
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ENGENHARIA

DEPARTAMENTO DE METALÚRGIA

TRABALHO DE DIPLOMAÇÃO

ISO-VISCOSITY CURVES FOR SECONDARY

STEELMAKING SLAGS IN THE CaO-SiO2-Al2O3-MgO

SYSTEM AT TEMPERATURES 1500,1600 AND 1700°C

TRABALHO DE DIPLOMAÇÃO

AUGUSTO LACHINI PEREIRA

PORTO ALEGRE, RS
2021





UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

ESCOLA DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA METALÚRGICA

TRABALHO DE DIPLOMAÇÃO

ISO-VISCOSITY CURVES FOR SECONDARY

STEELMAKING SLAGS IN THE CaO-SiO2-Al2O3-MgO

SYSTEM AT TEMPERATURES 1500,1600 AND 1700°C

AUGUSTO LACHINI PEREIRA

Trabalho de Diplomação apresentado como requisito
parcial para obtenção do título de Engenheiro Met-
alúgico.

Orientador:
Prof. Wagner Viana Bielefeldt

Coorientador:
Prof. Jean-Philippe Harvey
Department of Chemical Engineering
Polytechnique Montréal

PORTO ALEGRE, RS
2021





Autor, Augusto Lachini Pereira
Iso-viscosity curves for secondary steelmaking

slags in the CaO-SiO2-Al2O3-MgO system at temperatures
1500,1600 and 1700°C / Augusto Lachini Pereira. -- 2021.

106 f.

Orientador: Wagner Viana Bielefeldt

Trabalho (Diplomação) - Universidade Federal do Rio
Grande do Sul, Escola de Engenharia, Departamento de
Engenharia Metalúrgica , Porto Alegre, BR-RS, 2021.

Viscosidade, Escórias de refino secundário,
Termodinâmica computacional, FactSage 7.3 I. Wagner
Viana Bielefeldt, orient. II. Jean-Philippe Harvey,
coorient. III. Título.



"Somewhere, something incredible is waiting to be known"
— CARL SAGAN



Acknowledgments

Aos meus pais, pelo amor, incentivo e apoio incondicional. Agradeço em
especial a minha mãe Lorena Lachini Pereira, companheira que me deu apoio,
icentivo nas horas difíceis onde não via saída mas ela sempre acreditou e con-
fiou em mim. Ao meu pai Carlos Aurélio Alves Pereira que sempre enfrentou
barreiras para me proporcionar o melhor- saiba tu sempre me motivou a ser
melhor e me dedicar ao máximo.

Aos que também são mãe e pai, eu agradeço a vocês Elaine Sieben Czuka,
Lavínia Gloor Lachini e Augusto Benedito Czuka por me ajudarem sempre e
enfrentarem as lutas comigo.

Aos meus que sempre foram um exemplo Arthur Lachini Pereira e Gustavo
Coelho Fermino vos agradeço por sempre servirem como uma ispiração para
mim.

To my advisor and co-advisor for their dedication to this work. To Profes-
sor Wagner Viana Bielefeldt, for his orientation, support and trust. To Professor
Jean-Philippe Harvey (Polytechnique Montréal) for the opportunity and sup-
port in writing this work.

Ao Vinicius Cardoso da Rocha que me guiou a criar o trabalho acadêmico
desde sempre.

A Universidade Federal do Rio Grande do Sul (UFRGS), pela oportunidade
de fazer o curso. Ao Laboratório de Siderurgia da UFRGS (LaSid) por ser um
ambiente criativo e amigável que proporciona.

A todos que direta ou indiretamente fizeram parte de minha formação, o
meu muito obrigado.

Agradeço a Meylín Lourenço Pereira por eu tentar ser uma motivação e um

v



incentivo para te inspirar a buscar sempre um futuro melhor.



Resumo

Uma pequena alteração na composição química e na temperatura afeta a
viscosidade da escória, a qual possui uma grande parte das propriedades físi-
cas relativas às escórias de refinação. A optimização desses parâmetros pode
afetar a limpeza do aço. O processo de medição da viscosidade é considerado
custoso, portanto a relação custo-benefício não favorece as medidas a altas tem-
peraturas. Como alternativa, é possível aplicar modelos matemáticos ou soft-
ware termodinâmico para obter viscosidades para uma determinada gama de
composição química e temperatura das escórias. O presente trabalho contempla
uma validação dos dados experimentais, recolhidos na literatura, com dados
calculados. E também propõe também uma representação precisa das curvas
de iso-viscosidade aplicadas às escórias secundárias da siderurgia, cobrindo as
gamas de composição: 0-100 massa.% CaO, 0-100 massa.% SiO2, 0-100 massa.%
Al2O3 e 0-15 massa.% MgO (CSAM) sistema a 1500ºC a 1700ºC. Os campos de
representação de viscosidade incluem escória totalmente líquida e parcialmente
líquida no sistema CSAM. As viscosidades foram calculadas utilizando o sot-
ware FactSage. 7.3 (para Fase Líquida) e a equação Roscoe-Einstein com auxílio
do FactSage. 7.3 (para Fase mistura) para um total de 15910 escórias. Os resulta-
dos preliminares indicaram que existe uma convergência significativa entre os
dados das viscosidades calculadas e experimentais.

Palavras-chave: Viscosidade, Escórias de refino secundário, Termodinâmica
computacional, FactSage 7.3
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Abstract

A minor change in the chemical composition and temperature affects the
slag viscosity, which has a great impact of the physical properties influenc-
ing refining slags. Optimizing those parameters may affect the steel cleanli-
ness. The viscosity measurement process is considered expensive, so the cost-
effectiveness does not favor the measures at high-temperatures. Alternatively,
it is possible to apply mathematical models to calculate viscosities of slags for
a given range of chemical composition and temperature. The present work
presents a validation of the viscosity experimental data, collected in the liter-
ature, with calculated data via FactSage in this work. Also proposes an accurate
representation of iso-viscosity curves applied for secondary steelmaking slags,
covering the composition ranges: 0–100 wt.% CaO, 0–100 wt.% SiO2, 0–100
wt.% Al2O3 and 0–15 wt.% MgO (CSAM) system at 1500ºC to 1700°C. The vis-
cosity representation fields include fully liquid and partially liquid slag in the
CSAM system. The viscosities were calculated using the FactSage 7.3 (for Liquid
Phase) and the Roscoe-Einstein equation (for multiphasic systems) for a total of
15910 slags compositions. The preliminary results indicated that there is a sig-
nificant convergence between the calculated and experimental viscosities data.
It is promoting an efficient approximation of the iso-viscosity curves for the
CSAM slag system in the high-temperatures.

Key-words: Viscosity, Steelmaking slags, Computational thermodynamics,
FactSage 7.3

ix





List of Figures

Figure 2.1 Crude Steel Production by Continents . . . . . . . . . . . . . . 6
Figure 2.2 Crude Steel Production in the Top 5 Asian Countries . . . . . 8
Figure 2.3 Crude Steel Production in the top 5 countries in South America 9
Figure 2.4 Crude Steel Production in the top 5 countries in Noth America 10
Figure 2.5 Flowchart of the steelmaking process stages in an electric sec-

ondary steelmaking . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.6 A schematic of furnace tapping and deoxidizer addition op-

eration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2.7 Schematic of eutectic binary phase diagram of two metal ox-

ides (MEYER et al., 2017) . . . . . . . . . . . . . . . . . . . . . . 19
Figure 2.8 SiO4- Tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.9 SiO4- Tetrahedron connections a) in solid quartz and b) in

molten quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.10 Weakened glass structure by introduction ofMgO as network

modifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 2.11 Schematic representation of tetrahedra formed by Si, O and

network modifier . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 2.12 Effect of Al2O3 on the viscosity of the calcium-base slags con-

taining 10wt.%. MgO at 1773 K (1500°C) - [10 poise - 1Pa.S
] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.13 Effect of the CaO/SiO2 ratio on the viscosity of calcium-
alumino-silicate-based slags containing 10wt%. MgO at
1698K and 1773K with 15wt%. and 20wt%. of Al2O3 . . . . . 29

Figure 2.14 η-T of different CaO/SiO2 experimental titanium-bearing slags 30
Figure 2.15 Effect of MgO on viscosity of CaO−MgO−SiO2−Al2O3 slags 31

Figure 3.1 Flow chart of the computational process in this work. . . . . . 35
Figure 3.2 Main screen of FactSage 7.3 . . . . . . . . . . . . . . . . . . . . 37

xi



Figure 3.3 Composition ranges of slags stidied by different authors ex-
pressed in the form of (a) CaO-SiO2-Al2O3 system (wt.%);
(b) normalizedCaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c)
normalized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and
(d) normalized CaO-SiO2-Al2O3–(15%MgO) (wt.%), at 1500°C 40

Figure 4.1 Percentage error and measured ln viscosity . . . . . . . . . . . 46

Figure 4.2 Average relative error between calculated from FactSage 7.3
and measured viscosity comparison for each reference. . . . . 47

Figure 4.3 Iso-viscosity ln([Pa.s]) curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) nor-
malized CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) nor-
malized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d)
normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at 1500°C. 49

Figure 4.4 Iso-viscosity ln([Pa.s]) curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) nor-
malized CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) nor-
malized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d)
normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at 1600°C. 50

Figure 4.5 Iso-viscosity ln([Pa.s]) curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) nor-
malized CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) nor-
malized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d)
normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at 1700°C. 51

Figure 4.6 Liquid/Solid Fraction behavior: (a) CaO-SiO2-Al2O3 sys-
tem (wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) sys-
tem (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) sys-
tem (wt.%); and (d) normalized CaO-SiO2-Al2O3–(15%MgO)
(wt.%), at 1500°C. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.7 Liquid/Solid Fraction behavior: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), at 1600°C. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.8 Liquid/Solid Fraction behavior: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), at 1700°C. . . . . . . . . . . . . . . . . . . . . . . . . . . 56



Figure 4.9 Viscosity difference in [Pa.S]: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), between 1600 - 1500°C. . . . . . . . . . . . . . . . . . . 59

Figure 4.10 Viscosity difference in [Pa.S]: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), between 1700 - 1600°C. . . . . . . . . . . . . . . . . . . 60

Figure 4.11 Viscosity difference in [Pa.S]: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), between 1700 - 1500°C. . . . . . . . . . . . . . . . . . . 61

Figure 4.12 Liquid Fraction difference: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), between 1600 - 1500°C. . . . . . . . . . . . . . . . . . . 63

Figure 4.13 Liquid Fraction difference: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), between 1700 - 1600°C. . . . . . . . . . . . . . . . . . . 64

Figure 4.14 Liquid Fraction difference: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system
(wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO) system
(wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO)
(wt.%), between 1700 - 1500°C. . . . . . . . . . . . . . . . . . . 65

Figure 4.15 Iso-viscosity [Pa.s] curves of slags in Liquid and Two-Phase
regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized
CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalized
CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normal-
ized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at 1500°C. . . . . 67

Figure 4.16 Iso-viscosity [Pa.s] curves of slags in Liquid and Two-Phase
regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized
CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalized
CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normal-
ized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at 1600°C. . . . . 68



Figure 4.17 Iso-viscosity [Pa.s] curves of slags in Liquid and Two-Phase
regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized
CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalized
CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normal-
ized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at 1700°C. . . . . 69

Figure 4.18 Equilibrium phases presents in the Liquid and Two-Phase
regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized
CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalized
CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normal-
ized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at 1500°C. . . . . 71

Figure 4.19 Thermal and chemical Influence on low viscosity zones(0-
1 Pa.s) for temperatures 1500, 1600 and 1700ºC: (a)
CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-
Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO -
SiO2 - Al2O3–(15%MgO) (wt.%). . . . . . . . . . . . . . . . . . 73



List of Tables

Table 2.1 Typical chemical compositions of slags in Secondary Refining . 23

Table 3.1 Reference sources of the experimental viscosity data. . . . . . . 40
Table 3.2 Composition ranges of slags of the reference sources by %mass. 40
Table 3.3 Composition ranges, in wt.%. , of calculated slags in the vis-

cosity database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xv





Symbols List

∆gAB Molar Gibbs Energy J
mol−K

ALiquid Liquid metal oxide −

Asol Solid metal oxide −

Al Aluminium −

Al2O3 Oxide of Aluminium −

B Bismuth −

BLiquid Liquid metal oxide −

Bsol Solid metal oxide −

Ca Calcium −

CaF2 Calcium fluoride −

CaO Oxide of Calcium −

Cr Chromium −

Fe Iron −

FeO Iron Oxide −

K Potassium −

Mg Magnesium −

MgO Oxide of Magnesium −

MnO Manganese oxide −

xvii



Mo Molybdenum −

Na Sodium −

O Oxygen −

P Phosphorus −

Pb Lead −

Pt Platinum −

Rh Rhodium −

Si Silicon −

Si4 Silicon Tetrahedron −

SiO2 Oxide of Silicon −

T Temperature C

Tliq Liquidus Temperature C

Tsol Solidus Temperature C

Tstart Start Temperature C

Ti Titanium −

V Vanadium −

Xliq Liquid slab −

Greek Letters

f Solid fraction −

δ Average percent error %

δi Percent error %

η Effective viscosity Pa s

ηl Viscosity of liquid phase Pa s



ρ Solid interaction parameter −

Oversubscribed

A Acide oxides

B Base oxides

Equilib Equilib module of FactSage

FactPS Database of FactSage

FToxid Database of FactSage

Phase Mixture Two phase slag - solid and liquid

Viscosity Viscosity module of FactSage

Acronyms

CSAM CaO - SiO2 - Al2O3 - MgO system

MQM Modified Quasichemical model

wt.% Weight percentage



Contents

1 Introduction 1
1.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Literature Review 5
2.1 World steel production and aspects of the Brazilian market . . . . 6
2.2 Electric steelmaking . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Fusion and primary refining . . . . . . . . . . . . . . . . . . 12
2.2.2 Secondary refining . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2.1 Deoxidation . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2.2 Desulfurization . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3.1 Conventional casting . . . . . . . . . . . . . . . . . 16
2.2.3.2 Continuous casting . . . . . . . . . . . . . . . . . . 16

2.3 Slags of secondary refining . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Slag structures . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1.1 Solid Slag Structure . . . . . . . . . . . . . . . . . 19
2.3.1.2 Liquid Slag Structure . . . . . . . . . . . . . . . . 22

2.3.2 Chemical composition . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Basicity and B/A-ratio . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Viscosity and thermodynamic models . . . . . . . . . . . . 25
2.3.5 Slag Components . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5.1 Silicon dioxide . . . . . . . . . . . . . . . . . . . . 27
2.3.5.2 Aluminum oxide . . . . . . . . . . . . . . . . . . . 27
2.3.5.3 Calcium oxide . . . . . . . . . . . . . . . . . . . . 29
2.3.5.4 Magnesium oxide . . . . . . . . . . . . . . . . . . 31

2.4 Computational thermodynamics - FactSage . . . . . . . . . . . . . 31

3 Methodology 35
3.1 Thermodynamic computations . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Solid/liquid fraction of slag . . . . . . . . . . . . . . . . . . 37
3.1.2 Effective viscosity of the slag- η . . . . . . . . . . . . . . . . 38

xx



3.2 Literature vs FactSage viscosity calculations . . . . . . . . . . . . . 39
3.3 Iso-viscosity curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Results and discussion 45
4.1 Precision of the viscosity model available in FactSage . . . . . . . . 45
4.2 Slag behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Influence of slag composition . . . . . . . . . . . . . . . . . 48
4.2.1.1 Effect the composition on the slag viscosity . . . . 48
4.2.1.2 Liquid/Solid Fraction effect . . . . . . . . . . . . . 53

4.2.2 Temperature influence . . . . . . . . . . . . . . . . . . . . . 58
4.2.2.1 Viscosity effect . . . . . . . . . . . . . . . . . . . . 58
4.2.2.2 Liquid/Solid Fraction . . . . . . . . . . . . . . . . 62

4.2.3 Iso-viscosity curves . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.3.1 Melilite influence . . . . . . . . . . . . . . . . . . . 70
4.2.3.2 Thermal and Chemical Influence . . . . . . . . . . 72

5 Conclusions 75

6 Recommendations for Future Work 77

References 79



Chapter 1

Introduction

The viscous behavior of slags is of great importance in order to under-

stand its physico-chemical properties, such as gas permeability, heat trans-

fer, rate of desulphurization, and more. (PENGCHENG; XIAOJUN, 2016).

Hence it is an essential properly to tune productivity and ensure optimum op-

erations. For these reasons, for six decades, slag viscosities have been mea-

sured not only for theoretical research but also for the industrial applications

(MACHIN; HANNA, 1945; MACHIN; YEE, 1948; MACHIN; YEE; HANNA,

1952; MACHIN; YEE, 1954; KOZAKEVITCH, 1954; KOZAKEVITCH, 1960;

KOZAKEVITCH; MISRA, 1966; J.; M, 1995; SAITO et al., 2003; KIM et al., 2010;

SONG; SHU; SICHEN, 2011; CHOPRA; TANEJA, 1964; URBAIN; BOTTINGA;

RICHET, 1982; TANG et al., 2011; SHANKAR, 2007; FORSBACKA et al., 2007;

GAO et al., 2014; SCHUMACHER; WHITE; DOWNEY, 2015).

Steelmaking slags conventionally contain CaO, SiO2, Al2O3, MgO. Slags

viscosity changes in a wide range depending on the temperature and compo-

sition. This quaternary system is composed of the most common oxides em-

ployed for steel refining (i.e. secondary metallurgy). In this case, the slag must

be designed to present a maximum refining capacity. The viscosity directly af-

fects the kinetics of the main refining reactions of steel by slag, including the

removal of impurities such as sulfur (ROCHA et al., 2017) and nonmetallic

1



2 CHAPTER 1. INTRODUCTION

inclusions (ROCHA et al., 2017). Unfortunately, it is well known that high-

temperature viscosity measurement is time-consuming and costly. Thus it is

pf prime importance to predict the viscosity of applying models which enable

calculation of viscosity for a wide range of composition and temperature.

Under specific conditions, steelmaking slags may be in equilibrium with

solids, multiphasic system, in which it contains a liquid fraction and a solid

fraction. Because of the difficulties in the measure most of two-phase system

viscosity, researchers have been estimating the viscosity of solid-liquid mixtures

using models. Einstein (EINSTEIN, 1906; EINSTEIN, 1911) derived a simple

model to estimate the viscosities of two-phase systems and co-works (ROSCOE,

1952) improved the model. At the origin Einstein developed a model that could

be applied only to small fractions of solid particles. Roscoe (ROSCOE, 1952)

extended the model to large fractions of solid (XU, 2015).

1.1 Motivation and Objective

It is difficult to find in the literature viscosity data for multi-component

slags at high temperature. For this reason, the motivation of this work is to

generate graphs to aid and understand the viscosity behavior of slag. In turn,

these graphs can used as tools to control metallurgical phenomena in secondary

refining. The FactSage software has been used to calculate viscosity of these

slags as well as the phase assemble for imposed conditions of temperature and

compositions.

The present work aims to apply a mathematical viscosity model to the

slags viscosities in the system CaO-SiO2-Al2O3-MgO, (CSAM), for a temper-

ature between 1500ºC - 1700 ºC. This study covers the following composition

range 0–100 wt.%CaO, 0–100 wt.% SiO2, 0–100 wt.%Al2O3 and 0–15 wt.%MgO
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(CSAM) under these conditions, the system may be liquid (slag) or bi-phasic.

In addition, this work provides iso-viscosity curves for different CSAM

slag systems for single-phase and multiphasic slags. The representation of iso-

viscosity outside the single-phase slag of ternary diagrams at high temperatures

is gaining more importance for many industrial steelmaking applications since

slag contain solid fraction are commonly used for the refining of special steels.

The other objectives are listed as follows:

• Calculate single-phase the viscosity using FactSage and estimate the vis-

cosity of two-phase slags using the Roscoe-Einstein equation;

• Validate the FactSage viscosity model using experimental data collected in

the literature;

• Construct graphical representations of iso-viscosity curves.





Chapter 2

Literature Review

This chapter will present a contextualization of the worldwide produc-

tion of steel and it will also provide information about the Brazilian production.

Subsequently, the processes and parameters related to steel production will be

detailed. Finally a description of the structures and physico-chemical proper-

ties of steel slag and the use of thermodynamic software to virtual steelmaking

process simulations will be provided.

5
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2.1 World steel production and aspects of the
Brazilian market

FIGURE 2.1. Crude Steel Production by Continents

According to the World Steel Association (2019), world crude steel produc-

tion in 2019 reached the 1 846 391 thousands tons. A production decrease of

0.9% was observed in 2020 for the same period.

As shown in the Figure 2.1 since March 2020 there has been an increase

in crude steel production on the Asian continent combined to a decrease in pro-

duction on the other continents. This is due to the influence of the COVID-19
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pandemic on crude steel production.

The 5 countries with the highest crude steel production in the Asian con-

tinent between 2019 and 2020 are:

1. China - 2054258 thousands tons

2. India - 206918 thousands tons

3. Japan - 182745 thousands tons

4. South Korea - 139034 thousands tons

5. Turkey - 69472 thousands tons

The Figure 2.2 represents crude steel production in the above countries

between 01/2019 and 12/2020.
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FIGURE 2.2. Crude Steel Production in the Top 5 Asian Countries

According to the Figure 2.2 it is possible to conclude that China had an

increase in crude steel production from the beginning of the pandemic. This

increase in crude steel production was already expected in previous years, but

it grew more sharply and for longer than in previous years.

Now looking at the South American continent, the five countries with the

largest crude steel production are:

1. Brazil - 63157 thousands tons

2. Argentina - 8296 thousands tons

3. Peru - 1992 thousands tons

4. Colombia - 2458 thousands tons
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5. Chile - 2096 thousands tons

FIGURE 2.3. Crude Steel Production in the top 5 countries in South America

According to Figure 2.3 the beginning of the pandemic due to COVID-

19 led a slowdown in the production of crude steel in Brazil (in "V" shape).

However, production returned to normal in October 2020, with a production of

2800 thousand tons per month.

Finally looking at the North American continent, the five countries with

the largest crude steel production:

1. United States - 159599 thousands tons

2. Mexico - 34770 thousands tons
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3. Canada - 23607 thousands tons

4. Guatemala - 525 thousands tons

5. Cuba - 403 thousands tons

FIGURE 2.4. Crude Steel Production in the top 5 countries in Noth America

Figure 2.4 shows the influence of COVID-19 on crude steel production

on the North American continent. It can be seen that the United States was the

country that was the most impacted by COVID-19, as opposed to Mexico and

Canada which were not as impacted.



2.2. ELECTRIC STEELMAKING 11

2.2 Electric steelmaking

One of the steel production routes is by melting and refining scrap in

electric arc furnaces. Steelmaking process that use electricity gain relevance in

the steelmaking industry, because they are directly associated with the recycling

of ferrous scrap and lead to a reduction in the exploitation of iron ore, coal and

other raw materials. Besides this, there is a reduction of pollution (coming from

the exhaust gas) from the reduction of iron ore.

The electric melt shop, in specialty steel mills, has several operational

cells, namely the scrap yard, electric arc furnace (EAF), ladle furnace (LF), vac-

uum degasser (VD) and, finally, the continuous casting and/or conventional

casting. Figure 2.5 represents a flowchart of the steelmaking process steps in an

electric steelmaking.
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FIGURE 2.5. Flowchart of the steelmaking process stages in an electric sec-
ondary steelmaking

2.2.1 Fusion and primary refining

EAFs are used in the steel industry to melt scrap metal at high tempera-

tures, using electric arcs (usually divided into high pressure and low pressure

arcs). Graphite electrodes are energy conductors, which are responsible for gen-

erating the electric arc that conducts the electric into the material, promoting

the melting of the metal charge; these arcs are usually divided into high current

and ultra-high current (if the current exceeds 10 kA). Usually oxygen is injected

into the molten melt using an oxygen lance; this oxygen, combined with car-
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bon, leads to the formation of the slag foaming that acts as a protective layer for

the furnace. It is worth noting that many studies show a reduction on energy

consummation when increasing the oxygen injection in the bath, because of the

exothermic nature of oxidation. During refining, the removal of carbon and

other inorganic impurities such as phosphorus, silicon, manganese, aluminum,

chromium, etc. are driven by the favored kinetics of the oxygen lances. The

oxidized elements are less dense than the liquid metallic phases, float above the

and enter the phase slag, which is present above the molten steel. This stage of

the steelmaking process is called Primary Refining.

2.2.2 Secondary refining

Secondary refining is characterized as the metallurgical operation of re-

fining and adjusting the chemical composition and temperature of the liquid

steel, which is carried out outside the EAF. This in turn is performed through

various processes, such as vacuum treatment to remove gases; agitation by

gas bubbling to homogenize the bath; the complete mixing of alloying ele-

ments; the refining of steel by using synthetic slag; the maintenance of an inert

gas atmosphere in the ladle furnace (LF), and even the heating of liquid steel

(MACHADO, 2007).

2.2.2.1 Deoxidation

During primary steelmaking, most of the impurities present in the charge

(i.e., molten iron, scrap, DRI, etc.) are oxidized and removed. As a result, a

large amount of oxygen also remains in the steel in the dissolved state. Dis-

solved oxygen, if left as it is, seriously impairs mechanical properties of steel

and must therefore be removed from the melt before casting.(MAZUMDAR;

EVANS, 2010).
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Deoxidation or “removal of oxygen” is generally facilitated by the ad-

dition of elements like Al, Si, Mn, etc. either individually or in combination,

which have larger affinity toward oxygen than iron. Typically, lump additions

of deoxidizer elements are made to the bath almost simultaneously with tap-

ping as is illustrated in Figure 2.6.

FIGURE 2.6. A schematic of furnace tapping and deoxidizer addition operation.

2.2.2.2 Desulfurization

Desulfurization is an important step in the liquid steel refining process

that is done during the inert gas (argon) bubbling, known as rinsing, and aims to

reduce the sulfur content in the steel to levels that do not influence the mechani-

cal properties required for each steel grade. This element, in turn, impairs weld-

ability, corrosion resistance, and is responsible for hot embrittlement, which is

very harmful to the material’s mechanical properties, that is, depending on the

application of the steel produced, a high sulfur content has a deleterious effect
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on its quality. Besides this, one of the main problems is the appearance of cracks

during rolling (ROCHA, 2011; ASTH, 2011; ZANON, 2013).

Equation 2.1 shows one of the main equations for steel desulfurization.

Note: "[ ]" refers to molten metal and "( )" to slag.

3[S] + 3(CaO) + 2[Al] −→ 3(CaS) + (Al2O3) (2.1)

From Equation 2.1 we can conclude the following statements:

• The addition of CaO in the steel bath. Shifts the equilibrium towards the

generation of the products and thus calcium sulfide is formed, removing

sulfur from the bath and transporting calcium sulfide to the slag.

• The presence of alumina (Al2O3) in the slag has the opposite effect. There

is a shift of the balance towards the reactions, transferring the sulfur from

the slag to the bath.

In the following chapters, we shall comment on methods approached for

maximizing steel desulfurization.

2.2.3 Casting

The transformation of liquid steel into a solid product occurs in the cast-

ing stage. There are two ways in which this may be accomplished: the tradi-

tional method, known as conventional casting, or through continuous casting.
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2.2.3.1 Conventional casting

Conventional casting is accomplished by pouring the steel from the ladle,

directly or indirectly, into individual molds until it is completely solidified into

ingots. This method is simple to operate and requires minimal casting tempera-

ture control, and is still used in mills producing specialty steels, or semi-finished

steels for the production of flat products (MADRUGA, 2016).

2.2.3.2 Continuous casting

The continuous casting method is carried out through the continuous so-

lidification of liquid steel in a mold with the closest section shape suitable for the

mechanical forming process that will generate the final product. Thus, in this

process, the liquid steel from the ladle is transferred to a tundish and from there

to the molds of the shafts, where the solidification will take place, thus enabling

the continuous extraction of billets, blooms, plates or pre-forms (ROCHA, 2014).

According to (RIHL, 2012), the International Iron and Steel Institute stated

that conventional casting, in 1978, led the steel production chain, accounting for

77.7%, compared to the continuous method, which had not yet gained strength,

with only 23.3%. Recently, the World Steel Association published a report stating

the significant increase in steel production via continuous casting with 96.4% in

2018.

2.3 Slags of secondary refining

By definition, slags of secondary refining are total or partial liquid solu-

tions comprised by oxides and fluorides (usually a mixture of CaO −MgO −
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SiO2 − FeO − Al2O3 − CaF2) (LUZ et al., 2018). However, these slags are not

merely metallurgical waste products but, on the contrary, their compositions

and physical properties are judiciously designed to optimize the operations in

the respective metallurgical reactors (DIPPENAAR, 2005).

For over half a century, advances have been made in slag research in the

United States of America, the United Kingdom, and Germany. In the 1960s,

researchers in Japan were already conducting important studies involving

measurements and modeling of slag properties (SEETHARAMAN; MUKAI;

SICHEN, 2004). Slags are designed to maximize their refining capacity, includ-

ing optimization of chemical composition as well as physical-chemical proper-

ties. The following highlights some of the key functions of secondary refining

slags:

• Preventing oxidation of molten steel (ERICSSON; KARASEV; JöNSSON,

2011; PERSSON, 2007; FRUEHAN, 2004);

• Thermal insulation of molten steel (KONONOV; ZEMSKOV, 2012; FRUE-

HAN, 2004);

• Remove impurities from molten steel (PERSSON, 2007; LIM et al., 2016;

FRUEHAN, 2004);

• Remove and modify non-metallic inclusions (SILVA, 2018; REIS; WAG-

NER; BIELEFELDT, 2013; BIELEFELDT; VILELA, 2014).

Secondary Refining Slag is composed of basic and acidic oxides. Predom-

inantly, in the production of specialty steels, they are composed of CaO, SiO2,

Al2O3, and MgO, with lower levels of iron oxides, manganese, and traces of

other elements. In the following chapters, slag structures, the chemical compo-

sition of slag and the viscosity of slag will be presented in more details.
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2.3.1 Slag structures

As previously stated, slags are the remains of minerals (metal oxides,

sulfates, etc) generated at high temperature process as byproduct. Within this

work, melts are multi-component oxide system and they will have a specific

cooling behavior. As a result, the slag may contain a solid fraction cooling, as is

illustrated by Figure 2.7 for binary systems.

1. Slag is completely molten at Tstart above liquidus temperature Tliq

2. Cooling below Tliq leads to crystallization. A mixture of solid phases (Bsol)

and liquid (Xliq) is formed. The composition of the remaining liquid slag

Xliq changes when the solidification phase consumes slag components.

Under equilibrium conditions, the composition of the remaining slag will

change following the liquidus line.

3. Further cooling causes solidification at the eutectic point, Xliq = 0. In spe-

cial cases, when eutectic slag compositions is used, the transformation

from liquid to occurs at constant temperature.
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FIGURE 2.7. Schematic of eutectic binary phase diagram of two metal oxides
(MEYER et al., 2017)

It is important to point out that below the liquidus temperature slags-

systems are in two-phase regions. This work will focus on the representation of

the iso-viscosity curves in these conditions as well.

2.3.1.1 Solid Slag Structure

The structure of solidified slags is connected to the structures of glasses.

Several structural models were developed, especially for silicates (MEYER et

al., 2017).

The basic element for a wide range of structure models is the [SiO4−
4 ]-

tetrahedron or silicate tetrahedron for silicates melts. A silicon atom is posi-

tioned in the center of four oxygen atoms bond to the silicon, as in Figure 2.8

illustrated.
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FIGURE 2.8. SiO4- Tetrahedron

Contrary to the regular symmetrical appearance of tetrahedra within a

crystal, the tetrahedra within a glass are occurring in an irregular fashion (Fig-

ure 2.9). During cooling, the network of tetrahedra is formed by polymeriza-

tion.

FIGURE 2.9. SiO4- Tetrahedron connections a) in solid quartz and b) in molten
quartz

Below, is provide a list of the network formers found in the literature

(DIETZEL, 1942; SUN, 1947; GAO et al., 2014; KIM et al., 2010).
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a. Boron

b. Silicon

c. Aluminum

d. Phosphorus

e. Vanadium

f. Titanium

The crystalline or glassy network can be broken by the introduction of

other cations in form of metal oxides. The added oxygen will occupy vacant

corner of the opened tetrahedron while the large cation enters the hole, thus

modifying and weakening the network (Figure 2.10) (KIM et al., 2010; GAO et

al., 2014).

FIGURE 2.10. Weakened glass structure by introduction of MgO as network
modifier

Below, it will provide a listing of the network modifiers found in the lit-

erature (DIETZEL, 1942; SUN, 1947; GAO et al., 2014; KIM et al., 2010).

a. Lead

b. Magnesium

c. Calcium

d. Sodium

e. Potassium

f. Titanium

g. Aluminum

h. Iron
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It is possible to observe that Al presents an amphoteric behavior, be-

cause the element presents itself as an network formers and network modifiers.

Within a multicomponent slag, amphoteric can either strengthen the tetrahe-

dra network or diminish the tetrahedra network depending on the slag basici-

ty/acidity.

2.3.1.2 Liquid Slag Structure

As pointed out in chapter 2.3.1.1, silicate melts are made of SiO4−
4 tetrae-

dra, which joined to form chain of rings by bridging bonding oxygen (BO). Sev-

eral cations tend to break these structures, such asNa+, Ca2+,Mg2+, Fe+. These

are network modifiers. Non-bring oxygen (NBO) is formed with ions ofO− and

free O2−, as Figure 2.11.

FIGURE 2.11. Schematic representation of tetrahedra formed by Si, O and net-
work modifier

Silicate melts contain various 3-dimension, interconnected anion units

such as SiO2, Si2O
2−
5 , Si2O

4−
6 , Si2O

2−
7 , SiO4−

4 , which coexist in the melt. The

rapid increase of viscosity during the cooling depends on the formation of dis-

ordered, infinite networks. Small ionic units with low coordination’s number,
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such as the [SiO4] - tetrahedron (coordination number of 4), start polymeriza-

tion (MEYER et al., 2017).

2.3.2 Chemical composition

The chemical composition of the slag used in Secondary Refining varies

considerably depending on the industrial practice of each steelworks. Accord-

ing to the literature, (XU et al., 2014) , calcium-aluminate slags with magnesium

represent the basis of most secondary refining slags.Additions of SiO2 complete

the quaternary system guaranteeing very common applications in metallurgi-

cal processes. Table 2.1 presents typical composition ranges of slags applied in

Secondary Refining based on some references (FUHR et al., 2007; SHAMSUD-

DIN, 2016; SONG; SHU; SICHEN, 2011; RIYAHIMALAYERI; ÖLUND; SELL-

EBY, 2013; GUO; CHENG; CHENG, 2014).

TABLE 2.1. Typical chemical compositions of slags in Secondary Refining

Reference
Chemical composition (wt%)

CaO SiO2 Al2O3 MgO FeO MnO S

Fuhr et al.(2007) 50-60 5-15 25-35 5-9 <1.0 <0.2 <0.2
Shamsuddin (2016 50-55 5-12 20-25 9-10 <1.0 <1.0 -
Song, Nzotta e Sichen
(2011)

45-56 9-15 23-29 8-21 - - -

Riyahimalayeri,
Ölund e Selleby (2013)

55-62 6-6.5 29-35 2-5 - - 0.5-2

Guo, Cheng e Cheng
(2014)

53-60 2-2.6 25-36 4-6 - <0.3 <1

Slags from the quaternary system CaO-SiO2-Al2O3-MgO have great im-

portance when it comes to Secondary Refining of steels, especially with regard

to the capture of non-metallic inclusions and refractory protection. It is noted

that there is little information available in the literature terms of the phases



24 CHAPTER 2. LITERATURE REVIEW

present in the equilibrium in these systems, including the composition and pro-

portion of the liquid and solid phases formed (REIS; WAGNER; BIELEFELDT,

2013; BIELEFELDT; VILELA, 2014; BIELEFELDT et al., 2014).

2.3.3 Basicity and B/A-ratio

The ratio between network modifying and network forming ions (also

called Basicity) is one of the most utilized and discussed number to describe the

properties of slags and glass melts. Moreover, basicity, which is most appropri-

ate to be defined by the activity of free oxygen ions, could be used to monitor

free oxygen ions and to understand the equilibrium state of silicate melts (LEE

et al., 2008).

Formulations to calculate the basicity, i.e. the B/A - ratio, are given in

Equation 2.2 and 2.3, respectively. The amount of components can be intro-

duced as mass fraction, indicated by x (MEYER, 2017).

B

A
=
Base

Acid
=
networkmodifiers

networkformers
(2.2)

B

A
=
xCaO

xSiO2

(2.3)

In this current work, the following nomenclature will be adopted:

• High basicity slags are slags with B/A >1

• Low basicity slags are slags with B/A <1
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2.3.4 Viscosity and thermodynamic models

Viscosity is one of the most important physical properties regarding the

refining steelmaking of slags. It may be drastically influenced even by minor

changes in the chemical composition and temperature. Optimizing these pa-

rameters may affect the reactions between the slag and the liquid steel, promot-

ing relevant phenomena impacting in terms of the steel quality, specifically its

cleanliness (PEREIRA et al., 2019; MILLS et al., 2001). The viscous behavior of

slags is of great concern to understand its physical-chemical properties, such as

gas permeability, heat transfer, the rate of desulphurization and indirectly the

rate of FeO reduction, because the presence of MgO favors dissolution of FeO

in the steel (PENGCHENG; XIAOJUN, 2016).

The viscosity measurement process is considered expensive, so the cost-

effectiveness does not favor the measures at high-temperatures. Alternatively, it

is possible to apply mathematical models to obtain viscosities for a given range

of chemical composition and temperature of slags (XU et al., 2014). Compu-

tational thermochemistry can be used to evaluate the internal structures of the

slag and the solid fraction in the system.

The modified Quasichemical model (MQM), for example, describes the

thermodynamic behavior of the liquid slag in the thermodynamic software Fact-

Sage. In this software using the Viscosity module which used quadruplet data

detained from MQM, it is possible to calculate the viscosity of liquid. The MQM

model was originally introduced by (PELTON; BLANDER, 1986). The main pa-

rameter of the model is the molar Gibbs energy of the reaction expressed by

Equation 2.4.

(A− A) + (B −B) = 2(A−B) : ∆gAB (2.4)
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The MQM theory is based on the balance of chemical reactions of com-

bining oxides with their neighbors present in the slag. Equation 2.4 presents the

quasichemical reaction for a binary slag, where the components (A and B) and

their particles mix and relocate in the semi-crystalline structure. The thermo-

dynamic properties of ternary solutions can be calculated by interpolating the

parameters of the binary model (i.e. ∆gAB) in Equation 2.4 (JUNG, 2010). The

MQM is flexible and allows for various interpolation techniques and, including,

multicomponent slag systems have been successfully modeled using the MQM

(JUNG; ENDE, 2020; JUNG, 2010).

In a previous work, viscosity of multicomponent systems were calcu-

lated using FactSage and compared them to the literature (PEREIRA et al., 2019;

ROCHA, 2018). The CaO− SiO2 −Al2O3 −MgO system, in particular, showed

an average deviation between the calculated and experimental data of less than

30% overall (CHEN; ZHAO, 2016). It is to be mentioned that, the viscosity of a

giving system may show variations of up to 50% between different measuring

studies (MILLS et al., 2001).

Complementing previous papers (PEREIRA et al., 2019), the current

work aims to calculate the viscosities of different sets of chemical composition,

for slags of the CaO-SiO2-Al2O3-MgO system, for different temperatures, and

for partially liquid, (two-phase) slags.

2.3.5 Slag Components

As pointed out in Chapter 2.3.1.1, oxide components are modulation the

structure and therefore the physico-chemical properties of slags. A summary

and short overview of different oxide components is given in the following sec-

tions.
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2.3.5.1 Silicon dioxide

Silicon oxide plays the most important role in the slag viscosity behavior.

The chemical and structural behavior of SiO2 was introduced in detailed in

Chapter 2.3.1.1. As a network former, it increase the viscosity of slags.

2.3.5.2 Aluminum oxide

Alumina,Al2O3, is known to be an amphoteric oxide it behaves either as a

basic oxide and a network modifier or an acidic oxide and a network former de-

pending on the overall slag composition. A decrease in the network-modifying

component can polymerize the slag structure and increase the viscous behav-

ior of the slag. Considering that, Al2O3 additions increased the viscosity, Al2O3

likely polymerized the slag structure and behaved as a network forming acidic

oxide (ZHANG; CHOU, 2013; KIM et al., 2013; WANG et al., 2020).

Figure 2.12 shows the effect of Al2O3 additions at a constant temperature

of 1773K (1500ºC) (KIM et al., 2013).



28 CHAPTER 2. LITERATURE REVIEW

FIGURE 2.12. Effect of Al2O3 on the viscosity of the calcium-base slags contain-
ing 10wt.%. MgO at 1773 K (1500°C) - [10 poise - 1Pa.S ]

The increase in viscosity with Al2O3 addition at 1773K seems to be inde-

pendent of the basicity ( between 0.8 to 1.3). At a constant wt.% of Al2O3, an

increases in the basicity from 0.8 to 1.0 decreases the viscosity of the slag. The

effect of increasing the basicity from 1.0 to 1.3 seems to be negligible within the

current slag system.

The effect of varying the CaO/SiO2 at fixed Al2O3 of 15 and 20wt.% for

different temperatures of 1698K and 1773K is shown in Figure 2.13 (KIM et al.,

2013).
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FIGURE 2.13. Effect of the CaO/SiO2 ratio on the viscosity of calcium-alumino-
silicate-based slags containing 10wt%. MgO at 1698K and 1773K with 15wt%.
and 20wt%. of Al2O3

At 1698 K, an increase in the basicity of 0.8 and 1.0 leads to an appreciable

decreases in viscosity; a subsequent increase in the basicity from 1.0 and 1.3 has

almost no effect on the viscosity. At 1773K, an increase of the basicity from 0.8

to 1.0 slightly lowers the viscosity. Subsequent increase in the basicity from 1.0

to 1.3 has virtually no impact on the viscosity.

2.3.5.3 Calcium oxide

Calcium oxide, CaO, is an alkaline earth oxide and is defined as a net-

work modifier. CaO is donates oxygen ions and therefore opens the silicate

network, which lowers the viscosity. The literature presents several studies of

the effect of CaO on the viscosity of slags. Work that studied a slag with a high

concentration of titanium oxide to visualize the effect of CaO/SiO2 (FENG et

al., 2019) is presented next.
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This work explored viscous behaviors of CaO−SiO2−11,00wt,%MgO−
11,00w%tAl2O3 − 43,00wt,%TiO2 slag systems the study determined the effects

of CaO/SiO2 ratio on the viscosity of various slags as shown in Figure 2.14.

FIGURE 2.14. η-T of different CaO/SiO2 experimental titanium-bearing slags

It is clear from the Figure 2.14 that the viscosity of slags increases when

the temperature is lowered. There exists a breaking point in temperature (tem-

perature which there is no change in viscosity) foreach η-T curve. When the

temperature is higher than the breaking point temperature, the variation of the

viscosity as a function of temperature is small, and fluidity and the thermosta-

bility of the slag is good as well in this temperature range (FENG et al., 2019).

Above the breaking point the temperature of slags viscosity decreases as the

CaO/SiO2 ratio is increased. As CaO/SiO2 ratio increases, the availability of

free oxygen regions (O2−) in the molten slag increases as well CaO dissocia-

tions. These provided O2− can react with the O0 in the network structure to

form the non-bridging oxygen (O−), and the complex networks are depolymer-

ized to the small units, such as monomers. Thus, the viscosity of the experi-
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mental slags decreases with increasing CaO/SiO2, and the fluidity is improved

(FENG et al., 2019).

2.3.5.4 Magnesium oxide

Magnesia, or MgO, is defined as a network modifier (CHEN; HE, 2015;

PENGCHENG; XIAOJUN, 2016). It also reduces the slag viscosity but to a

lesser extant than CaO. A general network modifying behavior was found by

(PENGCHENG; XIAOJUN, 2016) for CaO −MgO − SiO2 − Al2O3 for different

temperatures. Figure 2.15 shows the decrease of viscosity when increasing the

MgO content of different slags.

FIGURE 2.15. Effect of MgO on viscosity of CaO −MgO − SiO2 − Al2O3 slags

2.4 Computational thermodynamics - FactSage

The search for alternative technologies to obtain "clean" steels with ex-

cellent mechanical properties has led the specialty steel industry to invest in
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research and technology. Computer simulations show great strength in under-

standing many industrial processes. One of the well-known simulation tools is

computational thermodynamics.

Thermodynamic simulations have been used to understand many phe-

nomena that occur during the processing of liquid steel, for which a large num-

ber of reactions may occur. The application of computational thermodynamics

facilitates the resolution of problems previously addressed with tabulated data

and an equilibrium diagram.

In addition, (JUNG; ENDE, 2020) reports, in detail, an overview of a com-

putational thermodynamics software, FactSage. In addition, it presents the mod-

ules and packages available in the area of computational thermodynamics.

FactSage is a commercially available software which was introduced by

Pelton and Bale (BALE et al., 2016), During these two decades the software has

received several updates on its databases, interface and modules (JUNG; ENDE,

2020; BALE et al., 2016; GHERIBI et al., 2012; JUNG, 2010).

Because of its extensive databases, FactSage is capable of calculating

phase diagrams and phase equilibrium conditions for multi-component sys-

tems. The software’s database contains information about the thermodynamic

behavior of many individual phases as well densities, and liquid viscosities as

a function of temperature, pressure, and composition (GHERIBI et al., 2012).

The knowledge of thermodynamics becomes useful when performing process

simulations, many modules available in the software (ROCHA, 2016).

In this work, two major modules were used, the Equilib and Viscosity

modules. The Equilib module was used with the following databases: FactPS

and FToxid. We used, the Viscosity module with the Melts database. Further

details of these two modules will be presented below:
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• Data base selection in Equilib:

– FactPS: This database contains thermodynamic data of over 4900 sto-

ichiometric solid, liquid, gas and ions compounds.

– FToxid: The FACT oxide database (FToxid) contains thermo-

dynamic parameters for pure oxides and oxide solid solutions

formed by 23 elements (as well as for dilute solutions of

S, SO4, PO4, H2O/OH,CO3, F, Cl and I in the molten slag phase) ob-

tained from a critical assessment of the avaible experimental data in

the literature.

• Viscosity

– Melts: liquid and supercooled slags with viscosities which are not too

high ln(viscosity, Pa·S) < 15

Computational thermodynamics applied to solid steel, liquid steel, slag

and solid oxide solutions of various system components has been developed

over the past three decades through a critical assessment process and evolution

of the thermodynamic optimization (JUNG; ENDE, 2020). The evolution of the

thermodynamic modeling is happening at the same pace as the improvement

of machine performance and processing capacity. Within the steel industry en-

vironment, FactSage has many applications. Among them, research related to

the following phenomena stand out:

• Alkali Circulation and Corrosion of Refractoryin Blast Furnace

• Heat Balance in the Alloying Process

• Degassing Process

• Deoxidation Equilibria in High Mn Steel
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• BOF Process: De-phosphorization of Hot Metal

• Reoxidation During Casting

• Solidification of Mold Flux

• Casting of Steel: Scheil Cooling Calculation



Chapter 3

Methodology

The methodology adopted in this study is presented in this section. This

chapter is divided into the presentation of a general flowchart involving the var-

ious steps of the calculation of slag viscosities and the details of the collection of

slag viscosity experimental results. Finally, calculations and other information

applied in this study are presented.

Figure 3.1 illustrates, in a schematic way, the flow chart of the adopted

computational process.

FIGURE 3.1. Flow chart of the computational process in this work.

35
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According to the computational procedure (Figure 3.1), is divided in two

parts. The first part consists of performing viscosity calculations using the Fact-

Sage software and with the Roscoe-Einstein equation to perform calculations of

the effective viscosity in multiphasic system in which the slag phase contains

various fractions of solids.

In the second part, in the second front, a collection of slag viscosity data

from secondary refining are collected from the literature references to evaluate

the performance of FactSage in predicting the slag viscosity of different multi-

component system.

3.1 Thermodynamic computations

The computational thermodynamics technique was applied in this work

using the commercially available FactSage software, version 7.3. The databases

employed in this study were two, (1) FactPS (for stoichiometric pure substances)

and (2) FToxid (for oxides). Both databases were useful in the creation of ternary

diagrams and slag viscosity calculations. Figure 3.2 illustrates the main screen

of the FactSage 7.3 software.
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FIGURE 3.2. Main screen of FactSage 7.3

The modules employed in this study were (1) the Equilib module for

obtaining the liquid fraction and respective chemical composition of the slag,

(2) the Viscosity module for liquid viscosity calculations. Currently, FactSage is

of the 8 version, with database revisions and updates from previous versions

(JUNG; ENDE, 2020).

The thermodynamic calculations in this work, were performed using 7.3

version.

3.1.1 Solid/liquid fraction of slag

The Equilib module allows, through the selected databases ( i.e. FactPS,

FToxid) to obtain the solid/liquid fraction and the respective chemical composi-
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tion of the phases in equilibrium. To do this, simply feed the module with the

overall chemical composition of the system (CaO, SiO2,Al2O3, MgO). (REIS;

WAGNER; BIELEFELDT, 2013) described in detail the Equilib module menu in-

cluding the selected systems as well as the obtained results fractions formed

(liquid and solid).

The chemical composition of the liquid phase, resulting from the Equilib

module, is then used as an input data for the calculation of the viscosity in the

Viscosity module.

3.1.2 Effective viscosity of the slag- η

In the Viscosity module, the viscosity of single-phase liquid slag can be

calculated, that is, without considering the presence of solids. Thus, the vis-

cosity calculation can not estimate the viscosity of Secondary Refining slags,

since there is typically the presence of solid fraction. To estimate the viscosity

when some solid fractions is present, the following equation proposed in 1952

by Roscoe-Einstein (ROSCOE, 1952) was adopted.

η = ηl(1− ρf)(−2,5) (3.1)

In Equation 3.1, ηl represents the viscosity of the liquid and f the solid

fraction, both obtained via FactSage with the Equilib module. The literature

presents a brief script for using FactSage 6.4 for liquid viscosity calculations

(ROCHA, 2014). The factor ρ represents a solid interaction parameter that, in

this study, considering a dilute concentration of spherical particles of different

sizes, is assumed to be equal to 1 (BIELEFELDT et al., 2014). The value of the

exponent in Equation 3.1 is associated with the geometric shape of the solid par-

ticle (ROSCOE, 1952). The application of Equation 3.1 is limited to the assump-
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tion that solid particles with low solubility in the liquid slag are homogeneously

distributed (SEOK, 2007).

3.2 Literature vs FactSage viscosity calculations

In order to verify the accuracy of the FactSage 7.3 software in evaluat-

ing the viscosity in the CSAM system, experimental viscosity data were col-

lected through several published works (MACHIN; HANNA, 1945; MACHIN;

YEE, 1948; MACHIN; YEE; HANNA, 1952; MACHIN; YEE, 1954; KOZA-

KEVITCH, 1954; KOZAKEVITCH, 1960; KOZAKEVITCH; MISRA, 1966; J.;

M, 1995; SAITO et al., 2003; KIM et al., 2010; SONG; SHU; SICHEN, 2011;

CHOPRA; TANEJA, 1964; URBAIN; BOTTINGA; RICHET, 1982; TANG et al.,

2011; SHANKAR, 2007; FORSBACKA et al., 2007; GAO et al., 2014; SCHU-

MACHER; WHITE; DOWNEY, 2015). In these works, the viscosity data were

obtained by different methods. Table 3.1 shows more detailed information

about the experiments in the viscosity measurement from the literature adopted

in this work and the number of the data collected data.

The composition ranges of all the reference source data, are presented in

Table 3.2.

The composition ranges, at 1500°C, of some reference source, i.e.

(MACHIN; HANNA, 1945; MACHIN; YEE, 1948; MACHIN; YEE; HANNA,

1952; MACHIN; YEE, 1954; KOZAKEVITCH, 1954; KOZAKEVITCH, 1960;

KOZAKEVITCH; MISRA, 1966; J.; M, 1995; SAITO et al., 2003; KIM et al., 2010;

SONG; SHU; SICHEN, 2011), data are illustrated in pseudo ternary systems

presented in Figure 3.3.
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TABLE 3.1. Reference sources of the experimental viscosity data.

System Author Method Crucible Data

Machin,1945 Oscillating Pt 5
Machin,1948 Oscillating Pt 43
Machin,1952 Oscillating Pt 16
Machin,1954 Oscillating Pt 12
Kozakevitch,1954 Rotating cylinder Mo/W 12

CaO–SiO2–Al2O3 Chopra et al,1964 - - 14
Data:138 Urbain,1982 Rotating cylinder Mo 28

Pengcheng, 2016 Rotating cylinder Mo 8

Machin,1945 Oscillating Pt 15
Machin,1952 Oscillating Pt 48
Machin,1954 Oscillating Pt 32
Hoffman,1959 - - 10
Kozakevitch,1966 Rotating cylinder Mo/W 3
Kowalski,1995 - - 27
Tang,2001 Rotating cylinder 84

CaO–SiO2–Al2O3–MgO Saito,2003 Rotating cylinder Pt/Rh 3
Data: 432 Shankar,2007 Rotating cylinder 30

Forsbacka,2007 Rotating cylinder Cr/Mo 70
Kim,2010 Rotating cylinder Pt/Rh 4
Song,2011 Rotating cylinder Mo 6
GaO Y,2014 Rotating cylinder Pt 24
Schumacher,2015 Rotating cylinder Graphite/Mo 25
Pengcheng, 2016 Rotating cylinder Mo 51

Total Data 570

TABLE 3.2. Composition ranges of slags of the reference sources by %mass.

System Temperature (°C) MgO SiO2 Al2O3 CaO

SiO2–Al2O3–CaO 1400-2083 0 0 - 70 0 - 54 10 - 55

SiO2-Al2O3–CaO–MgO 1372-1720 0 -38 10 - 65 0 - 30 1.5 - 55

FIGURE 3.3. Composition ranges of slags stidied by different authors expressed
in the form of (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO-SiO2-Al2O3–(15%MgO) (wt.%), at
1500°C
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Finally some experimental data at 1500°C used in the present work are

presented in Figure 3.3. For each reference, a different symbol was adopted.

To quality the error between the FactSage calculations (ηCalculated) and the

reference viscosity data (ηReference), for each slag composition, the Percent Error

was calculated using the following expression:

δi =
ηCalculated − ηReference

ηReference

× 100% (3.2)

The average performance analysis of the reference source on viscosity (η)

calculations through FactSage was evaluated by the Average Percent error, ∆,

for N measurements of viscosity, using Equation 3.3.

∆ =
1

N

N∑
i=1

δi × 100% (3.3)

3.3 Iso-viscosity curves

The thermodinamic simulations were carried out through the Equilib and

Viscosity modules, both available in FactSage 7.3. In the Equilib module, the

databases used were FactPS (stoichiometric pure substances) and FToxid (for

oxides and sulfur) in order to obtain values for the solid fraction of slags. The

Viscosity module uses Melts databases and provides the apparent viscosity (ηl).

The Roscoe-Einstein (ROSCOE, 1952) equation was used to calculate the effec-

tive viscosity (η) of multiphasic system according to Equation 3.1.

Table 3.3 shows the chemical composition range for each slag system

used in the viscosity calculations for the creation of iso-viscosity curves.
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TABLE 3.3. Composition ranges, in wt.%. , of calculated slags in the viscosity
database.

CaO SiO2 Al2O3 count

min max min max min max

Temp MgO Phase Mixture Liquid Phase Solid Phase

1500 0 × 0 98 0 98 0 98 739
× 0 60 0 100 0 80 553

× 0 100 0 34 0 100 34

5 × 0 93,1 0 95 0 93,1 792
× 0 53,2 0 89,3 0 58,9 503

× 0 95 0 34,2 0 95 31

10 × 0 88,2 0 90 0 88,2 902
× 0 46,8 0 84,6 0 52,2 394

× 0 90 0 36 0 90 30

15 × 0 83,3 0 85 0 83,3 925
× 0 44,2 32,3 81,6 0 35,7 371

× 0 85 0 35,7 0 85 29

1600 0 × 0 98 0 96 0 98 545
× 0 60 0 100 0 82 749

× 0 100 0 34 0 100 32

5 × 0 93,1 0 95 0 93,1 596
× 0 57 0 91,2 0 66,5 702

× 0 95 0 34,2 0 95 28

10 × 0 88,2 0 90 0 88,2 736
× 0 48,6 0 88,2 0 57,6 566

× 0 90 0 32,4 0 90 24

15 × 0 83,3 0 74,8 0 83,3 853
× 0 44,2 27,2 85 0 45,9 453

× 0 85 0 30,6 0 85 20

1700 0 × 0 98 0 80 0 98 441
× 0 62 0 100 0 84 853

× 0 100 0 34 0 100 32

5 × 0 93,1 0 95 0 93,1 437
× 0 58,9 0 93,1 0 74,1 867

× 0 95 0 34,2 0 95 22

10 × 0 88,2 0 84,6 0 88,2 545
× 0 50,4 0 90 0 61,2 761

× 0 90 0 32,4 0 90 20

15 × 0 83,3 0 74,8 0 83,3 713
× 0 45,9 0 85 0 57,8 593

× 0 85 0 30,6 0 85 20

Total 15911

Each chemical composition is associated to a specific viscosity. The chem-

ical compositions adopted in this work covered all the single-phase liquid re-
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gions and some 2-phase regions. The spacing between each composition is in

the order of 2wt.%. This variation is related to the size of the stability phase

region. A total of 15910 compositions were used to generate production of the

iso-viscosity curves.

All iso-viscosity curves were created using an open source software in

Python (ROSSUM; JR, 1995). The iso-viscosity curves were generated by linear

interpolation of the viscosity of the slag.





Chapter 4

Results and discussion

This chapter covers all the results obtained based on the objectives listed

at the beginning of this study (see Chapter 1). Each result is discussed in or-

der to debate important foundations described in the literature. The topics in

this chapter are divided into two parts, first the convergence of the data cal-

culated via FactSage and the data collected by the literature references will be

presented. Secondly, the influence of the temperature on the slag viscosities

will be introduced, then the influence of the oxides on the chemical composi-

tion of the slag and finally the influence of the solid/liquid fraction of the slag.

The representations of iso-viscosity curves served as support for the generation

of these discussions.

4.1 Precision of the viscosity model available in
FactSage

The comparison the between experimental viscosity data (from the refer-

ence data presented in Table 3.1) and the calculated viscosities, by FactSage, is

illustrated in Figures 4.1.

45
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FIGURE 4.1. Percentage error and measured ln viscosity

Regarding the comparative analysis shown in Figure 4.1, the possibility

of errors and uncertainties in the experimental data will be taken into account

by up to 30%, as proposed by (SUZUKI; JAK, 2013; MILLS et al., 2001; ROCHA,

2014).

Figure 4.2 shows the average relative error as calculated using Equation

3.3. The average relative error between the measured and calculated viscosities

is about 20%. In some cases, it is possible to see a more significant error of up to

30%, in the case of as shown in Figure 4.2.
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FIGURE 4.2. Average relative error between calculated from FactSage 7.3 and
measured viscosity comparison for each reference.

According to (MILLS et al., 2001), the viscosity measurements were sub-

ject to experimental uncertainties, such as temperature differences between the

thermocouple reading and the actual temperature of the melt. Because of this,

viscosity measurements differ from recommended values by an average of ±

30%, and in some cases, more than 50% (KIM et al., 2013; SONG; SHU; SICHEN,

2011; GAO et al., 2014). In this context, it can be said that the obtained results

in terms of relative deviation validate the quality of the viscosity model imple-

mented in FactSage.
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4.2 Slag behavior

In this section we evaluate the viscosity behavior of the slag, in terms of

its chemical composition, liquid/solid fraction, and temperature.

4.2.1 Influence of slag composition

It will discussed and visualized the effect of chemical composition of the

slag in relation to the liquid/solid fraction of the slag and the viscosity of the

slag.

4.2.1.1 Effect the composition on the slag viscosity

The effect of the chemical composition on different combinations of ox-

ides at 1500, 1600 and 1700°C on the viscosity, expressed in ln(Pa.s), can be vi-

sualized in Figures 4.3, 4.4 and 4.5. The i.e. figures show a viscosity scale in red

coloration, the slags that show the most red coloration are more viscous, and on

the other hand the slags with lower viscosities is shown in white coloration.
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FIGURE 4.3. Iso-viscosity ln([Pa.s]) curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at
1500°C.
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FIGURE 4.4. Iso-viscosity ln([Pa.s]) curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at
1600°C.
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FIGURE 4.5. Iso-viscosity ln([Pa.s]) curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at
1700°C.

The impact of each oxide component on the slag viscosity is presented
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below:

CaO showed an impact on the viscosity of slags as described in the liter-

ature. An increase in CaO content lowers the viscosity of the melt. Significant

viscosity decreases were found for low C/S wt.ratios (<1). Higher amounts

of CaO are less effective at reducing the melt viscosities (MEYER, 2017). This

effect can be explained because, as long the silicate network is not too much de-

polymerized, the network modifying behavior is still effective. In C/S wt.ratios

highers than 1 the slag has reached the breaking point so the addition of CaO

does not show a noticeable reduction in viscosity.

The increase of the SiO2 content in the molten slag leads to an increase

in the number of network units, hence the polymerization will strength in the

network structure of the slag (Si–O bonds), increasing the viscosity. (FENG et

al., 2019)

It can be concluded that the viscosity increases with the addition ofAl2O3

when its content is between 15 and 25wt.%. Increasing more the Al2O3 content,

leads to the replacement of Si-O bond by Al-O bond this lead to a weakening

of resistance to the viscous flow, and thus of the viscosity. As presented in the

literature, Al2O3 presents an amphoteric behavior (ZHANG; CHOU, 2013; KIM

et al., 2013; MIN; MEI; XI-DONG, 2011).

As it can be seen in Figures 4.3, 4.4 and 4.5 the viscosity of the slag melt

decreases with increasing MgO content from 0 to 15wt.%. This implies that

MgO behaves as a network modifier. At C/S wt.ratios of 0.8 and 1.0, the ba-

sic components (CaO and MgO) in the slag out-weight the acidic component

(SiO2) when increasing the MgO content. Therefore, the effect of MgO content

on the slag viscosity is not much pronounced in this compositions rage.

By comparing the above effects for the different oxides at different tem-
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peratures (Figures 4.3, 4.4 and 4.5) we can conclude that, the polymerization

and depolymerization of slag structures can also occur at higher temperatures,

where the excess thermal energy can provide sufficient energy to break the ex-

isting complex network structures, thereby decreasing the viscosity. Thus, at

high temperature (arrange 1700°C), the increase of the C/S wt.ratios does not

have a significant effect on the depolymerization, as many of the existing com-

plex network structures have already been broken due to the higher thermal

energy at 1700ºC compared to 1500ºC, as shown in Figures 4.3, 4.5. Therefore,

the polymerization of the slag is strongly affected by the increase in temperature

(GAO et al., 2014; ZHANG; CHOU, 2013; KIM et al., 2013; KIM et al., 2010)

4.2.1.2 Liquid/Solid Fraction effect

In order to evaluate the liquid/solid fraction in slag systems with the

effect of different chemical composition, 3 graphs were generated, at a temper-

ature of 1500, 1600 and 1700 ºC respectively (Figures 4.6, 4.7 and 4.8). There fig-

ures show a gray scale, in which the whiter colored slags are slags with higher

liquid fraction and on the other hand the darker slags are slags with higher solid

fraction.
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FIGURE 4.6. Liquid/Solid Fraction behavior: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normal-
ized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO-
SiO2-Al2O3–(15%MgO) (wt.%), at 1500°C.
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FIGURE 4.7. Liquid/Solid Fraction behavior: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normal-
ized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO -
SiO2 - Al2O3–(15%MgO) (wt.%), at 1600°C.
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FIGURE 4.8. Liquid/Solid Fraction behavior: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normal-
ized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO -
SiO2 - Al2O3–(15%MgO) (wt.%), at 1700°C.

Analyzing the figures above (i.e. Figures 4.6, 4.7 and 4.8), it is possible to

conclude the following points:
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The addition of CaO significantly increase the liquidus of slag. Due to

the high melting point, slags with high content of CaO need high temperatures

to be in the liquid state. It can be seen that between a composition range of 20 -

50wt.% CaO the slags are in a liquid state and as the slag temperature increases

this slag range increases to 20 - 60wt.% CaO. At high contents of MgO (10 -

15wt.%), the depolymerization is intensified and this range of CaO composi-

tions in liquid phase is increased. Slags with C/S wt.ratios less than 1 will be in

the liquid state. However, at C/S wt.ratios of 0.8 and 1.0, as the basic compo-

nents (CaO and MgO) in the slag outweigh the acidic component (SiO2) with

increasing MgO content, many of the network structures have already been de-

polymerized. Therefore, the effect of theMgO content on the liquid slag fraction

is impaired.

The effect of adding SiO2 is an increase in the liquid fraction of basic slag

system, because SiO2 has a low melting point. With the increase of MgO it is

possible to see an increase in the liquid part because the magnesium oxide acts

as a network modifier.

The addition of Al2O3 also increases the liquidus of many slag system.

This occurs due to the high melting point of alumina. It is possible to notice

that the increase of the solid fraction with alumina higher than 40wt.%, and this

effect is intensified when the system has MgO content greater than 5wt.% in the

composition.

The Liquid Phase is gradually reduced, with increases in the MgO con-

tent, as seen in past work (KIM et al., 2010; GAO et al., 2014; GAN; XIN; ZHOU,

2017).

By comparing the above effects for the different oxides at different tem-

peratures it can conclude that, Figures 4.6, 4.7, 4.8, the increase in temperature,

increases the liquid zone of the slag.
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4.2.2 Temperature influence

The effect of rising the temperature on the viscosity of slags will be dis-

cussed in this chapter. The impact it has an liquid/solid fraction will also be

presented.

4.2.2.1 Viscosity effect

To evaluate the effect of the temperature on the slag viscosity of slag,

3 graphs were made, by subtracting the slag viscosity at 2 different tempera-

tures with the same chemical composition at thus temperatures. The first graph

shows the viscosity difference, in [Pa.S], of the same slags between 1600 and

1500°C, Figure 4.9. The second graph show the viscosity difference, in [Pa.S],

between 1700 and 1600°C, Figure 4.10; and finally show the difference, in [Pa.S],

between 1700-1500°C , Figure 4.11. The figures show a rainbow color scale of

negative values, because it is expected that with increasing temperature the vis-

cosities will decrease, so subtraction will result in negative values.
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FIGURE 4.9. Viscosity difference in [Pa.S]: (a) CaO-SiO2-Al2O3 system (wt.%);
(b) normalizedCaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalizedCaO-
SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO - SiO2 -
Al2O3–(15%MgO) (wt.%), between 1600 - 1500°C.
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FIGURE 4.10. Viscosity difference in [Pa.S]: (a) CaO-SiO2-Al2O3 system (wt.%);
(b) normalizedCaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalizedCaO-
SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO - SiO2 -
Al2O3–(15%MgO) (wt.%), between 1700 - 1600°C.
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FIGURE 4.11. Viscosity difference in [Pa.S]: (a) CaO-SiO2-Al2O3 system (wt.%);
(b) normalizedCaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalizedCaO-
SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO - SiO2 -
Al2O3–(15%MgO) (wt.%), between 1700 - 1500°C.

In Figure 4.9, it can be seen that the effect of increasing the temperature
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by 100 degrees, starting at 1500°C, resulted in the reduction of the viscosity of

slags. For low basicity slags, the effect was not as clear for C/S wt.ratios greater

than 1. The effect of the addition of MgO ends up not intensifying the effect of

the reduction of the viscosity of the slag in the increase of the temperature, be-

cause as the magnesium oxide acts as a depolymerizer in the slag, then with the

presence of MgO the slag presents a breaking point at lower temperatures, then

its viscosity already presents its lower plateau for lower temperatures. There-

fore, the temperature effect is not so relevant (GAO et al., 2014).

Figure 4.10 shows the effect of increasing the slag by 100 degrees starting

at 1600 degrees. It was possible only to visualize the decrease in viscosity for the

slags with C/S wt.ratios less than 1. With the increase ofMgO there were no sig-

nificant decrease in viscosity caused by the temperature increase, because MgO

performs as a network "modifier" and the oxide leads the viscosity to reach the

breaking point (KIM et al., 2010).

Performing an overview of the increase of temperature from 1500 to 1700

degrees, Figure 4.11 ,it is possible to visualize that the viscosity was in general

reduced when increasing temperature.

4.2.2.2 Liquid/Solid Fraction

To evaluate the increase of the liquid fraction in the slag with increasing

temperature, this chapter will consist of a subtraction in the liquid fraction of

the slag for the same chemical compositions with different temperatures. The

first graph will be the subtraction, of the liquid fraction in [%], of the same slag

between the temperature of 1600 and 1500°C, Figure 4.12 ,the second graph

will be the subtraction between the temperatures 1700 and 1600°C, Figure 4.13

and finally the subtraction between the temperatures 1700-1500°C, Figure 4.14.

The figures show a color scale between blue and red, in which slags that show
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a more red coloration are slags that showed a gain in the liquid fraction, and

slags in blue are slags that did not get a gain in the liquid fraction.

FIGURE 4.12. Liquid Fraction difference: (a) CaO-SiO2-Al2O3 system (wt.%);
(b) normalizedCaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalizedCaO-
SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO - SiO2 -
Al2O3–(15%MgO) (wt.%), between 1600 - 1500°C.
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FIGURE 4.13. Liquid Fraction difference: (a) CaO-SiO2-Al2O3 system (wt.%);
(b) normalizedCaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalizedCaO-
SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO - SiO2 -
Al2O3–(15%MgO) (wt.%), between 1700 - 1600°C.
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FIGURE 4.14. Liquid Fraction difference: (a) CaO-SiO2-Al2O3 system (wt.%);
(b) normalizedCaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normalizedCaO-
SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO - SiO2 -
Al2O3–(15%MgO) (wt.%), between 1700 - 1500°C.

This section presents the visualizing of the effect of increasing by 100 de-

grees the temperature of slag on the increase of the liquid fraction of the slag. It
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is possible to visualize that the slags that were at 1500 temperature and heated

to 1600º presented an increase on their liquid fraction for silica-alumina slags,

and for slags with high concentration of CaO (see red the elliptical shape re-

sign that will be discussed in the next chapters). Another observation is that

slags with 5%MgO did not show an increase of its liquid fraction because oxide

presents itself as a network modifier and were finally liquid at low temperature.

At important MgO addition (10-15wt.% MgO) the slag will present an excess of

network modifiers and the temperature increase will be necessary to reach the

liquidus of the system.

In Figure 4.13 it is possible to see the effect of raising the slag temperature

from 1600ºC to 1700ºC. It is possible to conclude that the increase in the liquid

fraction is only notable for high alumina or high CaO zones, because these sys-

tems have high liquidus temperature.

The overall effect of increasing the temperature by 200ºC is seen in Figure

4.14. It is possible to see zones that presented a substantial increase in the liquid

fraction with temperature.

4.2.3 Iso-viscosity curves

The iso-viscosity curves for the CSAM system are presented at differ-

ent content of MgO and for 3 different temperatures (1500°C,1600°C,1700°C),

in Figures 4.15,4.16,4.17. The figures show a gray scale representing the liquid

fraction, a line in gold coloration representing the liquidus line of the slag, and

the viscosity iso-curves in dashed lines in blue color.
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FIGURE 4.15. Iso-viscosity [Pa.s] curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at
1500°C.
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FIGURE 4.16. Iso-viscosity [Pa.s] curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at
1600°C.
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FIGURE 4.17. Iso-viscosity [Pa.s] curves of slags in Liquid and Two-
Phase regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at
1700°C.

The analysis of these figures (Figures 4.15, 4.16 and 4.17), show that an

increase of MgO content decrease the viscosity. MgO is a network “modifier”,
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and thus decreases the viscosity of these lags at a given temperature (GAO et

al., 2014). The Liquid fraction is gradually reduced, with an increase in the

MgO content, as confirmed by the experimental data in the literature (GAN;

XIN; ZHOU, 2017). Additionally, it is also revealed in Figure 4.15, 4.16 and 4.17

that the low viscosity area (0 - 1Pa.s) are much larger in slags with high MgO

contents and for higher temperatures.

Figure 4.15 show that an it can be seen that with increase in the solid

fraction leads to a drastic increase in viscosity, as predicted by Equation 3.1.

With the increase of the solid fraction, there is a distortion in the iso-

viscosity curves, because of the resulting increase in the slag viscosity.

It is possible to visualize an influence of a solid solution in the slag at

1500ºC , Figure 4.15, increasing the viscosity of the slag. This effect will be dis-

cussed in the next chapter 4.2.3.1.

4.2.3.1 Melilite influence

The phase assemblage in Figure 4.15 a) in the area of 40 - 70% CaO, 20 -

40% SiO2, and 0 - 40%Al2O3, consists of a large fraction of solid which increased

viscosity.

In order to explain this effect, Figure 4.18 shows phase equilibria at

1500ºC for these different slag compositions.
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FIGURE 4.18. Equilibrium phases presents in the Liquid and Two-Phase
regions: (a) CaO-SiO2-Al2O3 system (wt.%); (b) normalized CaO-SiO2-
Al2O3–(5%MgO) system (wt.%); (c) normalized CaO-SiO2-Al2O3–(10%MgO)
system (wt.%); and (d) normalized CaO - SiO2 - Al2O3–(15%MgO) (wt.%), at
1500°C.
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The (slag-liq) represents the region of single-phase slag, while all the

other zones present same solid phases. According to the Figure 4.18, Melilite

((Ca2(Al,Mg,Fe2+), (Si, Al)2 O7) is present in many regions (7, 8, 9, 11, 12, 18,

24, 25) and increases the viscosity of the slag system, as seen in Figure 4.15.

Melilite in CAIs consists almost exclusively of the binary solid solution gehlen-

ite [Ca2Al2SiO7]–akermanite [Ca2MgSi2O7]. The melting point of gehlenite is

1593°C and 1454°C for akermanite. (MACPHERSON, 2007)

Correlating Figure 4.15 with Figure 4.18 is possible to see that the in-

crease of the solid fraction is connected to the presence of the Melilite phase.

The increases of MgO stabilizes the Melilite phase to lower CaO, SiO2, and

higher Al2O3 contents. With increasing MgO concentration, the melilite phase

will contain mostly the akermanite, which has a lower melting point, thus slags

with higher MgO concentration will limit the solid fraction effect induced by

the melilite phase formation.

Visualizing Figure 4.12 it is possible to see that with the increase of 100

degrees there is an increase in the liquid fraction in the zones where the melilite

is found. Correlated with Figure 4.7, it is possible to notice that the solid phase

became a liquid phase.

4.2.3.2 Thermal and Chemical Influence

This last section discusses the effect of the chemical composition and tem-

perature on the low viscosity zones (0-1 Pa.s) and liquid zones of the slag. Fig-

ure 4.19 was specifically built for this discussion, in this figure we compare 3

different temperatures (1500, 1600 and 1700°C) in relation to the low viscosity

zones and the liquid zone of the slag. Each temperature has two with similar

colors, where the liquid zone is represented by a solid line and the low viscosity

zone is represented by a dashed line.
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FIGURE 4.19. Thermal and chemical Influence on low viscosity zones(0-1
Pa.s) for temperatures 1500, 1600 and 1700ºC: (a) CaO-SiO2-Al2O3 system
(wt.%); (b) normalized CaO-SiO2-Al2O3–(5%MgO) system (wt.%); (c) normal-
ized CaO-SiO2-Al2O3–(10%MgO) system (wt.%); and (d) normalized CaO -
SiO2 - Al2O3–(15%MgO) (wt.%).

Analyzing Figure 4.19 it is possible to see that the increase in temperature

generates an increase in the size of low viscosity zones associated to an increase

in the liquid zone of the slag. This confirms all previous observations. The

increase in MgO reduces the viscosity of the slag and also increases the size of

the low viscosity zone. On the other hand, the addition of the MgO results in a

decrease in the liquid zone.





Chapter 5

Conclusions

In summary, FactSage 7.3 was employed to analyze the behavior of slags

for the CSAM systems at 1500ºC, 1600°C and 1700°C the Rocoe-Einstin was

used to predict the viscosity of slags containing solid fractions. The calculated

data were compared with the experimental data collected in many references

cited in this work. About 570 experimental data were collected to compare the

data with the calculated values, we propose an accurate representation of iso-

viscosity curves applied for secondary steelmaking slags. The following main

conclusions can be drawn from this work:

• A comparison between the viscosity data collected from the literature with

the viscosities calculated by FactSage shows a mean percent error lower

than the 30% mean percent error typically obtained during viscosity mea-

surement.

• By the analysis proposed, it is possible to visualize that the effect of the

MgO content (0-15%wt.) decreases the viscosity. As a further observation,

increasing MgO showed an increase in the size of the low viscosity zones

(0-1Pa.s).

• The effect of the CaO oxide showed a significant viscosity decreases for

C/S wt.ratios less than 1, but higher amounts of CaO had a limited im-

75
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panct an melt viscosities. CaO additions between 20% and 60%wt. lead

to an increase in the liquid fraction of the slag. At higher content of CaO

(>60%wt.) there is an increase in the solid fraction.

• Al2O3 showed amphoteric behavior, increasing viscosity at 15-25%wt. and

decreasing viscosity at high concentrations. Although it is possible to no-

tice the increase of the solid fraction with alumina higher than 40%wt., this

effect intensified when the system has MgO content greater than 5%wt.

• The FactSage 7.3 sotware was great help in the creation of pseudo ternary

systems with iso-viscosity curves. This is a useful representation for steel-

makers, considering the slag designing process, aiming at obtaining the

best conditions of steel refining.



Chapter 6

Recommendations for Future Work

There are limited iso-curves of viscosity available in the literature for

slags at high temperature. For this reason, the present work will be contin-

ued in order to gather new results. Many new areas can yet be explored, and

some points from this work further clarified. Some ideas along these lines are

presented below.

1. Use the methodology of the present work and include Fluorite, CaF2, in

the slag systems.

2. Develop a comparative study with experimental viscosity measurements

with the graphs generated from the iso-viscosity curves.

3. Apply the knowledge acquired in the construction of iso-viscosity curve

diagrams for the ability to remove inclusions for different slag composi-

tions.

4. Visualize the effects of each oxide on viscosity by two-dimensional plots

for several temperatures.

5. Use the methodology of this present work and include Iron(II) oxide, FeO,

in the slag systems.

77
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6. Employ the built algorithm for calculating iso-viscosity curves for other

areas of Materials knowledge, such as polymers.
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