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Urinary peptidomics and 
bioinformatics for the detection of 
diabetic kidney disease
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The aim of this study was to establish a peptidomic profile based on LC-MS/MS and random forest 
(RF) algorithm to distinguish the urinary peptidomic scenario of type 2 diabetes mellitus (T2DM) 
patients with different stages of diabetic kidney disease (DKD). Urine from 60 T2DM patients was 
collected: 22 normal (stage A1), 18 moderately increased (stage A2) and 20 severely increased (stage 
A3) albuminuria. A total of 1080 naturally occurring peptides were detected, which resulted in the 
identification of a total of 100 proteins, irrespective of the patients’ renal status. The classification 
accuracy showed that the most severe DKD (A3) presented a distinct urinary peptidomic pattern. 
Estimates for peptide importance assessed during RF model training included multiple fragments of 
collagen and alpha-1 antitrypsin, previously associated to DKD. Proteasix tool predicted 48 proteases 
potentially involved in the generation of the 60 most important peptides identified in the urine of DM 
patients, including metallopeptidases, cathepsins, and calpains. Collectively, our study lightened some 
biomarkers possibly involved in the pathogenic mechanisms of DKD, suggesting that peptidomics is 
a valuable tool for identifying the molecular mechanisms underpinning the disease and thus novel 
therapeutic targets.

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease in the United States1. In Europe, a 
quarter of patients that start renal replacement therapy has diabetes mellitus as the primary renal diagnosis2. 
The presence of reduced kidney function in patients with type 2 diabetes (T2DM) predominantly accounts for 
the observed increase in mortality3. In Brazil, the crude diabetes death rate increased 90%, while that of kidney 
disease due to diabetes more than doubled from 1990 to 20154.

Diagnosis of DKD is based on the detection of elevated albuminuria and/or decreased glomerular filtration 
rate (GFR)5. The earliest putative diagnostic sign of diabetic renal damage is moderately elevated albuminu-
ria6,7. However, substantial renal damage is already present at this stage. Furthermore, a non-albuminuric form 
of DKD, expressed by reduced GFR has been increasingly recognized, broadening the spectrum of the kidney 
involvement8. Reduced eGFR is generally estimated via creatinine-based equations9. Although demographic and 
clinical variables are included in the equation in an attempt to capture the variability in creatinine, the accuracy 
of equations is still disappointing10,11. Taken together, these evidence point that the current DKD clinical markers 
are nonspecific and late indicators of renal injury, suggesting the need for the search of early biomarkers, allowing 
interventions prior to established organ damage12. In addition, they can help the understanding of the pathogen-
esis of kidney disease and provide insight into novel therapeutic targets13–17.

The number of proteins identified associated with DKD has constantly increased, but none of the proposed 
urinary biomarkers has been shown to be superior to moderately increased albuminuria, the current gold stand-
ard for DKD diagnosis. The urinary peptidomic studies in DKD typically focus on the identification of bio-
marker panels instead of a single biomarker, and the multi-marker panels were able to demonstrate significant 
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improvement in early DKD diagnosis and prognosis15. While large-scale studies of proteins are termed pro-
teomics, the studies of naturally occurring peptides produced by endogenous protease activity are termed pep-
tidomics18. A classifier composed of 273 urinary peptides (CKD273) associated with CKD, irrespective of the 
underlying etiology, has been previously described19–21. The predictive value of CKD273 in T1DM and T2DM 
patients has been demonstrated in its ability to anticipate the progression from normo- to macroalbuminuria 
long before the modification of albumin excretion rate22. Recently, CKD273 was shown to be independent of 
albuminuria and eGFR by enabled the identification of diabetic progressors to eGFR <60 mL/min/1.73 m2 in the 
absence of albuminuria23.

Using SELDI-MS analysis, a study showed a 12-peak signature predicting the development of DKD ten years 
prior to the increase in albumin to creatinine ratio24, while other study described a 4-peak pattern able to recog-
nize T2DM patients with DKD25. A panel composed of 65 urinary peptide biomarkers, many of which fragments 
of type 1 collagen, was capable of distinguishing between diabetic patients without albuminuria from those with 
DKD, as well as predicting the progression toward overt DKD in patients with diabetes who had albuminuria 
over 3 years15. However, the lack of data reproducibility and the need of replication in populations with different 
genetic background and with different proteomic techniques pave the way for new studies.

Here, we reported the profile of naturally occurring urinary peptides from T2DM patients with different 
stages of DKD analyzed by LC-MS/MS. We used bioinformatics analyses to classify patients at different disease 
stages (A1, A2 or A3) according to their peptidomic profile and to identify peptides differentially represented 
between these disease stages. Bioinformatics tools were also used to investigate proteases possibly involved in 
the generation of these urinary peptides. Peptides from collagen, SERPING1 and SERPINA1, were identified as 
potential biomarkers to differentiate DKD stages. Possible roles for identified proteins and proteases in the path-
ogenic mechanisms of DKD were discussed.

Results
Characteristics of type 2 DM patients according to UAE.  Table 1 depicts the characteristics of T2DM 
patients included in this study categorized by UAE according to the Kidney Disease: Improving Global Outcomes 
(KDIGO) guidelines. It was included 22 with normal (stage A1), 18 with moderately increased (stage A2) and 20 
with severely increased albuminuria (stage A3) patients. eGFR was significantly decreased only in the A3 group 
as compared to A1 group. The three groups presented similar mean ages, diabetes duration, and HbA1c levels, as 
well as percentages of women and smokers. The presence of hypertension and the mean of systolic and diastolic 
blood pressure, BMI and waist were also similar among the 3 groups.

Urinary peptidomic analysis.  Naturally occurring peptides in the urine from patients of UAE stages A1, 
A2 and A3 were isolated by ultrafiltration and analyzed by LC-MS/MS. MS/MS data were searched against the 
UniProt human protein database for peptide and protein identification and a total of 1080 peptides were identi-
fied, which corresponded to a total of 100 proteins (Supplementary Table S1). Peptide abundance was assessed 
by label-free quantification using normalized spectral counts of individual peptides (Supplementary Table S1, S2 
and S3). The most abundant peptides detected in patients’ urine were from collagen-derived proteins (COL1A1 
and COL3A1) (Fig. 1).

Random forest model for prediction of disease stage.  Based on the top 300 detected peptides 
among all samples, we trained a random forest (RF) model for classifying patients’ disease stage (A1, A2, or 

A1 (Normal 
UAE)

A2 (Moderately 
Increased UAE)

A3 (Severely 
Increased UAE) p-value

n 22 18 20

Age (years) 62 ± 9 62 ± 13 62 ± 8 0.995

Diabetes duration (years) 19 (9–29) 19 (13–25) 16 (13–22) 0.780

Women (%) 64 44 45 0.584

ACEI/ARBs use (%) 89 87 75 0.474

Insulin use (%) 61 47 75 0.229

Metformin use (%) 89 88 65 0.136

Hypertension (%) 91 73 90 0.277

SBP (mmHg) 136 ± 19 127 ± 20 134 ± 22 0.394

DBP (mmHg) 76 ± 9 74 ± 15 78 ± 13 0.551

BMI (kg/m²) 31 ± 5 31 ± 5 32 ± 4 0.891

HbA1c (%) 8.8 ± 1.8 8.3 ± 2.4 8.8 ± 2.6 0.705

UAE (mg/L) 5 (3–9) 33 (22–72) 458 (292–752) —

eGFR (mL/min/1.73 m²) 96 ± 17 86 ± 21 71 ± 33a 0.006

Table 1.  Clinical and laboratory characteristics of type 2 DM patients with different stages of urinary albumin 
excretion (UAE) included in the study. Values are expressed as means ± standard deviation, median (95% 
confidence interval) or percentage. ACEI: Angiotensin-converting-enzyme inhibitors, ARBs: Angiotensin 
receptor blockers, SBP: systolic blood pressure, DBP: diastolic blood pressure, eGFR: estimated glomerular 
filtration rate a Severely Increased vs. Normal (p=0.005).
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A3) according to their peptidomic profile. The detection rate for the filtered peptides varied between 100% (i.e., 
detected in all samples) and 5% (i.e., detected in 5% of samples). The confusion matrix for the tuned RF model, 
averaged over the 10 repetitions of the 5-fold cross-validation, is shown in Table 2. Among the 55 combinations of 
model’s parameters tested, the best performance was achieved with ntree = 500 and mtry = 21 (see Supplementary 
Fig. S1 for the complete results). An overall difficulty of the model in correctly classifying disease stage based on 
peptides quantification levels was observed. In particular, A1 patients were largely misclassified as A2, suggesting 
that peptidomic profiles of these two groups of patients may share similarities that turns the machine learning 
model training and classification more challenging. The average accuracy in the cross-validation process was 
45.64% (±11.21%), with an AUC score of 0.619 (±0.106), and average sensitivity and specificity equal to 44.73% 
(±10.95%) and 72.58% (±5.60%), respectively. The same analysis was performed turning the data into a binary 
classification problem, with the two classes represented by A1 + A2 patients and A3 patients (Table 2). For this 
scenario, model tuning returned ntree = 500 and mtry = 9 as the best parameter combination (Supplementary 
Fig. S1). The average accuracy improved to 74.83%, with an AUC score of 0.746 (±0.1518), and average sensi-
bility and specificity of 95.0% (±7.14%) and 34.5% (±21.9%), respectively. This improvement demonstrates that 
the main difficulty of the previous model is to differentiate between patients classified as A1 and A2. Due to this 
difficulty, further analyses were done using the binary variable (A1 + A2 vs. A3) as target value.

Random Forest-based variable importance.  The RF analysis ranks variables (peptides) based on 
their predictive importance during model training, which may be useful to better understand how the vari-
ance observed in peptides quantification levels may be associated to patients’ DKD stages. Estimates for varia-
ble importance according to the average decrease in accuracy assessed during RF model training are shown in 
Fig. 2 (only the top 60 variables are shown. For the importance analysis of the 300 selected peptides used, see 
Supplementary File S1). The variables with the most predictive power included by ranking: multiple fragments 
of alpha-1 antitrypsin (SERPINA1; 10 fragments), type I collagen (COL1A1; 23 fragments), type III colagen 
(COL3A1; 4 fragments), C1 inhibitor (SERPING1; 3 fragments), but also other fragments as showed in Fig. 2.

We performed hierarchical clustering of peptidomic profiles for all samples considering the 60 most important 
variables as assessed by the RF model (Fig. 3). Pearson correlation-based distance and complete linkage were 
adopted as parameters in the clustering algorithm. Results corroborate the difficulty in finding clear patterns 
associated to disease stage that may aid in the classification of patients’ diagnosis. Nonetheless, this analysis allows 
the visualization of singularities in peptides levels for subgroups of patients. For instance, four peptides associated 
to SERPINA1 show a particularly high concentration level for a subgroup of patients with advanced DKD (A3).

Figure 1.  Protein-derived peptides found in the urine of T2DM patient’s irrespective of the DKD stage. Values 
are represented as spectral counts.

Reference

A1 A2 A3

Prediction

A1 2.4 2.1 1.3

A2 1.5 0.9 0.6

A3 0.5 0.5 2.1

A1 + A2 A3

A1 + A2 7.6 2.6

A3 0.4 1.4

Table 2.  Performance of the RF classifier estimated based on 10 repetitions of 5-fold cross-validation. Values 
are the average cell counts for the testing fold across all resamples. A1: normal urinary albumin excretion 
(UAE), A2: moderately increased UAE, A3: severy increased UAE.
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To further elucidate the expression pattern associated to the top predictors according to the RF model, we 
analyzed their fold change in the comparison between A1 + A2 patients and A3 patients. Of these peptides, 35 
were found at lower and 25 at higher levels in A3 versus A1 and A2 groups (Table 3). Inspecting their statistical 
significance determined by the Mann-Whitney test, we observed that about half of peptides from the list (i.e., 
29 out of 60) were significantly differentially expressed between groups (p < 0.05 and fold change <0.66 or fold 
change > 1.5), which are associated mainly to SERPINA1, COL1A1, and SERPING1. We note, however, that only 
11 differentially expressed peptides showed statistically significant FDR value (FDR <0.05), probably due to the 
small sample size of our study (Supplementary File S2). The values distribution for the top 60 predictors identified 
by the RF model according to patients’ disease stage (A1 and A2 or A3) are provided in Supplementary Fig. 2.

Protease prediction.  In silico analysis was performed in order to predict the proteases possibly involved in 
the generation of the 60 most important peptides of the present study. The Proteasix open-source peptide-centric 
tool was used for the analysis26. By using this bioinformatics approach it is possible to track back to the enzymes 
responsible for the generation of these peptides. The majority of human proteases have several protein targets and 
likewise, one peptide sequence could be cleaved by different proteases. The analysis yielded a list of 48 proteases 
putatively responsible for the generation of the 60 most important peptides (Supplementary Table S4). From the 
20 predicted proteases (Table 4), 9 proteases were already found deregulated in DKD patients: MMP-1, MMP-2, 
MMP-3, MMP-7, MMP-8, MMP-9, MMP-13, CTSD and CTSK27.

Discussion
The limitations of UAE and GFR as a predictive biomarkers of DKD pave the way for the search of new biomark-
ers using omics technologies12,28. Furthermore, since the DKD prevalence is continuously increasing, there is an 
urgency to identify the mechanisms underlying its pathogenesis4. In the present study, we investigated the urinary 
peptidomic pattern of T2DM patients with different stages of DKD. We used a more flexible data-driven approach 
instead of hypothesis-driven methods for the investigation of multiple peptides related to DKD stages. The use of 
bioinformatics tools is a well-suited alternative for conventional regression models that fails to include large num-
bers of covariates. Therefore, the random forest (RF) algorithm was used to rank variables based on their predic-
tive importance during model training to better understand how the peptides levels variation may be correlated 
to patients’ diagnostic. In our study, considering the 3 stages of DKD, the RF approach achieved accuracy of below 
70%, but accuracy raise when stage A1 and A2 were compared to stage A3, thus showing that the most severe 
DKD stage presented a distinct urinary peptidomic pattern when compared to two initials stages of disease. Next, 

Figure 2.  Variable importance estimated by the RF model for the top 60 predictors (peptides). Importance 
value (x-axis) represents average decrease in accuracy.

https://doi.org/10.1038/s41598-020-58067-7


5Scientific Reports |         (2020) 10:1242  | https://doi.org/10.1038/s41598-020-58067-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3.  Heatmap visualization and hierarchical clustering performed for all samples considering the top 60 
predictors according to Random Forests. Values are scaled across columns, generating column z-scores.

Corresponding 
protein

Total 
peptides

Upregulated 
in A3

Downregulated 
in A3

COL1A1 23 6 17 (6)

SERPINA1 10 10 (10) —

UMOD 6 — 6 (2)

COL3A1 4 — 4 (1)

INS 3 1 2

LMAN2 3 3 (2) —

SERPING1 3 3 (3) —

COL1A2 2 — 2

FGA 2 — 2 (1)

A1BG 1 1 (1) —

CDH1 1 1 (1) —

CLU 1 — 1 (1)

FGB 1 — 1 (1)

Table 3.  Number of peptides with increased and decreased expression levels in A3 based on protein of origin 
(top 60 peptides according to RF model are presented). The numbers in parentheses correspond to peptides 
with statistically significant differential expression (p < 0.05 and fold change <0.66 or fold change >1.5), when 
present for a given protein.
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the peptides were ranked in importance showing that the distinct pattern of A3 patients were due to an increased 
abundance of peptides from SERPINA1 and SERPING1 and a decreased abundance of collagen peptides.

Most of the differentialy expressed peptides found in the present study are in agreement with previous studies, 
despite the use of different proteomic methods, such as CE-MS22,29,30. Zurbig and collaborators22 analyzed urine 
peptides using a biomarker classifier for chronic kidney disease (CKD273) in a longitudinal cohort of diabetic 
patients. In this retrospective cohort, collagen fragments decreased before the increase of albumin excretion, 
showing a major role in the initiation of DKD22. The collagen-derived peptides were also observed relatively 
decreased in studies on CKD273 classifier for prognosis of CKD development, as well as in other proteomic anal-
yses29–31. In the present study, we detected decreased levels of peptides from COL1A1 in urine of patients with the 
most severe DKD stage. These findings are also supported by previous hypothesis that urinary collagen fragments 
decrease might be an indicator of reduced collagen breakdown, resulting in fibrosis32,33. These peptides are likely 
the result of normal physiological turnover of the extracellular matrix. It has been assumed that diminished activ-
ity of matrix metalloproteinases may be responsible for the accumulation of proteins in the extracellular matrix 
and collagens that characterize the fibrotic kidney34. The collagen breakdown might be inhibited by the higher 
levels of tissue inhibitor of matrix metalloprotease type 1 observed in patients with renal disease35. Moreover, 
the accumulation of extracellular matrix as predominantly observed in DKD was shown to be associated with 
decreased excretion of several specific collagen fragments32.

Diabetes complications are intimately linked to inflammation, evidenced by the presence of high levels of 
plasma inflammatory markers such as high-sensitivity C-reactive protein36. Elevated acute-phase proteins may 
reflect the inflammation and activation of innate immune system during the course of DKD37. Related to inflam-
mation, peptides from SERPING1 and SERPINA1 were found among the top 60 most important variables iden-
tified in the DKD severe stage (A3 stage). SERPINA1 is a serine protease inhibitor, which targets elastase as well 
as other proteases38. Neutrophil elastase degrades a range of substrates including elastin and other extracellular 
matrix proteins such as collagen, fibronectin, complement receptors and several growth factors39. Therefore, in 
DKD, the increased degradation of SERPINA1 would lead to activation of elastase and thus might contribute 
to accumulation of matrix molecules. In addition, SERPINA1 has been associated to non-protease inhibitory 
effects, including anti-inflammatory, anti-oxidant, and anti-apoptotic properties40. Although the exact mecha-
nism remains unknown, previous studies also reported that peptide levels from SERPINA1 were increased in the 
kidney of microalbuminuria state, indicating a role for this protein in the pathogenesis of DKD30,41,42.

Increasing evidence points toward a role for the complement system in the pathogenesis of DKD36. SERPING1 
codes for a plasma protease C1 inhibitor that is involved in the regulation of the complement cascade36. In our 
study, SERPING1 peptides were increased in A3 patients’ urine. Likewise, these peptides were negatively cor-
related to eGFR and related to advanced CKD43. SERPING1 main function is the inhibition of the complement 
system, through the irreversible inactivation of C1r and C1s proteases of the classical pathway C1 complex, thus 
avoiding its spontaneous activation. On the other hand, activation of this pathway leads to the production of 
complement C3 convertase, which activates complement component C3, leading to generation of the opsonic 
C3b and eventually generation of the membrane attack complex, which lyses, damages, or activates target cells36. 
A disturbance of complement regulation might lead to different inflammatory actions that may be linked to the 
pathogenesis of DKD. Since we observed a higher SERPING1 degradation in A3 patients, it could be suggested 
that there is more activation of the complement system in the most severe DKD stage. Transcript levels of C3 and 

Protein name

CTSG Cathepsin G

MMP2 Matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)

MEP1A Meprin A, alpha (PABA peptide hydrolase)

CTSD Cathepsin D

MMP8 Matrix metallopeptidase 8 (neutrophil collagenase)

MMP7 Matrix metallopeptidase 7 (matrilysin, uterine)

MMP13 Matrix metallopeptidase 13 (collagenase 3)

CTSK Cathepsin K

CAPN1 Calpain 1, (mu/I) large subunit

CAPN2 Calpain 2, (m/II) large subunit

MMP3 Matrix metallopeptidase 3 (stromelysin 1, progelatinase)

MMP14 Matrix metallopeptidase 14 (membrane-inserted)

PGA3 Pepsinogen 3, group I (pepsinogen A)

MMP1 Matrix metallopeptidase 1 (interstitial collagenase)

MMP25 Matrix metallopeptidase 25

CTSE Cathepsin E

MME Membrane metallo-endopeptidase

ADAMTS4 ADAM metallopeptidase with thrombospondin type 1 motif, 4

MMP9 Matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)

TMPRSS7 Transmembrane protease, serine 7

Table 4.  List of predicted proteases by Proteasix tool.
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other complement components are increased in DKD glomeruli44. Additionally, mechanistic experiments per-
formed on rodent diabetes models showed increased complement expression and activation correlated with DKD 
severity, whereas complement blockade improved outcomes in different nephropathy models36,44. Furthermore, 
patients and animals with DKD exhibited increased kidney C1q and C3 expression45. Based on these findings, and 
on the association of circulating immune complexes with diabetic renal injury, it is likely that complement system 
might play a functional role in DKD45.

The proteases regulation is necessary to maintain tissue homeostasis and its altered activity seems to be linked 
to the generation of peptides associated to DKD27,46. Bioinformatics peptide centric tools have been developed in 
order to track back to the proteases responsible for the generation of the urinary peptidome involved in DKD26,47. 
In the present study, we included DKD top 60 peptides in the Proteasix tool, yelding predicted proteases notably 
to the family of metalloproteinases, cathepsins and calpains. Supporting these findings, a recent study confirmed 
the altered activities and decreased expressions of some metalloproteinases in DKD at tissue levels27. The dys-
regulation of matrix metalloproteinases has been linked to renal fibrosis progression48 and DKD49, although the 
evidence is not always consistent49,50. MMP-2 and MMP-9 preferentially degrades collagen type IV51 – major 
component of tubular basement membrane (TBM) and linked to tubulointerstitial change and thickening of 
TBM50,52, hallmarks especifically related to DKD. Cathepsin D (CTSD), also verified in a previous study, is known 
to mediate inflammation53 and appeared increased in the human kidney tissue of DKD patients, especially in 
the areas of tubular damage54. From the same protease family, Cathepsin K (CTSK) seems to be involved in the 
DKD peptides generation and has been shown to be correlated with DKD progression and vascular endothelial 
dysfunction and deterioration of renal function27. Thus, the identification of protease dysregulation confirms the 
role of imbalance of collagen degradation, inflammation and fibrotic processes in DKD27,47.

Some factors may obscure the association between naturally occurring peptides and presence of kidney 
damage. Patients were burdened with coexisting diseases and a complex combination of drugs. These con-
founders might affect the urinary proteome and peptidome. The drugs known to reduce proteinuria such as 
angiotensin-converting-enzyme inhibitors and angiotensin receptor blockers certainly underestimated UAE levels. 
The study is crossectional, so the described association should be interpreted with caution and need further experi-
mental verification. However, our analysis confirms the previously described findings in other populations and pro-
vided information that can be used for putative therapeutic targets and better understanding of DKD pathogenesis.

In conclusion, our LC-MS/MS analysis revealed that urinary peptide profile varies according to DKD severity, 
indicating a potential use for DKD risk stratification. The results were obtained by a sequence of bioinformatics 
approaches, first to rank the high important peptides in DKD context and second to allow the interpretation of 
integrated urinary peptidomics to the prediction of proteolytic events linked to DKD, emphasizing the differen-
tial regulation of inflammation and the complement system in DKD. Metalloproteases and cathepsins appear to 
be involved in the pathogenesis of DKD, highlighting the importance of further mechanistic studies. Due to the 
bioinformatics tools improvements, the information on urinary peptides should help to better define DKD on a 
molecular level and to identify specific therapeutic targets.

Methods
Clinical and laboratorial analyses of patients.  A total of 60 patients with Type 2 DM (T2DM) from the 
Hospital de Clínicas de Porto Alegre (HCPA) had their urine samples consecutively collected using consistent 
standard operating procedures. All samples were collected as a spontaneously voided elimination and were stored 
immediately at −20 °C until analysis. The definition of T2DM was based on diagnosis of diabetes after the age of 
40 years with no use of insulin during the first five years after diagnosis and no previous episodes of ketoacidosis. 
The exclusion criteria were malignancy and pregnancy. Informed written consent approved by responsible com-
mittee was obtained from all subjects, and ethical approval was obtained from the HCPA scientific committee.

A standard questionnaire was used to collect information on age, age at DM diagnosis, and drug treatment, 
and all patients underwent physical examination and laboratory evaluation. They were weighed unshod, wear-
ing light outdoor clothes and their height was measured. Body mass index (BMI) was calculated as weight (kg)/
height squared (meters). Blood pressure (BP) was measured twice using a digital sphygmomanometer (Omron) 
with the subject seated and a 5-minute rest between measurements. The means of both measurements were used 
to calculate systolic and diastolic BP. Hypertension was defined as BP levels of 140/90 mm Hg or higher, or if the 
patient was taking antihypertensive drugs55.

Type 2 DM patients were categorized according to urinary albumin excretion (UAE), and classified as normal 
if UAE <14 mg/L (KDIGO stage A1), moderately increased (stage A2) if UAE ranged from 14 to 174 mg/L and 
severely increased (stage A3) if UAE >174 mg/L56,57, confirmed in two out of three urine samples. UAE was deter-
mined by immunoturbidimetry (Sera-Pak immuno microalbuminuria; Bayer, Tarrytown, NY; mean intra- and 
interassay coefficients of variance of 4.5% and 7.6%, respectively)55.

GFR was estimated by CKD-EPI equation as recommended: GFR (mL/min/1.73 m2) = 141 × min(Scr/
k,1)a × max(Scr/k,1)-1.209 × 0.993Age × 1.018 (if female) × 1.159 (if black), where Scr is serum creatinine, k is 0.7 
for females and 0.9 for males, a is −0.329 for females and –0.411 for males, min indicates the minimum of Scr ⁄ k 
or 1, and max indicates the maximum of Scr ⁄ k or 155.

A serum sample was taken after 12 hours of fasting for laboratory analyses. Creatinine levels were determined 
using a traceable Jaffe reaction kit; glycated hemoglobin (HbA1c) was quantified using an ion-exchange HPLC 
procedure (Merck-Hitachi L-9100 GhB Analyzer; Merck, Darmstadt, Germany; reference range: 4.7%–6.0%).

Urinary peptide isolation.  A 1.2-ml aliquot of urine was thawed immediately prior to use and diluted with 
0.6 ml of an aqueous solution supplemented with 3 M urea, 15 mM NH4OH, and 0.03% (w/v) SDS. To remove 
proteins of high molecular mass, the sample was filtered using Centrisart ultrafiltration devices (20-kDa molecular 
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mass cutoff; Sartorius, Goettingen, Germany) at 2,000 g for 10 min at 18 °C19. Subsequently, 1.2 ml of filtrate was 
applied onto a PD-10 desalting column (GE Healthcare) equilibrated with 0.01% NH4OH to remove urea, electro-
lytes, and salts. Additionally, 1.3 ml of equilibration buffer was applied to the filter bed as a first step and allowed to 
wash out by gravity flow, improving the yield of naturally occurring peptides. Next, 2 ml of equilibration buffer was 
applied to the PD-10 column. The flow-through was collected, lyophilized, and stored at −20 °C until further use19.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and database searching.  
Urinary peptides were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a 
Waters nanoACQUITY UPLC system coupled to a Q-TOF Ultima API mass spectrometer (Waters, Milford, MA, 
USA), as described previously58. The peptides were eluted from the reverse-phase column toward the mass spec-
trometer at a flow rate of 200 nl/min with a linear gradient of acetonitrile in 0.1% formic acid (2–90%, 60 min). 
The MS survey scan was set to 1 s (0.1 s interscan time) and recorded from 100 to 2000 m/z. MS/MS scans were 
acquired from 50 to 2000 m/z, and scan and interscan rates were set as for MS. The samples were run in DDA 
mode where each full MS scan was followed by MS/MS acquisition using collision-induced dissociation of the 
three most intense ions from the MS scan. Each sample was run in duplicates (technical replicates). MS/MS raw 
data were processed using ProteinLynx Global Server software (Waters) and peak lists were exported in the mas-
cot generic (.mgf) format. Peptides and protein identifications were performed with the MASCOT search engine 
(Matrix Science, London, UK; version 2.3.0) against UniProt/Swiss-Prot human protein database59. Database 
search was performed with the following parameters: oxidation of methionine (M), proline (P) and lysine (K) 
as variable modifications, without any enzyme specificity and maximal missed cleavage of 0. A mass tolerance 
of 0.1 Da for precursor and fragment ions was set. Ion type was set as monoisotopic, and peptide charges 2+, 
3+ and 4+ were taken into account. Protein and peptide identifications were validated by Scaffold (Proteome 
Software Inc., version 4.4.1.1) analysis. MASCOT *.dat files were loaded on Scaffold and peptide identifications 
were accepted if they could be established at >95% of probability as assigned by the Peptide Prophet algorithm60 
and protein identifications were accepted if they could be established at >99% of probability as assigned by the 
Protein Prophet algorithm61 and contained at least 2 identified peptides. The false discovery rate (FDR, Decoy) 
was <1% for proteins and peptides. The spectral counts were calculated for each peptide using Scaffold and nor-
malized following default settings in which spectral counts are multiplied by the average across all samples and 
divided by the total number of spectral counts within each sample62.

Estimating variables importance with Random Forests.  Random forest (RF) is an algorithm for clas-
sification that uses an ensemble of decision trees, each of which is built using a bootstrap sample of the data63. In 
addition, RF adopts random variable selection during trees growth that when combined to the bootstrap aggre-
gation (i.e., bagging) procedure tends to generate a collection of weakly correlated individual trees. As a result, 
the ensemble-based decision has a great potential to achieve low bias and low variance in predictions, leading 
to improved predictive performance in relation to individual trees. RF has demonstrated excellent performance 
in genomic classification tasks, comparable to other state-of-the-art methods such as Support Vector Machines 
(SVMs)64. However, its ability to evaluate and rank variables based on their predictive importance during model 
training makes it particularly well-suited to better understand how the variance observed in peptides quantifica-
tion levels may be associated to patients’ diagnostic.

For this purpose, we trained a RF classifier using as training data the quantification of peptides for the 60 sub-
jects. Common data pre-processing steps, such as removing highly correlated variables or variables with near zero 
variance across samples, were not applied due to the sparse nature of data and to the expected correlation among 
peptides related to the same protein. Since most peptides have over 50% missing values, only the top 300 detected 
peptides (i.e., in decreasing order of detection rate) were considered as model’s variables. The number of trees 
in the ensemble (ntree) and the number of variables randomly sampled as candidates for node splitting during 
the tree growing process (mtry) were tunned, testing all possible combinations of ntree = [500, 1000, 1500, 2000, 
2500] and mtry = [7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27]. Mtry values were chosen by defining an interval of −10 
and +10 around the default suggested value (i.e., the square root of the total number of variables, which would 
be approximately 17 for our data), in steps of two. Model performance was assessed using the sensitivity, speci-
ficity, and accuracy computed based on the confusion matrix, as well as the area under the Receiver Operating 
Characteristic (ROC) curve (i.e., AUC score). Relative importance was estimated for each variable during model 
training as the mean decrease in accuracy observed after permuting the predictor’s values. Analyses were per-
formed with R package caret v.6.80.

Protease prediction.  The open-source tool for protease prediction – Proteasix (www.proteasix.org)26 was 
used for the analysis to link naturally occurring peptides in urine to the proteases potentially involved in their 
generation. Proteasix uses information about naturally occurring peptides i.e. corresponding protein UniProt ID 
and start and stop amino acid position to predict potential cleaving proteases27. Proteasix retrieves information 
about cleavage sites (CS) from protease databases (MEROPS, BRENDA) considering also cleavage site restric-
tions (from ENZYME database)27. A list of predicted proteases is generated as a result of the analysis.

Statistical analysis.  One-way ANOVA and χ2 tests were performed when appropriate. Statistical signif-
icance was assumed at p < 0.05. Peptide differential expression was assessed with the Mann-Whitney test and 
P-values were adjusted for multiple testing using the Benjamini-Hochberg method (FDR, false discovery rate). 
Peptides were considered differentially expressed among groups based on p < 0.05 and ratio higher than 1.5 (fold 
change higher than 1.5 or lower than 0.66)27. Statistical analyses were performed using SPSS version 18.0 (SPSS, 
Chicago, IL, USA) and R statistical language.

https://doi.org/10.1038/s41598-020-58067-7
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Data availability
All data generated or analyzed during this study are included in this published article (and its Supplementary 
Information files). As described above, all methods were carried out in accordance with relevant guidelines and 
regulations.
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