸀠 (𝐿) − 𝑎𝜓 (𝐿) = 0−𝑏𝑚𝜓󸀠 (𝐿) + 𝐼1𝑤󸀠󸀠 (𝐿) + 𝐼0𝜔2𝑤 (𝐿) = 0.
(103)

Similarly to the previous case, by using the boundary condi-
tions at 𝑥 = 0, we obtain

𝑊(𝑥) = 𝐶1 (sin (𝛿𝑥) − 𝐾𝑎𝐾𝑏 sinh (𝜀𝑥))+ 𝐶2 (cos (𝛿𝑥) − cosh (𝜀𝑥)) ,Ψ (𝑥) = 𝐶1𝐾𝑎 (cos (𝛿𝑥) − cos (𝜀𝑥))− 𝐶2 (𝐾𝑎 sin (𝛿𝑥) + 𝐾𝑏 sinh (𝜀𝑥)) ,
(104)

The boundary conditions in matrix form at 𝑥 = 𝐿
( 0 𝑎𝑚 0 −𝑎 0𝜔2𝐼0 0 𝐼1 0 −𝑏𝑚)((

(
𝑊(𝐿)𝑊󸀠 (𝐿)𝑊󸀠󸀠 (𝐿)𝜓 (𝐿)𝜓󸀠 (𝐿)

))
)

(𝐶1𝐶2) = 0 (105)

lead to a system Uc = 0 from which we obtain the
characteristic equation.

In Table 3 and Figure 8, we present numerical results
about natural frequencies and mode shapes. Both cases
of supported-supported (S-S) and cantilever (C) boundary
conditions are considered. The simulation was done with
a silicon beam having the following material and surface
parameters [13]: 𝐸 = 107𝐺𝑃𝑎,

] = 0.33,𝜌 = 2.33 × 103𝑘𝑔/𝑚3,𝜌0 = 3.17 × 10−7𝑘𝑔/𝑚2,𝜇0 = −2.7779𝑁/𝑚,𝜆0 = −4.4939𝑁/𝑚,𝜏0 = 0.6056𝑁/𝑚.
(106)

Comments
(i) FromTable 3 and Figure 8, it is observed that the results

agree with those found in the literature [13, 14].
(ii) When the beam length increases, from nano- to

microscale, the results tend to the classical results.
(iii) Natural frequencies can increase or decrease com-

pared to classical results, depending on elastic surface con-
stants signs and boundary conditions (cantilever beam is
more influenceable than simply supported beam).

(iv) According to Figure 8, the mode shape component𝑊(𝑥) of a simply supported beam with the inclusion of
surface effects is the same of a classical beam. Perceptible
differences occur for the cantilever beam case, principally for
the first one mode shape, and just in the nanoscale.

8. Multispan Timoshenko Beams

The same formulation, which was presented in Section 2
for Euler-Bernoulli multispan beams, can be used with the
Timoshenko multispan beam model. We replace the scalar
components that appear in the block matrices defined after
(1), by the 2 × 2 matrix components 𝑀𝑗 and 𝐾𝑗

Mj = (𝜌𝑗𝐴𝑗 00 𝜌𝑗𝐼𝑗) ,
Kj = (−𝜅𝑗𝐺𝑗𝐴𝑗

𝜕2𝜕𝑥2 𝜅𝑗𝐺𝑗𝐴𝑗

𝜕𝜕𝑥−𝜅𝑗𝐺𝑗𝐴𝑗

𝜕𝜕𝑥 −𝐸𝑗𝐼𝑗 𝜕2𝜕𝑥2 + 𝜅𝑗𝐺𝑗𝐴𝑗

). (107)

The components V𝑗 become 2×1 vectors, V𝑗 = ( 𝑤𝑗(𝑡,𝑥)𝜙𝑗(𝑡,𝑥)
), where𝑤𝑗(𝑡, 𝑥) is the flexural displacement and 𝜙𝑗(𝑡, 𝑥) is the angular

displacement. Similarly, the components of 𝐹𝑗 are external
loads and moments, respectively, 𝑓𝑗 and 𝑞𝑗. Then
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Table 3: Comparison between natural frequencies of Timoshenko beam models including and not including surface effects, considering
nano- and microscale, of a Silicon beam. Nanobeam geometric parameters: 𝐿 = 50 × 10−9𝑚, 𝐻 = 2ℎ = 6 × 10−9𝑚, and 𝑏 = 3 × 10−9𝑚.
Microbeam geometric parameters: 𝐿 = 50 × 10−6𝑚, 𝐻 = 2ℎ = 6 × 10−6𝑚, and 𝑏 = 3 × 10−6𝑚.

Nano Micro
BC Model Natural frequencies 𝜔𝑖(GHz) Natural frequencies 𝜔𝑖(MHz)𝜔1 𝜔2 𝜔3 𝜔4 𝜔1 𝜔2 𝜔3 𝜔4
S-S

TMB 7.0808 25.063 51.327 82.922 7.1996 27.010 55.669 89.756
TB 7.1998 27.012 55.673 89.763 7.1998 27.012 55.673 89.763

TMB [13] 7.08 25.07 51.33 82.92 - - - -
TB [13] 7.20 27.02 55.70 89.76 - - - -

C

TMB 3.0168 14.674 36.484 64.514 2.5976 15.273 39.297 69.725
TB 2.597 15.273 39.300 69.730 2.5971 15.273 39.300 69.730

TMB [13] 3.02 14.67 36.38 64.46 - - - -
TB [13] 2.60 15.28 39.31 69.74 - - - -

v = (((((((((
(

𝑤1𝜙1𝑤2𝜙2...𝑤𝑁𝜙𝑁

)))))))))
)

,

F = (((((((((
(

𝑓1𝑞1𝑓2𝑞2...𝑓𝑁𝑞𝑁

)))))))))
)

.
(108)

General boundary conditions can be written as

B0w1 (𝑡, 0) = n0,
B𝐿w𝑁 (𝑡, 𝐿) = n𝐿, (109)

where

B0 = (𝑎11 𝑏11 𝑐11 𝑑11𝑎12 𝑏12 𝑐12 𝑑12) ,
n0 = (𝑛1𝑛2) ,
B𝐿 = (𝑎21 𝑏21 𝑐21 𝑑21𝑎22 𝑏22 𝑐22 𝑑22) ,
n𝐿 = (𝑛3𝑛4) ,

(110)

where 𝑛𝑗 corresponds to devices or interaction of extremities
with the external medium, when they occur, and

w𝑗 (𝑡, 𝑥) = (𝑤𝑗 (𝑡, 𝑥)𝜙𝑗 (𝑡, 𝑥)𝑤󸀠𝑗 (𝑡, 𝑥)𝜙󸀠𝑗 (𝑡, 𝑥)), 𝑗 = 1 : 𝑁. (111)

The continuity conditions for displacement, gyro, flexural
moment, and shear force in the transversal section disconti-
nuity points 𝑥 = 𝑥𝑗, 𝑗 = 1 : 𝑁 − 1, including intermediate
devices can be written as

C1,𝑖w𝑖 (𝑡, 𝑥𝑖) = C2,𝑖w𝑖+1 (𝑡, 𝑥𝑖) , 𝑖 = 1 : 𝑁 − 1, (112)

where

C1,𝑖 = (𝑒(𝑖)11 𝑓(𝑖)11 𝑔(𝑖)11 ℎ(𝑖)11𝑒(𝑖)21 𝑓(𝑖)21 𝑔(𝑖)21 ℎ(𝑖)21𝑒(𝑖)31 𝑓(𝑖)31 𝑔(𝑖)31 ℎ(𝑖)31𝑒(𝑖)41 𝑓(𝑖)41 𝑔(𝑖)41 ℎ(𝑖)41),
C2,𝑖 = (𝑒(𝑖)12 𝑓(𝑖)12 𝑔(𝑖)12 ℎ(𝑖)12𝑒(𝑖)22 𝑓(𝑖)22 𝑔(𝑖)22 ℎ(𝑖)22𝑒(𝑖)32 𝑓(𝑖)32 𝑔(𝑖)32 ℎ(𝑖)32𝑒(𝑖)42 𝑓(𝑖)42 𝑔(𝑖)42 ℎ(𝑖)42),

(113)

and the vector w𝑖 defined in (111).
In what follows, we shall consider double-span beams

in which the first segment is modeled by the Timoshenko
beam model and the second segment can be modeled by a
Timoshenko (TB) or an Euler-Bernoulli (EB) model.
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Figure 8:Mode shapes of simply supported beam (first column) and cantilever beam (second column), classical case (solid line) and including
surface effects (dashed line).

TB-TB. In this case, 𝑤𝑗(𝑡, 𝑥) and 𝜙𝑗(𝑡, 𝑥) satisfy for 𝑗 = 1, 2
the equations

𝜌𝑗𝐴𝑗

𝜕2𝑤𝑗 (𝑡, 𝑥)𝜕𝑡2− 𝜅𝑗𝐺𝑗𝐴𝑗(𝜕2𝑤𝑗 (𝑡, 𝑥)𝜕𝑥2 − 𝜕𝜙𝑗 (𝑡, 𝑥)𝜕𝑥 ) = 0,
𝜌𝑗𝐼𝑗 𝜕2𝜙𝑗 (𝑡, 𝑥)𝜕𝑡2 − 𝐸𝑗𝐼𝑗 𝜕2𝜙𝑗 (𝑡, 𝑥)𝜕𝑥2− 𝜅𝑗𝐺𝑗𝐴𝑗 (𝜕𝑤𝑗 (𝑡, 𝑥)𝜕𝑥 − 𝜙𝑗 (𝑡, 𝑥)) = 0.

(114)

For a simply supported beam we have𝑤1 (𝑡, 0) = 0,𝜙1󸀠 (𝑡, 0) = 0,𝑤2 (𝑡, 𝐿) = 0,𝜙2󸀠 (𝑡, 𝐿) = 0, (115)

and for a cantilever beam 𝑤1 (𝑡, 0) = 0,𝜙1 (𝑡, 0) = 0,𝜙󸀠2 (𝑡, 𝐿) = 0,𝑤󸀠2 (𝑡, 𝐿) − 𝜙2 (𝑡, 𝐿) = 0. (116)

The compatibility conditions, at the point 𝑥 = 𝑥1, without
including intermediate devices, are given by

𝑤1 (𝑡, 𝑥1) = 𝑤2 (𝑡, 𝑥1) ,𝜙1 (𝑡, 𝑥1) = 𝜙2 (𝑡, 𝑥1) ,𝐸1𝐼1𝜙󸀠1 (𝑡, 𝑥1) = 𝐸2𝐼2𝜙󸀠2 (𝑡, 𝑥1) ,𝜅1𝐺1𝐴1 (𝑤󸀠1 (𝑡, 𝑥1) − 𝜙1 (𝑡, 𝑥1))= 𝜅2𝐺2𝐴2 (𝑤󸀠2 (𝑡, 𝑥1) − 𝜙2 (𝑡, 𝑥1)) .
(117)
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The spatial amplitude of a free transversal vibration, at
each segment, vj(𝑡, 𝑥) = 𝑒𝜆𝑡𝑋𝑗(𝑥), where 𝑋𝑗(𝑥) = (𝑊𝑗(𝑥)Ψ𝑗(𝑥)

) ,
for 𝑗 = 1, 2, satisfies(𝜆2Mj + 𝜆Cj)𝑋𝑗 (𝑥) + Kj𝑋𝑗 (𝑥) = 0, (118)

or in a differential form

M𝑗𝑋󸀠󸀠
𝑗 + C𝑗𝑋󸀠

𝑗 +K𝑗 (𝜆)𝑋𝑗 = 0, (119)

with

M𝑗 = (−𝜅𝑗𝐺𝑗𝐴𝑗 00 −𝐸𝑗𝐼𝑗) ,
C𝑗 = ( 0 𝜅𝑗𝐺𝑗𝐴𝑗−𝜅𝑗𝐺𝑗𝐴𝑗 0 ) ,
K𝑗 = (𝜆2𝜌𝑗𝐴𝑗 00 𝜌𝑗𝐼𝑗𝜆2 + 𝜅𝐺𝐴) .

(120)

The boundary conditions, obtained from (109), can be
conveniently written as

B0X1 (0) = 0,
B𝐿X2 (𝐿) = 0, (121)

and the compatibility conditions, obtained from (112), at 𝑥 =𝑥1
C1,1X1 (𝑥1) = C2,1X2 (𝑥1) ,

X𝑗 (𝑥) = (𝑋𝑗 (𝑥)𝑋󸀠
𝑗 (𝑥)) . (122)

where

X (𝑥) = {{{𝑋1 (𝑥) , 0 ≤ 𝑥 ≤ 𝑥1,𝑋2 (𝑥) , 𝑥1 < 𝑥 ≤ 𝐿. (123)

We choose the fundamental basis at each segment, con-
sidering convenient translations,Ψ1 (𝑥) = [h1 (𝑥) , h󸀠1 (𝑥)] ,Ψ2 (𝑥) = [h2 (𝐿 − 𝑥) , h󸀠2 (𝐿 − 𝑥) )] , (124)

with h𝑗(𝑥) being the 2 × 2matrix solution of the initial-value
problem

M𝑗h
󸀠󸀠
𝑗 (𝑥) + C𝑗 (𝜆) h󸀠𝑗 (𝑥) +K𝑗 (𝜆) h𝑗 (𝑥) = 0,𝑗 = 1, . . . , 𝑁.

M𝑗h
󸀠
𝑗 (0) = 𝐼,

h𝑗 (0) = 0.
(125)

The matrix fundamental solution h𝑗 is given by [25]

h𝑗 (𝑥)= (𝑎𝑗𝑑𝑗 (𝑥) + 𝑏𝑗𝑑󸀠󸀠𝑗 (𝑥) −𝑠𝑗𝑑𝑗 (𝑥)𝑠𝑗𝑑𝑗 (𝑥) 𝑟𝑗𝑑𝑗 (𝑥) − 𝑠𝑗𝑑󸀠󸀠𝑗 (𝑥)) , (126)

where 𝑎𝑗 = 𝜅𝑗𝐺𝑗𝐴𝑗 + 𝜆2𝜌𝑗𝐼𝑗,𝑏𝑗 = −𝐸𝑗𝐼𝑗,𝑟𝑗 = 𝜆2𝜌𝑗𝐴𝑗,𝑠𝑗 = 𝜅𝑗𝐺𝑗𝐴𝑗.
(127)

Then𝑋1 (𝑥) = h1 (𝑥) c11 + h󸀠1 (𝑥) c12,𝑋2 (𝑥) = h2 (𝑥 − 𝑥1) c21 + h󸀠2 (𝑥 − 𝑥1) c22. (128)

Replacing (128) in the boundary and compatibility con-
ditions we obtained a system Uc = 0, with U = BΦ,

B = (B0 0 0 00 [C1,1] − [C2,1] 00 0 0 B𝐿

)
8×16

. (129)

For a cantilever beam we have

B0 = (1 0 0 00 1 0 0) ,
B𝐿 = (0 0 0 10 −1 1 0) . (130)

Thematrix Φ is composed of the elements of the solution
basis

Φ = (Φ1 (0) 0Φ1 (𝑙1) 0
0 Φ2 (𝑙1)
0 Φ2 (𝐿))16×8

, (131)

whereΦ𝑗 (𝑥) = (h𝑗 (𝑥 − 𝑎𝑗) h󸀠𝑗 (𝑥 − 𝑎𝑗)
h󸀠𝑗 (𝑥 − 𝑎𝑗) h󸀠󸀠𝑗 (𝑥 − 𝑎𝑗)) , 𝑗 = 1, 2,𝑎1 = 0,𝑎2 = 𝐿. (132)

TB-EB. We now consider that the movement in the second
segment is governed by the Euler-Bernoulli beam model
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(TB-EB). For simplicity, we shall consider Euler-Bernoulli
compatibility conditions at the discontinuity point.

In this case, for 0 ≤ 𝑥 ≤ 𝑥1 the transversal displacement𝑤𝑇 and angular displacement 𝜙𝑇 are governed by the Timo-
shenko equations𝜌1𝐴1

𝜕2𝑤𝑇 (𝑡, 𝑥)𝜕𝑡2− 𝜅1𝐺1𝐴1 (𝜕2𝑤𝑇 (𝑡, 𝑥)𝜕𝑥2 − 𝜕𝜙𝑇 (𝑡, 𝑥)𝜕𝑥 ) = 0,
𝜌1𝐼1 𝜕2𝜙𝑇 (𝑡, 𝑥)𝜕𝑡2 − 𝐸1𝐼1 𝜕2𝜙𝑇 (𝑡, 𝑥)𝜕𝑥2− 𝜅1𝐺1𝐴1 (𝜕𝑤𝑇 (𝑡, 𝑥)𝜕𝑥 − 𝜙𝑇 (𝑡, 𝑥)) = 0,

(133)

while for 𝑥1 ≤ 𝑥 ≤ 𝐿, the displacement 𝑤𝐸 follows the Euler-
Bernoulli model𝜌𝐴2

𝜕2𝑤𝐸 (𝑡, 𝑥)𝜕𝑡2 + 𝐸𝐼2 𝜕4𝑤𝐸 (𝑥)𝜕𝑥4 = 0. (134)

Theproblem can be also described inmatrix form asMv̈+
Kv = 0, where the block matrix coefficients are

M = (𝑀𝑇
1 00 𝑀𝐸

2

) ,
K = (𝐾𝑇

1 00 𝐾𝐸
2

) ,
v = (vT1

vE2

) = (𝑤𝑇 (𝑡, 𝑥)𝜙𝑇 (𝑡, 𝑥)𝑤𝐸 (𝑡, 𝑥)) ,
(135)

with 𝑀𝑇
1 , 𝐶𝑇1 , and 𝐾𝑇

1 being the 2 × 2matrix coefficients cor-
responding to Timoshenko equations and 𝑀𝐸

2 , 𝐾𝐸
2 are scalar

components corresponding to Euler-Bernoulli equations.
The general boundary conditions are given in 𝑥 = 0

according to Timoshenko model, in terms of the state vector
w𝑇. And in 𝑥 = 𝐿 the general boundary conditions are given
as Euler-Bernoulli model; that is,

B0w
𝑇 (𝑡, 0) = 0,

w𝑇 (𝑡, 𝑥) = (𝑤𝑇 (𝑡, 𝑥)𝜙𝑇 (𝑡, 𝑥)𝑤󸀠𝑇 (𝑡, 𝑥)𝜙󸀠𝑇 (𝑡, 𝑥)),
B𝐿w𝐸 (𝑡, 𝐿) = 0,

w𝐸 (𝑡, 𝑥) = (𝑤𝐸 (𝑡, 𝑥)𝑤󸀠𝐸 (𝑡, 𝑥)𝑤󸀠󸀠𝐸 (𝑡, 𝑥)𝑤󸀠󸀠󸀠𝐸 (𝑡, 𝑥)).
(136)

In the discontinuity point 𝑥 = 𝑥1, point of section
transversal area change, we have chosen compatibility con-
ditions referring to Euler-Bernoulli beam model, having𝑤𝑇 (𝑡, 𝑥1) = 𝑤𝐸 (𝑡, 𝑥1) ,𝑤󸀠𝑇 (𝑡, 𝑥1) = 𝑤󸀠𝐸 (𝑡, 𝑥1) ,𝐸1𝐼1𝑤󸀠󸀠𝑇 (𝑡, 𝑥1) = 𝐸2𝐼2𝑤󸀠󸀠𝐸 (𝑡, 𝑥1) ,𝐸1𝐼1𝑤󸀠󸀠󸀠𝑇 (𝑡, 𝑥1) = 𝐸2𝐼2𝑤󸀠󸀠󸀠𝐸 (𝑡, 𝑥1) .

(137)

The eigensolutions are of the type v = e𝜆tX(x) with
X (𝑥) = (𝑋𝑇

1 (𝑥)𝑋𝐸
2 (𝑥)) ,

𝑋𝑇
1 = (𝑊𝑇 (𝑥)Ψ𝑇 (𝑥)) ,𝑋𝐸
2 = 𝑊𝐸 (𝑥) .

(138)

The eigenvalue problem (𝜆2M + K)X(x) = 0 is equivalent to
the differential system

M𝑋󸀠󸀠
𝑇 (𝑥) + C𝑋󸀠

𝑇 (𝑥) +K (𝜆)𝑋𝑇 (𝑥) = 0, 0 ≤ 𝑥 ≤ 𝑥1,𝑋𝐸
(𝑖V) (𝑥) − 𝜀42𝑋𝐸 (𝑥) = 0, 𝑥1 < 𝑥 ≤ 𝐿, (139)

where M, C, and K were defined in (120) and 𝜀2 was
described in (25).

The boundary conditions can be written as𝐵0X̃𝑇 (0) = 0,𝐵𝐿X̃𝐸 (0) = 0, (140)

where

X̃𝑇 (𝑥) = (((((
(

𝑊𝑇 (𝑥)Ψ𝑇 (𝑥)𝑊󸀠
𝑇 (𝑥)Ψ󸀠𝑇 (𝑥)𝑊󸀠󸀠
𝑇 (𝑥)𝑊󸀠󸀠󸀠
𝑇 (𝑥)

)))))
)

,

X̃𝐸 = ( 𝑊𝐸 (𝑥)𝑊󸀠
𝐸 (𝑥)𝑊󸀠󸀠
𝐸 (𝑥)𝑊󸀠󸀠󸀠
𝐸 (𝑥)).

(141)
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The compatibility conditions (137) can be written as

(1 0 0 0 0 0 −1 0 0 00 0 1 0 0 0 0 −1 0 00 0 0 0 1 0 0 0 −𝛼 00 0 0 0 0 1 0 0 0 −𝛼) X̃ (𝑥1) = 0, (142)

with respect to the state span vector X̃(𝑥) = ( X̃𝑇(𝑥)
X̃𝐸(𝑥)

) .
The solutions 𝑋𝑇(𝑥) and 𝑋𝐸(𝑥) can be written using

the solutions basis, which were introduced in the previous
sections:𝑋𝑇 (𝑥) = (𝑊𝑇 (𝑥)Ψ𝑇 (𝑥)) = h (𝑥) (𝑐1𝑐2) + h󸀠 (𝑥) (𝑐3𝑐4) ,𝑋𝐸 (𝑥) = 𝑑 (𝐿 − 𝑥) 𝑐5 + 𝑑󸀠 (𝐿 − 𝑥) 𝑐6 + 𝑑󸀠󸀠 (𝐿 − 𝑥) 𝑐7+ 𝑑󸀠󸀠󸀠 (𝐿 − 𝑥) 𝑐8.

(143)

By replacing (143) in the boundary conditions and com-
patibility equations, we obtain a system Uc = 0,
c = [𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 𝑐7 𝑐8]𝑇 and the characteristic equationΔ(𝜆) = det(U) = 0. As before, we decompU as U = B𝜙,
where

𝜙 = ( Φ1 (0) 0Φ1 (𝑥1) 00 Φ2 (𝑥1)0 Φ2 (𝐿) )
20×8

, (144)

with

𝜙1 = (ℎ (𝑥)2×2 ℎ󸀠 (𝑥)2×2ℎ󸀠 (𝑥)2×2 ℎ󸀠󸀠 (𝑥)2×2ℎ̃ (𝑥)2×2 ℎ̃󸀠 (𝑥)2×2)6×4

,
ℎ̃ (𝑥) = (ℎ󸀠󸀠 (𝑥) [1, 1] ℎ󸀠󸀠 (𝑥) [1, 2]ℎ󸀠󸀠󸀠 (𝑥) [1, 1] ℎ󸀠󸀠󸀠 (𝑥) [1, 2]) ,
𝜙2

= ( 𝑑(𝐿 − 𝑥) 𝑑󸀠 (𝐿 − 𝑥) 𝑑󸀠󸀠 (𝐿 − 𝑥) 𝑑󸀠󸀠󸀠2 (𝐿 − 𝑥)𝑑󸀠 (𝐿 − 𝑥) 𝑑󸀠󸀠 (𝐿 − 𝑥) 𝑑󸀠󸀠󸀠 (𝐿 − 𝑥) 𝑑󸀠󸀠󸀠󸀠 (𝐿 − 𝑥)𝑑󸀠󸀠 (𝐿 − 𝑥) 𝑑󸀠󸀠󸀠 (𝐿 − 𝑥) 𝑑(𝑖V) (𝐿 − 𝑥) 𝑑(V) (𝐿 − 𝑥)𝑑󸀠󸀠󸀠 (𝐿 − 𝑥) 𝑑𝑖V (𝐿 − 𝑥) 𝑑(V) (𝐿 − 𝑥) 𝑑(V𝑖)2 (𝐿 − 𝑥))
4×4

,
(145)

B = ([𝐵0]2×6 0 00 [𝐵𝑥1]4×10 00 0 [𝐵𝐿]2×4). (146)

8.1. Simulations. The two span beam models considered
have been compared with results of Euler-Bernoulli and
Timoshenko double-span beam models in dimensional and
unidimensional formulations.

Table 4: Parameters of the double-span beam [29].

Parameters Numeric value Unity
Length 𝑙1 0,254 m
Length 𝑙2 0,140 m
Width 𝑤 0,02545 m
Thickness 𝑡1 0,01905 m
Thickness 𝑡2 0,00549 m
Mass density 𝜌 2830 𝐾𝑔/𝑚3

Young’s modulus 𝐸 71,7 𝐺𝑃𝑎
Moment of inertia 𝐼1 1,4633 × 10−8 𝑚4

Moment of inertia 𝐼2 3,502 × 10−10 𝑚4

Dimensional Model. We assume a double-span beam,
with transversal section discontinuity due to variable thick-
ness. This beam has constant width, but different thickness.
The geometric and materials properties of this beam are
presented in Table 4.

We present results about natural frequencies, of three
cases: two Euler-Bernoulli segments (EB-EB), two Timo-
shenko segments (TB-TB), and coupled case (TB-EB), in
Table 5.

We observe from Table 5 that the values of natural
frequencies of the coupled beam (TB-EB) are between the
respective values obtained by TB-TB and EB-EB cases,
wherein the EB-EB natural frequencies, as expected, are
greater than the others, in all boundary conditions cases
presented: S-S (simply supported), C-F (clamped free), and
F-F (free-free). Moreover, in the case of free-free boundary
condition, as expected, TB-TB produces the most similar
results to those obtained experimentally in [29].

Dimensionless Model. We now consider the two span
models with classical dimensionless variables. For the Euler-
Bernoulli beammodel, the spatial problem in a dimensionless
form is given by

𝑑4𝑋𝑗 (𝑋𝑗)𝑑𝑋𝑗

− Ω4
𝑗𝑋𝑗 (𝑋𝑗) = 0, (147)

where the dimensionless parameters are 𝑋𝑗 =𝑥𝑗/𝐿,𝑋𝑗(𝑋𝑗) = 𝑋𝑗/𝐿, Ω4
𝑗 = 𝜌𝑗𝐴𝑗𝜔2/𝐸𝑗𝐼𝑗, Ω4

𝑗 = 𝜇𝑗Ω4
1.

The Timoshenko model in a dimensionless matrix form
is given by

[𝜉𝑗 00 1][𝑌󸀠󸀠𝑗 (𝑋)Ψ󸀠󸀠𝑗 (𝑋)] + [0 −𝜉𝑗𝜉𝑗 1 ][𝑌󸀠𝑗 (𝑋)Ψ󸀠𝑗 (𝑋)]
+ [Ω2

𝑗 00 −𝜉𝑗 + 𝜂𝑗Ω2
𝑗

][𝑌𝑗 (𝑋)Ψ𝑗 (𝑋)] = [00] , (148)
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Table 5: Comparison of natural frequencies from the double-span beam. EB-EB: two segments of Euler-Bernoulli beam, TB-TB: two segments
of Timoshenko beam, and TB-EB: first segment using Euler-Bernoulli beam model and second segment using Timoshenko beam model.

Case Model Natural frequencies 𝜔𝑖 (Hz)𝜔1 𝜔2 𝜔3 𝜔4
S-S

EB-EB 101.77 782.09 1300.56 2874.69
TB-EB 101.74 777.85 1291.65 2816.98
TB-TB 101.64 775.85 1285.65 2796.89

C-F
EB-EB 139.56 326.69 1170.27 1797.41
TB-EB 139.39 325.84 1154.90 1771.78
TB-TB 139.31 325.45 1150.82 1761.06

F-F

EB-EB 292.42 1181.28 1804.01 3603.04
TB-EB 292.14 1775.94 1775.8 3512.95
TB-TB 291.77 1167.89 1786.63 3483.40
[Ref] 286-291 1159-1165 1759-1771 -

Table 6: The effects of the change of discontinuity point 𝑅1 = 𝑥1/𝐿 in the dimensionless natural frequencies for a cantilever double span
beam with variations of thickness.

Configuration A Configuration B
Case Model Dimensionless natural frequenciesΩ[𝑖]Ω[1] Ω[2] Ω[3] Ω[4] Ω[1] Ω[2] Ω[3] Ω[4]𝑅1 = 0.2 TB-TB 1.4093 3.4619 5.6243 7.4545 1.7184 4.0974 6.5148 8.7633

TB-EB 1.4098 3.4721 5.6637 7.5438 1.7193 4.1198 6.5990 8.9637
EB-EB 1.4101 3.4769 5.6854 7.6159 1.7209 4.1381 6.6554 9.077𝑅1 = 0.5 TB-TB 1.9972 3.5642 5.9015 8.2377 2.0150 4.0913 6.8545 9.1581
TB-EB 1.9985 3.5725 5.9372 8.3063 2.0162 4.1061 6.9121 9.3086
EB-EB 2.0004 3.5901 5.9831 8.5546 2.0198 4.1331 7.050 9.5862𝑅2 = 0.8 TB-TB 2.0982 4.7587 6.6143 9.1855 1.9918 4.7325 7.3808 9.7778
TB-EB 2.1000 4.7673 6.6436 9.2371 1.9933 4.7395 7.4083 9.8619
EB-EB 2.1046 4.8267 6.7614 9.6670 1.9973 4.8113 7.6241 10.329

with the dimensionless parameters defined by𝑋 = 𝑥𝐿;
𝑌𝑗 (𝑋) = 𝑌𝑗 (𝑥)𝐿 ;Ψ𝑗 (𝑋) = 𝜓𝑗 (𝑥) ;

Ω2
𝑗 = (𝜌𝐴)𝑗 𝜔2𝑙4(𝐸𝐼)𝑗 ;

𝜂𝑗 = 𝐼𝑗𝐴𝑗𝐿2 ;
𝜉𝑗 = 𝜅𝐺𝑗𝐴𝑗𝐿2(𝐸𝐼)𝑗 = 𝜅2𝜂𝑗 (1 + ]𝑗) .

(149)

Then we have the dimensionless frequencies by each
segment

Ω2
𝑗 = (𝜌𝐴)𝑗 𝜔2𝐿4(𝐸𝐼)𝑗 (𝑇𝑖𝑚𝑜𝑠ℎ𝑒𝑛𝑘𝑜) ,

Ω4
𝑗 = (𝜌𝐴)𝑗 𝜔2𝐿4(𝐸𝐼)𝑗 (𝐸𝑢𝑙𝑒𝑟 − 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖) . (150)

These frequencies can be written as a relation ofΩ1. Ω𝑗 = (𝜇𝑗)1/2Ω1, for Timoshenko beam, andΩ𝑗 = (𝜇𝑗)1/4Ω1 for Euler-Bernoulli beam, being𝜇𝑗 = ((𝜌𝐴)𝑗/(𝜌𝐴)1)((𝐸𝐼)1/(𝐸𝐼)𝑗).
In Table 6 we present results about dimensionless natural

frequencies; we have considered variations in the position of
the discontinuity point 𝑅𝑗 = 𝑥𝑗/𝐿 and variations of thickness
of the second segment; constant width is considered, accord-
ing to the following configurations.

Configuration A: double-span beam with variable thick-
ness and constant width, 𝑡1 = 0.08, 𝑡2 = 0.03,𝑤1 = 𝑤2 = 0.03.

Configuration B: double-span beam with variable thick-
ness and constant width, 𝑡1 = 0.08, 𝑡2 = 0.05,𝑤1 = 𝑤2 = 0.03.

Comparative results of dimensionless natural frequencies
are presented in Table 6.
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We observe from Table 6 that the values of dimensionless
natural frequencies of the coupled beam (TB-EB) are between
the respective values obtained by TB-TB and EB-EB cases,
wherein the EB-EB natural frequencies, as expected, are
greater than the others. Also, we can observe that when
the thickness of the second segment increases, the natural
frequencies become greater, mainly the higher frequencies
(third and fourth frequencies), except for the case 𝑅1 = 0.8 in
which the first and second frequencies become greater. When𝑅1 goes from 0.2 to 0.5, all frequencies increase, but when 𝑅1
goes from 0.5 to 0.8, this occurs only for ConfigurationA, and
for Configuration B the first one frequency does not increase
in this case.

9. Conclusions

This paper formulated in matrix form the time domain
determination of forced responses and in the frequency
domain the obtention of modes of elastic models that can be
used in AFM when subjected to tip-sample interactions.

Forced responses are determined by convolution of the
input load with the time domain impulse matrix function.
The corresponding matrix transfer function and modes of
a multispan cantilever beam were determined in terms of
solution basis which have the same shape and are generated
by a fundamental solution.

It was observed that the spatial amplitude diminishes
with the inclusion of a piezoelectric patch when the pulse
is positioned in the piezoelectric layer segment; this effect
does not appear when the pulse is positioned in the third
segment. The reduction of three segments for two segments,
maintaining the others material and geometric properties,
influences the magnitude of the natural frequencies. When
the piezoelectric patch is removed, then the frequencies
decrease.

Weworkedwith twoTimoshenko beammodels including
surface effects through different approaches and changing
the classical Timoshenko equations in different manners. For
both models were presented the results which evidence that,
in agreement with the literature [13, 14], for beam length on
the order of nanometer to microns, the difference between
natural frequencies is apparent and, by increasing the length
of the microbeam, the results tend to Timoshenko classical
theory; that is, the surface effects are significant only in
nanoscale.

Simulations were performed with double-span beams in
which the first segment is modeled by the Timoshenko beam
model and the second segment can be modeled by a Tim-
oshenko (TB) or an Euler-Bernoulli (EB) model. Consistent
results of TB-EB beams were obtained, in dimensional and
dimensionless forms, when compared with EB-EB and TB-
TB cases. The value of frequencies for this model (TB-EB) is
located between the natural frequencies of uniform double-
span models TB-TB and EB-EB.
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