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Abstract

Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In
this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3
fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-
glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control - OC), we
analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho
GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-
Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition
resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1
activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a
mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with
NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity
loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may
contribute to the poor wound healing observed in diabetic patients.
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Introduction

Diabetes mellitus is a group of metabolic disorders that cause

chronic hyperglycemia and is one of the most significant diseases

in the developed world, affecting more than 170 million people.

The tissue responses to diabetic conditions are varied; many are

associated with oxidative stress in the cells [1]. The improper

management of hyperglycemia leads to severe complications in

diabetic patients: approximately 15% of patients display impaired

wound healing, causing long-term complications such as limb

amputation [2].

Skin wound repair involves a series of coordinated processes

that include cell proliferation and migration, collagen deposition

and remodeling, wound contraction, and angiogenesis. These

processes involve different cell types, mostly fibroblasts/myofibro-

blasts, keratinocytes, and endothelial cells [3,4]. While hypergly-

cemia has been linked to impaired wound healing, particularly

altered angiogenesis and extracellular matrix remodeling [5], the

nature of the linkage is unclear. Some studies have described

alterations in cell migration associated with diabetic conditions.

For example, Lerman et al. [6] showed that fibroblasts from

diabetic mice migrate 75% less than those from normoglycemic

mice and display a defective response to hypoxia, a condition

commonly present in chronic wounds. A similar inhibition was

recently observed in keratinocytes cultured in a high glucose

environment [7], which suggests that high glucose plays a direct

role on cell migration. However, none of these studies addressed

the cellular mechanism by which this happens.

The migratory process is a cycle comprised of distinct,

integrated steps that are regulated by the activation of signaling

molecules. These steps are: polarization, in which the cell develops

a clear front and rear; protrusion, which is driven by actin

polymerization at the leading edge; the formation of substrate

adhesions that serve to stabilize protrusions and generate the

dynamic signaling, which converge on Rho GTPases. The cycle is

completed with retraction at the cell rear and the release of

adhesions [8–11]. The small Rho GTPases are central regulators

that integrate and drive these processes; they act through several

effector proteins that mediate migration. For example, Rac1

regulates the formation of the lamellipodium and adhesion

dynamics, while RhoA is involved in the formation of actin

bundles and adhesion maturation [10].

This study addresses the mechanism by which high glucose

inhibits cell migration. We characterized the effect of an acute

high glucose treatment on several migration-related parameters

that define the steps of cell migration in different cultured cell
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types, including CHO.K1, NIH-3T3, mouse embryonic fibro-

blasts (MEFs). We have also used primary skin fibroblasts obtained

from control and diabetic rats. We observed that high glucose

increased reactive oxygen species (ROS) production, impaired cell

polarization, decreased migration speed, protrusion persistence

and stability, and adhesion maturation. These effects point to the

Rho GTPases as mediators of these effects. In this regard, we

observed a significant increase in the activation of the small

GTPase Rac1, which is inhibited by antioxidants. Consistently,

antioxidants reverted most of the migratory effects caused by high

glucose. Together, our data indicates that hyperglycemia impairs

cell migration through increased generation of ROS, which

induces an abnormal activation of Rac1.

Results

High glucose decreases migration speed and
directionality

To determine the effects of high glucose treatment on cell

migration, we treated CHO.K1, NIH-3T3 fibroblasts or mouse

embryonic fibroblasts (MEF) with LG (low glucose), HG (high

glucose) or OC (osmotic control) media for 3 days. We then plated

the cells on 2 mg/ml fibronectin, which promotes cell migration

[12], and imaged them using time-lapse microscopy. Acute

treatment with HG decreased the migration speed by ,40%

compared to LG or OC cells (Figure 1A) (p,0.01, n = 50 cells).

These effects are time-dependent; MEF migration was decreased

by ,60% after 10 days of treatment with HG medium compared

to LG medium (Figure 1B, p,0.01, n = 20 cells). Similar results

were obtained with primary fibroblasts from control and diabetic

rats (Figure 1C, p,0.01, n = 20 cells). The decrease in migration

speed caused by HG was also accompanied by a decrease in cell

directionality, which likely contributes to the migration impair-

ment (Figure S1). The fact that the OC group showed almost no

effect on cell migration suggests that glucose internalization and

metabolism are necessary for this effect on the migratory process.

High glucose increases the number of cell protrusions
but decreases their stability

To study the mechanism underlying the observed decrease in

migration caused by HG conditions, we addressed the effect of

high glucose on protrusion and adhesion. Using time-lapse

imaging, we observed that HG medium induced a threefold

increase in the number of CHO.K1 cells displaying more than

three protrusions compared to the LG and the OC groups

(Figure 2A, 2B and 2C, Movies S1 and S2). This behavior was also

observed with the NIH-3T3 cells (100% increase, data not shown)

and, to a lower extent, in primary rat fibroblasts (60% increase,

Figure 2D).

A large fraction of the HG-induced protrusions appeared

unstable, i.e. exhibited brief cycles of quick extension and

retraction, and increased ruffling. To quantify this, we analyzed

the protrusions by generating kymographs (Figure 2E) [13]. These

revealed that most of the protrusions of the LG and OC-treated

cells exhibited a homogenous behavior, defined by a period of

linear and persistent progression followed by a period of

quiescence (Figure 2F). Only a small fraction of these protrusions

showed retraction (Figure 2H). Conversely, in the HG group, the

protrusions also extended forward and became quiescent, but the

quiescent periods were much shorter and in 50% of the

protrusions, followed by intense retraction (Figure 2H). In many

cases, the cycle repeated more than once in a particular region of

the cell (Figure 2G). We observed a modest but significant increase

in the protrusion rates of 3T3-NIH and MEF cells (data not

shown). Skin fibroblasts from diabetic rats displayed a similar

behavior, i.e., a 4-fold increase in retraction frequency when

compared to control fibroblasts (Figure 2I). These data suggest

that high glucose treatment leads to an increase in the number of

non-productive protrusive events in the cell.

High glucose decreases adhesion maturation
The relationship between protrusion stability and adhesion

suggested that the observed alterations in protrusion might arise

from defects in adhesion [9,11]. To test this hypothesis, we

expressed paxillin-GFP in cells in the LG and HG groups, and

imaged their behavior when plated on fibronectin using total

internal reflection microscopy (TIRF). LG medium promoted the

formation of large, elongated adhesions, in approximately 55% of

the adhesions present at the leading edge of CHO.K1 cells

(Figure 3B and 3C, Movie S3). In contrast, only 25% of the

adhesions in cells from the HG group underwent maturation

(Figure 3A and 3C, Movie S4). These data suggest that decreased

adhesion contributes to the observed protrusion instability in the

HG group.

High glucose activates the small GTPases Rac1 and RhoA
Adhesion and protrusion are regulated by the Rho GTPases.

Rac1 induces lamellipodial protrusion and adhesion formation,

while RhoA mediates adhesion maturation and edge retraction

[14,15,16]. To determine whether these GTPases underlie the

observed effects of HG treatment in protrusion and adhesion, we

determined the activation state of RhoA and Rac1 using an

Figure 1. High glucose decreases migration speed in different cell types. A: Effects of 3 days treatment with low glucose (LG), high glucose
(HG) or osmotic control (OC) medium on migration speed of CHO.K1, NIH-3T3 and MEF cells from at least 4 independent experiments. B: Effects of 3,
5 or 10 days with LG or HG medium on migration speed of MEF cells from at least 3 experiments. C: Migration speed of primary skin fibroblasts from
control and diabetic rats. Results are shown as the % of the control (LG) 6 SEM. (*) P#0.01 according to Student’s t test or One-way analysis of
variance (ANOVA) followed by Tukey’s post-test.
doi:10.1371/journal.pone.0022865.g001
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affinity pull-down system [17]. Both CHO.K1 and NIH-3T3 cells

showed a moderate, but reproducible (40%), increase in GTP-

bound (active) Rac1 compared to LG cells (Figure 4A, p,0.05,

n = 5). HG also increased activated RhoA (Figure 4B, p,0.05,

n = 3). Interestingly, increased osmolarity also increased RhoA,

but not Rac1 (Figure 4B, p,0.05, n = 3). These results indicate

that HG conditions promote activation of Rac1 due to a specific

effect related to the glucose metabolism and not a mechanical

effect caused by osmotic stress, which can, however, activate

RhoA.

High glucose alters cell polarity
Altered GTPase activation often leads to aberrant cell

morphologies. High Rac1 activation, in particular, can lead to

large, round cells without a clear front and back [15]. To

determine the effect of HG leads on cell polarity, we analyzed over

.600 cells treated with each condition. We used a polarity index

(PI), which is the length of a cell in the direction of migration

(migratory axis) divided by its width orthogonal to the migration

axis passing through the center of the nucleus (transverse axis)

(Figure 5A). Most of the CHO.K1 cells of the LG and OC groups

Figure 2. Cells cultured with high glucose show an increased number of short-lived protrusions. Photomicrographs show changes in
CHO.K1 cell protrusions (arrows) within 7, 15, 22 and 30 minutes in cells cultured under control (A) and high glucose (B) conditions. C: Shows the
percentage of CHO.K1 cells with more than 3 protrusions over a 30 minutes period in low glucose (LG), high glucose (HG) or osmotic control (OC)
medium and in the presence or absence of the antioxidant N-acetylcysteine (NAC, 10 mM) for 1 hour. D: Shows the percentage of primary skin
fibroblasts of control and diabetic rats with more than 2 protrusions over a 30 minutes period. E: Kymograph showing the extension of a protrusion
over time. F: Kymographs of LG and (G) HG treated CHO.K1 cells, showing that protrusions under high glucose treatment are less stable and retract,
followed by the formation of new protrusions at the same places. H: shows the percentage of lamellipodia that retract over a 30 min period in
CHO.K1, NIH-3T3 and MEF cells and (I) shows the same for primary skin fibroblasts from control and diabetic rats. Bar: 10 mm.
doi:10.1371/journal.pone.0022865.g002
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were elongated (Figures 5B and 5D, 2.5,PI,3.5; 49% (LG) and

44% (OC) of the cell population) or very elongated [index PI.3.5;

27% (LG) and 31% (OC)] with only a small percentage round

[PI,2; 24% (LG) and 25% (OC)]. In contrast, the HG group

(Figure 5C), showed a large decrease in the fraction of highly

elongated cells and an increase in the fraction of round cells [41%

of the cells displayed a round shape (PI,2), 44% an elongated

shape (2.5,PI,3.5), and only 14% a very elongated shape

(PI.3.5)]. This suggests that acute HG treatment induces loss of

cell polarization, which is consistent with the increased activity of

Rac1 and the projection of multiple lamellipodia observed in these

conditions.

Diabetes increases ROS generation
Increased ROS generation is a hallmark of diabetes. To

establish that high glucose increases ROS production in our

system, we used an assay for ROS, using a fluorescence method, in

cells treated for 3 days with LG or HG medium, both in the

presence or absence of N-acetyl-cysteine (NAC, 10 mM, 1 h) [18],

an antioxidant. Cells in HG medium exhibited a twofold increase

in ROS compared to the LG and OC groups (Figure 6K); this

increase was abolished by NAC treatment. Confocal microscopy

confirmed the increase in ROS levels induced by HG treatment

(Figure 6B and 6F); interestingly, most of the ROS localized to the

cell body and protrusions, and both compartments exhibited

Figure 3. High glucose negatively affects adhesion maturation in CHO.K1 cells. After 2 days treatment, cells were transfected with GFP-
paxillin and their adhesion dynamics analyzed 24 h later using TIRF microscopy. The increase in adhesion size and fluorescence intensity were
considered signs of maturation (arrows). Time-lapse sequences show adhesions maturation of (A) high glucose (HG) and (B) Low glucose (LG) treated
cells. C: The graph shows the probability of adhesion maturation of LG or HG treated cells, in the presence or absence of 10 mM N-acetylcysteine
(NAC) for 1 hour, using at least 10 cells for each condition. Bar: 5 mm. (*) P#0.01.
doi:10.1371/journal.pone.0022865.g003

Figure 4. High glucose leads to Rac1 and RhoA activation in CHO.K1 cells. Representative western blotting showing the results of a pull-
down assay for Rac1 activation and total Rac1 (A), as well as for RhoA activation and total RhoA (B) in control (LG), high glucose (HG) and osmotic
control (OC), in the presence or absence of 10 mM N-acetylcysteine (NAC) for 1 hour. The ratio between activated and total proteins was measured
by densitometry. Protein bands shown are representative of the experiments, and the results from 4 independent experiments were expressed as
percentage of the control (LG) 6 SEM. (*) P#0.05 according to one-way analysis of variance (ANOVA) followed by Tukey’s post-test.
doi:10.1371/journal.pone.0022865.g004
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elevated levels of ROS compared to the control groups (Figure 6A

and 6E).

Glucose uptake and metabolism renders the cell more

susceptible to increased ROS generation. Therefore, we assessed

glucose metabolism in primary skin fibroblast cultures, and

observed that cells from diabetic rats had a 40% increase in the

expression of the glucose transporter GLUT1 (Figure S2A), which

was also accompanied by a similar increase in glucose entrance

into the glycolytic pathway (.40% increase on Hexokinase

activity) and metabolism (35% increase on Pyruvate Kinase

activity) (Figures S2B and S2C). Lactate dehydrogenase activity

was not affected, suggesting that the increased glucose metabolism

was mostly aerobic (Figure S2D).

Decrease of ROS in HG cells improves migratory
parameters

We then asked whether high glucose metabolism impairs cell

migration through its effect on ROS generation. Treatment with

NAC completely rescued the effect of HG medium on the number

of protrusions per cell, reaching values similar to those obtained

with LG or OC treatment (Figure 2C). Adhesion maturation in

HG cells was also restored by NAC (Figure 3C). In addition, NAC

also blocked the effect of high glucose on Rac1 activation

(Figure 4A, p,0.05, n = 5). Interestingly, NAC did not inhibit

the increase in RhoA activation; furthermore, it increased the

degree of RhoA activation by 2-fold, even in LG cells (Figure 4B,

p,0.01, n = 3). Finally, the depolarizing effect of HG treatment

was also rescued by NAC (Figure 5F); importantly, NAC

treatment had no effect on control cells (Figure 5E). This data

indicates that ROS generation is involved in the inhibition of cell

migration observed with HG treatment through a mechanism that

involves the activation of Rac1 and its balance with the activation

of RhoA.

Discussion

Our data show that increased glucose uptake by fibroblasts

inhibits cell migration through inadequate activation of the small

GTPase Rac1, which depends on the oxidative state of the cell.

Intracellular glucose is metabolized through a series of enzymatic

reactions that are optimized by molecular oxygen and electron

transport, which provides energy for ATP generation; ROS are

byproducts of this process. There is strong evidence that excessive

glucose increases ROS formation [1,19,20], which in turn

overcomes the antioxidant capacity of the cell (oxidative stress).

This has deleterious effects, including the non-specific oxidation of

proteins and lipids, alterations in gene expression and perturba-

tions of different signaling pathways [21,22]. Our results indicate

that ROS generation decreases cell migration by over-activation of

the small Rho GTPase Rac1. ROS generation and Rac1

activation are therefore part of a positive feedback loop, as Rac1

increases ROS generation by activating the NADPH oxidase

system [23]. Furthermore, activation of Rac1 by a specific

guanine-nucleotide-exchange factor suffices to induce glucose

uptake into skeletal-muscle cells [24], thereby contributing to its

own glucose- and ROS-dependent activation.

In migrating cells, Rac1 is activated near the leading edge and is

thought to drive protrusion [25,26]. Therefore, the local activation

of Rac1 near the leading edge may generate a local increase of

ROS in this cellular region that oxidizes cysteine residues in

different redox-sensitive targets [27], including signaling adaptors

that can modulate the activation of small GTPases such as Rac1 or

RhoA [28,29]. On the other hand, sustained oxidative stress may

affect these proteins differently, due to excessive oxidation [22].

Interestingly, increased Rac1 activity was also observed in cardiac

fibroblasts from diabetic mice [30] and in endothelial cells [31].

Furthermore, inhibition of either Rac1 or NADPH oxidase

activity protected from vascular injury in this system [31,32].

Our data strongly suggest that most of the cellular effects of HG

are due to a modest increase in Rac1 activation, which is in

agreement with other studies that have shown that moderate Rac1

activation is sufficient to decrease migration speed and direction-

ality, as well as to promote an increase in the number of

protrusions per cell [33]. However, the increased Rac1 activity

may lead to its mislocalization, which would amply the effect.

Our data also shows that HG increases RhoA activity. Rac1

and RhoA are reciprocally regulated by a negative feedback loop

[17,28], which may implicate NAPDH oxidase [21,23]. However,

the increase in RhoA activity is not specifically dependent on the

glucose metabolism, since the osmotic control also displayed

Figure 5. High glucose reduces morphological CHO.K1 cell polarity. A: The picture shows the two axes used for the polarity index
calculation, with an example of a low polarized (left) and a highly polarized cell (right). The histograms show the distribution of cells cultivated with
low glucose (B), high glucose (C), osmotic control (D), low glucose +10 mM N-acetyl-cysteine (NAC) for 1 h (E) and HG +10 mM NAC for 1 h (F),
regarding polarity.
doi:10.1371/journal.pone.0022865.g005
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similar increase. Osmotic pressure applies mechanical stress to the

cellular cortex, which may contribute to this activation similar to

mechanical tension which, applied to the cell membrane, increases

RhoA activation [34], bypassing the requirement of low Rac

activity and thus breaking down the Rac-RhoA feedback loop.

However, RhoA is also associated to the deleterious effects of

diabetes, particularly in mesangial cells [35,36], as well as in

several organs that are targeted by diabetes [37–39].

The crosstalk between Rho GTPases and other pathways under

HG conditions cannot be ruled out. For example, the inhibition of

the nutrient-sensing mammalian target of rapamycin (mTOR)

pathway inhibits RhoA and Rac1 activity, affecting cell motility

[40]. This pathway is activated by glucose and, in several cell types

(including fibroblasts), its activation is required for acquiring a

senescent phenotype [41,42]. One of the phenotypical alterations

promoted by HG in fibroblasts was an increased cell size (Fig. 2),

which is also observed in senescent cells, due to hypertrophy [43].

Interestingly, there is a positive feedback between the TOR

pathway and ROS generation. ROS are generated in mitochon-

dria in response to glucose, stimulating the mTOR pathway [44].

TOR signaling, on the other hand, may regulate mitochondrial

proteome dynamics; it was shown that reduced TOR signaling

increases mitochondrial oxygen consumption and decreases ROS

generation [45]. Thus, the effect of NAC reversing the HG

phenotype might be at least partially related to the inhibition of

the mTOR pathway.

In summary, this study provides novel mechanistic insight into

the effects of high glucose on cell migration, which is a likely

contributor to the defects in wound healing often observed in

diabetic patients. Our results provide a mechanistic framework,

i.e. increased Rac1 activation, that explains previous observations.

Materials and Methods

Animals and primary cell culture preparation
All experiments were conducted in accordance to the NIH

guidelines, and the protocols were approved by the Biomedical

Sciences Institute/University of São Paulo Ethical Committee for

Animal Research (2005, n109, fl10, lv2). Adult male Wistar rats

were maintained in individual cages, with food and water available

Figure 6. High glucose increases the generation of reactive oxygen species (ROS) in CHO.K1 cells. The probe 29,79-
dichlorohydrofluorescein (DCFH2-DA) was employed in low glucose (LG) cells (A, E), high glucose (HG) cells (B, F), LG cells in the presence of
10 mM N-acetyl-cysteine (NAC) for 1 h (C, G), and HG cells in the presence of 10 mM NAC for 1 h (D, H). The negative control consisted of cells not
exposed to the probe (I), while the positive control consisted of cells exposed to 10 mM H2O2 for 10 min (J). ROS were observed throughout the cell
body and in cell protrusions, especially in high glucose-treated cells. K: Measurement of ROS using fluorimeter. OC = osmotic control. Results were
expressed as percentage of the control (LG) 6 SEM. (*) P#0.01 using one-way analysis of variance (ANOVA) followed by Tukey’s post-test. Bar: 10 mm.
doi:10.1371/journal.pone.0022865.g006
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ad libitum. Six rats were used, with the same weight, equally divided

in control and experimental groups. After a 12 h fasting, the

experimental group was injected with streptozotocin (60 mg/kg

body weight in 0.05 M citrate buffer, pH 4.5), while the control

group received only the vehicle. Glycaemia was measured 24 h

later and at the moment of the sacrifice, using Accu-CheckH
(Roche Diagnostics) and only animals with glycaemia higher than

300 mg/dl were considered diabetic. The body weight, food

intake, blood glucose and urine volume were measured periodi-

cally. The glucose content in urine was also measured using

Glucose HK LiquiformH (Labtest, Sete Lagoas, MG, Brazil). After

30 days, the animals were sacrificed with an overdose of ketamine

and xylazine. All animals of the experimental group showed

significant alterations in physiological parameters such as body

weight, glycaemia and glycosury, confirming the diabetic state.

When compared to the control group, diabetic animals did not

gain weight and showed hyperphagia, high levels of blood glucose

and glycosury (Table S1).

Cell culture, conditions and transfection
CHO.K1 and NIH-3T3 cells were obtained from American

Type Culture Collection (ATCC, Manassas, VA) while MEF were

obtained at Gene Targeting and Transgenic Facility at University

of Virginia (Charlottesville, VA). The cells were cultured under

standard conditions, with DMEM low glucose medium (5 mM D-

glucose) containing 10% fetal bovine serum (FBS), 100 U/ml

penicillin and 1% non-essential amino acids (NEAA). For the

primary skin fibroblast culture of control and diabetic animals, a

6 cm2 skin area was washed in PBS and the dermis was scraped

and enzymatically digested with type I collagenase (0.1%) for

1 hour at 37uC under gentle agitation. After the addition of 5 ml

FBS the cell suspension was centrifuged at 400 rpm for 10 min.

The pellet was transferred to a Petri dish containing DMEM low

glucose medium (for control fibroblasts) or DMEM high glucose

medium (for diabetic fibroblasts), both containing 10% FBS,

100 U/ml penicillin, 1% NEAA and 2.5 mg/ml fungizone. The

medium was changed thrice a week and cells were trypsinized at

80% confluence. Passages 5–8 were used for the cell migration

experiments.

Cells were cultured for 3, 5, or 10 days in DMEM medium

containing 5 mM D-glucose (low glucose - LG), 25 mM D-glucose

(high glucose - HG), or 25 mM L-glucose (OC). When used, N-

acetylcysteine at 10 mM was added for 1 h prior to the

experiments. For GTPase activation assays, cells were cultured

for 3 days in the designated serum-deprived (0.5% FBS) medium

for 12 h and then stimulated with complete medium for 1 h before

the experiments. The cells were transfected with the paxillin-GFP

plasmid [12] using Lipofectamine (Invitrogen, Eugene, OR)

following the manufacturer’s instructions. The reagents for cell

culture were purchased from Gibco (Invitrogen, Eugene, OR),

while the chemicals were purchased from Sigma (St Louis, MO).

Enzyme activity
Primary dermal fibroblasts were cultured in LG or HG

medium, trypsinized, centrifuged and lysed with 100 ml of buffer

containing Imidazol (50 mM, pH 7.2 at 4uC); the lysate was

submitted to centrifugation and enzymatic activity was measured

in the supernatant. For the Hexokinase (HK) activity, 20 ml of the

supernatant were added to a buffer containing 50 mM Imidazol

(pH 7.2), 5 mM MgCl2, 5 mM ATP, 1 mM glucose, 0.4 mM

NADP and 0.3 U glucose-6-phosphate dehydrogenase; for the

Pyruvate Kinase (PK) activity, 20 ml of the supernatant were

added to a buffer containing 50 mM Imidazol (pH 7.2), 5 mmol/

l MgCl2, 0.1 mol/l KCl, 1 mmol/l ADP, 0.15 mmol/l NADH,

2 mmol/l phosphoenolpyruvate and 0.9 U lactate dehydroge-

nase; for the Lactate Dehydrogenase (LDH) activity the

supernatant was incubated with phosphate/pyruvate (50.0 mM)

buffer for 5 min followed by the addition of 11.3 mM NADH.

The reactions were monitored by changes in the absorption at

340 nm wavelength for 10 min at 30uC using a spectrophotom-

eter (Beckman DU-68 Beckman, Fullerton, CA); HK and PK

activities were analyzed due to the formation of NADPH and

LDH activity by the rate of NADH oxidation. One unit (U) of

enzyme activity corresponds to the amount of enzyme that

converts 1 mmol of substrate per min. The results were

normalized to the amount of protein presented in the supernatant

and expressed as U/mg protein. All the chemicals were

purchased from Sigma (St. Louis, MO, USA).

Microscopy and image processing
Cells were plated on fibronectin–coated glass-bottomed dishes

(2 mg/ml for CHO.K1 and 1 mg/ml for NIH-3T3, MEF and

primary fibroblasts) in CCM1 medium for 1 h and maintained at

37uC at pH 7.4 (migration promoting conditions). For phase

microscopy, time-lapse images were captured at 10 min intervals

(0.25 NA CFI Achro DL106 Nikon objective) with a charge-

coupled device camera (Orca II; Hamamatsu Photonics, Iwata-

City, Japan) attached to an inverted microscope (TE-300; Nikon,

Tokyo, Japan) using Metamorph software (Universal Imaging

Corp., Downingtown, PA).

Confocal images were collected on an Olympus FluoView 300

system (1.45 NA oil PlanApo 606 TIRFM objective). GFP was

excited using the 488 nm laser line of an Argon laser (Melles

Griot, Albuquerque, NM). A Q500LP dichroic mirror (Chroma

Technology Corp. Rockingham, VT) and a HQ525/50 emission

filter was used for GFP labeled cells. Fluorescence images were

acquired using FluoView software (Olympus, Tokyo, Japan).

TIRF images were acquired in an Olympus IX70, inverted

microscope (1.45 NA oil Olympus PlanApo 660 TIRFM

objective) fitted with a Ludl modular automation controller (Ludl

Eletronic Products, Howthorne, NY) and controlled by Meta-

morph (Molecular Devices). GFP was excited using the 488 nm

laser line of an Ar ion laser (Melles Griot). Also, a dichroic mirror

(HQ485/30) and a HQ525/50 emission filter were used. All

Images were acquired with a charge-coupled device camera

(Retiga Exi; Qimaging, Surrey, Canada) and analyzed using

ImageJ software (http://rsbweb.nih.gov/ij).

Kymography
For kymography, images were captured every 5 s for 30 min

(0.65 NA CFI Achro DL 406 Nikon objective). A line (5 pixels-

wide) was drawn along regions oriented in the protrusion direction

and perpendicular to the lamellipodial edge. Protrusion parame-

ters were quantified by kymography [13], using Image J software.

The results were plotted in a graph where the Y axis is the distance

reached by the lamellipodium along that line, and the X axis is

time.

Rho and Rac activation assay
Pull-down assays for activated Rac1 and RhoA were performed

as described previously [46]. Briefly, after overnight serum

starvation, the cells were stimulated with serum for 1 h, washed

and lysed in CRIB buffer containing 1% NP-40, 50 mM Tris

pH 7.4, 10% glycerol, 100 mM NaCl, 2 mM MgCl2, a protease

inhibitor cocktail (Sigma P8340) and 20 mg of recombinant GST–

PBD (Rac1) or GST-Rhotekin (RhoA). Cell lysates were then

incubated with glutathione–agarose beads (Pharmacia, Stockholm,

Sweden) for 30 min at 4uC, washed with lysis buffer and eluted
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with SDS sample buffer. Bound Rac1 and RhoA were analyzed by

Western blotting. Whole-cell lysates were also analyzed for the

presence of Rac1 and RhoA for normalization.

Western blotting
Samples were submitted to SDS-PAGE with 15% gels and

transferred to a PDVF membrane. Deffated milk or 5% BSA in

PBS/0.5% Tween 20 were used for blocking during 45 min at

room temperature. Incubation with the primary antibodies anti-

Rac1 (1:1000, BD Biosciences, Franklin Lakes, NJ), anti-RhoA

(1:500, Santa Cruz Biotech, Santa Cruz, CA) or anti-GLUT1

(1:1000, Abcam, Cambridge, MA) was performed overnight at

4uC. After washing, membranes were incubated with peroxi-

dase-conjugated secondary antibody (Amersham Pharmacia

Biotech., Chalfont St. Gilles, United Kingdom), and the

reaction was detected by chemioluminescence (Pierce, Thermo,

Rockford, IL).

Detection of Reactive Oxygen Species (ROS)
Cells were cultured for 3 days with the specified medium,

trypsinized, washed and incubated with 10 mM 5–6-chloromethyl-

29,79-dichlorodihydrofluorescein diacetate, acetyl ester (CM-

H2DCFDA, Invitrogen, Eugene, OR) for 15 min. Cells were

lysed, centrifuged (1 min, 13000 rpm at 4uC), the supernatant was

analyzed by fluorimetry (excitation 492 nm and emission 525 nm,

Fluorocount Packard, Perkin Elmer, Walthan, MA), and the

protein concentration quantified. As positive control the cells were

incubated with 100 mM H2O2, and the probe was omitted for the

negative control. Results were calculated by mg/protein and

expressed as % of control. For ROS visualization, cells were plated

on 2 mg/ml fibronectin-coated glass-bottomed dishes, incubated

using the same method described above, and then viewed on the

confocal microscope.

Assessment of cell polarity
For assessment of cell polarity, the polarity index was calculated

as the length of the major migration axis (parallel to the direction

of movement) divided by the length of the perpendicular axis that

intersects the center of the cell nucleus.

Statistical analysis
Student t test and one-way analysis of variance (ANOVA)

followed by Tukey’s post-test were employed, and differences were

considered significant when p#0.05.

Supporting Information

Figure S1 Migration of CHO.K1 cells cultured under low

glucose (LG), high glucose (HG), and in osmotic control (OC)

medium. Due to the lower rate and directionality, the distances

traveled by HG cells are shorter when compared to the controls.

Individual cell trajectories starting at the same point are shown:

the shorter distances (,30 radials) in red, intermediate distances

(30–60 radials) in blue, and longer distances (.60 radials) in black.

The lower graph (B) shows the distribution of cells in each

category.

(TIF)

Figure S2 Diabetes increases glucose metabolism in dermal

fibroblasts. Expression of the glucose transporter GLUT1 (A) and

the activities of the glycolytic pathway enzymes Hexokinase (B),

Pyruvate kinase (C) and Lactate Dehydrogenase (D) in primary

skin fibroblasts of control and diabetic rats. Results were expressed

as U/mg of protein and are shown as the % of the control 6 SEM,

n = 4 animals/group. The enzymatic activities were performed in

triplicate. Proteins bands are representative of the experiment.

(*) P#0.01 according to Student’s t test.

(TIF)

Table S1 Changes in physiological parameters after 30 days of

induction of diabetes with streptozotocin.

(DOCX)

Movie S1 movie shows protrusions of CHO.K1 cells cultured

with low glucose (control) during 3 days and plated under

migration promotion conditions. This movie corresponds to

Figure 3A. Total time = 30 minutes.

(MOV)

Movie S2 movie shows protrusions of CHO.K1 cells cultured

with high glucose during 3 days and plated under migration

promotion conditions. Cells produce several instable protrusions in

different directions, when compared to control cells (Movie S1).

This movie corresponds to Figure 3B. Total time = 30 minutes.

(MOV)

Movie S3 TIRF microscopy of dynamic adhesions of CHO.K1

cells transfected with GFP-paxillin, cultured under low glucose

conditions (control). The increase in adhesion size and on

fluorescence intensity were considered signs of maturation. This

movie corresponds to Figure 4B. Total time = 20 minutes.

(MOV)

Movie S4 TIRF microscopy of dynamic adhesions of CHO.K1

cells transfected with GFP-paxillin, cultured under high glucose

conditions. The increase in adhesion size and on fluorescence

intensity were considered signs of maturation. Compared to

control conditions (Movie S3), the number of mature adhesions in

high glucose-treated cells is smaller. This movie corresponds to

Figure 4A. Total time = 20 minutes.

(MOV)
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