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Heavy metals (HM) represent a large group of elements with atomic density >5 g cm−3 or atomic
number >20 (Saidur et al., 2017), among which some are essential to plants, such as iron (Fe), zinc
(Zn), copper (Cu), nickel (Ni), and manganese (Mn). However, HMs may be contaminants and/or
pollutants, depending on the concentration in soils.

HMs such as Cu, Zn, Ni, and chromium (Cr) are essential to human beings, and biofortification
approaches to improve levels of some elements in plant edible parts are underway (Bouis et al.,
2012; Ricachenevsky et al., 2015). However, these HMs may be toxic if accumulated, and may only
be ingested in very small quantities (EPA-U.S. Environmental Protection Agency, 1995; FAO-Food
Agriculture Organization of the United Nations, 1995; Tchounwou et al., 2012). On the other hand,
Pb, Cd, As, and Br are not essential and can be toxic even at low concentrations (Tchounwou et al.,
2012). The safe daily intake level for As, Cd, Cr, Cu Ni, Pb, and Zn is 20, 300, 1500, 4, 20, 40, 300
µg kg−1 of body weight per day, respectively (EPA-U.S. Environmental Protection Agency, 1993).
These levels are based on the degree to which the elementmay cause disturbance, the capacity of the
body to accumulate the element and the weight of the individual who is ingesting it (Abbasi et al.,
2013). However, when HMs are ingested for long periods, even at doses considered safe, they can
cause harmful effects, known as chronic intoxication (Jorge Mendoza et al., 2017; Li et al., 2017).

The increase in total HM concentration and their chemical forms in soils can occur naturally due
to atmospheric deposition, weathering of rocks, and anthropic activities such as mining, deposition
of ash from coal burning, application of pesticides in plants, addition of mineral and organic
fertilizers, among others (Guilherme et al., 2005). HM accumulation in the soil is typically assessed
by indicators such as Geo-accumulation index (Igeo) (Equation 1) (Müller, 1979) and Enrichment
Factor (EF) (Equation 2) (Abbasi et al., 2013) that allow the identification of the presence and the
intensity of deposition of anthropogenic contaminants in topsoil.

Igeo = log
2
(

[Cn]
1.5 ∗[Bn]

) (1)

where: Cn is the measured concentration in the soil for the metal n, Bn is the background value for
the metal n, and the factor 1.5 is used because of possible variations of the background data due to
lithological variations.
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EF =

[

metal
RE

]

sample
[

metal
RE

]

control
(2)

where: RE is the value of metal, adopted as Reference Element.
High HM concentrations in soils may cause intoxication upon

inhalation, contact with the skin, indirect ingestion of soil and
intake of fruits, vegetables, grains, and their byproducts (Zheng
et al., 2010; Chabukdhara and Nema, 2013; Chen et al., 2016;
Jiang et al., 2017). Plants grown in soils contaminated/polluted
with HM tend to absorb, accumulate, transport, and redistribute
larger amounts of HM. This is likely due to the presence of non-
selective essential element transporters. For instance, iron high
affinity transporter IRT1 of the model plant Arabidopsis thaliana,
which is necessary for Fe acquisition under iron deficiency,
is known to also transport Zn, Mn, Ni, Co, and Cd, possibly
leading to metal toxicity under Fe deficiency (Korshunova et al.,
1999; Barberon et al., 2014; Ricachenevsky et al., 2018). In rice,
IRT1 might also transport Zn and Cd (Lee and An, 2009).
Arsenic uptake is also performed by phosphate transporters
(as arsenate) or by silicon transporters (as arsenite), which are
not able to distinguish between these elements (Kochian et al.,
2015). Thus, non-selective transport leads to accumulation of
toxic elements, which might end up accumulating in grains or
other harvested parts, and may change nutrient abundance and
distribution (Punshon et al., 2018). These agricultural products
containing high HM concentration might then be used for
human consumption directly or indirectly through the intake of
processed foods (Hariri et al., 2015; Avkopashvili et al., 2017).

To assess the risk of ingestion of a particular HM over the
life of an individual, it is necessary to consider the period of
ingestion. Therefore, indexes have been established to verify
the risk that certain elements, such as HMs, could cause to
human beings (Abbasi et al., 2013). A few examples of these
indexes are the Health Risk Index (HRI), Target Hazard Quotient
(THQ) and Target Cancer Risk (TCR) (Equation 5) (EPA-U.S.
Environmental Protection Agency, 2010).

HRI =
(CnxDn)

(

RfDxBW
) (3)

where: Cn, total concentration of the metal in edible plant organ
(mg kg−1); Dn, daily intake (g day

−1); BW, average body weight
(kg); RfD, reference dose (EPA-U.S. Environmental Protection
Agency, 2010).

HQ =

(

CnxDnx10
−3xEFrxEDtot

)

RfDxBWaxATn
(4)

where: EFr , exposure frequency (days); EDtot , exposure duration
(years); ATn, average exposure time to non-carcinogenic heavy
metals (e.g., EDtot x 365 days/year).

TCR =

(

CnxDnx10
−3xCPS0xEFrxEDtot

)

(BWaxATn)
(5)

where: CPS0, carcinogenic potential (µg g
−1 day−1).

The effects of HM accumulation in soil, excess uptake by
plants, and the risks that HM-contaminated foods can promote
to human beings are commonly reported inmining regions (Qing
et al., 2015; de Souza et al., 2017; Li et al., 2017). As example, the
release and drifting of dust from coal mines in the Qingshui River
basin (China) has resulted in pollution of arable soils. Despite
the knowledge associated to the deposition of HMs, few studies
approach the increase of HM concentration in different edible
plant organs cultivated on soils subjected to a long history of
animal waste application.

Different environmental agencies have established acceptable
levels of HM in food. FAO and EPA-USA established maximum
levels for Cu, Zn, Cd, Pb, Cr, and Ni in crop grains of 20, 50, 0.1,
0.2, 1, and 0.04, respectively. However, studies on soils subjected
to the addition of urban sludge and animal residues reported
increased HM concentration above these limits in grains, fruits,
and vegetables (Suarez-Tapia et al., 2017; Zhang et al., 2017). The
use of wastewater for irrigation in Iran containing 0.06, 0.010,
0.01, 0.010, and 0.010mg kg−1 of Cu, Zn, Cd, Pb, Cr, and Ni,
respectively, caused the accumulation of Cd, Cr, and Pb in wheat
and corn grains above the limits established by the EPA. Health
risks to adults and especially children by Cu, Cd, and Cr intake in
corn and wheat grains were also reported (Asgari and Cornelis,
2015). Animal waste contains HM derived from drugs or feed
(Gunkel-Grillon et al., 2015; Couto et al., 2016).

It is worth mentioning that soils with frequent application
of organic wastes typically have higher HM concentrations than
those described in studies where negative effects of excess HM on
edible plant organs and human health risk have been reported,
indicating that we might be underestimating the contamination
of foods derived from such areas (Table 1). Studies that address
the effects of increasing HM concentration in soils subjected
to long-term animal waste application and consequent changes
of HM concentration in edible plant organs are still scarce.
Although organic fertilization recommendations exist both for
conventional and organic production systems, the application of
organic residues is often carried out indiscriminately in regard to
HMs content, increasing their concentration in soils and likely
increasing of HM concentration in edible plant organs (Couto
et al., 2016; Suarez-Tapia et al., 2017; Zhang et al., 2017). A
very important aspect is that in organic production systems,
organic residues (including animal manure) are the main—if not
the only—source of nutrients for the crops. Considering that
organic production systems currently occupy 42 million hectares
worldwide (FIBL, 2017), with a global growth rate of 4.5% per
year, the risk of HM contamination in the food systems is present,
especially in some regions of the world. In Brazil, Japan, and the
European Union, the growth rate of the area cultivated under
the organic system is 30, 13, and 8% per year, respectively (FIBL,
2017). This emergent risk indicates that the organic residues that
will be used as source of nutrients for the crops needs to be
assessed in terms of HM concentration.

In Brazil, the applications of pig slurry, cattle slurry, and pig
deep litter for 10 years in sandy soil with low organic matter
content under no-till increased Ni, Cu, and Zn concentrations in
shoots and grains of corn and wheat (da Rosa Couto et al., 2018).
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The applications of organic wastes (pig slurry, cattle slurry, and
pig deep litter) and mineral fertilizers also increased the values of
HRI and THQ for Br and Zn, presenting health risks to adults
and especially children who have lower body weight (da Rosa
Couto et al., 2018). They also report that Cu concentrations in
corn grains of plants grown in soil with application of pig deep
litter and cattle slurry were 2.7 and 2.2mg Cu kg−1, respectively.
On the other hand, Zn concentrations in corn grains of plants
grown in soil with application of pig deep litter, pig slurry, and
cattle slurry were 26, 31, and 23mg Zn kg−1, respectively. In the
grains of wheat grown in soil with the application of pig deep
litter, pig slurry, and cattle slurry, concentrations of Cu were 6.0,
6.0, and 4.5mg kg−1, respectively, and Zn were 96, 95, and 84mg
kg−1, respectively. Thus, Cu and Zn concentrations in grains of
corn and wheat grown in soil with a long history of application of
organic wastes were higher than those found in plants grown in
the control soil or even with the application of mineral fertilizer.

This justifies the monitoring of concentrations of elements in

grains of plants grown in soils with a long history of organic waste
application, especially in soils with low capacity for adsorption of
elements, such as sandy soils with low organic matter (Brunetto
et al., 2014).

Plants have the potential to absorb and accumulate larger
amounts of several heavy metals. In studying heavy metal
contents in vegetables fertilized with wastewater in India, Singh
et al. (2010) found that the concentrations of Cd in plants varied
from >2 to 15mg kg−1, while Pb ranged from >1 to 28mg
kg−1 and Ni from >1 to 41mg kg−1. The authors verified a
risk to consumer health (HRI> 1) through the ingestion of
Cd accumulated in radish, cabbage, cauliflower, okra, eggplant
wheat and rice; of Pb accumulated in palak, cabbage, cauliflower,
Lady’s fingers, brinjal, wheat, and rice; and Ni accumulated in
palak, cauliflower, wheat, and rice. However, it is important to
observe the proportion of vegetables and cereals in the diet, which
may change according to the culture of each place and country,
causing higher or lower risk.

FINAL CONSIDERATIONS

The use of waste as a source of nutrients in plant production
systems, traditional, and organic, is common worldwide,
and important strategy for nutrient cycling. However, long-
term application of such waste causes the increase of HM
concentrations in soils, increasing HM uptake by plants and
assimilation in edible organs such as grains, as indicated by
the data presented in Table 1. As different plant organs can
be used in the preparation of numerous products for human
consumption, it is necessary to monitor the concentrations of
HM in edible plant organs of different species and cultivars
fertilized with organic waste. This monitoring can be done
through indexes such as Igeo, EF, HRI, THQ, TCR, allowing
us to estimate the possible dangers of HMs to the health
of children, young adults, and adults who eat food derived
from plants grown in soils with a history of animal waste
application. Thus, we recommend careful consideration of
practices that indiscriminately use animal waste in plant

production to avoid HM accumulation and health hazards to
consumers. Moreover, strongly indicate that evaluation of metal
contamination in foods derived from plants cultivated using
animal waste should be commonplace, and further studies of
how widespread that is should be conducted by the scientific
community.
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