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Plants must effectively defend against environmental stresses to survive in nature. However,
immunity to disease is costly and often comes with a significant growth inhibition and yield penalty
(Yang et al., 2012; Huot et al., 2014; Huang et al., 2017; Ning et al., 2017). Hormones play important
roles in regulating plant growth and stress responses (Heinrich et al., 2013). Gibberellins (GAs)
and jasmonates (JAs) are two types of essential phytohormones that control many aspects of plant
growth and development in response to environmental and endogenous signals. GA regulates
many essential plant developmental processes (including stem and leaf elongation), while JA plays
a dominant role in mediating plant defense, especially to herbivores attack (Hou et al., 2013).
Even though GA and JA antagonize each other in regulating plant growth and defense response
via interaction between JAZs and DELLAs proteins (De Bruyne et al., 2014; Song et al., 2014;
Chaiwanon et al., 2016), the exactly way how plants coordinate the fluctuating growth-defense
dynamics is not well understood. Especially, the role of GA in growth-defense conflicts during
herbivory is yet to be characterized. Several works have been addressing the plant dilemma between
“to grow” and “to defend” in response to various stimuli, clearly indicating that plants need
to prioritize GA- or JA-induced responses. Heinrich et al. (2013) showed that high levels of JA
antagonize the biosynthesis of GA and inhibit the growth of Nicotiana attenuata stems. In rice, GA
application was found to decrease resistance to the hemibiotrophic rice pathogens Magnaporthe
oryzae (Mo) and Xanthomonas oryzae pv. oryzae (Xoo) (Yang et al., 2008; Qin et al., 2013). The
GA biosynthetic pathway and signaling cascade were shown to be regulated by JA during Mo and
Xoo interactions with rice plants. It was also shown that the only DELLA protein in rice, SLR1, is
crucial to integrate GA and JA (as well as salicylic acid) crosstalk (De Vleesschauwer et al., 2016). In
agreement with that, rice plants overexpressing a GA deactivating enzyme accumulated low levels
of GA and displayed enhanced resistance toMo andXoo, whereas plants harboring loss-of-function
mutations in the same gene were more vulnerable to these pathogens (Yang et al., 2008; De Bruyne
et al., 2014).

Upon attack by the chewing herbivore Chilo suppressalis, rice plants activate the expression
of OsWRKY70, a transcription factor that physically interacts with W-box motifs and
prioritizes defense over growth by positively regulating JA and negatively regulating GA
biosynthesis (Li et al., 2015). Two groups investigated the growth/defense response of
rice plants infested by brown planthopper (BPH) insect: (1) Wang et al. (2015) detected
a shift from growth to defense in response to BPH infestation, evidenced by down-
regulation of GA-related genes, decreased GA levels, increased JA levels, and reduced plant
growth; (2) Qi et al. (2016) showed that plants over-expressing OsJMT1 (JA carboxyl
methyltransferase, which is up-regulated by BPH infestation and is a key enzyme in
methyl-JA biosynthesis pathway) exhibited increased MeJA levels and reduced height. In
line with these findings, we previously detected lower expression of three GA biosynthetic
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pathway-related genes (OsGA2ox1, OsGA2ox3, and
OsGA20ox1) in rice leaves infested with the phytophagous
mite Schizotetranychus oryzae, when compared with control
leaves. The expression of OsAOS (allene oxide synthase), which
catalyzes the committed step in JA biosynthesis, was only
detected in infested leaves (Buffon et al, 2016). Altogether,
these results suggest that JA-related responses antagonize the
biosynthesis of GA and GA-related responses during herbivory.

Wild plant species have been widely recognized as valuable
source of resistance genes for developing herbivore-resistant
cultivars. For example, Oryza brachyantha is resistant to the rice
leaf folder Cnaphalocrocis medinalis (Ramachandran and Khan,
1991; Ricachenevsky et al., 2018). To date, 10 QTLs and one
causative gene have been identified from six wild rice species
(O. officinalis, O. eichingeri, O. minuta, O. latifolia, O. rufipogon,
and O. australiensis—Huang et al., 2013; Zhang et al., 2014;
Hu et al., 2015; Ji et al., 2016). With this in mind, we asked
ourselves whether wild rice cultivars could also present some
degree of resistance to Schizotetranychus oryzae mite infestation.
Surprisingly, the wild rice genotypes tested (O. glaberrima and
O. barthii) were characterized as highly sensitive to S. oryzae
infestation, being even more sensitive than cultivated O. sativa
genotypes (Figures 1A,B). Similar results were reported by
Veasey et al. (2008), which tested the infestation of S. oryzae in
four wild rice species (O. glumaepatula, O. latifolia, O. alta, and
O. grandiglumis), and Chandrasena et al. (2016), which tested
the infestation of panicle rice mite Steneotarsonemus spinki in
five wild rice species (O. nivara, O. eichingeri, O. rufipogon,
O. granulata, andO. rhizomatis), with no signs of mite resistance.

Taking into account the antagonism between JA and GA, and
that breeding of cultivated rice during the Green Revolution has
selected for low GA/GA-insensitive genotypes, as shown by the
semi-dwarf phenotype of modern rice cultivars (Spielmeyer et al.,
2002), we believe the mite-sensitivity presented by the wild rice
species could be explained, at least partially, by a presumable high
GA:JA ratio in these plants. Tested wild species are tall plants,
varying from 1.5 to 5m, and probably have high levels of GA
synthesis. It is important to highlight that a plant’s height is not
only dependent on the GA level, and resistance to herbivores is
not only dependent on the JA level. However, considering the
high variability found on the genomes of wild rice species and
the high number of already identified insect-resistance genes,
we hypothesize that a short (or a semi-dwarf) wild rice species
could present a significant level of mite-resistance. In line with
our assumption, the semi-dwarf IR36 rice cultivar (one of many
of the Green Revolution which replaced many local strains and
genetic diversity previously found in rice paddies, resulted from
a cross-breeding of IR8 with 13 parent varieties from six nations
and a wild species of rice, O. nivara) is resistant to many pests
and diseases, including green leafhopper (Nephotettix virescens),
BPH, stem borer (Chilo sp.), blast blight (Pyricularia oryzae),
bacterial blight (Xanthomonas campestris pv oryzae), tungro, and
grassy stunt viruses (Innes, 1992).

Therefore, we would like to suggest short Oryza species and
genotypes as primary sources of herbivory tolerance, including
mites. We should expect low GA levels/sensitivity, and therefore
high SLR1 (the sole DELLA protein in rice) levels in these

plants. Accumulated SLR1 will amplify the JA-response, driving
plant resources toward defense instead of growth (Chaiwanon
et al., 2016; De Vleesschauwer et al., 2016). Obviously, we do
not expect the GA-JA switch to be the sole determinant of
resistance. However, plants with high GA stimulus are more
likely to have lower levels of SLR1, freeing JAZ proteins to
sequester JA-response activation transcription factors and in turn
attenuate JA-mediated resistance (Figure 1C). Thus, we should
focus our efforts in searching for useful genes in genotypes that
are already primed to JA defense responses (i.e., plants with low
GA level/sensitivity and therefore high SLR1 levels, which would
amplify JA-responses and drive plant resources toward defense
instead of growth).

We suggest O. minuta, O. meyeriana, O. neocaledonica,
and O. schlechteri (http://www.knowledgebank.irri.org/images/
docs/wild-rice-taxonomy.pdf) as possible sources of mite-
resistance genes. O. minuta (2n = 48, BBCC genome,
1m tall, perennial) exhibits significant potential to resist
to several pests/diseases (http://archive.gramene.org/species/
oryza_species/o_minuta.html), including blast blight, bacterial
blight (BB), white-backed planthopper (WBPH), and brown
planthopper (BPH) (Amante-Bordeos et al., 1992; You et al.,
2007; Rahman et al., 2009; Asaf et al., 2016, 2017), which are
damaging to the growth and yield of cultivated rice. Few studies
have been conducted to identify and transfer the resistance genes
from O. minuta to cultivated rice (Amante-Bordeos et al., 1992;
Rahman et al., 2009). However, no hybrid with commercial
rice cultivar with elevated resistance to herbivores have been
developed so far. O. meyeriana (2n = 24, GG genome, about
50 cm tall, perennial) is adapted to survive in harsh environments
and possesses many useful traits absent in cultivated rice,
including high resistance to rice blast and bacterial blight, which
has been transferred to cultivated rice (O. sativa) (Yan et al.,
2004; Han et al., 2014; He et al., 2015; Chen et al., 2016; Cheng
et al., 2016). O. neocaledonica (2n = 24, GG genome, 60–80 cm
tall, perennial), is the latest species described in the genus Oryza
(Nayar, 2014). First considered a subspecies/variety/population
of O. meyeriana (Vaughan, 2003), it was later recognized as
a valid Oryza species (Clayton et al., 2010 - https://www.kew.
org/data/grasses-db.html). Surprisingly, no studies are known to
have been done on O. neocaledonica (Nayar, 2014), evidencing
an unexplored gene diversity. O. schlechteri (2n = 48, HHKK
genome, 30–90 cm tall, annual), found in undisturbed forests,
is the least studied species in the genus (Brar and Singh, 2011).
Based on bioclimatic analysis, Atwell et al. (2014) pointed
O. schlechteri as a candidate species for flooding tolerance.
Regarding biotic stress response, no studies have been done with
this species, and for this reason is an irreplaceable material for
improving the cultivated varieties.

Even though herbivore resistance is commonly a genetically
determined trait that shows heritable genetic variation (Muola
et al., 2010), it is important to highlight that before including
a plant material as a primary source in a breeding program, is
essential to know the heritability of the trait and how stable the
trait would be when transmitted to the offspring. Therefore, it
would be interesting to examine whether and how environmental
factors regulate GA:JA ratio/crosstalk and mite resistance in
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FIGURE 1 | Visual characteristics of leaves from O. sativa ssp. indica, O. sativa ssp. japonica, O. glaberrima, and O. barthii plants, under control (C) and infested (I)

conditions (A). Detailed view of these leaves under stereomicroscope (B). Schematic model of the different responses probably employed by short resistant and tall

susceptible plants (C).

these short and stocky wild rice species. Also, we are aware that
crossing often fails to generate fertile hybrids between cultivated
rice and wild species because of reproductive barriers (Han et al.,
2014). However, the use of asymmetric somatic hybridization has
proved to be effective (Jena, 2010). Therefore, searching for mite
resistance genes taking GA-JA crosstalk into account, together
with comprehensive screens in the wild rice diversity, should be

fruitful to develop mite resistance in susceptible cultivated rice
lines.
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