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ABSTRACT

In the context of natural language processing and information retrieval, ontologies can

improve the results of the word sense disambiguation (WSD) techniques. By making ex-

plicit the semantics of the term, ontology-based semantic measures play a crucial role to

determine how different ontology classes have a similar or related meaning. In this con-

text, it is common to use semantic similarity as a basis for WSD. However, the measures

generally consider only taxonomic relationships, which negatively affects the discrimi-

nation of two ontology classes that are related by the other relationship types. On the

other hand, semantic relatedness measures consider diverse types of relationships to de-

termine how much two classes on the ontology are related. However, these measures,

especially the path-based approaches, have as the main drawback a high computational

complexity to calculate the relatedness value. Also, for both types of semantic measures,

it is unpractical to store all similarity or relatedness values between all ontology classes

in memory, especially for ontologies with a large number of classes. In this work, we

propose a novel approach based on semantic neighbors that aim to improve the perfor-

mance of the knowledge-based measures in relatedness analysis. We also explain how to

use this proposal into the path and feature-based measures. We evaluate our proposal on

WSD using an existent domain ontology for well-core description. This ontology con-

tains 929 classes related to rock facies. Also, we use a set of sentences from four different

corpora on the Oil&Gas domain. In the experiments, we compare our proposal with state-

of-the-art semantic relatedness measures, such as path-based, feature-based, information

content, and hybrid methods regarding the F-score, evaluation time, and memory con-

sumption. The experimental results show that the proposed method obtains F-score gains

in WSD, as well as a low evaluation time and memory consumption concerning the tradi-

tional knowledge-based measures.

Keywords: Knowledge-based measures. Relatedness measures. Semantic neighbors.

Ontological meta-properties. Word sense disambiguation.



Uma Abordagem Baseada em Vizinhos Semânticos para a Avaliação de

Relacionamento em Ontologias Bem Fundamentadas

RESUMO

No contexto do processamento de linguagem natural e recuperação de informações, as

ontologias podem melhorar os resultados das técnicas de desambiguação. Ao tornar ex-

plícita a semântica do termo, as medidas semânticas baseadas em ontologia desempenham

um papel crucial para determinar como diferentes classes de ontologia têm um signifi-

cado semelhante ou relacionado. Nesse contexto, é comum usar similaridade semântica

como base para a desembiguação. No entanto, as medidas geralmente consideram ape-

nas relações taxonômicas, o que afeta negativamente a discriminação de duas classes de

ontologia relacionadas por outros tipos de relações. Por outro lado, as medidas de re-

lacionamento semântico consideram diversos tipos de relacionamentos ontológicos para

determinar o quanto duas classes estão relacionadas. No entanto, essas medidas, especi-

almente as abordagens baseadas em caminhos, têm como principal desvantagem uma alta

complexidade computacional para sua execução. Além disso, tende a ser impraticável

armazenar na memória todos os valores de similaridade ou relacionamento entre todas

as classes de uma ontologia, especialmente para ontologias com um grande número de

classes. Neste trabalho, propomos uma nova abordagem baseada em vizinhos semânticos

que visa melhorar o desempenho das medidas baseadas em conhecimento na análise de

relacionamento. Também explicamos como usar esta proposta em medidas baseadas em

caminhos e características. Avaliamos nossa proposta na desambiguação utilizando uma

ontologia de domínio preexistente para descrição de testemunhos. Esta ontologia contém

929 classes relacionadas a fácies de rocha. Além disso, usamos um conjunto de senten-

ças de quatro corpora diferentes no domínio Petróleo e Gás. Em nossos experimentos,

comparamos nossa proposta com medidas de relacionamento semântico do estado-da-

arte, como métodos baseados em caminhos, características, conteúdo de informação, e

métodos híbridos em relação ao F-score, tempo de avaliação e consumo de memória. Os

resultados experimentais mostram que o método proposto obtém ganhos de F-score na

desambiguação, além de um baixo tempo de avaliação e consumo de memória em relação

às medidas tradicionais baseadas em conhecimento.

Palavras-chave: Medidas baseadas em conhecimento, Medidas de relacionamento, Vizi-

nhos semânticos, Meta-propriedades ontológicas, Desambiguação.
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1 INTRODUCTION

In the last decades, several tasks have applied semantic measures in the document

analysis, such as information retrieval (SIMOES et al., 2017; MUNIR; ANJUM, 2018;

ASIM et al., 2019), natural language processing (ZHU; IGLESIAS, 2018; LASTRA-

DÍAZ et al., 2019), cognitive science (ZHU; IGLESIAS, 2017; ZHANG; SUN; ZHANG,

2018), and artificial intelligence. In information retrieval domain (SIMOES et al., 2017;

MUNIR; ANJUM, 2018; ASIM et al., 2019), the use of ontologies and semantic measures

based on these ontologies are a hot topic and they are useful, for example, to the semantic

word sense disambiguation, semantic indexing, semantic annotation, semantic queries,

and the improvement of the precision and recall of the retrieval process. For information

retrieval, the semantic measures with low evaluation performance become impractical for

on-demand tasks.

Over the years, it is possible to note that knowledge-based semantic measures tend

to explore more and more the semantics of the analyzed entities. One sign of this is the

increasing application of the structured proxy semantics on the semantic measures, such

as the WordNet1, the SNOMED-CT2, and a large number of biological and biomedical

ontologies. After the popularization of the Open Biological and Biomedical Ontology

(OBO) Foundry3, many proposed ontologies have used top-level ontologies (e.g., UFO

(GUIZZARDI, 2005); BFO (ARP; SMITH; SPEAR, 2015)) to provide well-founded def-

initions of their modeled entities. Besides the top-level ontologies, several ontology de-

sign patterns have been proposed to support common problems of modeling, reasoning,

and representation of ontologies in computer-readable format. Although state-of-the-art

semantic measures have not completely followed these ontological advances. The exis-

tence of efforts in this direction demonstrates the interest that the theme has aroused in

the community.

A knowledge-based semantic measure is any mathematical function, algorithm,

or approach to automatically calculate the degree of similarity or relatedness between

two semantic entities based on a semantic evidence (e.g., the co-occurrence of the enti-

ties in corpora, the distance between the entities in an ontology, among others) extracted

from a semantic proxy (e.g., a textual corpora, an ontology, a taxonomy, among others)

(HARISPE et al., 2015). In this context, the literature orthogonally classifies the semantic

1https://www.w3.org/2006/03/wn/wn20/
2https://bioportal.bioontology.org/ontologies/SNOMEDCT
3http://www.obofoundry.org/
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measures into semantic similarity and semantic relatedness measures. These two types

differ according to the type of semantic relationships considered during their evaluation.

The semantic similarity measures use only the taxonomic information to distinguish two

ontology classes, while semantic relatedness measures use others relationships types be-

sides taxonomic ones.

The knowledge-based similarity approaches have as the main drawback the in-

ability to discriminate two ontology classes in situations where most of their relationships

are not of the taxonomic type. On the other hand, the semantic relatedness measures do

not present the disadvantage of similarity measures, but these measures, especially the

path-based approaches, have high computational complexity on evaluation time. In this

context, we refer to evaluation time as the time to calculate the value of similarity and

relatedness between two ontology classes. Also, for both types of semantic measures, it

is unpractical to store all values of similarity or relatedness between all ontology classes

in memory, especially for large ontologies (DIEFENBACH et al., 2016).

In this work, we propose a novel strategy to compute the relatedness value between

two ontology classes based on the semantic neighbors. These semantic neighbors is the

set of related classes of a given class through a set of direct path patterns. We use an

adaptation of the path patterns proposed by Hirst, St-Onge et al. (1998) to obtain our

direct path patterns. Thus, with the semantic neighbors our main objective is to improve

the performance of knowledge-based relatedness measures based on paths and features.

In this work, when we talk about performance, we refer to the distinction capability, the

evaluation time, and the memory required to perform the semantic measure.

To evaluate our proposal, we compare the original knowledge-based measure,

as proposed in the literature, and their adaptation with our proposal on the word sense

disambiguation (WSD) task, using an algorithm based on structured knowledge (PAT-

WARDHAN; BANERJEE; PEDERSEN, 2003). We choose WSD because it evaluates

the distinction capability of the knowledge-based measures (MCINNES; PEDERSEN,

2013). From this, as the input of the WSD algorithm, we use the set of sentences ex-

tracted from four different corpora on Oil&Gas domain, and the domain ontology for

well-core description defined by Lorenzatti et al. (LORENZATTI et al., 2009) to support

the Strataledge®4 system. In this evaluation, we compare the F-score result of the differ-

ent semantic measures approaches with nine different values for the size of the context

window. Also, we compare their evaluation time and memory consumption during the

4Strataledge is a trademark of Endeeper Co. www.strataledge.com
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relatedness evaluation.

The remainder of this document is structured as follows: Chapter 2 presents a brief

background about ontologies and its classification, the Basic Formal Ontology (BFO), and

some characteristics of well-founded ontologies. Chapter 3 describes the current state-of-

the-art semantic measures, a deep analysis of these measures on relatedness evaluation,

and the word sense disambiguation approach based on knowledge. Chapter 4 describes

our proposal to find the semantic neighbors of an ontology class and how to use them

into knowledge-based measures based on features and paths. Chapter 5 presents the ex-

periments and results of the evaluation of the knowledge-based measures on word sense

disambiguation. Chapter 6 describes the analysis of the word sense disambiguation re-

sults and the performance of our approach in this task. Finally, Chapter 7 concludes all

the work presented in this document and define future directions.
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2 THEORETICAL FOUNDATION

This chapter provides an overview of ontologies required to understand our con-

tribution. In Section 2.1, we present the definition of ontology in the computer science

context. In Section 2.2, we describe the Basic Formal Ontology (BFO) and the definitions

of continuant entities and their sub-types. In Section 2.3, we present the basic notions of

the Ontology Web Language (OWL) and the ontology design pattern of value partitions.

In Section 2.4, we present the problem of "is-a" overloading and its impact on the ontol-

ogy. Lastly, in Section 2.5, we describe the knowledge-based word sense disambiguation

that we use to evaluate the distinction performance between the proposal of this work and

the state-of-the-art on knowledge-based semantic measures.

2.1 The Definition of Ontology and its Classifications

In order to provide a better understanding of the propositions discussed throughout

this proposal, we will first define a small set of terms that support our explanation. We use

the term class (or concept) to refer to the mental abstraction of a portion of the reality. The

term instance refers to the individual that extends this mental abstraction in space/time.

The term entity is used to refer either class or instance.

In philosophy, the term ontology means a particular theory about the nature of

things that exist (GUIZZARDI, 2005). In the last decades, ontologies have achieved great

interest in the computer science community, especially in the areas of artificial intelli-

gence, computational linguistics, and database theory. This interest is because ontologies

offer a structured and unambiguous representation of the knowledge.

In the computer science context, there are many definitions of what an ontology

is. Gruber (1993) defines an ontology as an explicit specification of a conceptualization.

Borst (1997) extends the Gruber (1993) definition and defines an ontology as a formal

specification of a shared conceptualization. After that, Studer, Benjamins and Fensel

(1998) merge Gruber (1993) and Borst (1997) definitions and define an ontology as a

formal and explicit specification of a shared conceptualization. Already Guarino (1998)

considers ontology as a logical theory accounting for the intending meaning of formal

vocabulary.

The concept of ontology can be subdivided according to the degree of generality

(GUARINO, 1997):
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• Top-level ontologies: this ontology type describes very general concepts that are

independent of a particular problem or domain. In general, the concepts of top-level

ontologies as proposed according to a set of ontological meta-properties deeply

discussed in philosophy. This type of ontology makes possible the communication

between domain ontologies providing a common ontological architecture (ARP;

SMITH; SPEAR, 2015);

• Domain ontologies: this ontology type describes the vocabulary related to a spe-

cific domain (e.g., medicine, geography, or geology) as a structured representation

of the entities and the relations between them. This type of ontology aims to support

knowledge sharing and reuse (ARP; SMITH; SPEAR, 2015);

• Task ontologies: this ontology type has almost the same characteristics of a domain

ontology, but this type of ontology focuses on a particular task and not a particular

domain;

• Application ontologies: this ontology type describes the concepts depending on

a particular domain or task. These concepts often correspond to roles played by

domain entities while performing a certain activity.

In this proposal, we are interested in the application of the knowledge-based se-

mantic measures using well-founded domain ontologies, i.e., domain ontologies con-

structed based on definitions of top-level ontologies (e.g., the Basic Formal Ontology

(ARP; SMITH; SPEAR, 2015), the Unified Foundational Ontology (GUIZZARDI, 2005),

and others) or in the ontological meta-properties deeply discussed in philosophy (GUAR-

INO; WELTY, 2009).

2.2 The Basic Formal Ontology and the Strataledge® Ontology

The Basic Formal Ontology (BFO) is a top-level ontology developed to support the

integration of data obtained through scientific research and to support the interoperability

of the multiple domain ontologies created in its terms (ARP; SMITH; SPEAR, 2015).

Figure 2.1 shows the taxonomy structure of the BFO. The first subdivision of an entity in

this top-level ontology regards the distinction between continuant and occurrent. In this

work, we are interested only in continuant entities.

Continuants in BFO are entities that continue to exist over time while keeping

their identities. Identity is an ontological meta-property and means how to recognize or
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Figure 2.1: The BFO hierarchy.

Source: Arp, Smith and Spear (2015)

differentiate an entity over time (GUARINO; WELTY, 2009). These entities can gain

and lose parts during their existence, but they have no temporal parts. Examples of con-

tinuants include a person, the qualities of the person (e.g., the person’s weight) and the

region of space occupied by a person at any given time. The subdivision of the BFO con-

tinuant is according to the type of existential dependence necessary for an entity to exist.

An existentially dependent entity is one whose existence requires that a condition of a

certain sort be met (CORREIA, 2008). In the BFO, there are three immediate subtypes

of continuant: independent continuant, specifically dependent continuant, and generically

dependent continuant.

The BFO defines as an independent continuant any continuant entity that is the

bearer of qualities, i.e., this type of continuant have no existential dependence on other

entities. The independent continuants maintain their identity and existence even by losing

or gaining parts, dispositions, or roles, or even by changing their qualities. For example,

consider the tomato is an instance of a Tomato class. The tomato instance can be left out

in the sun and lose its moisture without ceasing to be the same instance of Tomato. The

tomato instance may once have been green but is now red without ceasing to be the same

instance of Tomato. The same occurs when a tomato instance is frozen, and thus loses

its disposition to ripen, or if the chef selects a tomato instance, and thereby acquires the

role of garnish to steak. Arp, Smith and Spear (2015) discuss more thoroughly all these

examples.

The BFO defines as a specifically dependent continuant any dependent continuant

that depends for its existence on some specific independent continuant that is its bearer.
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Thus, a specifically dependent continuant is such that it cannot migrate from one bearer

to another. Correia (2008) defines the specific dependence as the rigid necessitation that

an entity requires the existence of a specific entity. For example, from an ontology built

on OWL, this type of existential dependence holds between instances. An instance x is

specifically dependent on instance y if whenever x exists, y must exist as well. Examples

of specifically dependent continuants include the color of a tomato, the weight of a person,

or the function of the heart to pump blood. The color of tomato could not exist without

the tomato instance; the weight of a person could not exist without the person entity, and

so on.

The non-migration axiom present in the definition of specifically dependent con-

tinuants is not true for all ontological entities. Some dependent entities are capable of

such migration. For example, a PDF file is dependent, to be saved, on a storage device.

However, the PDF file can be moved from one storage device to another, without ceases to

exist. With this, the BFO incorporates the category of generically dependent continuant,

defined as a continuant that is dependent on one or other independent continuants that can

serve as its bearer. This type of dependence is a weaker type of existential dependence

because, for example, from an ontology built on OWL, it holds between an instance x and

a class C and indicates that instance x generally depends on any instance of class C.

In this work, we use a BFO version of the Strataledge® ontology (LORENZATTI

et al., 2009). This ontology has 929 concepts that support the detailed and systematic de-

scription of sedimentary facies in drill cores. It includes all classes of lithologies, textures,

structures, fractures, fossils, and other descriptive features about well-core description.

Also, the Strataledge® ontology is originally proposed based on UFO (Unified Founda-

tional Ontology) definitions. However, we use a BFO version of this ontology because

of four factors: (a) BFO is extensively used in the biomedicine domain, where are pro-

posed the most of research contributions using similarity or relatedness measures; (b)

BFO presents an OWL version of its abstract concepts where it is possible to derive our

domain classes; (c) BFO provides a centralized documentation of how to use its abstract

concepts during the conceptual modeling of a particular domain; (d) in BFO, the distinc-

tion of each continuant type is made according to the type of existential dependence.
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2.3 The Ontology Web Language and the Use of Value Partitions

The Ontology Web Language (OWL)1 is a computational language to make the

implicit knowledge explicit. In the OWL ontologies, we use the classes, individuals, and

their respective properties to model the knowledge of a certain domain.

In the OWL ontologies, the property that describes the relationship between two

entities is called Object Property. The OWL provides support to define the logical proper-

ties of the object properties (e.g., transitivity, asymmetry, reflexivity, and more). Also, the

property that describes the relationship between an entity and its respective data values is

called Data Property. Moreover, OWL provides support to define the restrictions of these

two types of properties (domain, range, disjunctions, etc.).

A common requirement of creating ontologies in OWL is to represent descrip-

tive features (e.g., qualities, attributes, or modifiers) as classes to add more semantics

when dealing with this type of entity. With this, it is required to perform a value parti-

tion process2 to achieve this requirement. This process is a design pattern to represent

ontologies and restricts the range of possible values to an exhaustive list. In this work,

the Strataledge® ontology uses the value partition process to represents the descriptive

features about well-core description.

To exemplify the value partition process, consider the class PizzaSizePartition that

restricts the range of possible values to Small, Medium, and Large. The value partition

process, in the class level, consists on create a class PizzaSizePartition and, as its sub-

classes, the disjoint classes Small, Medium, and Large. After that, we create an object

property called hasSize. The domain of this object property is the class Pizza, whose

range is the value partition PizzaSizePartition. Finally, the classes PizzaSizePartition,

Small, Medium, and Large are related through equivalent relationships.

The main impact of value partitions in semantic measures occurs when the classes

that represent the descriptive features have the same taxonomic structure and are related

to other ontology classes through non-taxonomic relationships. Consider the example

presented in Figure 2.2, where we have two value partitions Size and Height in which the

former is a BFO:quality of a Pizza and the later is a BFO:quality of a Person. From this,

it is impossible to distinguish the two polysemic entities named Small, considering only

the taxonomic structure of this ontology.

1https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
2https://www.w3.org/TR/2005/NOTE-swbp-specified-values-20050517/
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Figure 2.2: An example of the ontology structure after the value partition process.

Source: The Authors.

2.4 The Problem of "is-a" Overloading

The use of domain ontologies is becoming increasingly common in many branches

of science in the reflection of the increasing need to use computers for the handling of sci-

entific data (ARP; SMITH; SPEAR, 2015). From this, many works in the literature are

creating incompatible domain ontologies focused on their specific local needs (GUAR-

INO, 1999). Many of these domain ontologies are created using the conceptual apparatus

from some top-level ontology, but the philosophical discussions that define their general

concepts, are ignored. From this, several semantic problems arise, among them the prob-

lem of the overload of "is-a" relations (or other types of hierarchical relations).

The basis of any ontology is its taxonomy (GUARINO, 1999), i.e., a set of classes

related by hierarchical relations. One type of hierarchical relation is known as is-a. This

relation means that the source class of the relationship is more specific than the target

class. From this, the overload of is-a relationships usually occurs when it is considered

the lexical relationship between the words that describe the ontology classes, rather than

the ontological relationship between them. In the literature, many works exemplify and

show how to solve the is-a overloading problem (GUARINO, 1999; GUARINO; WELTY,

2004; GUIZZARDI, 2005; ARP; SMITH; SPEAR, 2015). For example, Guarino and

Welty (2004) use the ontological meta-properties of identity, essence, and unity, discussed

in their work, to guide the construction of well-founded ontologies. Figure 2.3 presents

examples of the "is-a" overloading on the left side and their solutions on the right side.

The top-side example shows the violation of the unity principles and the misuse of the

"is-a" relationship to represent a composition relation. Already the bottom-side example
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Figure 2.3: Examples of is-a overloading and their solutions.

Source: Extracted from Guarino and Welty (2002).

shows the misuse of the "is-a" relationship to represent a part-whole relation. From this, it

is possible to note that the entities no longer related through taxonomic relationships, but

now they are related through non-taxonomic relationships. From this, if we consider only

taxonomic relationships in an ontology containing these entities, the distinction becomes

less precise because it is dependent on the taxonomic structure of the ontology.

2.5 Knowledge-Based Word Sense Disambiguation

Word sense disambiguation (WSD) is the task of automatically identifying the

intended sense of an ambiguous term based on the context in which the term occurs (PAT-

WARDHAN; BANERJEE; PEDERSEN, 2003; MCINNES; PEDERSEN, 2013). In the

knowledge-based WSD, the semantic measures try to disambiguate two ontology enti-

ties named with the same term based on the ontology structure. Also, the WSD task is

used to test the performance of semantic measures to distinguish two ontology entities

(MCINNES; PEDERSEN, 2013).

In the knowledge-based WSD, Patwardhan, Banerjee and Pedersen (2003) propose

to use a context window around the ambiguous class term. In this work, we use the

class term to refer a term that names an ontology class, where an ambiguous class term

represents the term that names two or more ontology classes.

The input of Patwardhan, Banerjee and Pedersen (2003) algorithm is a textual

corpus, an ontology, and a knowledge-based semantic measure. From this corpora, the

first step of this algorithm is to find all occurrences of the ambiguous class terms in this
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Figure 2.4: Example of an ambiguous class term (in red color) and its context window
terms.

Source: The authors.

corpora. From each occurrence (target class term), the algorithm selects a context window.

This context window represents a certain amount of class terms to the right and left of the

target class term. In this step, to find the ambiguous class terms and their context window

terms, are performed the stop-word removal and the stemming processes to remove the

unnecessary words and to maintain only the stem of each word, respectively. For example,

with a context window of size 2, we search for two class terms to the right of the target

class term and two class terms to the left of the target class term. If the target term is at

the beginning or end of a text, then are searched four class terms to the right of the target

class term, or the left, respectively. For each sentence (the combination of the target class

term and the context window), a domain expert evaluates the real sense of the target class

term according to the context of the domain ontology used. Figure 2.4 shows the target

class term fold, an example of ambiguous class term in the Strataledge® ontology. Also,

with window size equals to 2, this figure shows the class terms that describe the context

window of this ambiguous class term.

After finding all the class terms of a given context window size, the next step

of the Patwardhan, Banerjee and Pedersen (2003) algorithm is to analyze the similarity

or relatedness value between each sense of the target class term with each class term in

the context window. In this process is used a semantic measure and, for each sense, are

selected the sense with a higher sum of similarity or relatedness values between the sense

and the context window terms. Figure 2.5 shows this analysis process. In this figure, the

context window terms vein and fault have more than one sense. With this, is considered

only the higher similarity or relatedness value between the senses of vein for each sense

of fold.

After the completion of the analysis process in all sentences extracted from the

corpora, it is possible to analyze the results of the Patwardhan, Banerjee and Pedersen

(2003) algorithm, i.e., the output of the algorithm using some semantic measure. For

each sentence, if the domain expert evaluates the target class term in some sense and the

algorithm has as output the same sense, then it considered a true-positive result (TP). If

the domain expert evaluates the target class term in some sense and the algorithm has as

output a different sense, then it considered a false-positive result (FP). If the domain expert



20

Figure 2.5: Example of the comparison of each sense of the target class term and their
context window.

Source: The authors.

does not evaluate the target class term in some sense of the ontology, and the algorithm

finds a sense, then it considered a false-negative result (FN). If the domain expert does

not evaluate the target class term in some sense of the ontology, and the algorithm does

not find a sense, then it considered a true-negative result (TN). From this, it is possible

to analyze the results in function of the precision, recall, and F1 (F-measure) scores.

Equation 2.1 presents the formula to calculate the F-measure.

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2.1)



21

3 RELATED WORKS

In this chapter, we present the main approaches to evaluate the similarity or re-

latedness between two semantic entities. In this work, we focused on semantic measures

based on structured knowledge resources (e.g., ontologies, taxonomies, and thesaurus).

We structure this chapter as follows: in Section 3.1, we review the sources of in-

formation used by the semantic measures, called semantic proxies. In Section 3.2, we

describe how structured proxies are used to extract semantic evidence. This semantic

evidence is used by semantic measures to evaluate the similarity or relatedness between

the compared entities. In Section 3.3, we present the state-of-the-art in semantic mea-

sures based on structured proxies (or knowledge-based semantic measures), reviewing

path-based, information content, feature, and hybrid approaches. Finally, in Section 3.4,

we present a deep analysis of the current knowledge-based approaches on relatedness

evaluation.

3.1 The Semantic Proxies

Semantic measures are widely used today to compare semantic entities such as

units of language, instances, or concepts, according to information supporting their mean-

ing (HARISPE et al., 2015). The main objective of these measures is to evaluate as closely

as possible the human perception. With this, the semantic measures require a source of

information. From this source of information, the semantic measures extract the semantic

evidence to characterize the compared entities. This source of information is known as a

semantic proxy. In the state-of-the-art are used two types of semantic proxies (HARISPE

et al., 2015):

• Corpora of texts: corresponds to unstructured or semi-structured texts. These

texts usually contain informal evidence of semantic relationships between units of

language (terms). For example, consider corpora where the terms car and engine

co-occur more than the terms car and brain. Intuitively, the term car is more related

to the term engine than to the term brain. In the literature, mainly in the informa-

tion content approaches based on corpora (see Section 3.3.3 for more details), the

occurrences of the terms or the distribution of these terms in corpora are used as

semantic evidence. Also, not only the units of language can obtain their related-
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ness values using this type of semantic proxy. For example, if the ontology entities

have human-friendly names, they can also take advantage of the assumption that

semantically related entities tend to co-occur in corpora;

• Structured knowledge resources or structured proxies: this proxy encompasses

a broad range of knowledge models, from structured vocabularies to well-founded

ontologies. These models explicitly present the knowledge about the entities that

they define. From these models, semantic measures use their structures to extract

semantic evidence of the compared entities. For example, in an ontology, intu-

itively, there is an explicit relationship between the entities car and engine, but not

between the entities car and brain. With this, it is explicit that relatedness value

between the entities car and engine is greater than between the entities car and

brain.

3.2 The Semantic Evidence from Structured Proxies

From the availability of a semantic proxy, it is possible to extract semantic evi-

dence used in the comparison between two semantic entities. This semantic evidence is

expected to directly or indirectly characterize the meaning of compared entities (HARISPE

et al., 2015). Harispe et al. (2015) define the semantic evidence as to any clue or indi-

cation based on semantic proxy analysis from which, often based on assumptions, a se-

mantic measure is based. For example, in the semantic measures based on corpora, the

semantic evidence is related to the degree of the co-occurrence, in this corpora, of the

terms that describes the ontology classes. Also, the semantic evidence is dependent on

the type of semantic proxy used. In this work, we are interested in semantic evidence from

an ontology (a type of structured proxy) in the class level. With this, we do not review

the semantic measures that use instances of an ontology class as semantic evidence. From

this, the semantic measures presented in Section 3.3 use the following semantic evidence

(or a combination of them) during the semantic similarity or relatedness evaluation:

• The shortest path: this is one of the most traditional semantic evidences to perform

semantic similarity or relatedness. Rada et al. (1989) propose the use of the length

of the shortest path between two ontology classes to evaluate the semantic distance

between them. In this approach, the more similar two classes are, the smaller the

semantic distance between them. Along with taxonomies, authors have proposed
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the use of the Lowest Common Ancestor (LCA) to improve the semantic distance

calculation. The LCA is a function that returns the deepest common ancestor of the

two analyzed classes. In this case, the semantic distance between the classes c1 and

c2 equals to the sum of the differences (in modulus) of the depth between c1 and

LCA(c1, c2), and c2 and LCA(c1, c2);

• The most informative common ancestor (MICA): this is another traditional se-

mantic evidence to measure the similarity or relatedness. Resnik (1995) proposes

that the MICA is the common ancestor of two ontology classes that have the max-

imum information content value (see Section 3.3.3 for more details). With this

semantic evidence, the semantic similarity or relatedness increases according to the

amount of information that these two classes have in common;

• The common features: this is one of the most classical semantic evidence propos-

als. Tversky (1977) proposes that the similarity or relatedness increases according

to the number of features two ontology classes have in common. In the ontological

point of view, it is considered as the set of features, the properties of an ontology

class;

• The depth of the ontology class: corresponds to the distance from an ontology

class to the root class of the ontology or the difference between their depths. This

value informs the expressivity of an ontology class, i.e., the deeper a class in ontol-

ogy, the more expressive it is;

• The number of hyponyms: this semantic evidence corresponds to the number of

sub-classes or descendants of an ontology class. This value informs the expressivity

of an ontology class, i.e., the greater the number of descendants an ontology class

contains, the lower its expressiveness;

• The number of hypernyms: this semantic evidence corresponds to the number

of super-classes, subsumers or ancestors of an ontology class. This value informs

the expressivity of an ontology class, i.e., the greater the number of ancestors an

ontology class contains, the greater its expressiveness;

• The number of sibling classes: this semantic evidence corresponds to the number

of classes that have the same parent class within a given ontology class. This value

informs the expressivity of an ontology class, i.e., the greater the number of sibling

classes of an ontology class, the greater its expressiveness;

• The number of leaf nodes: this semantic evidence corresponds to the number of
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descendant classes of an ontology class that does not have any descendants. This

value informs the expressivity of an ontology class, i.e., the greater the number of

leaf nodes an ontology class contains the lower its expressiveness. The total number

of leaf nodes is also used to normalize the number of leaf nodes of an ontology class;

• The diameter (or width) of the ontology: this semantic evidence corresponds to

the length of the longest shortest path between two ontology classes. This value

informs the coverage of the ontology. In the semantic measures, the diameter of the

ontology is used to normalize the shortest path between two ontology classes;

• The depth of the ontology: this semantic evidence corresponds to the maximal

depth of a class in ontology. This value informs the degree of expressiveness/granularity

of the ontology. In the semantic measures, the depth of the ontology is commonly

used to normalize the depth of the class;

• The number of ontology classes: this semantic evidence corresponds to the total

number of classes in ontology. This value informs the coverage of the ontology.

In the semantic measure, the number of the ontology classes is commonly used to

normalize the number of hyponyms, the number of hypernyms, the number of leaf

nodes, or the number of sibling nodes.

3.3 State-of-the-Art of Semantic Measures based on Structured Proxies

In the literature, there are many tools, mathematical functions, algorithms, or ap-

proaches to automatically calculate the degree of similarity or relatedness according to

structured proxy’s semantics. The similarity measures use only the taxonomic informa-

tion to distinguish two ontology classes, while relatedness measures use other relation-

ship types besides taxonomic ones. In this context, we call knowledge-based semantic

measure, any semantic measure based on structured proxies. From this, these measures

usually use an ontology as a semantic graph in which is used to extract the semantic

evidence.

Definition 1 (Semantic Graph). Let G = (V,E) be a directed graph that rep-

resents an ontology where V is a finite set of vertexes that represents the entities of this

ontology, and E is a finite set of edges that represent the relationships between these en-

tities. In an ontology that has only binary relationships, the tuple (ci, r, cj) describes an

edge e, where ci ∈ V and cj ∈ V and ci is the subject (or the source vertex), r is the
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predicate (or the relation) and cj is the object (or the target vertex).

In this section, we review the main proposals in the state-of-art of the knowledge-

based semantic similarity and relatedness measures, more specifically, the semantic mea-

sures based on an ontology. In Section 3.3.1, we review the semantic measures based on

path analysis. In Section 3.3.2, we describe the feature-based semantic measures. Finally,

in Section 3.3.3, we present the semantic measures based on the information content of

the evaluated entities. Finally, in Section 3.3.4, we present the union of the previous

approaches, called hybrid approaches.

3.3.1 The Path-based Approaches

In this section, we present the main knowledge-based semantic measures that use

the graph notion of the shortest path. These semantic measures estimate the similarity

or relatedness value as a function of the length of the shortest path between two classes

on the semantics graph that represents the ontology. In this approach, the similarity or

relatedness value increases as the path length decrease. Like in graph theory, a sequence

of edges (relationships) between two ontology classes constitute a path.

Definition 2 (Path). LetG = (V,E) be a directed graph. A path P (ci, cj) between

ci, cj ∈ V is a sequence of edges {e1, ..., ck} ∈ E with size n that relates the vertexes ci

and cj such that there is no repetition of visited vertexes in the sequence.

Since the path-based approaches use ontologies as a semantic graph, classical al-

gorithms proposed in graph theory, such as the Dijkstra algorithm (DIJKSTRA, 1959),

can be used to estimate the semantic distance between two ontology classes during the

similarity or relatedness evaluation in path-based approaches. Overall, Equation 3.1

shows the function that calculates the shortest path between two entities in an ontology.

sp(ci, cj) = min
∀P∈Paths(ci,cj)

|P |∑
k=0

W (Pk) (3.1)

Where Paths is the set of all paths between ci and cj in the ontology, and W (Pk)

is the weight of k-th edge of path P .

Rada et al. (1989) define one of the first path-based measures in the literature. In

their work, the length of the shortest path equals to the number of relationships between

the evaluated classes. Rada et al. (1989) use a taxonomy to test their approach. How-

ever, their proposal also works as well considering other types of relationships besides



26

taxonomic ones.

Take into account all ontology relationships in semantic distance calculation has as

the main drawback the impact on the performance of the semantic measure. However, it

is complex to decide which sequence of relationships is semantically incorrect to exclude

them from the shortest path calculation. Hirst, St-Onge et al. (1998) classified the Word-

Net (MILLER, 1995) relationships into three categories: upward (UR), downward (DR),

and horizontal (HR). The UR category represents the generalization relationship, DR rep-

resents the specialization relationship, and HR describes other relationship types. Also, in

semantic distance evaluation, these authors consider the set of semantically correct path

patterns through the relationship categories UR, UR-DR, UR-HR, DR-HR, UR-HR-DR,

DR, HR-DR, and H. The notation "-" means the direction of the path, for example, in

UR-DR paths a sequence of DR relationships follows a sequence of UR relationships.

The Rada et al. (1989) proposal fails to weigh all relationships of the ontology

with the same weight. In the literature, some works use different weights regards the type

of relationship between the evaluated classes or according to the semantic evidences of

these classes. (ZHU; LI; SANCHO, 2017; CAI et al., 2018; QUINTERO et al., 2018).

However, many of these weighting strategies are strictly dependent on a specific domain.

Besides the semantic evidence of the length of the shortest path, one the of most

import semantic evidence is the definition of the lowest common ancestor (LCA) (WU;

PALMER, 1994) (presented in Section 3.2). Wu and Palmer (1994) propose that the

similarity or relatedness value between two classes as a ratio taking into account the depth

of their LCA and the shortest path linking the evaluated classes.

From the addition of the depth in the path-based semantic measures, Leacock and

Chodorow (1998) define that the similarity or relatedness value increases according to the

negative logarithm of the shortest path, scaled by the double of the maximum depth of the

ontology. Already Liu, Zhou and Zheng (2007) propose two versions of Wu and Palmer

(1994) measure. The first version uses different weights for the shortest path and depth

of ontology since the second version uses the first version in a non-linear function. In

the path-based semantic measures that use non-linear functions, Li, Bandar and Mclean

(2003) propose a semantic measure that combines the shortest path length and the depth

of the LCA. Also, some measures use the depth to normalize the distance (LEACOCK;

CHODOROW, 1998) or the distance to normalize the depth (WU; PALMER, 1994; Li;

Bandar; Mclean, 2003; Liu; Zhou; Zheng, 2007). There are still methods that use both

normalization methods (HAO et al., 2011).
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In the literature, the use of the ontology depth or the depth of the LCA is a signifi-

cant advance to distinguish two entities from an ontology, but some works go further. For

example, Wei and Chang (2015) propose to use the ontology width in Wu and Palmer’s

measure to normalize its similarity or relatedness value. Since Jin et al. (2017) propose

an extensive mathematical formulation in which combines the number of hyponyms, the

maximum number of the ontology entities, the shortest path, the depth of the ontology

and the LCA to calculate the semantic similarity between two ontology entities.

3.3.2 The Feature-based Approaches

In this section, we present the main proposals in the feature-based approaches.

The feature-based approaches try to overcome the limitations of path-based approaches

regarding the fact that the paths in a semantic graph do not necessarily represent uniform

semantic distances (TVERSKY, 1977). In the feature-based approaches, the degree of

overlap between the features of the two classes represents the similarity or relatedness

value between them (TVERSKY, 1977; Rodriguez; Egenhofer, 2003; SÁNCHEZ et al.,

2012). As mentioned in Section 3.2, the properties of a class in ontology represent the

class features. In literature, there are considered the properties both the class relationships

and the textual descriptions of the class.

Tversky (1977) proposes the first work in feature-based approaches. In this work,

the common features tend to increase the similarity or relatedness value, and non-common

ones tend to decrease it. In this semantic measure, a ratio model takes into account the

weighted common and non-common features of compared classes. This weighting cor-

responds to the importance of common and non-common features in the similarity or

relatedness evaluation. Equation 3.2 shows the Tversky (1977) semantic measure.

simTversky(c1, c2) =
f(Ψ(c1) ∩Ψ(c2))

f(Ψ(c1) ∩Ψ(c2)) + α ∗ f(Ψ(c1)−Ψ(c2)) + β ∗ f(Ψ(c2)−Ψ(c1))
(3.2)

In Equation 3.2, the Ψ(c1) and Ψ(c2) are the set of features of c1 and c2, respec-

tively; the signal ∩ means the intersection set between c1 and c2 features; the signal −

means the difference set between the two entities sets; α and β are two smoothing factors

used to indicate the contribution of the difference set from c1 and from c2, respectively; f

is a function that reflects the salience of a set of features (SÁNCHEZ et al., 2012).
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The literature proposes some alternative methods to extend the initial definition

of feature-based approaches. For example, Rodriguez and Egenhofer (2003) propose

to use the classes feature with the synsets (or equivalent classes) and the features and

synsets of the neighborhood of the evaluated classes. In this work, the neighborhood of

a class corresponds to the set of ontology classes with the semantic distance less than

a given radius, with the analyzed class. In other work, Petrakis et al. (2006) propose

to use the synsets and the glosses (or textual descriptions) of the evaluated classes and

their neighborhood (like in Rodriguez and Egenhofer (2003)). The authors consider that

two classes are similar or related if their synsets and their glosses and the classes in their

neighborhood are lexically similar.

The dependence of parameter tuning in the Tversky (1977) measure is one of its

drawbacks. In this context, Rodriguez and Egenhofer (2003) proposed using the depth of

the classes to avoid the dependence of the weights. Sánchez et al. (2012) presented a dis-

similarity measure tanking into evidence the differences between the analyzed classes. In

recent work, Likavec, Lombardi and Cena (2019) propose the use of a non-linear function

in a variation of Tversky (1977) measure.

3.3.3 The Information Content Approaches

In this section, we present the main semantic measures based on information con-

tent. We split this section into two parts. Firstly, we present the information content (IC)

models that have contributed to the advance of the state-of-the-art semantic evidence.

Secondly, we present the knowledge-based semantic measures that use these IC models

in the similarity or relatedness evaluation.

The works about semantic similarity evaluation based on the information content

started from Resnik (1995) proposal. The information content value describes how spe-

cific and informative a class is (RESNIK, 1995; SECO; VEALE; HAYES, 2004). Resnik

(1995) attempts to address this problem based on the estimation of the class probabili-

ties through the frequency counting of term occurrences in a training corpus (LASTRA-

DÍAZ; GARCÍA-SERRANO, 2015). This term is a textual representation of an ontology

class in corpora.

freq(c) =
∑

t∈Term(c)

Count(t) (3.3)
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where Term(c) refers to the set of terms that describes the subsumed classes of

the class c and Count(t) to the frequency of the term t in the training corpus. Thus,

Equation 3.4 describes the first IC model proposed by Resnik (1995).

ICResnick(c) = −log
(
freq(c)

N

)
(3.4)

where freq(c) returns the frequency of class c, and N is a constant value of the

total number of observed nouns, except those which are not subsumed by any class in the

structured knowledge resource, i.e., freq(root).

The model proposed by Resnik (1995) presents the main disadvantage of the need

of a training corpus. Thus, Seco, Veale and Hayes (2004) propose to use the intrinsic

information of the classes in ontology to compute their IC value. In their work, Seco,

Veale and Hayes (2004) present a comprehensive model based on the idea that the IC is

inversely proportional to the number of hyponyms (or sub-classes) of a given class.

The main drawback of Seco, Veale and Hayes (2004) IC model is that the authors

do not consider the depth of the analyzed class in ontology. With this, two classes with

an equal number of hyponyms but very different depths, i.e., a different degree of expres-

siveness, can produce similar IC values (LASTRA-DÍAZ; GARCÍA-SERRANO, 2015).

Thus, Zhou, Wang and Gu (2008) propose to use both the number of hyponyms (or sub-

classes) and the depth of these classes in ontology. Already, Cai et al. (2018) propose to

use the depth in a non-linear function.

Another drawback of Seco, Veale and Hayes (2004) IC model is that evaluating

the set of hyponym is not appropriate to estimate the IC value of generic classes (classes

with low depth in the ontology) because this set represents the classes that rarely occur in

a corpus (SÁNCHEZ; BATET; ISERN, 2011). With this, Sánchez, Batet and Isern (2011)

propose to use the number of leaves (classes that have no hyponyms) and the subsumers

of a given class.

Like the Seco, Veale and Hayes (2004) IC model, the Sánchez, Batet and Isern

(2011) IC model does not use the depth of the class as semantic evidence either. Thus,

Meng, Gu and Zhou (2012) propose a new IC model to ensure that a class with more

hyponyms have less IC value than the classes with fewer ones. Also, these authors propose

that the deeper the class in ontology, the greater its IC value.

Sánchez and Batet (2012) note the incapability of the Seco, Veale and Hayes

(2004) IC model to distinguish two leaf classes. Thus, the authors propose the concept of

called commonness. In this concept, a ratio model takes into account the leaf nodes and
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the subsumers of the analyzed class and the same semantic evidence of the root class of

ontology.

Adhikari et al. (2015) merge the Meng, Gu and Zhou (2012) and Sánchez and

Batet (2012) IC models to solve their problems. The Meng, Gu and Zhou (2012) IC

model considers that two classes that have a different number of subsumers but have the

same hyponym structure and stay in the same depth have the same IC value. Since the

Sánchez and Batet (2012) IC model does not distinguish two classes in different depths.

The IC models described above are only useful to evaluate the similarity between

two ontology classes, i.e., they explore only taxonomic relationships of ontology. To

solve this limitation, Pirró and Euzenat (2010) convert the Tversky (1977) feature-based

model into an IC model in which allows evaluating other types of relationships besides

taxonomical.

All the approaches described above are IC models. The IC and hybrid semantic

measures use these IC models to evaluate the similarity between two ontology classes. In

this context, Resnik (1995) proposes that the semantic similarity between two ontology

classes depends on the amount of information two concepts have in common. From this,

the most specific common ancestor (MICA) gives this shared information, i.e., the super-

class that subsumes both evaluated classes with the highest IC value (RESNIK, 1995).

simResnik(c1, c2) = IC(MICA(c1, c2)) (3.5)

The similarity measure proposed by Resnik (1995) has some limitations, like two

classes that have the same MICA possess the same similarity value. To solve this issue,

Jiang and Conrath (1997), Sánchez and Batet (2011), and Lin (1998) proposed their sim-

ilarity models. In these models, the similarity measure is an adaptation of path-based

measures in terms of the IC value. For example, in Jiang and Conrath (1997) similarity

measure, the distance between two ontology classes equals to the sum of their IC values

decreased by twice the IC value of their MICA. Also, some authors attempt to explore

this adaptation of path-based measures in terms of IC values through non-linear functions

(CAI et al., 2018).

The IC-based measures also use the feature-based approaches in their definitions.

For example, Pirró and Seco (2008) present a relatedness measure founded in the feature-

based theory proposed by Tversky (1977). In this measure, the authors use the analogy

that the Resnik (1995) similarity measure is approximately equal to the intersection of two

feature sets. Already Pirró and Euzenat (2010) propose that the difference between two
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feature sets of two ontology classes is approximately equal to the difference between their

IC values. Hence, unlike most information content measures, these measures based on the

adaptation of feature-based theory explore other features through other relationships types

besides the taxonomic ones (e.g., part-whole relationships).

3.3.4 The Hybrid Approaches

The hybrid approaches try to overcome the limitations of the knowledge-based

semantic measure approaches by combining them. For example, Cai et al. (2018) and

Zhu and Iglesias (2017) merge a path-based approach and an IC-based approach into a

single semantic measure. In these works, each semantic measure approach performs its

respective role, while the path-based measure evaluates how two ontology classes are

closely related, the IC measure evaluates the specificity of the evaluated classes.

3.4 The Limitations of the Knowledge-based Approaches on Relatedness Evaluation

The main goal of the semantic measures is to estimate the strength of the semantic

likeness between two analyzed entities to distinguish them. In the literature, many seman-

tic measures use as a backbone the ontology because the ontologies represent a structured

and unambiguous representation of the knowledge. However, by doing a careful study

of the state-of-the-art semantic measures, we found that these measures are not practical,

ideal, or flexible. These problems occur mainly in ontologies that avoid the "is-a" over-

loading or in ontologies that the non-taxonomic relationships provide stronger semantic

evidence than taxonomic relationships. With this, when we apply the state-of-art-semantic

measures in these situations, the relatedness evaluation is prejudiced because of three

main reasons: the quality of the distinction between two ontology classes, the evaluation

time on-demand, and the memory consumption to perform the relatedness evaluation. In

this section, we present a detailed analysis of the disadvantages of each knowledge-based

semantic measure approach presented in Section 3.3, and our hypotheses of each of these

approaches in relatedness evaluation.
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3.4.1 The Path-Based Approaches

We believe that the most coherent approaches to be used in relatedness evalua-

tion are the path-based approaches. The main reason for this assertion is that path-based

measures can be efficiently used to evaluate how closely two classes of the ontology are

related (or dependent). However, the definitions of the path-based semantic measures

presented in Section 3.3.1 have limitations when used in the relatedness evaluation, such

as:

• Weighting distinct relationships. One of the main drawbacks of the state-of-the-

art path-based approaches is to stipulate the weight value of a relationship. In some

cases, this weight is according to the taxonomic features of the related classes.

While in other cases, the weight value is dependent on the task performed by the

ontology, i.e., the relationships have fixed weight values. The main limitation in

these two cases is how to stipulate, independent of the domain, the weight value of

a relationship based on some semantic evidence. For example, consider an ontol-

ogy class car that has component a class chassis and the class color as one of its

qualities. In the state-of-the-art, no approach can distinguish these two relationships

with a well-founded semantic basis or with domain-independent semantics, such as

a top-level ontology;

• The possible paths. In the path-based semantic measures, it is common to con-

sider a structured proxy as a directed acyclic graph. Thus, it is common the use of

the Dijkstra algorithm (DIJKSTRA, 1959) in the shortest path calculation. When

using only ontology taxonomy, the path-based approaches have a low query cost be-

cause there are fewer possible paths between the two evaluated classes. However,

when considering non-taxonomic relationships, the computational cost grows dra-

matically, making path-based approaches impractical in applications that evaluate

the relatedness on-demand. One strategy to solve this problem is to pre-compute

all relatedness values between all ontology classes and store them in memory at

a quadratic memory cost. Another strategy is to limit the possible paths that aim

to improve the Dijkstra algorithm by reducing the number of interactions (HIRST;

ST-ONGE et al., 1998). Another problem in shortest path calculation is to consider

the path through intransitive relationships. For example, consider an entity heart

that is component of an entity person, and the entity person that is member of an

entity orchestra, the path between heart and orchestra using (heart, component of,
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person) and (person, member of, orchestra) relationships is incorrect because the

violate the transitivity statements;

3.4.2 The Feature-Based Approaches

The feature-based approaches are proposed initially to evaluate the similarity be-

tween two ontology classes (TVERSKY, 1977). Thus the feature-based measures con-

sider as the class features the set of classes related (or inferred) through taxonomic rela-

tionships. In this approach, the inference process plays a crucial role in finding an embrac-

ing set of features of an ontology class. In some works, authors perform the relatedness

evaluation by using the overlapping of the glosses of the analyzed classes. However, this

textual definition, besides being costly to provide, is often unavailable. In other works, au-

thors consider as features of an ontology class, the classes related through non-taxonomic

relationships. In the context of the features, the state-of-the-art feature-based approaches

does not present a general rule to obtain class features. Thus, the critical issue of the

feature-based approaches is how to get an embracing set of features to provide a precise

distinction between two ontology classes.

3.4.3 The Information Content Approaches

As presented in Section 3.3.3, there exist two main methods in information content

(IC) approaches: extrinsic and intrinsic. The former method requires the existence of

corpora in which the information content value is extracted based on the frequency of a

term that describes an ontology class in these corpora. However, this strategy is limited

by the requirement of corpora, the problems of the text matching (e.g., the polysemy),

and the low frequency of the generic classes of the ontology. The latter method solves

these problems by extracting the semantic evidence from the taxonomic structure of the

ontology. An exception is the Pirró and Euzenat (2010) proposal, where considers the

part-whole relationships. Through our analysis, there is a trend in the exploration of

new taxonomic features and composition of them. However, no matter which semantic

evidence from the taxonomy a semantic measure uses, it is still insufficient in relatedness

evaluation. This limitation is due to the inability of the approach to distinguish two classes

that have the same taxonomic structure but have different non-taxonomic relationships.
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4 THE PROPOSAL TO SEMANTIC RELATEDNESS EVALUATION

In this chapter, we present our proposal to improve the relatedness evaluation

based on feature-based and path-based semantic measures. Our approach uses a set of

relationship categories in order to promote the acquisition of the semantic neighbors of an

ontology class. We use the semantic neighbors of an ontology class as its set of features,

in feature-based semantic measures. Also, we use these semantic neighbors to compute

the distance in semantic measures based on paths. Moreover, we describe how to use the

ontological meta-property of existential dependence as semantic evidence. We use this

semantic evidence to propose a novel domain-independent way to improve the distinction

between ontology classes during relatedness evaluation.

This chapter is structured as follows: in Section 4.1, we describe how to transform

an ontology represented in OWL (Ontology Web Language) into a semantic graph. In

Section 4.2, we describe our proposal to obtain the semantic neighbors of an ontology

class. In Section 4.3, we describe our proposal to use the semantic neighbors of an on-

tology class as the feature set in feature-based semantic measures. In Section 4.4, we

describe our proposal to use the semantic neighbors in the semantic distance calculation,

in path-based approaches.

4.1 Building the Semantic Graph from a Well-Founded Ontology

Before we can use an ontology in a knowledge-based semantic measure, the first

step is to convert this ontology into a semantic graph. From this, in this work, we propose

the following steps to perform the conversion of a well-founded ontology into a semantic

graph.

• Step 1 (Well-Founded Domain Ontology). The main requirement to use our ap-

proach to relatedness evaluation is a well-founded domain ontology, i.e., a domain

ontology constructed based on definitions of top-level ontologies or based on the

ontological meta-properties of the modeled entities. As stated in Section 2.2, in this

work, we recommend the BFO as the top-level ontology.

Assumption 1 (Inverse Relationship): since the edge e is oriented, we denote

r− the type of relation that has the inverse semantic of r and e− the inverse semantic

edge of the direct edge e. We consider that any relationship (ci, r, cj) implicitly implies
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(cj, r
−, ci). For example, the hierarchical relationship (sedimentary rock, sub-classof,

rock) implies the inverse hierarchical relationship (rock, super-classof, sedimentary rock),

considering sub-classof− = super-classof. The same situation occurs when considering a

sequence of edges. For example, the part-whole relationships (cerebellum, part of, brain)

and (brain, part of, person) implies the inverse part-whole relationships (brain, has part,

cerebellum) and (person, has part, brain). The inverse relationship has not necessarily the

same logical properties as the direct relation. The resulting graphG is strongly connected,

i.e., any vertex ci is reachable from any other vertex cj , and vice versa.

• Step 2 (Building the Class Hierarchy). By default, OWL makes it possible to cre-

ate class hierarchies through the SubClassOf axiom. The relationship (c2, subClassOf ,

c1) means that the class c2 is more specific than the class c1, and implies the inverse

relationship (c1, superClassOf, c2) which means that the class c1 is more generic

than the class c2 in the ontology class hierarchy. With this, the method creates two

edges in the semantic graph for each relationship (cj , subClassOf , ci) founded in

the ontology. Additionally, all edges created from subClassOf and superClassOf

relationships preserve their logical properties of being irreflexive, asymmetric, and

transitive;

• Step 3 (Building the Initial Graph). From the hierarchy tree, the OWL makes it

possible to create other relationship types using the OWLObjectProperty with their

respective logical properties. With this, for each OWLObjectProperty relation r

between the classes ci and cj , the method creates two edges in the semantic graph,

one from ci to cj through the relationship (ci, r, cj) and the another from cj to ci

through the inverse relationship (cj , r−, ci). Additionally, all edges created from

OWLObjectProperty relations, explicitly defined in the OWL ontology, preserve

their respective logical properties;

• Step 4 (Enriching the Initial Graph with the Ontological Meta-Properties). The

OWL provides support to use the logical properties of ontology relations (transitiv-

ity, reflexivity, symmetry, and more) but does not provide support to the ontological

meta-properties of the ontology classes and relationships defined in this ontology.

From this, we propose to use an OWL version of the BFO aiming to infer that,

when a domain concept derives from some general concept of the BFO, this do-

main concept inherits all the ontological meta-properties of this general concept.

For example, consider a domain ontology class c that derives the BFO generic de-

pendent continuant, then c inherits all the ontological meta-properties of the generic
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dependent continuant.

After performing the above steps, we have a semantic graph enriched with the

ontological meta-properties of the classes of the well-founded ontology, where the ver-

texes represent the ontology classes and the edges represent the ontology relationships, as

described in Definition 1.

4.2 The Semantic Neighbors of an Ontology Class

In this section, we propose several assumptions to support our strategy to find the

semantic neighbors of an ontology class. These semantic neighbors are the set of direct

related classes of a given ontology class. In this work, we store only the relationships

between an ontology class and its semantic neighbors in memory. From this, we aim to

propose an approach with low memory consumption and low evaluation time during the

relatedness evaluation. Also, in this section, we describe our view about what makes two

relationships distinct in well-founded domain ontologies, and the set of relationship cate-

gories presented in a domain ontology. Moreover, we explain how to use the relationship

categories (or composition of them) to build the direct paths between an ontology class

and its semantic neighbors.

Assumption 2 (Distinct Relationships): two ontological relationships are distinct

if they relate two classes that have different types of dependence meta-property, or if

they have different logical properties, or if the relations have different names. We are

aware that certain relationships show different names, but they have the same semantics

(synonymous relationships), but it is hard to distinguish these relationships in these cases.

Besides, we classify the relationships of a domain ontology into four categories:

• Equivalent category (EC): includes any relationship that has logical properties

of reflexivity, symmetry, and transitivity and conveys the idea that one class ci is

semantically equivalent to another class cj . In path-based semantic measures, this

type of relationship must have the greatest relatedness value as possible between

two ontology classes;

• Hierarchical category: includes the relationships that convey the idea of hierar-

chy among the related classes (e.g., is-a, sub-classof, super-classof). We subdivide

this category into Upward (UC) and Downward (DC) categories. The Upward

category includes the relationships that start from a more specific vertex to a more
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generic vertex (e.g., a relationship through sub-classof relation). The Downward

category includes the relationships that start from a more generic vertex to a more

specific vertex (e.g., a relationship through super-classof relation). Usually, the

relationships in the hierarchical category have the logical properties the irreflexiv-

ity, asymmetry, and transitivity. This work considers only the classes of the same

branch of the ontology taxonomy, during the analysis of which class is more generic

or more specific than another;

• Horizontal category (HC): it includes any relationship that is not possible to clas-

sify in the categories described above, such as part-whole, characterization, con-

stitution, among other relationships. We are aware that this category includes very

different semantic relations. In future works, we will split this category in order to

use Horizontal relationships in more specific ways.

In this work, we use the relationship categories described in Assumption 2 to clas-

sify all the relationships of an ontology. From these categories, we propose to use a

combination of these relationship categories in order to find a more embracing set of se-

mantic neighbors of an ontology class. We call direct paths the path patterns resulting

from these combinations.

Assumption 3 (Direct Path): we assume that there is a direct path between two

ontology classes when a relationship of the categories described above (or composition

of them) relate these two ontology classes. We consider that the set of the possible rela-

tionship compositions (or paths), in the semantic neighborhood discovery, are through the

relationships of the following patterns: EC, UC, DC, HC, UC-HC, HC-DC, and UC-HC-

DC. Also, the relationships in each relationship category need to be the same type, i.e.,

they not distinct (according to Assumption 2). The notation "-" means the direction of the

path. For example, in UC-DC path, a sequence of DC relationships follows a sequence of

UC relationships. In this path, the first relationship starts from the source class through

a UC relationship, and the last relationship ends in the semantic neighbor through a DC

relationship.

In Figure 4.1, we present an example of ontology classes and their relationships.

In this example, the most abstract class is the class Thing, i.e., all the other ontology

classes are sub-classes of the class Thing. Also, this example has three relationship types:

• The relationship subClassOf has as logical properties the irreflexivity, asymmetry,

and transitivity, and has the relationship superClassOf as its inverse relationship,
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Figure 4.1: An example of the ontology classes and the relationships between them.

Source: The authors.

with the same logical properties. The category of the relationship subClassOf is

UC, while the relationship superClassOf is DC;

• The relationship hasPart, with a solid line, has as logical properties the irreflexivity,

asymmetry, and transitivity, and has the relationship partOf as its inverse relation-

ship, with the same logical properties. The category of both relationships is HC;

• The relationship hasPart, with a dotted line, has the logical properties of irreflex-

ivity, asymmetry, and intransitivity, and it has the relationship partOf as its inverse

relationship, with the same logical properties. The category of both relationships is

HC.

Using Figure 4.1 as an ontology example, we obtain the semantic neighbors through

the direct paths following these approaches:

• EC path: it occurs when there are one or a sequence of EC relationships between

the source class and the semantic neighbor (target class);

• UC path: the pattern (a) of Figure 4.2 exemplifies this path pattern, this direct path

occurs when there is at least one or a sequence of UC relationships between the

source class and the semantic neighbor (target class). Also, all equivalent classes

(classes related through an EC relationship) of the target classes of this path are

target classes of the source class. As described in Assumption 2, the relationships
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Figure 4.2: The path patterns of the direct paths.

Source: The authors.

of this path carry the notion that the semantic neighbor is more generic than the

source class. Since the UC relationships are usually transitive, the set of semantic

neighbors comprehends all ontology classes that are more generic than the source

class, including the class Thing. For example, the semantic neighbors of class C9,

through this path, are the classes C4 and Thing;

• DC path: the pattern (b) of Figure 4.2 exemplifies this path pattern, this direct path

occurs when there is at least one or a sequence of DC relationships between the

source class and the semantic neighbor (target class). Also, all equivalent classes

(classes related through an EC relationship) of the target classes of this path are

target classes of the source class. As described in Assumption 2, the relationships

of this path carry the notion that the semantic neighbor is more specific than the
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source class. Since the DC relationships are usually transitive, the set of semantic

neighbors comprehends all ontology classes that are more specific than the source

class. For example, the semantic neighbors of class C2, through this path, are the

classes C6 and C7;

• HC path: the pattern (c) of Figure 4.2 exemplifies this path pattern, this direct

path occurs when there is at least one or a sequence of HC relationships that are

equal (based on Assumption 2) between the source class and the semantic neigh-

bor. Also, all equivalent classes (classes related through an EC relationship) of the

target classes of this path are target classes of the source class. We use the dis-

tinction provided by Assumption 2 because this path comprehends a large variety

of semantic relations. For example, the ontology in Figure 4.1 has two relations

called hasPart, but they have different logical properties (or they could have dif-

ferent meta-properties). Thus, if we consider that these relations are equal because

they have the same name, then ontological inconsistencies arise. To exemplify this

situation, consider that the C1 represents the class Orchestra, the C2 represents the

class Person, the C3 represents the class Brain, and the C4 represents the class Cere-

bellum. If we consider the Orchestra as the source class and that the two hasPart

relations are equal, then, through this path, the Cerebellum is a semantic neighbor

of the Orchestra. However, this assertion is logically incorrect because the relation-

ship between Orchestra and Person is intransitive;

• HC-DC path: the pattern (d) of Figure 4.2 exemplifies this path pattern. This direct

path occurs when a DC path follows an HC path to relate the source class and the

semantic neighbors. According to the pattern (d) of Figure 4.2, if a class, which

is the target of some HC path has sub-classes, then all its sub-classes and all the

equivalent classes of these sub-classes are semantic neighbors of the source class

of the HC path. In this case, the relation between the source class and the semantic

neighbor is the same as the HC path;

• UC-HC path: the pattern (e) of Figure 4.2 exemplifies this path pattern. This direct

path occurs when an HC path follows a UC path to relate the source class and the

semantic neighbor. According to the visual pattern (e) of Figure 4.2, if a class,

which is the source of some HC path, have sub-classes, then all its sub-classes and

all the equivalent classes of these sub-classes have the same semantic neighbors of

the source class of the HC path. In this case, the relation between the source class

and the semantic neighbor is the same as the HC path;
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Input: class ci
Output: The set of relationships SN from the class ci to its semantic

neighbors
1 SN ← ∅
2 for EC ∈ getEC(ci) do
3 add EC to SN
4 end
5 for DC ∈ getDC(ci) do
6 add DC to SN
7 end
8 for HC ∈ getHC(ci) do
9 add HC to SN

10 cj ← HC.target
11 for DC ∈ getDC(cj) do
12 add HC to SN with DC.target
13 end
14 end
15 for UC ∈ getUC(ci) do
16 add UC to SN
17 cj ← UC.target
18 for HC ∈ getHC(cj) do
19 add HC to SN
20 ck ← HC.target
21 for DC ∈ getDC(ck) do
22 add HC to SN with DC.target
23 end
24 end
25 end
26 return SN ;

Algorithm 1: Algorithm applied to find the semantic neighbors of a class ci through
the direct paths.

• UC-HC-DC path: the pattern (f) of Figure 4.2 exemplifies this path pattern. This

direct path occurs when a DC path follows a UC-HC path to relate the source class

and the semantic neighbor. According to the pattern (f) of Figure 4.2, if two classes,

which are source and target classes, respectively, of some HC path and they have

sub-classes, then all the sub-classes of the target class and all the equivalent classes

of these sub-classes are the semantic neighbors of all the sub-classes of the source

class and all the equivalent classes of these sub-classes. In this case, the relation

between the source class and the semantic neighbor is the same as the HC path;

Based on the descriptions of the assumptions 2 and 3, we propose Algorithm 1

to perform the semantic neighbor discovery. In this algorithm, we aim to find the set of

relationships SN between the source class ci and its semantic neighbors, where each of
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these relationships represents the characteristics of its respective direct path.

In Algorithm 1: at line 2, we discover the EC paths, and, in line 3, we add their

relationships into SN ; at line 5, we discover the DC paths, and, in line 6, we add their

relationships into SN ; at line 8, we discover the HC paths, and, in line 9, we add their

relationships into SN ; at line 11, we discover the HC-DC paths, and, in line 12, we add

their relationships into SN ; at line 15, we discover the UC paths, and, in line 16, we add

their relationships into SN ; at line 18, we discover the UC-HC paths, and, in line 19, we

add their relationships into SN ; at line 21, we discover the UC-HC-DC paths, and, in line

22, we add their relationships into SN . In this algorithm, the functions getEC, getDC,

getUC, and getHC discover the direct paths through the relationships of the same type,

as proposed in Assumption 2.

Finally, applying Algorithm 1 in the ontology example, presented in Figure 4.1,

the set of semantic neighbors of each ontology class are:

• C1: Thing through UC path; C5, and C10 through DC paths; C2 through HC path;

C6, and C7 through HC-DC paths;

• C2: Thing through UC path; C6, and C7 through DC paths; C1, C3, and C4 through

HC paths; C5, C10, C8, C9, and C11 through HC-DC paths;

• C3: Thing through UC path; C8 through DC path; C2, and C4 through HC paths;

C6, C7, C9, and C11 through HC-DC paths;

• C4: Thing through UC path; C9, and C11 through DC paths; C2, and C3 through

HC paths; C6, C7, and C8 through HC-DC paths;

• C5: C1, and Thing through UC paths; C10 through DC path; C2 through UC-HC

path; C6, and C7 through UC-HC-DC paths;

• C6: C2, and Thing through UC paths; C1, C3, and C4 through UC-HC paths; C5,

C10, C8, C9, and C11 through UC-HC-DC paths;

• C7: C2, and Thing through UC paths; C1, C3, and C4 through UC-HC paths; C5,

C10, C8, C9, and C11 through UC-HC-DC paths;

• C8: C3, and Thing through UC paths; C2, and C4 through UC-HC paths; C6, C7,

C9, and C11 through UC-HC-DC paths;

• C9: C4, and Thing through UC paths; C11 through DC path; C2, and C3 through

UC-HC paths; C6, C7, and C8 through UC-HC-DC paths;

• C10: C5, C1, and Thing through UC paths; C2 through UC-HC paths; C6, and C7

through UC-HC-DC paths;
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• C11: C9, C4, and Thing through UC paths; C2, and C3 through UC-HC paths; C6,

C7, and C8 through UC-HC-DC paths.

4.3 Using the Semantic Neighbors in Feature-Based Semantic Measures

The traditional feature-based semantic measures consider the classes related di-

rectly or indirectly through the same relationship type as the feature set of an ontology

class. From this, in our view, the set of semantic neighbors of an ontology class, presented

in Section 4.2, provides a more embracing feature set than the traditional approach. We

assume this because we obtain part of the semantic neighbors in the same way as the

traditional approach, and we get the other part of the semantic neighbors by combining

distinct relationships (taxonomic and non-taxonomic) through the relationship categories

described in Section 4.2.

In the context of feature-based measures, we modify the traditional Ψ function of

Tversky’s measure (Equation 3.2). From this modification, the Ψ function returns the set

of semantic neighbors of a given ontology class, according to Algorithm 1. In this case,

Algorithm 1 returns the set of classes that are semantic neighbors of the source class,

not the set of relationships between the source class and its semantic neighbors. Lastly,

we do not modify the semantics of the intersection and difference functions of Tversky’s

measure, but we change the way to obtain the feature set.

Figure 4.3 presents two examples that describe the differences between the tradi-

tional approach to obtain the feature set (left side) and our approach (right side). In these

examples, we use the classes C4 and C5 as the source classes. From this, using the tradi-

tional approach, the features of the class C4 are the classes Thing, C2, C3, C9, and C11,

and the features of the class C5 are Thing, C1, and C10. Already, using our approach to

obtain the feature set, the features of the class C4 are the classes Thing, C2, C3, C9, C11,

C6, C7 and C8, and the features of the class C5 are Thing, C1, C10, C2, C6, and C7.

From this,

4.4 Using the Semantic Neighbors in Path-Based Semantic Measures

In this section, we describe some assumptions to use the semantic neighbors and

the existential dependence meta-property in relatedness evaluation, using path-based mea-
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Figure 4.3: The examples of the feature set of the traditional approach (left side) and with
our approach (right side).

Source: The authors.

sures. Our main objective using the semantic neighbors presented in Section 4.2 in path-

based measures is to limit the possible paths analyzed by these measures.

4.4.1 The Local Distance

The knowledge-based measures supported by paths use the semantic distance be-

tween the analyzed classes to perform the semantic relatedness evaluation. From this,

these approaches use the length of the shortest path in the semantic graph, which repre-

sents the ontology to compute the semantic distance. In these approaches, the smaller the

semantic distance, the greater the relatedness value between the two classes analyzed.

Assumption 4 (Local Distance): the local distance (LD) defines the semantic

distance between a class and any of its semantic neighbors, discovered through a direct

path. This semantic distance expresses how related these two classes are, i.e., the more
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related two classes are, the smaller the local distance value.

As described in Section 4.2, we find the semantic neighbors through the direct

paths and store the relationships that represent these paths in memory. From this, these

relationships also present information about the local distance between the related classes.

In this work, we use the local distance as a parameter of the final weight function of

a relationship. From this parameter, we can stipulate the semantic closeness between two

ontology classes, for example, regards their distance through the number of relationships

in the direct path that link them. We do not define a general rule to this parameter because

we can adjust it with different semantics. For example, consider the class Person is a

subclass of the class Mammal, which is a subclass of the class Animal. If we consider that

the classes Person and Mammal have the same relatedness value to the class Animal, then

the local distance of the UC path between them is the same. However, if we consider that

the class Mammal is more related to the class Animal than the class Person, then the local

distance of the UC path between Mammal and Animal is lower than between Person and

Animal.

4.4.2 The Existential Dependence as a Piece of Semantic Proxy

As described in Chapter 2, the ontological meta-properties are a set of properties

deeply discussed in philosophy and adopted in top-level ontologies to explicit the meaning

of their concepts, i.e., the ontological meta-properties help to distinguish and classify the

generic concepts proposed in top-level ontologies, and the existential dependence is one

of these ontological meta-properties.

In this work, we use the ontological meta-properties, more specifically the existen-

tial dependence, as a new semantic proxy where we can extract new semantic evidence.

From this, we use the types of existential dependence to weight the local distance between

an ontology class and its semantic neighbors. Thus, we aim to improve the distinction be-

tween the analyzed classes during the relatedness evaluation.

Assumption 5 (Existential Dependence Weight): we rely on the type of existen-

tial dependence as a way to weight a relationship that represents the direct path between

the source class and any of its semantic neighbors. From this, we weight a relationship

according to the type of existential dependence of its source class. Equation 4.1 shows
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the weighting process based on existential dependence meta-property.

EDW (r) = 1−


S

G

I

(4.1)

where S is the weight of a relationship r with specific dependent source class; G

is the weight of a relationship r with generic dependent source class; I is the weight of a

relationship r with independent source class, with 0 < S,G, I < 1.

Since the ontological meta-properties are a set of domain-independent properties,

the process of weighting the relationships according to the existential dependence meta-

property of their source class solves our problem in deciding weight factors that we can

use in different domains. Also, this approach relies on the nature of the modeled classes

in a domain ontology, i.e., we ignore the non-semantic aspects of the relationships (e.g.,

the name of the relationship, the number of related classes, among others).

From the local distance (presented in Section 4.4.1) and the weighting strategy

based on the existential dependence type, described in this section, Equation 4.2 describes

the final weight function of a relationship that we use in our semantic distance approach.

W (r) = EDW (r) ∗ LD(r); (4.2)

4.4.3 Semantic Distance

So far, we have discussed direct paths between a class and its respective semantic

neighbors. However, in the semantic distance evaluation, many classes of ontology cannot

be evaluated because there is no direct path between them, i.e., these classes are not

neighbors. In order to solve this problem, we use the nearest common neighbor (NCN)

as an intermediary class. From this, we evaluate the local distance of the indirect path

between the two evaluated classes.

Assumption 6 (Common Neighbors): consider that the function SN of Algo-

rithm 2 represents the output of Algorithm 1, sni the set of semantic neighbors of the

class ci, excluding the DC relationships, and snj the set of semantic neighbors of the

class cj , excluding the UC relationships, then the function CN(sni, snj) (line 11 of Al-

gorithm 2) returns the set of common neighbors between sni and snj . We exclude some
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types of relationships from sni and snj to maintain the restrictions of the direct path

patterns described in Section 4.2.

Assumption 7 (Nearest Common Neighbor): we assume that the nearest com-

mon neighbor is the class whose value distance is the smallest, within the set of common

neighbors ce ∈ CNs between sni and snj . The sets sni and snj are the neighbors of the

classes ci and c2, respectively, and distance = W (cc2ci) + W (cc2cj) (line 15 of Algo-

rithm 2), where cc2ci is the relationship between cc and ci and cc2cj is the relationship

between cc and cj (lines 13 and 14 of Algorithm 2, respectively).

Assumption 8 (Indirect Path): we assume that two classes ci and cj do not have

a direct path between them but are related to the same common neighbor cc class and this

common neighbor is the nearest common neighbor of both. In this case, the semantic dis-

tance between ci and cj equals to the sum of the weight value of the relationship between

cc and ci and the weight value of the relationship between cc and cj .

Based on all the assumptions described in sections 4.2 and 4.4, we propose Algo-

rithm 2 to compute the semantic distance between two ontology classes. In this algorithm,

the semantic distance between two classes ci and cj assumes one value of the three possi-

ble situations:

• In the first situation, the two analyzed classes are equivalent (lines 2-4 of Algo-

rithm 2). Thus, the semantic distance between them equals to 0;

• In the second situation, as discussed in Section 4.2, there is a direct path between the

two analyzed classes (lines 5-9 of Algorithm 2). Thus, we retrieve from memory the

semantic neighbors sni of the class ci. If the class cj is present in the relationships

between ci and its semantic neighbors sni, then the semantic distance equals to the

weight value of the relationship between ci and cj;

• In the third situation, as discussed in this section, an indirect path exists between

the two analyzed classes (lines 5 and 10-20 of the Algorithm 2). Thus, we retrieve

from memory the semantic neighbors snj of the class cj and we get the common

neighbors between sni and snj . From the set of common neighbors, we search

the nearest common neighbor cc between ci and cj . Finally, the semantic distance

equals to the sum of the weight value of the relationship between cc and ci and the

weight value of the relationship between cc and cj .

The main difference between our semantic distance approach and the traditional

shortest path algorithm of Dijkstra (DIJKSTRA, 1959) is that we reduce the number of
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possible paths used in the shortest path calculation. Also, in our approach, two ontology

classes are always related through a direct or indirect path.

Input: Source class ci and Target class cj
Output: Length value minDistance

1 minDistance←MAXV ALUE
2 if ci ≡ cj then
3 minDistance = 0
4 else
5 sni ← SN(ci)
6 if cj ∈ sni then
7 ci2cj ← ci.getRelationshipTo(cj)
8 minDistance = W (ci2cj)

9 else
10 snj ← SN(cj)
11 CNs← CN(sni, snj)
12 for cc ∈ CNs do
13 cc2ci ← cc.getRelationshipTo(ci)
14 cc2cj ← cc.getRelationshipTo(cj)
15 distance← W (cc2ci) +W (cc2cj)
16 if distance < minDistance then
17 minDistance← distance
18 end
19 end
20 end
21 end
22 return minDistance;

Algorithm 2: The Semantic Distance Algorithm.
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5 EXPERIMENTS AND RESULTS

In this chapter, we present the experiments and results performed using the adap-

tation of the knowledge-based measures based on paths and features with the semantic

neighbors described in Chapter 4. In these experiments, we compare these adaptations

with the original proposals presented in the literature. Also, we perform these experiments

in the word sense disambiguation task (WSD) using the Patwardhan, Banerjee and Peder-

sen (2003) knowledge-based algorithm (described in Section 2.5). This task is extremely

dependent on the distinction capability of the knowledge-based measures (MCINNES;

PEDERSEN, 2013). As the input of WSD algorithm, we use the window size from 1

to 9, four different datasets on Oil&Gas domain to extract the sentences and the domain

ontology of Strataledge® (LORENZATTI et al., 2009), described in Section 2.2, as the

knowledge resource (semantic proxy).

This chapter is structured as follows: in Section 5.1, we describe the datasets

from which we extracted the sentences where occur the ambiguous class terms of the

Strateledge® ontology and our experimental hypotheses. In the remainder of this chapter,

we present the experiments to prove our hypotheses.

5.1 The Analyzed Datasets

Since we will use the Patwardhan, Banerjee and Pedersen (2003) algorithm (de-

scribed in Section 2.5) to disambiguate the polysemic class terms of the Strateledge® on-

tology, we extract the sentences from four different textual resources:

• D1 (Polvo Project): the Polvo Project is a Geology study developed by the Geo-

science Institute of Federal University of Rio Grande do Sul in cooperation with

Maersk Energia Company. The project comprises an integrated study of Petrol-

ogy, Sedimentology, Seismic Sequence, Stratigraphy and Biostratigraphy, devel-

oped with data from the Polvo and Peregrino field area, Campos Basin, Brazil. In

this corpora, we use only the final report document;

• D2 (Scherer scientific articles): this repository is a set of papers written by one

of the stratigraphers that participated in the creation of the domain ontology of

Strataledge®. The articles describe the analysis of facies architecture and the se-

quence stratigraphy of some fluvial and eolian reservoirs;
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• D3 (Sedimentary Geology journal): this journal covers all aspects of sediments

and sedimentary rocks at all spatial and temporal scales. The collection of articles

must make a significant contribution to the field of study and must place the research

in a broad context so that it is of interest to the diverse, international readership of

the journal. This dataset includes four papers of the Sedimentary Geology journal

(volume 379);

• D4 (Sedimentology journal): this journal publishes ground-breaking research across

the spectrum of sedimentology, sedimentary geology, and sedimentary geochem-

istry. This dataset includes the papers of the Sedimentology journal (volume 66,

issue 4).

During the sentence extraction, we do the string matching of the polysemic class

terms of the Strataledge® ontology and the input documents of the corpora described

above. In order to improve this matching, we perform the stop-word removal and stem-

ming on the text of the input documents and the polysemic class terms. From this, we

extract the sentences composed by the context window terms, where each term refers to

a class in the ontology. After having all the extracted sentences, a geologist provided the

groundtruth of the polysemic term of each sentence and classified the sentences if they are

according to the same scale of analysis that the Strataledge® ontology covers. We do that

because different scale of analysis share a lot of common geological terms. Also, some

geological terms such as massive, low, medium, high are commonly used in different con-

texts. Thus, we aim to solve the polysemy problem only in Strataledge® context. Finally,

as presented in Table 5.1, we extract a total of 1732 sentences. From these sentences, we

consider 920 to perform the WSD because they are according to the domain and scale of

geological analysis represented in the Strataledge® ontology.

Now that we have discussed the evaluated task, the domain ontology, and the de-

tails of the evaluated datasets, we present the list of hypotheses for which we designed the

experiments. In these experiments, we evaluate the effectiveness of the knowledge-based

measures regarding the distinction capability, and the efficiency regarding the memory

consumption and the evaluation time.

Table 5.1: The characteristics of each evaluated dataset.
D1 D2 D3 D4

Total no. of extracted sentences 325 433 288 686
No. of considered sentences 109 341 96 374

Source: The authors.
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Hypothesis 1. The knowledge-based semantic similarity measures, i.e., semantic

measures based on the taxonomic structure of the ontology are ineffective in distinguish-

ing two classes in well-founded ontologies.

Hypothesis 2. The combination of taxonomic and non-taxonomic relationships

improve the distinction performance in knowledge-based measures based on features.

Hypothesis 3. The knowledge-based relatedness approaches based on paths are

effective in distinguishing two ontology classes, but they present a low performance on

evaluation time.

Hypothesis 4. The ontological meta-properties improve the distinction perfor-

mance of the path-based measures.

5.2 Hypothesis 1: Similarity Measures are Ineffective to Distinguish Two Ontology

Classes in Well-Founded Ontologies

In this section, we present the experiments aiming to prove hypothesis 1. In these

experiments, as presented in Table 5.2, we evaluate three different IC measures (Resnik

(1995), Jiang and Conrath (1997), Lin (1998)) with four different IC models (Seco, Veale

and Hayes (2004), Zhou, Wang and Gu (2008), Meng, Gu and Zhou (2012), Cai et al.

(2018)) on WSD. Also, we keep the parameter values, presented in Table 5.2, in order

to not generate a bias in one semantic evidence concerning the other. In this experiment,

we evaluate only the IC-based measures because they use other semantic evidence be-

sides the depth of the analyzed classes (commonly used in path-based measures), and the

taxonomic distance proved ineffective to perform a good distinction based on Figure 2.2.

Table 5.3 presents the F-score results of WSD using the knowledge-based mea-

sures based on information content on D1 (see Section 5.1 for more details). In this ex-

Table 5.2: The evaluated knowledge-based measures based on Information Content.

ID Semantic Measure Parameter Values
IC1 Jiang and Conrath (1997) + IC Seco, Veale and Hayes (2004) -
IC2 Jiang and Conrath (1997) + IC Zhou, Wang and Gu (2008) k = 0.5
IC3 Jiang and Conrath (1997) + IC Meng, Gu and Zhou (2012) -
IC4 Jiang and Conrath (1997) + IC Cai et al. (2018) λ = 0.5
IC5 Lin (1998) + IC Seco, Veale and Hayes (2004) -
IC6 Lin (1998) + IC Zhou, Wang and Gu (2008) k = 0.5
IC7 Lin (1998) + IC Meng, Gu and Zhou (2012) -
IC8 Lin (1998) + IC Cai et al. (2018) λ = 0.5

Source: The authors.
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periment, all the similarity measures achieved a poor F-score result on WSD, with F-score

lower than 85%. The approach IC7 had the best F-score results of this experiment.

Table 5.3: The F-score results of D1 using information content measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

IC1 0.09 0.14 0.12 0.12 0.17 0.20 0.21 0.21 0.18 0.16
IC2 0.10 0.12 0.10 0.12 0.15 0.17 0.17 0.15 0.15 0.14
IC3 0.10 0.10 0.10 0.12 0.15 0.17 0.17 0.17 0.17 0.14
IC4 0.09 0.14 0.12 0.12 0.17 0.20 0.21 0.21 0.18 0.16
IC5 0.15 0.21 0.17 0.21 0.27 0.30 0.30 0.27 0.27 0.24
IC6 0.15 0.21 0.15 0.20 0.23 0.23 0.26 0.24 0.24 0.21
IC7 0.15 0.23 0.17 0.21 0.28 0.30 0.31 0.28 0.28 0.25
IC8 0.15 0.23 0.18 0.21 0.27 0.31 0.30 0.27 0.27 0.24

Source: The authors.

Table 5.4 presents the F-score results of WSD using the knowledge-based mea-

sures based on information content on D2 (see Section 5.1 for more details). In this

experiment, all measures have poor F-measure results on WSD, with F-score lower than

85%. The approaches IC5, IC7, and IC8 had better F-score results in this experiment.

Table 5.4: The F-score results of D2 using information content measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

IC1 0.13 0.21 0.25 0.27 0.30 0.31 0.32 0.32 0.34 0.27
IC2 0.13 0.15 0.20 0.16 0.17 0.17 0.20 0.21 0.17 0.17
IC3 0.13 0.16 0.14 0.11 0.13 0.14 0.14 0.14 0.13 0.13
IC4 0.13 0.21 0.25 0.27 0.30 0.31 0.32 0.32 0.35 0.27
IC5 0.16 0.25 0.29 0.32 0.36 0.39 0.41 0.42 0.44 0.34
IC6 0.16 0.25 0.29 0.30 0.34 0.38 0.40 0.40 0.43 0.33
IC7 0.16 0.25 0.29 0.32 0.36 0.39 0.41 0.42 0.45 0.34
IC8 0.16 0.25 0.29 0.32 0.36 0.39 0.42 0.42 0.45 0.34

Source: The authors.

Table 5.5 presents the F-score results of WSD using the knowledge-based mea-

sures based on information content on D3 (see Section 5.1 for more details). In this

experiment, all measures have poor F-measure results on WSD, with F-score lower than

85%. The approach IC7 had better F-score results in this experiment.

Table 5.6 presents the F-score results of WSD using the knowledge-based mea-

sures based on information content on D4 (see Section 5.1 for more details). In this ex-

periment, the Lin (1998) IC measure obtained a better average F-score with different IC
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Table 5.5: The F-score results of D3 using information content measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

IC1 0.10 0.17 0.17 0.21 0.25 0.29 0.29 0.29 0.32 0.23
IC2 0.10 0.14 0.12 0.17 0.21 0.24 0.24 0.24 0.29 0.19
IC3 0.10 0.14 0.12 0.17 0.21 0.22 0.22 0.24 0.29 0.19
IC4 0.10 0.17 0.17 0.21 0.25 0.29 0.29 0.29 0.32 0.23
IC5 0.22 0.27 0.27 0.32 0.37 0.41 0.40 0.40 0.41 0.34
IC6 0.22 0.27 0.25 0.29 0.39 0.40 0.41 0.43 0.41 0.34
IC7 0.22 0.27 0.25 0.30 0.39 0.43 0.43 0.43 0.45 0.35
IC8 0.22 0.27 0.27 0.32 0.37 0.41 0.40 0.40 0.41 0.34

Source: The authors.

models regards the other evaluated IC measures. However, these results are not expressive

to the WSD task because the F-score is lower than 85%.

Table 5.6: The F-score results of D4 using information content measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

IC1 0.13 0.15 0.17 0.21 0.23 0.23 0.23 0.25 0.26 0.21
IC2 0.13 0.15 0.17 0.20 0.20 0.21 0.20 0.21 0.23 0.19
IC3 0.13 0.14 0.16 0.19 0.20 0.20 0.20 0.21 0.23 0.18
IC4 0.13 0.15 0.17 0.21 0.23 0.23 0.23 0.25 0.26 0.21
IC5 0.27 0.33 0.38 0.43 0.48 0.48 0.48 0.50 0.52 0.43
IC6 0.27 0.32 0.36 0.36 0.40 0.39 0.38 0.39 0.41 0.36
IC7 0.27 0.33 0.36 0.39 0.43 0.41 0.42 0.44 0.45 0.39
IC8 0.27 0.33 0.38 0.43 0.48 0.48 0.48 0.50 0.52 0.43

Source: The authors.

5.3 Hypothesis 2: Combining Taxonomic and Non-Taxonomic Relationships Im-

prove the Distinction Capability of Feature-Based Measures

In this section, we present the experiments aiming to prove hypothesis 2. In these

experiments, as presented in Table 5.7, we evaluate four different versions of Tversky

(1977) measure and the feature-based approach proposed by Likavec, Lombardi and Cena

(2019). Also, we adapt each of these measures with our approach of using the semantic

neighbors in feature-based measures (described in Section 4.3), and we use the operator *

to differentiate the original approaches from our adaptation. In the Tversky (1977) mea-

sure, we use different parameter values in order to benefit certain aspects of this measure
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Table 5.7: The evaluated knowledge-based measures based on features

ID Semantic Measure Parameter Values
F1 Tversky (1977) α = 0, β = 1
F2 Tversky (1977) α = 1, β = 0
F3 Tversky (1977) α = 1, β = 1
F4 Tversky (1977) α = 0.5, β = 0.5
F5 Likavec, Lombardi and Cena (2019) -

Source: The authors.

(as described in Equation 3.2) during the relatedness evaluation.

Table 5.8 presents the F-score results of WSD using the knowledge-based mea-

sures based on features on D1 (see Section 5.1 for more details). Overall, the results

of this experiment are not expressive to the WSD task, with F-score lower than 85%.

However, it is possible to note the improvement in the distinction of two ontology classes

regards the traditional approaches to find the features of the classes. In this experiment, all

adapted feature-based measures had a better F-score result in comparison to the original

approaches. This improvement is true for all tested window size variations.

Table 5.8: The F-score results of D1 using feature-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

F1* 0.58 0.69 0.70 0.73 0.73 0.72 0.75 0.73 0.75 0.71
F1 0.09 0.18 0.18 0.18 0.24 0.27 0.27 0.30 0.31 0.23
F2* 0.52 0.61 0.63 0.57 0.58 0.61 0.62 0.63 0.58 0.59
F2 0.20 0.21 0.21 0.23 0.26 0.27 0.27 0.27 0.27 0.24
F3* 0.58 0.69 0.69 0.71 0.70 0.70 0.72 0.70 0.72 0.69
F3 0.20 0.23 0.20 0.23 0.27 0.30 0.30 0.30 0.30 0.26
F4* 0.58 0.68 0.66 0.70 0.68 0.69 0.69 0.69 0.69 0.67
F4 0.20 0.23 0.21 0.23 0.26 0.27 0.27 0.27 0.27 0.24
F5* 0.54 0.60 0.63 0.65 0.65 0.68 0.69 0.67 0.68 0.64
F5 0.20 0.23 0.23 0.24 0.27 0.30 0.30 0.30 0.30 0.26

Source: The authors.

Table 5.9 presents the F-score results of WSD using the knowledge-based mea-

sures based on features on D2 (see Section 5.1 for more details). In this experiment, all

adapted feature-based measures had a better F-score result in comparison to the original

approaches. This improvement is true for all tested window size variations. Also, the

adapted Tversky (1977) measures had obtained expressive results, with F-score equals or

greater than 85%, with a window size greater than 4, and the adapted Likavec, Lombardi

and Cena (2019) measure with a window size of 9.
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Table 5.9: The F-score results of D2 using feature-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

F1* 0.56 0.75 0.79 0.82 0.85 0.88 0.89 0.90 0.91 0.82
F1 0.12 0.21 0.26 0.30 0.32 0.34 0.38 0.38 0.41 0.30
F2* 0.58 0.71 0.77 0.81 0.84 0.87 0.88 0.90 0.89 0.81
F2 0.17 0.17 0.17 0.18 0.18 0.20 0.21 0.19 0.19 0.18
F3* 0.61 0.78 0.82 0.84 0.87 0.89 0.90 0.91 0.92 0.84
F3 0.20 0.27 0.31 0.31 0.32 0.35 0.38 0.36 0.36 0.32
F4* 0.61 0.77 0.80 0.83 0.86 0.89 0.90 0.91 0.93 0.83
F4 0.21 0.24 0.27 0.28 0.25 0.28 0.30 0.29 0.26 0.26
F5* 0.57 0.71 0.76 0.80 0.81 0.83 0.84 0.84 0.85 0.78
F5 0.19 0.26 0.31 0.33 0.34 0.34 0.36 0.36 0.38 0.32

Source: The authors.

Table 5.10: The F-score results of D3 using feature-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

F1* 0.63 0.73 0.78 0.80 0.83 0.84 0.86 0.87 0.88 0.80
F1 0.21 0.32 0.36 0.40 0.49 0.53 0.53 0.55 0.57 0.44
F2* 0.55 0.62 0.64 0.68 0.72 0.75 0.72 0.73 0.72 0.68
F2 0.04 0.08 0.08 0.12 0.19 0.21 0.19 0.21 0.25 0.15
F3* 0.59 0.68 0.75 0.75 0.77 0.81 0.81 0.81 0.82 0.76
F3 0.06 0.12 0.10 0.14 0.21 0.25 0.25 0.25 0.30 0.19
F4* 0.56 0.68 0.72 0.75 0.76 0.79 0.79 0.81 0.80 0.74
F4 0.06 0.12 0.08 0.14 0.19 0.22 0.21 0.22 0.27 0.17
F5* 0.55 0.60 0.57 0.62 0.64 0.67 0.63 0.64 0.67 0.62
F5 0.06 0.12 0.10 0.15 0.21 0.22 0.24 0.25 0.30 0.18

Source: The authors.

Table 5.10 presents the F-score results of WSD using the knowledge-based mea-

sures based on features on D3 (see Section 5.1 for more details). In this experiment, all

adapted feature-based measures had a better F-score result in comparison to the original

approaches. This improvement is true for all tested window size variations. Also, only

the adapted Tversky (1977) measure F1* had expressive results on WSD, with F-score

equals or greater than 85%, with a window size greater than 6.

Table 5.11 presents the F-score results of WSD using the knowledge-based mea-

sures based on features on D4 (see Section 5.1 for more details). In this experiment, all

adapted feature-based measures had a better F-score result in comparison to the original

approaches. This improvement is true for all tested window size variations. Also, the F1*
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measure had expressive results on WSD, with F-score equals or greater than 85%, with

a window size greater than 5, while F3* with windows size greater than 6. The F2* and

F4* measure have meaningful results with a window size greater than 6. The F5* measure

have no significant results.

Table 5.11: The F-score results of D4 using feature-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

F1* 0.60 0.73 0.78 0.82 0.84 0.85 0.86 0.87 0.88 0.80
F1 0.21 0.27 0.32 0.38 0.41 0.44 0.45 0.48 0.51 0.39
F2* 0.59 0.69 0.74 0.77 0.80 0.81 0.81 0.85 0.85 0.77
F2 0.12 0.15 0.18 0.21 0.22 0.22 0.21 0.22 0.24 0.20
F3* 0.61 0.73 0.77 0.81 0.82 0.83 0.85 0.87 0.88 0.80
F3 0.13 0.16 0.19 0.22 0.24 0.23 0.25 0.26 0.26 0.21
F4* 0.61 0.71 0.75 0.79 0.81 0.82 0.83 0.86 0.87 0.78
F4 0.13 0.16 0.19 0.22 0.23 0.23 0.23 0.22 0.24 0.20
F5* 0.57 0.64 0.64 0.66 0.66 0.66 0.67 0.69 0.69 0.66
F5 0.10 0.12 0.13 0.17 0.19 0.19 0.19 0.20 0.22 0.17

Source: The authors.

5.4 Hypothesis 3: The Traditional Path-Based Measures are Effective to Distinguish

Two Ontology Classes

In this section, we present the experiments aiming to prove the effectiveness of

path-based measures to distinguish two ontology classes, as described in hypothesis 3.

In these experiments, as presented in Table 5.12, we evaluate five different path-based

measures in the WSD. Also, we subdivide this section into three different experiment cat-

egories in order to evaluate, besides the adaptation of the path-based measures, different

strategies to use the local distance (described in Section 4.4.1), and the performance of

our proposal in hybrid measures that use path-based approaches.

Table 5.12: The evaluated knowledge-based measures based on paths

ID Semantic Measure Parameter Values
P1 Rada et al. (1989) -
P2 Li, Bandar and Mclean (2003) α = 0.5, β = 0.5
P3 Liu, Zhou and Zheng (2007) Strat 1 α = 0.5, β = 0.5
P4 Liu, Zhou and Zheng (2007) Strat 2 α = 0.5, β = 0.5
P5 Hao et al. (2011) α = 0.5, β = 0.5

Source: The authors.
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In the first experiment category, we evaluate the Rada et al. (1989) measure with

different strategies to use the local distance values for each direct path category, as pre-

sented in Table 5.13. In this experiment, we change the distance function of Rada et al.

(1989) measure by our proposal (described in Section 4.4.3).

Table 5.13: Different strategies to use the local distance of a path pattern

Path pattern LD1 LD2 LD3 LD4
UR Num R Num R 0 0
DR Num R Num R Num R Num R
HR Num R Num R Num R Num R
UR-DR Num R Num HR Num HR Num HR
HR-DR Num R Num HR Num HR Num HR-DR
UR-HR-DR Num R Num HR Num HR Num HR-DR

Source: The authors.

Table 5.14 presents the F-score results of WSD, on D1 (see Section 5.1 for more

details), using different strategies to use the local distance in our proposal to semantic

distance evaluation. In this experiment, it is possible to note the improvement of WSD

using the LD1, LD2, and LD3 strategies in comparison to the original Rada et al. (1989)

measure P1. Also, only the LD1, LD2, and LD3 had expressive results on WSD, with

F-score equals or greater than 85%.

Table 5.14: The F-score results of D1 using different local distance strategies on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.80 0.81 0.82 0.83 0.82 0.82 0.84 0.83 0.80 0.82
LD1 0.86 0.86 0.88 0.86 0.88 0.90 0.90 0.92 0.89 0.88
LD2 0.86 0.89 0.92 0.90 0.94 0.95 0.96 0.95 0.95 0.92
LD3 0.86 0.89 0.91 0.89 0.93 0.95 0.95 0.95 0.94 0.92
LD4 0.82 0.83 0.80 0.82 0.80 0.80 0.83 0.80 0.75 0.81

Source: The authors.

Table 5.15 presents the F-score results of WSD, on D2 (see Section 5.1 for more

details), using different strategies to use the local distance in our proposal to semantic

distance evaluation. In this experiment, it is possible to note the improvement of WSD

using the LD2 and LD3 strategies in comparison to the original Rada et al. (1989) measure

P1. Also, all evaluated strategies had expressive results on WSD, with F-score equals or

greater than 85%.

Table 5.16 presents the F-score results of WSD, on D3 (see Section 5.1 for more

details), using different strategies to use the local distance in our proposal to semantic



58

Table 5.15: The F-score results of D2 using different local distance strategies on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.86 0.90 0.92 0.92 0.92 0.93 0.92 0.92 0.93 0.91
LD1 0.88 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.91
LD2 0.89 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.92
LD3 0.89 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.92
LD4 0.86 0.89 0.89 0.88 0.90 0.90 0.91 0.90 0.91 0.89

Source: The authors.

distance evaluation. In this experiment, all local distance strategies had a better average

F-score result in comparison to the original Rada et al. (1989) measure P1. Also, all

evaluated strategies had expressive results on WSD, with average F-score equals or greater

than 85%.

Table 5.16: The F-score results of D3 using different local distance strategies on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.78 0.78 0.79 0.81 0.83 0.85 0.85 0.85 0.86 0.82
LD1 0.78 0.77 0.84 0.88 0.87 0.90 0.91 0.91 0.92 0.86
LD2 0.78 0.82 0.89 0.91 0.91 0.93 0.93 0.93 0.93 0.89
LD3 0.78 0.82 0.88 0.90 0.90 0.92 0.92 0.93 0.93 0.89
LD4 0.81 0.80 0.83 0.86 0.86 0.90 0.91 0.91 0.92 0.87

Source: The authors.

Table 5.17 presents the F-score results of WSD, on D4 (see Section 5.1 for more

details), using different strategies to use the local distance in our proposal to semantic

distance evaluation. In this experiment, the local distance strategies LD2 and LD3 had

equal average F-score results in comparison to the original Rada et al. (1989) measure P1.

Also, all evaluated strategies had expressive results on WSD, with average F-score equals

or greater than 85%.

Table 5.17: The F-score results of D4 using different local distance strategies on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.79 0.87 0.89 0.91 0.92 0.93 0.94 0.94 0.94 0.90
LD1 0.80 0.87 0.89 0.90 0.90 0.91 0.92 0.92 0.92 0.89
LD2 0.80 0.87 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.90
LD3 0.80 0.87 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.90
LD4 0.81 0.88 0.89 0.89 0.89 0.90 0.91 0.91 0.92 0.89

Source: The authors.
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Overall, based on the results of the first experiment category, the local distance

strategies LD2 and LD3 present better F-score results than the others. From this, for

the second and third categories of the experiments, we use the LD2 strategy because it

presents better F-score results though different window sizes.

In the second category of the experiments, we evaluate five different knowledge-

based measures based on paths. Also, we compare these measures with their adaptations

with our semantic distance approach (described in Section 4.4.3) using the LD2 strategy

to local distance, and we use the operator * to differentiate the original approaches from

our adaptation. Also, we keep the parameter values, presented in Table 5.12, in order not

to influence one semantic evidence concerning the other.

Table 5.18 presents the F-score results of WSD using the knowledge-based mea-

sures based on paths on D1 (see Section 5.1 for more details). In this experiment, all

adapted path-based measures had a better F-score result in comparison to the original

approaches. This improvement is true for all tested window size variations. Also, all

adapted path-based measures had very expressive results on WSD, with average F-score

equals or greater than 90%, with all tested window size values.

Table 5.18: The F-score results of D1 using path-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.80 0.81 0.82 0.83 0.82 0.82 0.84 0.83 0.80 0.82
P1* 0.86 0.89 0.92 0.90 0.94 0.95 0.96 0.95 0.95 0.92
P2 0.81 0.83 0.84 0.83 0.83 0.85 0.85 0.86 0.81 0.83
P2* 0.86 0.90 0.92 0.90 0.93 0.95 0.96 0.95 0.93 0.92
P3 0.80 0.81 0.82 0.83 0.82 0.83 0.85 0.85 0.82 0.83
P3* 0.86 0.92 0.92 0.90 0.94 0.94 0.95 0.94 0.93 0.92
P4 0.80 0.83 0.83 0.83 0.85 0.85 0.86 0.86 0.82 0.84
P4* 0.87 0.90 0.90 0.90 0.92 0.92 0.90 0.90 0.89 0.90
P5 0.82 0.81 0.82 0.82 0.82 0.80 0.82 0.77 0.76 0.80
P5* 0.88 0.88 0.92 0.88 0.90 0.93 0.94 0.94 0.90 0.91

Source: The authors.

Table 5.19 presents the F-score results of WSD using the knowledge-based mea-

sures based on paths on D2 (see Section 5.1 for more details). In this experiment, all

adapted path-based measures had equal or better average F-score results in comparison

to the original approaches. Also, all evaluated measures had very expressive results on

WSD, with average F-score equals or greater than 90%, with all tested window size val-

ues.
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Table 5.19: The F-score results of D2 using path-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.86 0.90 0.92 0.92 0.92 0.93 0.92 0.92 0.93 0.91
P1* 0.89 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.92
P2 0.86 0.90 0.92 0.92 0.93 0.93 0.93 0.92 0.93 0.92
P2* 0.89 0.92 0.92 0.92 0.92 0.93 0.92 0.93 0.93 0.92
P3 0.86 0.91 0.92 0.93 0.94 0.94 0.94 0.93 0.94 0.92
P3* 0.89 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.92
P4 0.86 0.89 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.92
P4* 0.88 0.90 0.92 0.92 0.93 0.93 0.93 0.93 0.93 0.92
P5 0.86 0.88 0.91 0.91 0.91 0.92 0.91 0.92 0.92 0.90
P5* 0.90 0.92 0.93 0.94 0.94 0.94 0.93 0.93 0.93 0.93

Source: The authors.

Table 5.20 presents the F-score results of WSD using the knowledge-based mea-

sures based on paths on D3 (see Section 5.1 for more details). In this experiment, all

adapted path-based measures had a better average F-score result in comparison to the

original approaches. Also, all evaluated measures had very expressive results on WSD,

with average F-score equals or greater than 90%, with a window size greater than 3.

Table 5.20: The F-score results of D3 using path-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.78 0.78 0.79 0.81 0.83 0.85 0.85 0.85 0.86 0.82
P1* 0.78 0.82 0.89 0.91 0.91 0.93 0.93 0.93 0.93 0.89
P2 0.78 0.80 0.81 0.82 0.85 0.85 0.86 0.86 0.88 0.83
P2* 0.78 0.84 0.89 0.91 0.92 0.93 0.93 0.93 0.94 0.90
P3 0.78 0.78 0.81 0.83 0.84 0.86 0.86 0.87 0.88 0.84
P3* 0.78 0.85 0.90 0.92 0.92 0.93 0.93 0.93 0.95 0.90
P4 0.78 0.79 0.75 0.81 0.81 0.82 0.82 0.84 0.85 0.81
P4* 0.75 0.84 0.88 0.90 0.90 0.92 0.92 0.93 0.93 0.88
P5 0.83 0.80 0.81 0.82 0.83 0.88 0.86 0.86 0.86 0.84
P5* 0.81 0.85 0.90 0.90 0.90 0.92 0.93 0.94 0.94 0.90

Source: The authors.

Table 5.21 presents the F-score results of WSD using the knowledge-based mea-

sures based on paths on D4 (see Section 5.1 for more details). In this experiment, all

adapted path-based measures had equals or better average F-score results in comparison

to the original approaches. Also, all evaluated measures had very expressive results on

WSD, with average F-score equals or greater than 90%, with a window size greater than
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3, except the path-based measure P4.

Table 5.21: The F-score results of D4 using path-based measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.79 0.87 0.89 0.91 0.92 0.93 0.94 0.94 0.94 0.90
P1* 0.80 0.87 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.90
P2 0.79 0.88 0.90 0.91 0.93 0.93 0.93 0.94 0.94 0.91
P2* 0.80 0.88 0.90 0.92 0.92 0.93 0.93 0.93 0.93 0.91
P3 0.80 0.88 0.88 0.90 0.92 0.92 0.92 0.93 0.93 0.90
P3* 0.81 0.88 0.90 0.92 0.92 0.92 0.92 0.92 0.92 0.90
P4 0.78 0.82 0.85 0.85 0.85 0.86 0.85 0.85 0.85 0.84
P4* 0.80 0.86 0.89 0.90 0.90 0.91 0.91 0.92 0.93 0.89
P5 0.81 0.88 0.90 0.90 0.91 0.92 0.93 0.94 0.94 0.90
P5* 0.83 0.90 0.91 0.91 0.92 0.93 0.92 0.93 0.93 0.91

Source: The authors.

In the third category of the experiments, we evaluate two different hybrid measures

in the WSD. Also, these measures combine information content and path approaches. In

the path-based part of these measures, we adapt them with our semantic distance approach

(described in Section 4.4.3) with local distance strategy LD2, and we use the operator *

to differentiate the original approaches from our adaptation. In addition, we keep the

parameter values, presented in Table 5.22, in order not to influence one knowledge-based

measure concerning the other.

Table 5.22: The evaluated hybrid knowledge-based measures

ID Semantic Measure Parameter Values
H1 Cai et al. (2018) + IC Cai et al. (2018) α = 0.5, β = 1.0, λ = 0.5
H2 Zhu and Iglesias (2017) + IC Cai et al. (2018) k = 0.5, λ = 0.5

Source: The authors.

Table 5.23 presents the F-score results of WSD using the hybrid knowledge-based

measures on D1 (see Section 5.1 for more details). In this experiment, all adapted hybrid

measures had a better F-score result in comparison to the original approaches in all tested

window size values. Also, the adapted measure H1* had expressive results on WSD, with

average F-score equals or greater than 85%, in all tested window size values. Already, the

adapted measure H2* had very expressive results on WSD, with average F-score equals

or greater than 90%, with a window size greater than 1.

Table 5.24 presents the F-score results of WSD using the hybrid knowledge-based

measures on D2 (see Section 5.1 for more details). In this experiment, all adapted hy-
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Table 5.23: The F-score results of D1 using hybrid measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

H1 0.78 0.77 0.77 0.76 0.73 0.74 0.73 0.73 0.70 0.75
H1* 0.87 0.90 0.86 0.86 0.88 0.90 0.89 0.89 0.86 0.88
H2 0.81 0.82 0.82 0.83 0.82 0.80 0.82 0.80 0.79 0.81

H2* 0.86 0.90 0.92 0.90 0.93 0.95 0.96 0.95 0.95 0.92
Source: The authors.

brid measures had equals or better average F-score results in comparison to the original

approaches. Also, all measures, except the H1 measure, had very expressive results on

WSD, with F-score equals or greater than 90%.

Table 5.24: The F-score results of D2 using hybrid measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

H1 0.78 0.78 0.80 0.81 0.82 0.85 0.85 0.86 0.87 0.82
H1* 0.88 0.91 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.93
H2 0.87 0.90 0.92 0.92 0.92 0.93 0.92 0.93 0.93 0.92

H2* 0.89 0.92 0.92 0.93 0.93 0.93 0.93 0.92 0.93 0.92
Source: The authors.

Table 5.25 presents the F-score results of WSD using the hybrid knowledge-based

measures on D3 (see Section 5.1 for more details). In this experiment, all adapted hybrid

measures, except in H2 measure with a window size of 1, had a better F-score result in

comparison to the original approaches in all tested window size values. Also, the adapted

measures had very expressive results on WSD, with average F-score equals or greater

than 90%, with a window size greater than 3.

Table 5.25: The F-score results of D3 using hybrid measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

H1 0.68 0.68 0.68 0.73 0.74 0.75 0.77 0.78 0.77 0.73
H1* 0.83 0.88 0.91 0.93 0.92 0.93 0.94 0.95 0.96 0.92
H2 0.80 0.78 0.81 0.81 0.83 0.85 0.85 0.85 0.86 0.83

H2* 0.78 0.83 0.89 0.91 0.91 0.93 0.93 0.93 0.93 0.89
Source: The authors.

Table 5.26 presents the F-score results of WSD using the hybrid knowledge-based

measures on D4 (see Section 5.1 for more details). In this experiment, all adapted hybrid
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measures had equals or better average F-score results in comparison to the original ap-

proaches. Also, the H1*, H2, and H2* measures had very expressive results, with F-score

equals or greater than 90%, with a window size greater than 1, 3, and 2, respectively.

Table 5.26: The F-score results of D4 using hybrid measures on WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

H1 0.64 0.68 0.69 0.71 0.72 0.74 0.74 0.73 0.74 0.71
H1* 0.86 0.90 0.91 0.93 0.94 0.94 0.94 0.95 0.94 0.93
H2 0.80 0.88 0.89 0.91 0.92 0.93 0.93 0.94 0.94 0.90

H2* 0.80 0.87 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.90
Source: The authors.

5.5 Hypothesis 3: The Traditional Path-Based Measures are Inefficient on Related-

ness Evaluation

In this section, we present the experiments aiming to prove the inefficiency of

the traditional path-based measures on relatedness evaluation, as described in hypothesis

3. From this, we present the experiments about the evaluation time and memory con-

sumption of each knowledge-based semantic measure approach. In the first experiment,

presented in Figure 5.1, we evaluate the average time to perform the relatedness evalua-

tion during the WSD, for each window size value, over all datasets. The results presented

in Figure 5.1 are in logarithmic scale. The average time evaluated comprises the aver-

age time of all knowledge-based measures of the same type. For example, on path-based

measures, we evaluate the average time of the five path-based measures presented in Ta-

ble 5.12. Also, all evaluated approaches, except for path-based measures on-demand,

contain all required classes in memory. For example, the feature-based measures contain

the features of the analyzed classes in memory. In this experiment, the path-based mea-

sures that evaluate the relatedness value on-demand take about 36 hours to evaluate the

relatedness values on the window size of 1. With this, we hide the part of its bar in the

function of the other results.

Besides the distinction performance, in this work, we use the evaluation time as

another factor to choose a semantic measure. The last factor is the memory required to

perform the relatedness evaluation. From this, in Figure 5.2, we present the memory

consumption of each knowledge-based approach to perform the relatedness evaluation,
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Figure 5.1: The evaluation time of the knowledge-based measures.

Source: The Authors.

Figure 5.2: The memory consumption of the knowledge-based measures.

Source: The Authors.

and the memory required to store the relatedness values between all ontology classes in

memory. The feature and IC approaches have nearly the same memory consumption. The

x-axis of this figure represents the number of classes (or values) required, in memory,

for each ontology class, to make possible the relatedness analysis of a given knowledge-

based approach. The y-axis of Figure 5.2 represents the total number of classes (or values)
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stored in memory. It is important to emphasize that storing all relatedness values for each

ontology class has a quadratic memory cost.

5.6 Hypothesis 4: The Ontological Meta-Properties Improve the Distinction Perfor-

mance of the Path-Based Measures

In this section, we present the experiments aiming to prove hypothesis 4. In these

experiments, our objective is to show the improvement in the distinction performance by

considering different weighting values for each type of existential dependence (described

in Section 2.2). Thus, we do not define a general rule of how to use this meta-property,

but we show that it is necessary to evaluate. Also, we evaluate the Rada et al. (1989)

measure with the local distance strategy LD2 using different values to weight the types

of existential dependence, as presented in Table 5.27. It is important to empathize that

the strategy EDW5 have the same F-score results of the LD2 strategy of the experiments

in Section 5.4, i.e., we aim to improve the P1 and EDW5 results using the existential

dependence as a piece of semantic proxy in order to improve the distinction between two

ontology classes. Also, the higher the weighting value, the closer the related classes are,

i.e., their relatedness value is greater.

Table 5.27: Different strategies to existential dependence weights

Strategy S G I
EDW1 0.9 0.5 0.1
EDW2 0.1 0.5 0.9
EDW3 0.5 0.9 0.1
EDW4 0.5 0.1 0.9
EDW5 (LD2) 0 0 0

Source: The authors.

Table 5.28 presents the F-score results of WSD, on D1 (see Section 5.1 for more

details), using different values to existential dependence weights. In this experiment, all

strategies had a better average F-score result in comparison to the original Rada et al.

(1989) measure P1. Also, the strategies EDW1 and EDW3 had better F-score results than

the strategy EDW5. In addition, all evaluated strategies had expressive results on WSD,

with average F-score equals or greater than 85%.

Table 5.29 presents the F-score results of WSD, on D2 (see Section 5.1 for more

details), using different values to existential dependence weights. In this experiment, all

strategies had a better average F-score result in comparison to the original Rada et al.
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Table 5.28: The F-score results of D1 using different existential dependence weights on
WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.80 0.81 0.82 0.83 0.82 0.82 0.84 0.83 0.80 0.82
EDW1 0.85 0.91 0.93 0.93 0.95 0.96 0.95 0.97 0.96 0.93
EDW2 0.85 0.87 0.86 0.88 0.86 0.87 0.89 0.90 0.85 0.87
EDW3 0.88 0.92 0.93 0.93 0.94 0.96 0.96 0.97 0.96 0.94
EDW4 0.85 0.88 0.86 0.87 0.86 0.88 0.89 0.90 0.86 0.87
EDW5 0.86 0.89 0.92 0.90 0.94 0.95 0.96 0.95 0.95 0.92

Source: The authors.

(1989) measure P1. Also, the strategies EDW1, EDW2, and EDW4 had better F-score

results than the strategy EDW5. The strategy EDW4 had the same F-score as strategy

EDW5. In addition, all evaluated strategies had expressive results on WSD, with average

F-score equals or greater than 85%.

Table 5.29: The F-score results of D2 using different existential dependence weights on
WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.86 0.90 0.92 0.92 0.92 0.93 0.92 0.92 0.93 0.91
EDW1 0.88 0.91 0.93 0.94 0.93 0.94 0.94 0.94 0.94 0.93
EDW2 0.89 0.92 0.93 0.94 0.94 0.94 0.93 0.94 0.94 0.93
EDW3 0.89 0.92 0.92 0.93 0.92 0.93 0.92 0.93 0.93 0.92
EDW4 0.89 0.92 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.93
EDW5 0.89 0.91 0.92 0.92 0.93 0.93 0.92 0.93 0.93 0.92

Source: The authors.

Table 5.30 presents the F-score results of WSD, on D3 (see Section 5.1 for more

details), using different values to existential dependence weights. In this experiment, all

strategies had a better average F-score result in comparison to the original Rada et al.

(1989) measure P1. Also, the strategies EDW2 and EDW4 had better average F-score

results than the strategy EDW5. The strategy EDW3 had the same average F-score results

as strategy EDW5. In addition, all evaluated strategies had expressive results on WSD,

with average F-score equals or greater than 85%.

Table 5.31 presents the F-score results of WSD, on D4 (see Section 5.1 for more

details), using different values to existential dependence weights. In this experiment, the

strategies EDW2 and EDW4 had better average F-score results than the strategy EDW5

and the original Rada et al. (1989) measure P1. The strategy EDW3 had the same average
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Table 5.30: The F-score results of D3 using different existential dependence weights on
WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.78 0.78 0.79 0.81 0.83 0.85 0.85 0.85 0.86 0.82
EDW1 0.74 0.78 0.84 0.87 0.88 0.88 0.90 0.90 0.92 0.85
EDW2 0.81 0.86 0.89 0.92 0.91 0.92 0.93 0.93 0.94 0.90
EDW3 0.78 0.82 0.88 0.92 0.92 0.93 0.93 0.93 0.93 0.89
EDW4 0.81 0.85 0.88 0.91 0.90 0.92 0.93 0.93 0.94 0.90
EDW5 0.78 0.82 0.89 0.91 0.91 0.93 0.93 0.93 0.93 0.89

Source: The authors.

F-score results as strategy EDW5 and P1, and strategy EDW1 the worst result. In addition,

all evaluated strategies had expressive results on WSD, with average F-score equals or

greater than 85%.

Table 5.31: The F-score results of D4 using different existential dependence weights on
WSD.

Window Size
Semantic
Measure 1 2 3 4 5 6 7 8 9 AVG

P1 0.79 0.87 0.89 0.91 0.92 0.93 0.94 0.94 0.94 0.90
EDW1 0.76 0.84 0.87 0.88 0.89 0.90 0.90 0.90 0.91 0.87
EDW2 0.83 0.90 0.92 0.92 0.93 0.94 0.94 0.94 0.95 0.92
EDW3 0.81 0.87 0.89 0.90 0.91 0.92 0.92 0.92 0.93 0.90
EDW4 0.82 0.91 0.92 0.93 0.94 0.94 0.95 0.95 0.95 0.92
EDW5 0.80 0.87 0.90 0.91 0.91 0.92 0.92 0.92 0.92 0.90

Source: The authors.

Overall, based on the results of these experiments, the weighing strategies were

able to improve the distinction of the ontology classes in comparison to the strategy

EDW5 (or LD2 of the first experiment) during the word sense disambiguation (WSD)

task.
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6 DISCUSSION

In this chapter, we present a discussion regarding the F-score results presented in

Chapter 5. Overall, these results show that the adaption of the knowledge-based mea-

sures based on features and paths, with our semantic neighborhood approach, improve

the performance of these measures on word sense disambiguation (WSD). The following

paragraphs discuss, in detail, the results regarding the hypothesis presented during this

work.

The first hypothesis of this work is that the knowledge-based similarity measures

(measures that use only the taxonomic structure of the ontology) are inefficient to distin-

guish two ontology classes. We prove this hypothesis by the F-score results presented in

Section 5.2, where we evaluate the information content (IC) measures on WSD. In these

results, all evaluated measures had poor distinction performance on the WSD task.

The second hypothesis of this work is that combining taxonomic and nontaxo-

nomic relationships can improve the distinction of the feature-based measures. We prove

this hypothesis by the F-score results presented in Section 5.3, where we evaluate the

feature-based measures and their adaptation with the semantic neighbors (as presented in

Section 4.3) on WSD. In these results, the adapted feature-based measures had not ex-

pressive F-score on the WSD task. However, these adapted measures had a much better

performance on the distinction capability than their original versions.

The third hypothesis of this work is that the relatedness measures based on paths

are effective in distinguishing two ontology classes but inefficient on-demand tasks. Based

on the F-score results presented in the third category of experiments in Section 5.4, the

path-based measures with and without our semantic distance approach (presented in Sec-

tion 4.4.3) had expressive distinction performance on WSD, with the better results re-

garding the other knowledge-based measures. Also, we show that in the first category of

experiments in Section 5.4, some variations on the local distance strategy can improve the

distinction performance regarding the original approaches. However, as presented in Sec-

tion 5.5, the Dijkstra algorithm has a low performance to compute the semantic distance

between two ontology classes, in time of consultation. Also, storing all the relatedness

values between all ontology classes has a quadratic cost to the memory. From this, dur-

ing the relatedness evaluation, our semantic neighborhood approach is a good strategy

to reduce memory consumption, and our semantic distance approach had a much better

performance during on-demand relatedness evaluation. Finally, our approach proved to
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be an intermediate strategy that conciliates the memory consumption and evaluation time.

The fourth hypothesis of this work is that the ontological meta-properties can im-

prove the distinction performance between two ontology classes. In this work, we use

only the existential dependence meta-property of the classes to weight the relationships

which start from them. Based on the experiments, presented in Section 5.6, the path-based

measures, adapted with our semantic distance approach and the local distance strategy

LD2, improve the distinction performance, with some weight values, regarding the origi-

nal approaches as well as the adapted approaches with only the local distance strategy.

Finally, our approach proved to be a better strategy for relatedness evaluation that

conciliates low memory consumption with low evaluation time, and better distinction

performance regarding the knowledge-based measures present in the state-of-the-art.
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7 CONCLUSION

The main objective of this work is to improve the performance of the knowledge-

based measures on relatedness evaluation. To this end, we propose a novel strategy that

conciliates low memory consumption with low evaluation time, and with better distinc-

tion performance regarding the knowledge-based measures present in the state-of-the-art.

Firstly, we propose to store only the semantic neighbors of an ontology class in mem-

ory. These semantic neighbors are the set of related classes through direct paths. In this

work, we build direct paths through the relationship categories, or a combination of them,

thus performing the combination of taxonomic and non-taxonomic relationships through

the path patterns. Also, we propose to use the semantic neighborhood strategy in the

knowledge-based measures based on paths and features. In the feature-based measures,

we use the semantic neighbors as the feature set of an ontology class. Already in path-

based measures, we propose a novel strategy to compute the semantic distance between

two ontology classes based on the local distance between a class and its semantic neigh-

bors, weighted by the existential dependence type of this class.

To evaluate our approach, we perform the word sense disambiguation (WSD) us-

ing an algorithm based on structured knowledge, more specifically we use a domain ontol-

ogy about core description called Strataledge® ontology. This algorithm finds in corpora

the occurrences of the terms that name two or more ontology classes and try to disam-

biguate them based on a context window. In our experiments, we extract the context

window where these terms occur from four different corpora on Oil&Gas domain using a

domain ontology for core description. Also, in these experiments, we compare four dif-

ferent knowledge-based approaches (path-based, feature-based, information content, and

hybrid approaches). In the feature, path, and hybrid approaches, we compare the WSD

results with our adaptation in these measures.

As a result of our work, we prove that similarity measures are ineffective to dis-

tinguish two ontology classes. Also, we evidence that combining taxonomic and non-

taxonomic relationships improve the distinction capability of feature-based measures. In

addition, we show that path-based measures are the best choice in relatedness evaluation

because of their distinction capability. However, we demonstrate that path-based mea-

sures are inefficient to perform, on-demand, the semantic distance function in relatedness

evaluation. Furthermore, we show that the local distance strategies and the existential

dependence weights can improve the adapted path-based measures on WSD. Finally, we
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demonstrate, with several experiments, that our semantic neighborhood approach can im-

prove the state-of-the-art semantic measure in the evaluation time, memory consumption,

and distinction capability.

In future works, we aim to explore other kinds of ontological meta-properties in

relatedness evaluation. Also, we will use these meta-properties to split the horizontal cat-

egory of relationships in order to analyze more precisely the different semantics of these

relationships. In addition, we will explore different strategies aimed to improve the dis-

tinction capability of the feature-based and information content approaches. Other future

work includes the application of our proposal in other domains such as biomedicine.

Finally, considering the increasing interest in domain ontologies in tasks such as

information retrieval and the tendency of the formalization of these ontologies with top-

level definitions, this work starts the discussion about how to use the ontological meta-

proprieties of the top-level concepts as a new semantic proxy, besides the corpora of texts

and structured proxies in domain level, where we can extract new semantic evidence to

perform the similarity or relatedness evaluation on well-founded ontologies.
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APPENDIX A - THE WSD RESULTS WITH ANOTHER PARAMETER VALUES

The Word Sense Disambiguation Results in Dataset D1
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The Word Sense Disambiguation Results in Dataset D2
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