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It is common to see crop farmers struggling to solve herbivore infestations. Normally, worry starts
when herbivore population increases and leaf damage is apparent. Whatever the treatment chosen
by the farmer (chemical or biological) to control it, yield and productivity are the final and most
important characteristics they would like to see unaffected by herbivory. Certainly, farmers would
be less interested in percentage of leaf damage or mite population increase, which are useful but
limited approximations of tolerance, than maintenance of crop production even under infested
conditions. If a crop can stand infestation and/or larger mite populations while still producing the
same seed set, the crop is, from a farmer standpoint, tolerant. On the other hand, academic studies
on the field of plant-herbivore interaction are still based on resistance mechanisms in vegetative
tissues and herbivore performance, rather than the plant reproductive success. We should be aware
that genetic breeding for tolerance should focus on comparing seed production when dealing with
most crops, not indirect measures such as leaf damage or mite population dynamics.

RESISTANCE/TOLERANCE MECHANISMS

The interactions between herbivores and plant hosts result from an elaborate evolutionary
interplay: plants have developed strategies to arrest attackers and reduce pest fitness as a defense
against herbivory, while herbivores have evolved mechanisms to overcome that (Rioja et al.,
2017). Such defense strategies include several modifications that reduce the negative impact of
herbivores on a plant’s reproductive success (i.e., the production of fertile offspring) and increase
the plant’s fitness (i.e., its contribution to the gene pool of the next generation) as a function
of herbivory (Erb, 2018). Plants that efficiently and effectively use these defense strategies are
called “pest-resistant” (which can be broadly classified into two different mechanisms, antibiosis
and antixenosis - Stenberg and Muola, 2017), or “pest-tolerant” (Mitchell et al., 2016). Antibiosis
mechanisms affect pest biology in a deleterious manner (Peterson et al., 2017), decreasing herbivore
fitness or performance (e.g., fertility rate or larval development time - Stenberg and Muola, 2017).
Antixenosis mechanisms direct a pest away from the plant (Peterson et al., 2017), decreasing the
herbivore presence (number of eggs, larvae, or adults) and, consequently, the herbivore damage
(e.g., percentage of leaf area removed - Stenberg and Muola, 2017). On the contrary, tolerance
mechanisms allow the plants to withstand pest injury and produce acceptable yields, maintaining
the fitness under stressful conditions, without affecting pest biology or behavior, which creates
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little selective pressure on pest populations and therefore does
not generate resistant variants to the tolerant plants (Peterson
et al., 2017).

TOLERANCE: MUCH LESS STUDIED THAN
ANTIBIOSIS OR ANTIXENOSIS

Recently, a tricky and artful question was made by Peterson
et al. (2017): is tolerance the forgotten child of plant resistance?
This questioning came from the fact that it has received
the least attention of the three types of plant defenses
(or the three types of plant resistance, according to some
authors that consider tolerance as the third type of plant
resistance). According to Erb (2018), most plant defenses are
still characterized by proximate variables such as herbivore
performance or plant damage rather than actual fitness, which
means that antibiosis and antixenosis (resistance subtypes)
are more commonly used than tolerance to describe plant
behavior against herbivorous pests. This is evidenced by the
data presented in Table 1. Since 2009, we found 25 articles
describing phytophagous mite interaction with crop species,
and only four analyzed plant yield under infested condition
(Karmakar, 2009; Vichitbandha and Chandrapatya, 2011; Nyoike
and Liburd, 2013; Warabieda, 2015). The most common group
of measures to assess defenses are herbivore performance
traits, including mite population, survival, development and
oviposition rates, along with leaf damage (Table 1). Peterson
et al., 2017) list five reasons why tolerance has not been
developed as successfully as antibiosis and antixenosis: (1)
tolerance is difficult to identify, and the mechanisms conferring
it are poorly understood; (2) the genetics of tolerance is
mostly unknown; (3) high-throughput phenotyping methods
for large-scale screening of tolerance are still missing; (4)
most of the entomologists are interested in mechanisms which
affect pest biology, not plant biology (highlighting the need
for interdisciplinary research between plant scientists and
entomologists); and (5) plant resistance efforts are still directed
at controlling pest populations rather than managing plant
stress.

WHY RESISTANCE ANALYSIS CAN BE
PROBLEMATIC?

Even though the importance of data on plant reproductive
success and yield in plant defense studies has been previously
emphasized (Clavijo McCormick et al., 2012; Poelman, 2015),
the plant-herbivore community still have difficulties to use
the appropriate fitness analysis in combination with recent
methodological advances to increase our understanding of plant
defense traits (Erb, 2018). Therefore, herbivore performance
traits and leaf damage—proximate variables, according to Erb
(2018)—still are the first options. However, proximate variables
has several strong limitations. For example, herbivore population
can be a poor predictor of feeding damage (Lu et al., 2015),
while herbivore weight gain can be inversely related to herbivore
survival (Veyrat et al., 2016). Host plant preference have been

widely used to assess plant resistance against herbivores, through
the analysis of feeding/oviposition reduction (antixenosis -
Stenberg and Muola, 2017). Unfortunately, this is a reliable
analysis only for large herbivores, which can directly determine
the formation of reproductive structures and plant survival
(Huber et al., 2016; Machado et al., 2016; Erb, 2018). For
small herbivores such as arthropods, antixenosis as a proximate
variable for the study of plant defenses can have limitations,
mostly related to the different preferences of adults and juveniles
(Clark et al., 2011), difficult to mimic the field situation in
lab conditions (Schuman et al., 2015) or the complexity of
interaction between the plant and several other herbivores
(Kessler and Baldwin, 2004). Leaf damage assessments are often
used because they accurately mirror the severity of attack
(Erb, 2018). Even though in some cases there is a clear
relation between plant damage and yield penalty (Vichitbandha
and Chandrapatya, 2011), the relationship between the two
variables is not always linear, and many plants can sustain
herbivore damage without suffering significant yield penalties
through tolerance (Scholes and Paige, 2014; Lehndal and
Ågren, 2015; Erb, 2018). We have seen such behaviour in
our lab with a rice cultivar infested by Schizotetranychus
oryzae, in which mite population and leaf damage increased
consistently throughout the vegetative and reproductive stages,
resulting in no grain yield reduction, while other cultivars
showed reductions of more than 60% (unpublished data).
Furthermore, recording the exact extent of plant damage
caused by most of the herbivores remains challenging and
somewhat subjective, due to the need of a visual damage scale,
unless quantified in standardized units of leaf area consumed
relative to herbivore size (Fragoso et al., 2014) or using image
softwares.

IT’S TIME TO LOOK AT PLANT
TOLERANCE

Another point that favors the more widely exploitation of
tolerance mechanisms in crop protection strategies is the
fact that antibiosis and antixenosis typically deter herbivore
feeding, likely imposing a strong selection pressure on the
herbivore to overcome plant resistance (similar to what happen
with pesticides). On the other hand, plant tolerance have
no effect on herbivore biology or behavior, and therefore
is unlikely to impose selection on the herbivore (Mitchell
et al., 2016). Thus, plant tolerance is considered a more
stable management strategy for pests (Weis and Franks, 2006;
Peterson et al., 2017), with greater chance of providing
long-lasting pest control (Mitchell et al., 2016). Therefore,
based on all these points, we suggest the analysis of plant
tolerance mechanisms and yield/productivity in every crop-mite
interaction (which could probably be extended to most of the
herbivorous pests). In fact, this is what really matters to crop
farmers, and academic studies should be aligned with these
needs.

It is important to highlight that we are not suggesting the
replacement of crop resistance studies by crop tolerance ones.
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TABLE 1 | Studies on crop-mite interactions since 2009.

Crop Mite species Analyzed trait Yield analysis References

Rice Steneotarsonemus spinki Mite population, leaf sheath and

grain damage, and yield loss

X Karmakar, 2009

Maize Tetranychus urticae and Brevipalpus chilensis Mite population – Carrillo et al., 2011

Tomato Tetranychus evansi Mite survival, development and

oviposition rates

– Onyambus et al., 2011

Chili Polyphagotarsonemus latus Shoot damage and yield loss X Vichitbandha and Chandrapatya,

2011

Tomato Tetranychus urticae and Tetranychus evansi Mite survival, development and

oviposition rates

– Bleeker et al., 2012

Strawberry Tetranychus urticae Mite population and yield loss X Nyoike and Liburd, 2013

Tomato Tetranychus urticae Leaf damage and mite

population

– Salinas et al., 2013

Maize and tomato Tetranychus urticae Mite population – Szczepaniec et al., 2013

Grapevine Colomerus vitis Leaf damage and mite

population

– Khederi et al., 2014

Wheat Aceria tosichella Leaf damage and mite

population

– Richardson et al., 2014

Common bean Tetranychus urticae Leaf damage, mite population

and oviposition rate

– Tahmasebi et al., 2014

Citrus Tetranychus urticae Mite oviposition rate – Agut et al., 2015

Tomato Tetranychus urticae Traveled distance on the leaf

surface

– Baier et al., 2015

Tomato Tetranychus urticae Mite population and oviposition

rate

– Pappas et al., 2015

Apple Tetranychus urticae Mite population and yield loss X Warabieda, 2015

Citrus Tetranychus urticae Mite oviposition rate – Agut et al., 2016

Cherry tomato Tetranychus urticae Traveled distance on the leaf

surface

– Lucini et al., 2016

Wheat Aceria toschiella Leaf damage and mite

population

– Aguirre-Rojas et al., 2017

Wheat Aceria toschiella Leaf damage and mite

population

– Chuang et al., 2017

Rice Schizotetranychus oryzae Mite survival, development and

oviposition rates

– Gonçalves et al., 2017

Cassava Tetranychus urticae Leaf damage – Liang et al., 2017

Cassava Tetranychus cinnabarinus Mite survival, development and

oviposition rates

– Lu et al., 2017

Mini tomato Tetranychus urticae Traveled distance on the leaf

surface

– Maciel et al., 2017

Common bean Tetranychus kanzawai Leaf damage and mite

oviposition rate

– Ozawa et al., 2017

Maize Tetranychus urticae Mite survival and development

rates

– Paulo et al., 2017

We believe that both defense strategies should be extensively
analyzed. We agree with the statement of Peterson et al. (2017):
“Before substantial work on tolerance development can occur,
we must conduct basic research on the physiological and
biochemical mechanisms of tolerance. This must involve
interdisciplinary research between plant scientists and
entomologists.” On the other hand, in a couple of years we
would like to say: no, plant tolerance is not “the forgotten child
of plant resistance.” We believe that basic understanding of how

plants cope with herbivory and the identification of tolerant
genotypes from important crops will have a major impact in pest
control and grain yield.
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