
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

LUCAS AUGUSTO TANSINI

Model-based Design Code Generator

Effects on Codes Reliability

Porto Alegre
2021

LUCAS AUGUSTO TANSINI

Model-based Design Code Generator
Effects on Codes Reliability

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Engineering

Advisor: Prof. Dr. Paolo Rech

Porto Alegre
2021

CIP — CATALOGING-IN-PUBLICATION

Tansini, Lucas Augusto

Model-based Design Code Generator Effects on Codes Relia-
bility / Lucas Augusto Tansini. – Porto Alegre: 2021.

39 f.

Advisor: Paolo Rech

Trabalho de conclusão de curso

– Universidade Federal do Rio Grande do Sul, Escola de En-
genharia. Curso de Engenharia de Computação, Porto Alegre,
BR–RS, 2021.

1. Fault injection. 2. Simulink. 3. Scade. 4. DO-178. 5. Algo-
rithms. 6. Safety-critical. 7. Embedded. 8. Model-based. I. Rech,
Paolo, orient. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões Mendes
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Ensino (Graduação e Pós-Graduação): Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Diretora da Escola de Engenharia: Profa. Carla Schwengber Ten Caten
Coordenador do Curso de Engenharia de Computação: Prof. Walter Fetter Lages
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro
Bibliotecária-chefe da Escola de Engenharia: Rosane Beatriz Allegretti Borges

Dedico este trabalho a meu pai e minha mãe. Por toda ajuda durante este

período de graduação.

ACKNOWLEDGEMENTS

To start, I’d like to thank my family for all the support I’ve had to arrive here.

Especially to my father, mother, sisters, and Carolina, who were present throughout my

entire graduation and immensely supported me.

I’m also profoundly grateful for all the help that my advisor gave me during all

this time, whether it’s with articles, life advice, or even when teaching me a lot about the

fault tolerance world.

I can not forget to thank all my dear colleagues that were with me during all this

journey - which also came along with me until the end. Thanks a lot for the uncountable

programming nights, cheap talking, and, also, for supporting me in various moments of

my graduation.

During this period, I can not forget to thanks all my colleagues from the Junior

Enterprise (IDE), all my colleagues from the Embedded systems laboratory (LSE), and

also all the folks from AEL Sistemas, who helped me a lot.

AGRADECIMENTOS

Gostaria de começar agradecendo por todo apoio que obtive para que pudesse

chegar até aqui, onde, principalmente minha família fez grande parte. Em especial ao

meu pai, minha mãe, irmãs e Carolina que sempre estiveram comigo durante o período da

faculdade e que muito me apoiaram.

Sou imensamente grato por toda ajuda que meu orientador Paolo Rech teve

comigo durante todo esse tempo, sendo ajudando a escrever artigos, dando conselhos

sobre a vida e também me ensinando muito sobre o vasto mundo de tolerância a falhas.

Não posso deixar de agradecer também, durante toda a minha caminhada, aos

meus queridos colegas que ingressaram comigo e chegam, hoje, até o final junto comigo.

Muito obrigado pelas inúmeras noites programando, jogando conversa fora e, também,

por terem me apoiado em diversos momentos da faculdade.

Durante minha caminhada pela graduação, não posso deixar de agradecer a todos

os colegas da Empresa Júnior da Computação (IDE), todos os colegas do laboratório de

sistemas embarcados (LSE) e também a todos amigos e colegas da AEL Sistemas, que

muito me ajudaram.

Je pense, donc je suis.

— RENÉ DESCARTES, LE DISCOURS DE LA MÉTHODE

ABSTRACT

Modern embedded safety-critical applications are utilizing tools to help the software de-

velopment deal with safety-critical guidelines. Simulink and Scade are examples of these

tools, often used to design flight control, engine control, automatic pilots, and fuel man-

agement systems. To generate a code, first, the software is modeled and, then, the models

are translated into an automatic generated C code. Unlike the Simulink tool, Scade’s

resulting C code is guaranteed to be compliant with safety-critical regulations.

This work evaluates the impact of the use of code generation tools on the overall code

reliability. Each tool generates the code based on specific directives, with possibly a

significant impact on the code sensitivity to transient faults. Four different algorithms

are considered, and each one is implemented in three different versions: Manual,

Simulink generated and Scade generated. To evaluate the version’s reliability, more than

3,500 faults were injected into the programs. Results show that, while increasing the

execution time, Simulink reduces, on average, 79% the SDC rate and 61% the DUE

rate. Scade reduces the SDC rate of 52% but, unfortunately, increases the DUE rate of 5%.

Keywords: Fault injection. simulink. Scade. DO-178. algorithms. safety-critical. em-

bedded. model-based.

Efeitos de geradores de códigos baseados em modelos na confiabilidade de códigos

RESUMO

Aplicações modernas de sistemas críticos utilizam cada vez mais ferramentas para auxi-

liar o desenvolvimento de software, que ajudam a lidar com guias de desenvolvimento de

software em sistemas críticos. Simulink e Scade são exemplos dessas ferramentas, uma

vez que são frequentemente utilizadas para realizar o design de projetos como: contro-

ladores de vôo, controladores de motores, pilotos automáticos e também sistemas que

gerenciam abastecimento de combustível. Para gerar o código, primeiramente o software

é modelado, e, depois, traduzido para um código gerado automaticamente na linguagem

de programação C. Diferente da ferramenta Simulink, o código gerado pela ferramenta

Scade é garantido a seguir os guias determinados pelas regulamentações. Este trabalho

avalia o impacto do uso de códigos gerados por ferramentas em algoritmos. Cada ferra-

mente gera o código automaticamente, baseado em certas diretivas, particulares a cada

ferramenta, tendo assim um possível impacto significativo na tolerância a falhas dos al-

goritmos. Quatro algoritmos diferentes são considerados, e cada um é implementado em

três diferentes versões: Manual, Simulink e Scade. Para avaliar as confiabilidade dos dife-

rentes códigos em suas diferentes versões, injetou-se mais de 3.500 falhas nos programas.

Os resultados mostram, que, enquanto a ferramenta Simulink reduz, em média, 79% a

taxa de SDCs e 61% a taxa de DUEs. Enquanto isso, a ferramenta Scade reduz a taxa de

SDCs em 52%, mas, infelizmente, aumenta a taxa de DUEs em 5%.

Palavras-chave: injeção de falhas, simulink, Scade, DO-178, algoritmos, sistemas críti-

cos, embarcado, baseado em modelo.

LIST OF FIGURES

Figure 2.1 Overall development parts throughout DO-178 software development.15
Figure 2.2 Simplified required tracing between certification artifacts for DO-178B/C..17
Figure 2.3 Translation of a model to source code in Scade ..18
Figure 2.4 Scade automatic generated code example for a Inverse Fast Fourier

Transform algorithm. ..19
Figure 2.5 Context variable type, automatically generated by Scade tool.20
Figure 2.6 Global variables generated by Simulink that hold information about

specific parts of the program...20
Figure 2.7 Growth in processor performance since the late 1970s.21
Figure 2.8 Cosmic ray differential neutron flux as a function of neutron energy at

sea level. Adapted from (ZIEGLER; LANFORD, 1980).22
Figure 2.9 Charge generation and collection phases in a reverse-biased junction

and the resultant current pulse caused by the passage of a high-energy ion...........22
Figure 2.10 Showers of cosmic ray reactions with particles of the atmosphere.23
Figure 2.11 Gate-channel capacitances in a MOSFET. ..24

Figure 4.1 PVF for the Inverse Fast Fourier Transform algorithm.31
Figure 4.2 PVF for the Quicksort algorithm. ..32
Figure 4.3 PVF for the Matrix multiplication algorithm. ...33
Figure 4.4 PVF for the Basic Math algorithm. ...34

LIST OF TABLES

Table 1.1 DO-178B Failure Conditions, objectives and Failure Rate for each level.13

Table 2.1 Sample of DO-178 objectives with their corresponding DAL.16

Table 4.1 Variable name and PVF for variables that caused DUEs in IFFT Algorithm. 32
Table 4.2 Execution time, SDC PVF, DUE PVF and number of variables for dif-

ferent configurations. ..35

LIST OF ABBREVIATIONS AND ACRONYMS

FAA Federal Aviation Administration

ANAC National Civil Aviation Agency - Brazil

DAL Design Assurance Level

MBD Model-Based Design

PSAC Plan for Software Aspects of Certification

SWDP Software Development Plan

SWVP Software Verification Plan

SETs Single Event Transients

SDC Silent Data Corruption

DUE Detected Unrecoverable Error

IFFT Inverse Fast Fourier Transform

FFT Fast Fourier transform

PVF Program Vulnerability Factor

FIT Failure in Time

CONTENTS

1 INTRODUCTION...13
2 BACKGROUND INFORMATION ...15
2.1 DO-178 ...15
2.2 Safety Critical Software Development ..16
2.3 Model-Based Design tools...17
2.3.1 Use Cases ...19
2.4 Transient Faults...20
2.5 Related Work...24
3 PROPOSAL...26
3.1 Motivation..26
3.2 Algorithms and different versions ...26
3.2.1 Algorithms ...26
3.2.2 Versions..27
3.3 CAROL-FI Fault injector...28
4 EXPERIMENTS ...30
4.0.1 Silent Data Corruption ...30
4.0.2 Detected Unrecoverable Errors..31
4.0.3 Execution time and Number of Variables ..32
5 CONCLUSION ...36
REFERENCES...37

13

1 INTRODUCTION

Modern safety-critical systems are commonly highly complex and require exten-

sive documentation to have their reliability qualified. Several regulatory organs like the

FAA (Federal Aviation Administration) and ANAC (National Civil Aviation Agency -

Brazil), to qualify a product as sufficiently reliable, often require that companies follow

certain guidelines and standards, such as the DO-178B/C (SC-205 RTCA, 2011), which

highly suggests that a project implements the DO’s objectives to guide and help the man-

agement of the system’s life cycle and development.

Typically, the DO-178 classifies software according to their criticality level, de-

fined as the Design Assurance Level (DAL). In each DAL, the software is classified ac-

cording to its failure conditions and is also categorized by the effects of these conditions

on the aircraft, passengers, and crew. Therefore, the number of objectives that the project

must follow in the guideline is dependent on the DAL, as depicted in Table 1.1. Usually,

military and civil aviation projects are categorized with DAL A and DAL B.

Table 1.1 – DO-178B Failure Conditions, objectives and Failure Rate for each level.
Level Failure Conditions Objectives Failure Rate

A Catastrophic 66 10−9/h
B Hazardous 65 10−7/h
C Major 57 10−5/h
D Minor 28 10−3/h
E No Effect 0 N/A

Source: DO-178

In general, projects begin the life cycle with the understanding of the contract,

which results in a list of system requirements and, then, each requirement is translated into

constraints for the hardware and/or software to be designed and developed. In particular,

software documentation for safety-critical systems that utilize such guidelines requires

several artifacts for the completion of the objectives, such as test procedures, test exe-

cution reports, test results, static code analysis, and structural coverage analysis. These

artifacts need to be traced from the system requirements to the software implementation

(source code).

The traditional process of producing all the artifacts in each phase of the project

is extensive and complex. Hence, Model-Based Design (MBD) tools are becoming more

attractive to companies. MBD tools are a modern and efficient alternative to achieve the

required objectives in the development phase.

14

The use of different code generators in embedded software can have a direct im-

pact on sensitivity to transient faults, for better or for worse. To guarantee to be compliant

with specific constraints, the tool can significantly modify the source code (e.g., removing

all loops or all indexes). The code is generated, then, will be compliant with the regulation

but might have a different sensitivity to transient faults w.r.t. the traditional implemen-

tation. Unfortunately, while the compiler effects on various applications have already

been observed in literature (F. M. LINS L. A. TAMBARA; RECH, 2017; J. GAVA

V. BANDEIRA; OST, 2019), the impact of model-based design tools in embedded code

reliability is still largely unclear.

The goal of this work is to evaluate and understand if, and how, MBD tools impact

the transient faults sensitivity of different codes. The interest in the reliability impact

of MBD tools grows significantly when dealing with aerospace applications. In fact,

on one side aerospace markets require the highest reliability standards, thus impose the

use of strict MBD tools. On the other side, as aerospace applications operate at high

altitudes, their levels of radiation are much higher than at the earth’s surface. This makes

the applications more susceptible to radiation effects (BAUMANN, 2005).

This work has the purpose of analyzing the effects of code generation tools used in

safety-critical applications industries on the reliability of the generated codes. Four differ-

ent algorithms are considered. For each algorithm, the automatically generated code (with

Scade and Simulink) will be compared to the manually written code (C implementation).

To evaluate the sensitivity to transient fault of the different implementations of the codes

we use a software fault injector (CAROL-FI), designed at INF-UFRGS (OLIVEIRA;

PILLA et al., 2017a). We inject more than 40,000 faults across all algorithms and see that

the generated code from the Scade tool is 5% more susceptible to crashes and hangs, prob-

ably because the generated code utilizes pointers throughout most function calls. Both the

Scade and Simulink version are shown to be less susceptible to experience silent data cor-

ruptions with respect to the manually generated code (52% and 79%, respectively). We

also observe that the Simulink version of the algorithms, in particular, tends to mask the

majority of the injected faults.

15

2 BACKGROUND INFORMATION

2.1 DO-178

The DO-178, which has a title of "Software Considerations in Airborne Systems

and Equipment Certification", first developed by the ’80s, is considered a friendly stan-

dard that was written by technical personnel, which guides the development of airborne

software. The DO itself avoids telling software developers "how" to develop the software,

instead, it focuses on "what" is required to do so.

Overall, projects that follow the DO-178 must, first, classify their software accord-

ing to their criticality level (DAL). After the classification is made, the project’s managers

and developers must establish exactly which objectives must be satisfied for the software

that will be produced. In general, the DO-178 can be separated into three parts: Plan-

ning, development, and verification. Even though the development process comes after

the planning phase, the verification phase must be present throughout all the development

phases, as depicted in Figure 2.1.

Figure 2.1 – Overall development parts throughout DO-178 software development.

Planning

Development

Verification

Source: Image provided by author.

The planning process of the DO-178 consists of planning all the phases and defin-

ing plans and standards to be utilized throughout the development of the project. In this

phase, documents like the Plan for Software Aspects of Certification (PSAC), Software

Development Plan (SWDP), Software Verification Plan (SWVP), and other documents

16

Table 2.1 – Sample of DO-178 objectives with their corresponding DAL.

Objective Applicability by DAL

Source code complies with low-level requirements A,B,C

Source code complies with software architecture A,B,C

Source code is verifiable A,B

Source code conforms to standards A,B,C

Output of software integration process is complete and correct A,B,C

must be written. Each one has its key components and relevant actions to the project it-

self. Along with all the plans, standards like the Software Design Standard and Software

Coding Standard must be created also.

After all the planning phase is done, the project can start the development phase,

which comes with the verification phase as well. In this phase, all the software is devel-

oped, along with testing, verifications, and analysis. Within all three phases, according

to the DAL of the project, the project must accomplish the necessary objects that the DO

specifies (some of them are depicted in the Table 2.1).

So, overall, the DO-178 guides projects to be reliable and perform well in an air-

borne environment, requiring extensive documentation and the accomplishment of several

objects (up to 66 objects in DAL A projects).

2.2 Safety Critical Software Development

In the traditional development of safety critical embedded applications (depicted

in Figure 2.2), all the product life cycle is developed manually, with little help of modern

development tools. The manual development of software applications can be prone to

errors, since software developers can introduce bugs in the project/development phases,

such as in the source code development.

These errors could result in reworking some phases of the project, for example, in

the development of Low Level Requirements and source code. Hence, MBD tools, such

as Scade (SCADE. . . , 2021 (accessed January 7, 2021)) and Simulink (SIMULINK. . . ,

2021 (accessed January 7, 2021)), were introduced to allow companies and researchers to

design models that can be later translated to source code (ANICULAESEI; VORWALD;

RAUSCH, 2019). This translation is done with automatic code generators, as depicted in

Figure 2.3. The usage of models and automatic code generation can significantly facilitate

17

Figure 2.2 – Simplified required tracing between certification artifacts for DO-178B/C

Source: Image provided by author.

the development of the projects, since the traceability between artifacts (BOUALI; DION,

2005), prototyping and testing can be significantly reduced in time.

In particular, Scade is a certified tool and follows embedded code constrains such

as static memory allocation, the removal of recursion and static bounded loops. Scade

can therefore be adopted in projects that needs to follow DO-178B/C or other very strict

standards. Simulink, while not yet certified for projects that follow the DO-178B/C stan-

dards, is a tool that can be utilized to facilitate the development of the project, similarly

to Scade - modeling and generating source code. The source code then, can be manually

certified against the DO’s objectives by software developers.

2.3 Model-Based Design tools

Model-based design tools can help safety-critical projects to reduce their develop-

ment time, take credit from models as artifacts, test early and often and the most important

- generate automatic code. When utilizing automatic code generators, the source code that

is generated ends up being highly unfriendly for the programmer to read, since variables

are often re-used and have non-intuitive names. Also, the generated code usually has more

18

Figure 2.3 – Translation of a model to source code in Scade

Source: Image provided by author.

lines of code than the manual version, since the tools will add more logic to the generated

code. These characteristics are observed both in Scade and Simulink generated codes,

and occur even more as the complexity of the model increases. Figure 2.4 depicts a small

piece of code for the Inverse Fast Fourier Transform algorithm, automatically generated

by Scade. The variable tmp ends up being reused, as seen in lines number 8 and 22.

In general, each MBD tool has intrinsic and unique characteristics in its code

generator. When considering the generated code from the Scade, it is possible to see that

the tool generates a type-specific global variable that is utilized as a context for the whole

program. This variable, so-called the program’s context, holds information of all steps

of the entire algorithm, such as accumulators, indexes, and even some auxiliary variables

that are utilized in the program’s calculation. The context is also passed by as a pointer

throughout several function calls. Figure 2.5 depicts the generated code that defines the

type of the global context variable.

When considering the generated code from the Simulink tool, it is possible to

notice that the tool also utilizes global variables to hold information about the algorithm.

Simulink, however, can generate one or more of these variables, as depicted in Figure 2.6.

Each one of these variables is utilized in specific parts of the code, for example, holding

states of the algorithm and also signals that are utilized in sub-calculations.

19

Figure 2.4 – Scade automatic generated code example for a Inverse Fast Fourier Transform
algorithm.

17

1 .

2 .

3 f o r (i d x = 0 ; i d x < 9 ; i d x ++) {

4 / * _L55 =(numberOfBi t sNeeded # 3) / * /

5 numberOfBi tsNeeded (

6 / * _L55= * / (k c g _ u i n t 3 2) idx ,

7 numSamples ,

8 &tmp ,

9 &_2_noname [i d x]) ;

10 _L55 = / * _L55= * / (k c g _ u i n t 3 2) (i d x + 1) ;

11 / * _L55= * /

12 i f (! tmp) {

13 break ;

14 }

15 }

16 / * _L60= * /

17 f o r (i d x = 0 ; i d x < 512 ; i d x ++) {

18 kcg_copy_accumula to r Inpu t ImagAndRea l (&acc , &tmp1) ;

19 / * _L60 =(r e v e r s e B i t s # 1) / * /

20 r e v e r s e B i t s (/ * _L60= * / (k c g _ u i n t 3 2) idx , &acc , _L55 , &tmp1) ;

21 }

22 tmp = / * _L106 =(s e t R e a l V e c t o r # 1) / * /

23 s e t R e a l V e c t o r (&tmp1 . o u t p u t R e v e r s e d R e a l) ;

24 / * _L90= * /

25 i f (tmp) {

26 .

27 .

Source: Image provided by author.

2.3.1 Use Cases

As the benefits of MBD tools make them more and more attractive to companies,

several use cases have been broadly reported. Automotive companies 1 make use of Scade

tool to save development time, support long-standing software development, and guaran-

tee the necessary safety. Applications in the field of autonomous system developments 2

have also reported the use of MBD tools since end-to-end traceability can be achieved,

whilst being compliant with regulations.

1Companies can utilize MBD tools to achieve high speed and great quality software, automating its
development process: https://www.ansys.com/resource-center/article/taking-control-aa-v13-i3

2https://www.ansys.com/applications/autonomous-system-development

20

Figure 2.5 – Context variable type, automatically generated by Scade tool.

18

Listing 2.1 – Scade Automatic generated code example for a Inverse Fast Fourier Transform

algorithm.

1 / * ======================== c o n t e x t t y p e ========================= * /

2 t y p e d e f s t r u c t {

3 / * −−−−−−−−−−−−−−−−−−−−−−−−−−− o u t p u t s −−−−−−−−−−−−−−−−−−−−−−−−−−− * /

4 whi leLoopAccumula to r / * _L13 / , ou tAcc / * / outAcc ;

5 / * −−−−−−−−−−−−−−−−−−−−−−− no l o c a l p r ob es −−−−−−−−−−−−−−−−−−−−−−− * /

6 / * −−−−−−−−−−−−−−−−−−−−−−− no l o c a l memory −−−−−−−−−−−−−−−−−−−−−−− * /

7 / * −−−−−−−−−−−−−−−−−−−− no sub nodes ’ c o n t e x t s −−−−−−−−−−−−−−−−−−−− * /

8 / * −−−−−−−−−−−−−−−−− no c l o c k s o f o b s e r v a b l e da ta −−−−−−−−−−−−−−−−−− * /

9 } ou tC_mainOpera to r ;

2.4 Related Work

Recent works have shown that compilers can affect the vulnerability of codes

(J. GAVA V. BANDEIRA; OST, 2019), as they have their unique characteristics, and

can impact code reliability with optimization flags as well. Although the authors focus

on compiler effect in multi-core processors, the observed compiler effects on single core

processors are still relevant, even for our work, utilizing automatic code generators.

In addition, as this work focus on codes that will be executed in embedded pro-

cessors, previous works (F. M. LINS L. A. TAMBARA; RECH, 2017) have shown that

modern embedded processors also have impact on different compilers and optimization

flags as well, analyzing the AVF and different execution characteristics, such as time,

clock cycles and memory usage. Besides that, authors have also investigated (OLIVEIRA

et al., 2017) code reliability impact on high performance processors, such as the Intel

Xeon Phi, showing that even high performance processors, dedicated for parallel and

high-end tasks have an intrinsic vulnerability for different codes running on them.

Authors in (WALDE; LUCKNER, 2016) propose a method of translating

Simulink/Stateflow models into SCADE utilizing the Ansys SCADE Suite Simulink Im-

porter, however, the effect of transient faults is not taken into count on the resulted trans-

lation.

Authors in (KRIZAN et al., 2014) and (NETLAND; SKAVHAUG, 2013) have

shown, indeed, that Simulink and Matlab can be utilized for developing safety critical

applications and embedded platforms, although the authors don’t evaluate the code gen-

eration impact in the code reliability. We expect that the main modification to the code

Source: Image provided by author.

Figure 2.6 – Global variables generated by Simulink that hold information about specific parts of
the program.

18

Figure 2.4 – Context variable type, automatically generated by Scade tool.

18

Listing 2.1 – Scade Automatic generated code example for a Inverse Fast Fourier Transform

algorithm.

1 / * ======================== c o n t e x t t y p e ========================= * /

2 t y p e d e f s t r u c t {

3 / * −−−−−−−−−−−−−−−−−−−−−−−−−−− o u t p u t s −−−−−−−−−−−−−−−−−−−−−−−−−−− * /

4 whi leLoopAccumula to r / * _L13 / , ou tAcc / * / outAcc ;

5 / * −−−−−−−−−−−−−−−−−−−−−−− no l o c a l p r ob es −−−−−−−−−−−−−−−−−−−−−−− * /

6 / * −−−−−−−−−−−−−−−−−−−−−−− no l o c a l memory −−−−−−−−−−−−−−−−−−−−−−− * /

7 / * −−−−−−−−−−−−−−−−−−−− no sub nodes ’ c o n t e x t s −−−−−−−−−−−−−−−−−−−− * /

8 / * −−−−−−−−−−−−−−−−− no c l o c k s o f o b s e r v a b l e da ta −−−−−−−−−−−−−−−−−− * /

9 } ou tC_mainOpera to r ;

2.4 Related Work

Recent works have shown that compilers can affect the vulnerability of codes

(J. GAVA V. BANDEIRA; OST, 2019), as they have their unique characteristics, and

can impact code reliability with optimization flags as well. Although the authors focus

on compiler effect in multi-core processors, the observed compiler effects on single core

processors are still relevant, even for our work, utilizing automatic code generators.

In addition, as this work focus on codes that will be executed in embedded pro-

cessors, previous works (F. M. LINS L. A. TAMBARA; RECH, 2017) have shown that

modern embedded processors also have impact on different compilers and optimization

flags as well, analyzing the AVF and different execution characteristics, such as time,

clock cycles and memory usage. Besides that, authors have also investigated (OLIVEIRA

et al., 2017) code reliability impact on high performance processors, such as the Intel

Xeon Phi, showing that even high performance processors, dedicated for parallel and

high-end tasks have an intrinsic vulnerability for different codes running on them.

Authors in (WALDE; LUCKNER, 2016) propose a method of translating

Simulink/Stateflow models into SCADE utilizing the Ansys SCADE Suite Simulink Im-

porter, however, the effect of transient faults is not taken into count on the resulted trans-

lation.

Authors in (KRIZAN et al., 2014) and (NETLAND; SKAVHAUG, 2013) have

shown, indeed, that Simulink and Matlab can be utilized for developing safety critical

applications and embedded platforms, although the authors don’t evaluate the code gen-

eration impact in the code reliability. We expect that the main modification to the code

Source: Image provided by author.

When considering the generated code from the Simulink tool, it is possible to

notice that the tool also utilizes global variables to hold information about the algorithm.

Simulink, however, can generate one or more of these variables, which will be utilized in

specific parts of the code, for example, holding states of the algorithm and also signals

that are utilized in sub-calculations, as depicted in Figure ??

Listing 2.1 – aa.

1 / * B lock s t a t e s (au to s t o r a g e) f o r s y s t e m ’<S4 >/ For I t e r a t o r Subsys t em ’ * /

2 t y p e d e f s t r u c t {

3 r e a l _ T g o l d _ P r e v i o u s I n p u t ; / * ’<S21 >/ go ld ’ * /

4 } r t D W _ F o r I t e r a t o r S u b s y s t e m _ b a s i c ;

5

6 / * B lock s i g n a l s f o r s y s t e m ’<S4 >/ For I t e r a t o r Subsys t em ’ * /

7 t y p e d e f s t r u c t {

8 r e a l _ T Add ; / * ’<S21 >/ Add ’ * /

9 } r t B _ F o r I t e r a t o r S u b s y s t e m _ b a s i c M ;

2.4 Related Work

Recent works have shown that compilers can affect the vulnerability of codes

(J. GAVA V. BANDEIRA; OST, 2019), as they have their unique characteristics, and

can impact code reliability with optimization flags as well. Although the authors focus

on compiler effect in multi-core processors, the observed compiler effects on single core

processors are still relevant, even for our work, utilizing automatic code generators.

In addition, as this work focus on codes that will be executed in embedded pro-

cessors, previous works (F. M. LINS L. A. TAMBARA; RECH, 2017) have shown that

modern embedded processors also have impact on different compilers and optimization

Source: Image provided by author.

The aerospace industry can also benefit from its applications by utilizing MBD

tools 3, once they can generate automatic source code for logic and display applications.

Several healthcare studies have also reported the use of MBD tools such as Simulink,

where researchers can benefit from the outstanding simulation properties, once they can

analyze and monitor real-life sensitive data 4.

2.4 Transient Faults

Over the years, consumers’ desire for powerful electronics has made the industry

continuously increase the performance of computer electronics, as seen in Figure 2.7.

3Embraer utilizing Scade display tool to develop cockpit displays. Available at https://www.intelligent-
aerospace.com/avionics/article/16540151/embraer-selects-scade-arinc-661-solutions-from-esterel-for-
cockpit-display-development

4Human Brain Mapping study from University College of London, available at
https://nl.mathworks.com/company/newsletters/articles/using-machine-learning-to-predict-epileptic-
seizures-from-eeg-data.html

21

In the initial years, the performance of the processors was highly driven by technology,

where the increments in performance were about 25% per year. After the mid-’80s, the

great spike in performance gain can be related to architectural concepts, going up to 52%

per year. Beyond the so-called golden era, processors have been improving their perfor-

mance by about 22% per year, where power limits are observable in all processor projects.

Figure 2.7 – Growth in processor performance since the late 1970s.

1.1 Introduction ■ 3

Second, this dramatic improvement in cost-performance leads to new classes
of computers. Personal computers and workstations emerged in the 1980s with
the availability of the microprocessor. The last decade saw the rise of smart cell
phones and tablet computers, which many people are using as their primary com-
puting platforms instead of PCs. These mobile client devices are increasingly
using the Internet to access warehouses containing tens of thousands of servers,
which are being designed as if they were a single gigantic computer.

Third, continuing improvement of semiconductor manufacturing as pre-
dicted by Moore’s law has led to the dominance of microprocessor-based com-
puters across the entire range of computer design. Minicomputers, which were

Figure 1.1 Growth in processor performance since the late 1970s. This chart plots performance relative to the VAX
11/780 as measured by the SPEC benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance
growth was largely technology driven and averaged about 25% per year. The increase in growth to about 52% since
then is attributable to more advanced architectural and organizational ideas. By 2003, this growth led to a difference
in performance of about a factor of 25 versus if we had continued at the 25% rate. Performance for floating-point-ori-
ented calculations has increased even faster. Since 2003, the limits of power and available instruction-level parallel-
ism have slowed uniprocessor performance, to no more than 22% per year, or about 5 times slower than had we
continued at 52% per year. (The fastest SPEC performance since 2007 has had automatic parallelization turned on
with increasing number of cores per chip each year, so uniprocessor speed is harder to gauge. These results are lim-
ited to single-socket systems to reduce the impact of automatic parallelization.) Figure 1.11 on page 24 shows the
improvement in clock rates for these same three eras. Since SPEC has changed over the years, performance of newer
machines is estimated by a scaling factor that relates the performance for two different versions of SPEC (e.g.,
SPEC89, SPEC92, SPEC95, SPEC2000, and SPEC2006).

1

5

9

13
18

24

51

80

117

183

280

481
649

993
1,267

1,779
3,016

4,195
6,043 6,681

7,108

11,865
14,387

19,484
21,871

24,129

1

10

100

1000

10,000

100,000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

P
er

fo
rm

an
ce

 (
vs

. V
A

X
-1

1/
78

0)

25%/year

52%/year

22%/year

 IBM POWERstation 100, 150 MHz

Digital Alphastation 4/266, 266 MHz

Digital Alphastation 5/300, 300 MHz

Digital Alphastation 5/500, 500 MHz
AlphaServer 4000 5/600, 600 MHz 21164

Digital AlphaServer 8400 6/575, 575 MHz 21264
Professional Workstation XP1000, 667 MHz 21264A
Intel VC820 motherboard, 1.0 GHz Pentium III processor

 IBM Power4, 1.3 GHz

 Intel Xeon EE 3.2 GHz
 AMD Athlon, 2.6 GHz

 Intel Core 2 Extreme 2 cores, 2.9 GHz
 Intel Core Duo Extreme 2 cores, 3.0 GHz

 Intel Core i7 Extreme 4 cores 3.2 GHz (boost to 3.5 GHz)
 Intel Xeon 4 cores, 3.3 GHz (boost to 3.6 GHz)

 Intel Xeon 6 cores, 3.3 GHz (boost to 3.6 GHz)

Intel D850EMVR motherboard (3.06 GHz, Pentium 4 processor with Hyper-Threading Technology)

1.5, VAX-11/785

 AMD Athlon 64, 2.8 GHz

Digital 3000 AXP/500, 150 MHz

HP 9000/750, 66 MHz

IBM RS6000/540, 30 MHz
MIPS M2000, 25 MHz

MIPS M/120, 16.7 MHz

Sun-4/260, 16.7 MHz

VAX 8700, 22 MHz

AX-11/780, 5 MHz

Source: (HENNESSY; PATTERSON, 2011)

Along with the desire for performance, processors have been reducing their power

consumption, increasing the transistor density inside them (MOORE, 1965) and also de-

creasing the transistor’s feature size. The feature size is defined as the minimum length

of the gate, between the transistors source and drain, as depicted in Figure 2.11. The

decrease in the feature size of transistors allows more transistors to be placed in chips,

granting more performance. However, their shrinking can be dangerous, as the necessary

energy to make a transistor switch its state and generate a current is reduced.

As the size of computer electronics is reduced more and more to match these

ambitious performances and power consumption standards, their sensitivity to radiation

increases, as the reversed-biased junction is a sensitive part of circuits and can be easily

disturbed by an ionizing radiation event (BAUMANN, 2005). High energetic ions can

can pass through the transistor, forming a high concentration of carriers. Then, when the

22

Figure 2.8 – Cosmic ray differential neutron flux as a function of neutron energy at sea level.
Adapted from (ZIEGLER; LANFORD, 1980).

308 IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 5, NO. 3, SEPTEMBER 2005

Fig. 4. Cosmic ray differential neutron flux as a function of neutron energy at
sea level. Adapted from [13].

they contributed < 0.001 α/h cm2, the fraction of soft errors
from alpha particles would fall to less than 20% in most
cases (based on accelerated testing and simulation results). At
this point, further emission reduction becomes prohibitively
expensive while providing diminishing returns since the SER
is dominated by cosmic background radiation.

C. High-Energy Cosmic Rays

The second significant source of SER is related to cosmic
ray events. Primary cosmic rays are thought to be of galactic
origin. They react with the Earth’s atmosphere via the strong
interaction and produce complex cascades of secondary par-
ticles. These in turn continue on deeper into the atmosphere,
creating tertiary particle cascades, and so on. At terrestrial
altitudes (as opposed to flight or satellite altitudes), less than
1% of the primary flux reaches the sea level where the flux
is isotropic and composed of muons, protons, neutrons, and
pions [13]. Neutrons are one of the higher flux components,
and since neutron reactions have higher LETs, they are the most
likely cosmic radiation to cause upsets in devices at terrestrial
altitudes (assuming 10B and alpha emitting impurities have
been minimized). The “accepted” cosmic differential neutron
flux at sea level is shown in Fig. 4. This curve defines how
many neutrons over the given energy range are incident on a
device at sea level. Recent work has been published improving
the accuracy of this data [14], [15]. The neutron flux is strongly
dependent on altitude with the intensity of the cosmic ray
neutron flux increasing with increasing altitude. For example,
in going from sea level to 10 000 ft, the cosmic ray flux
increases 10× (this trend starts to saturate at about 50 000 ft.).
Hence, altitude can have a significant impact on a customer’s
perceived SER. Due to proton shielding effects induced by
interactions with the Earth’s magnetic field, the neutron flux
is also dependent on magnetic rigidity—on geographical loca-
tion (this effect is less pronounced than the variation due to
altitude). A clear and comprehensive assessment of terrestrial
cosmic radiation as a function of altitude and location has been
published [16], [17].

TABLE I
REACTION PRODUCTS AND THRESHOLD ENERGIES

FOR n + 28Si REACTIONS

Fig. 5. Burst generation rate (per cubic micrometer hour) versus neutron
energy for various burst energies. Note that the probability of a burst event
drops as the burst energy increases—larger higher-energy bursts are rarer than
smaller low-energy bursts. Adapted from [22].

Since neutrons themselves do not directly generate ionization
in silicon, the neutron flux alone does not define the cosmic
component of SER. Neutrons interact with chip materials elasti-
cally and inelastically. Inelastic reactions typically end with the
excited nucleus breaking into lighter fragments. The reaction
cross sections for both elastic and inelastic reactions decrease
rapidly with increasing neutron energy (generally following a
1/E dependence). Nuclear physics simulations have been used
to calculate the distributions in energy of reaction products
generated as a function of incident neutron energy [18], [19].
Table I summarizes some of the reactions that occur when a
neutron interacts with a silicon nucleus.

When the silicon nucleus fragments in these inelastic reac-
tions, the resultant products are a lighter ion with additional
particles (neutrons, protons, and/or alpha particles). Kinetic
energy is shared among the particles and momentum is con-
served so the particles tend to be emitted in opposing directions,
such that only one reaction product will cause the soft error
[20]. Note that as the energy of the incident neutron gets higher,
the number of reaction pathways increases. Similar reactions
also occur with neutrons and oxygen, and since SiO2 is in
close proximity to the active junction areas, these reactions
can also contribute to the overall SER [21]. Some simula-
tion results are shown in Fig. 5, illustrating the charge burst
generation rate in silicon as a function of different neutron
energies and burst energies [22]. The probability of higher
energy bursts increases with increasing neutron energy. More

Source: (BAUMANN, 2005)

ionization travels back to the depletion region, those formed carriers are gathered by the

resulting electric field, creating a current spike at the observed node.

When these radiation events occur, a current spike can happen, as depicted in

Figure 2.9. So, as transistors work like a switch, this resulting current spike can change

the transistors’ internal state, thus generating unwanted behaviors.

Figure 2.9 – Charge generation and collection phases in a reverse-biased junction and the
resultant current pulse caused by the passage of a high-energy ion.

BAUMANN: RADIATION-INDUCED SOFT ERRORS IN ADVANCED SEMICONDUCTOR TECHNOLOGIES 307

Fig. 2. Charge generation and collection phases in a reverse-biased junction and the resultant current pulse caused by the passage of a high-energy ion.

Fig. 3. Alpha energy spectrum obtained from a thick foil of solid Th-232.
Note that the discrete alpha particle emission energies are broadened due
to energy lost in travelling different (random) distances before reaching the
surface and being detected.

before being “stopped” by the material. The distance required to
stop an alpha particle (its range) is both a function of its energy
and the properties of the material (primarily the material’s
density) in which it is traveling. In silicon, the range for a
10-MeV alpha particle is < 100 µm. Thus, alpha particles from
outside the packaged device are clearly not a concern—only
alpha particles emitted by the device materials and packaging
materials need be considered. The energy spectrum of alpha
particles emitted from the surface of a thick sample of 232Th
(the spectrum from 238U is similar in that the bulk of the
emission is in the 4–6 MeV range) is shown in Fig. 3. This
broad energy spectrum is characteristic of the alpha particle flux
in packaged ICs as the discrete emission energies are “smeared-
out” since alpha emitters are generally uniformly distributed in
the different materials.

Since virtually all semiconductor materials are highly puri-
fied, the alpha emitting impurities will generally not be in equi-
librium. Alpha counting must be used to determine the alpha
emission since the exact nature of parent/daughter distributions
is seldom known. In other words, a low concentration of ura-

nium and thorium impurities is a necessary requirement for low
alpha emission but not sufficient. In nonequilibrium situations,
higher activity daughters may be present that greatly increase
the alpha emission rate. This situation was highlighted during
investigations into eutectic lead solders (for flip-chip bumps)
in which all radioactive impurities had been eliminated except
the radioactive 210Pb that was chemically inseparable from the
206208Pb. Since 210Pb does not emit an alpha particle when it
decays, initial alpha counting measurements revealed the solder
to be emitting alpha particles at extremely low levels. With
the relatively short half-life of 210Pb, a regrowth of the alpha
emitter 212Po (from the decay of 210Pb ⇒ 210Bi ⇒ 210Po)
occurred and within a few months the solder alpha emission
was 10× higher than initial measurements indicated.

There are two fundamental approaches to reducing the SER
from alpha particles in ICs: purification of all production ma-
terials in close proximity to the IC, and methods that reduce
the probability that alpha particles emitted from materials will
reach the sensitive devices. Material and IC vendors are always
scrutinizing their processes and raw materials to eliminate
the major causes of contamination. As a result, most of the
IC and packaging materials went from emitting alpha parti-
cles at rates as high as 100 α/h cm2 down to levels below
0.001 α/h cm2. As a prerequisite that a material be ultra low
alpha (ULA implies emission at or below 0.002 α/h cm2), the
238U and 232Th impurity content must be below about one part
per 10 billion. Again, this is not a guarantee that the material
will meet the ULA emission specification since higher activity
daughters may regrow. To ensure that the alpha emission rate is
a low-enough measurement of the alpha particles emitted, direct
alpha counting techniques must be employed. In lead-based
solders, this is especially true, where chemical separation will
leave known radioactive daughter products, samples should be
measured several times over several months to ensure that there
is no significant ingrowth of alpha-emitting daughter products
that would increase the material’s alpha particle emission. One
of the challenges of advanced technologies is verifying that
all materials meet or exceed the ULA specification. In the
majority of CMOS devices, if semiconductor manufacturing
and packaging materials could be purified such that together

Source: (BAUMANN, 2005)

As electronic devices are exposed to the atmospheric environment at sea level and

even higher levels (in the case of airborne applications), they can be affected by radiation

effects depending on the altitude. Figure 2.8 illustrates the amount of neutrons over the

23

energy range that are incident at the sea level. One of the greatest sources of radiation on

the earth is high-energy cosmic rays. These high-energy cosmic rays have a galactic ori-

gin, and react with the earth’s atmosphere, creating lots of secondary particles, as depicted

in Figure 2.10. Consequently, as devices are often exposed to highly energetic particles,

caused by these interactions, particles can deposit or induce enough charge, interacting

with the transistor’s silicon active area to generate a current spike (BAUMANN, 2005),

(GOLDHAGEN, 2003).

Figure 2.10 – Showers of cosmic ray reactions with particles of the atmosphere.

Source: (GOMEZ TORO, 2014).

If the spike is latched, a Single Event Transients (SETs) occurs. The SET can

corrupt the output of an operation or it can switch the logical value of bits inside memory,

inducing a bit(s) flip. If propagated to the software visible state or the application output,

these faults can either manifest as a Silent Data Corruption (SDC), i.e. the application

finishes but its result is wrong, or a Detected Unrecoverable Error (DUE), i.e. a system

crash or reboot. Otherwise, the fault is masked, without any observable effect in the code

execution.

24

Figure 2.11 – Gate-channel capacitances in a MOSFET.

MOSFET Modelling 27

defined by calculating the rate of change of the charge with a given voltage. Using the gate charge
the appropriate derivatives for and are

where and are the drain and source voltages, respectively, as measured with respect to the
gate; a similar relation can be written for These relations demonstrate that both depend upon
the assumed nature of the channel, which is found to be much more complicated than in the simple
models used here.

Analyzing the behavior of the three capacitors yields results that are similar to those shown in
Figure 1.28. This portrays the values as normalized to the total gate capacitance as functions of
the operational regions of the MOSFET through The major contributions can be estimated
for each region as follows:

subject to variations throughout the regions. Circuit simulation programs are capable of accounting
for the nonlinear functional dependences. For the purposes of hand estimates in circuit design,
however, we prefer to use simple linear approximations that will still provide some insight into the
performance of the circuit. The easiest to use and remember are obtained by just splitting the total
gate capacitance in half to write

i.e., the gate capacitance is viewed as being equally split between the drain and source. The gate-
bulk capacitance appears as the total gate capacitance where it is used as the total input value.

Cutoff:

Saturation:

Non-saturation: and

Source: (UYEMURA, 1999)

2.5 Related Work

Recent works have shown that compilers can affect the vulnerability of codes

(J. GAVA V. BANDEIRA; OST, 2019), as they have their unique characteristics, and

can impact code reliability with optimization flags as well. Although the authors focus

on compiler effect in multi-core processors, the observed compiler effects on single core

processors are still relevant, even for our work, utilizing automatic code generators.

In addition, as this work focus on codes that will be executed in embedded pro-

cessors, previous works (F. M. LINS L. A. TAMBARA; RECH, 2017) have shown

that modern embedded processors also have impact on different compilers and optimiza-

tion flags as well, analyzing the AVF and different execution characteristics, such as time,

clock cycles and memory usage. Besides that, authors have also investigated (OLIVEIRA;

PILLA et al., 2017a) code reliability impact on high performance processors, such as the

Intel Xeon Phi, showing that even high performance processors, dedicated for parallel and

high-end tasks have an intrinsic vulnerability for different codes running on them.

Authors in (WALDE; LUCKNER, 2016) propose a method of translating

Simulink/Stateflow models into Scade utilizing the Ansys Scade Suite Simulink Importer,

however, the effect of transient faults is not taken into count on the resulted translation.

Authors in (KRIZAN et al., 2014) and (NETLAND; SKAVHAUG, 2013) have

shown, indeed, that Simulink and Matlab can be utilized for developing safety critical

applications and embedded platforms, although the authors don’t evaluate the code gen-

eration impact in the code reliability. It is expected that the main modification to the code

25

imposed by Simulink and Scade, can have a significant impact on the resulting code soft

error rate.

26

3 PROPOSAL

This chapter will detail the motivations for this work, the details of the codes

selected for the evaluation, their different implementations, and will describe the selected

software fault injector.

3.1 Motivation

MBD tools can offer good alternatives to reduce the bureaucracy and help through-

out several software development phases, as they can reduce the extensive documentation

demanded by guidelines (such as the DO-178). These tools can also aid in the testing, pro-

totyping, and especially generating automatic embedded code. Even though MBD tools

can offer a wide aspect of benefits regarding the documentation process and code gen-

eration, their generation of code can significantly modify the overall code in the project.

The goal of this work is to investigate if these modifications in the generated code are

beneficial or not when considering transient faults.

3.2 Algorithms and different versions

To analyze the impact of transient faults in the generated code, we consider

four different algorithms implemented in three different versions (manual, Scade, and

Simulink).

3.2.1 Algorithms

Four different algorithms, with different computing characteristics, are selected

for the fault analysis. During fault-injection we repeat the execution of each code sev-

eral times. Each algorithm has the same number of iterations across its different versions

(manual, Scade, and Simulink). This is necessary to increase the execution time, allow-

ing a more accurate measure of the impact of the injected faults by the fault injector

tool. As real-world codes are not publicly available (because of industry restrictions), we

choose algorithms that have computational characteristics that resemble real algorithms

that would be present in a safety-critical application. The selected algorithms are:

27

• Inverse Fast Fourier Transform (IFFT): The Fast Fourier transform (FFT) algo-

rithm computes the discrete Fourier transform of a given sequence, or its inverse.

Particularly, for this work, we chose to perform the Inverse Fast Fourier transform

(IFFT). This algorithm is chosen due to its application in Filtering Algorithms, that

are highly present in embedded systems. In particular, the Simulink IFFT version

is built with modeling blocks and also MATLAB pieces of code that are embedded

in Simulink, in order to facilitate the implementation of the algorithm. The input

for the IFFT consists in two sequences of 512 single precision floating-point values

of 32 bits, statically allocated.

• Matrix Multiplication (MxM): The Matrix Multiplication algorithm is commonly

used in benchmarks due to its memory bound aspect, which can suffer from several

cache misses when large matrices are used. This algorithm is chosen for this paper

due to its common utilization in embedded systems. The matrix multiplication

algorithm is usually utilized to represent large amounts of data, such as tables with

pre-determined values and coordinates. Four 32x32 statically allocated matrices

of double-precision floating-point elements (64bits) are utilized as inputs for this

algorithm. The matrices are multiplied, two by two, and then their results are also

multiplied, forming the final matrix.

• Basic Math: The Basic Math algorithm computes several angle conversions (from

degrees to radians and vice-versa), cubic equations, and integer square roots. This

algorithm is chosen due to its presence in embedded systems, where angle conver-

sions are extremely frequent, so as equations. The inputs for this algorithm consist

of basic angle conversions and predefined cubic polynomial equations to be solved.

• Quicksort: The Quicksort algorithm is commonly utilized in overall software due

to its efficient computation when ordering vectors. The inputs for this algorithm

consist of the ordering of 5000 statically allocated 32-bit integers, disposed of in

descending order. Due to restrictions of the utilization of recursion in embedded

software, the Quicksort implementation is made with an iterative approach.

3.2.2 Versions

Each presented code is implemented in three different versions, within the same

inputs and and generated outputs:

28

• Manual written: The manual version is the most common way of writing source

code. A Software Developer manually writes source code, with the implemen-

tations that she/he may find appropriate. It is important to notice that, with this

method of writing the code, one can introduce unwanted errors, due to the manual

writing. For this paper, all algorithms manual implementations are taken from the

universally adopted benchmarks suites Polybench (THE. . . , 2021) and MiBench

(MIBENCH. . . , 2021).

• Simulink Generated: The second version consists of the implementation and de-

sign of each algorithm, utilizing the Simulink modeling tool. After the implemen-

tation is ready, the resulting model automatically generates the code. Although

Simulink is not a certified tool, it is broadly used to design and prototype soft-

ware and hardware projects, and it can even be utilized to generate automatic code

for critical applications, yet not replacing some of the verification needed (as Scade

does). Simulink code was generated utilizing Simulink Coder version 8.3 (R2012b)

version.

• Scade Generated: The last version consists in the implementation of each al-

gorithm with automatic generated source code from the certified tool Scade, in

the 2021 R1 student version, with the KCG Code Generator, developed by AN-

SYS (ANSYS. . . , 2021 (accessed January 7, 2021)). First, the representative mod-

els of each algorithm are designed, and then, the code will be generated. Scade Suite

is mainly utilized to design critical software, such as flight control, engine control,

and automatic pilot systems. Scade drastically reduces the certification costs of a

project, by simplifying the design and automating the code generation and verifica-

tion. The Scade code generator (KCG) is qualified to be utilized with the DO-178B

level A, since the tool was also certified according to the DAL A objectives.

3.3 CAROL-FI Fault injector

In order to assess the program’s reliability, this work adopts a fault injector named

CAROL-FI(OLIVEIRA; FRATTIN et al., 2017), publicly available in (CAROL-FI. . . ,

2018 (accessed January 7, 2021)). The injector is built on top of GNU GDB and performs

bit-flips on the memory of an executing program. The injector loads the program’s sym-

bols in debug version and utilizes the symbols to identify each allocated memory segment

29

of the program.

As a result of the compiling of the programs in debug mode, we are not able to

introduce code optimizations, however, this is not a problem since safety-critical applica-

tions usually don’t utilize compiler optimizations on the embedded code.

CAROL-FI’s process of injecting a fault in any given program is simple and con-

sists of two scripts. The first script is utilized for monitoring the program execution and

identifying whether the program surpassed a user-defined time limit, for example. At

any given time, the program can be interrupted, and the second script randomly chooses

variables to perform bit-flips, according to four pre-defined modes. The models are:

• Single: flips only a random bit from the selected variable

• Double: flips two random bits from the selected variable

• Random: flips every bit by a random value from the selected variable

• Zero: all bits of the variable are set to zero

The utilized fault injector does not differentiate between logic and memory errors,

as we inject faults in allocated memory, considering transient errors that could propa-

gate from transistors to a memory value. These transient faults can include errors that

originated from the lowest architectural level (caches, registers, flip-flops) to the highest

(memory variables). So, for the purpose of this work, we utilize the random mode for

all injections. The Random mode is the more suitable to simulate the effect of faults

occurring in the computation that updates a variable (OLIVEIRA; PILLA et al., 2017b).

We inject more than 3,500 transient fault in each selected code in its corresponding

version. That is, more than 40,000 faults were injected. After the injection of the fault is

completed, we identify the effect of the fault in: DUE, SDC, and Masked. The Masked

category identifies that the injected fault had no impact on the code. Then, we compare

the Program Vulnerability Factor (PVF) (SRIDHARAN; KAELI, 2009) of the different

codes and implementations. The PVF is the probability for a fault affecting a software

visible state to propagate to the output.

30

4 EXPERIMENTS

This section has the purpose of analyzing the different results for each algorithm,

at each compiled version, using the proposed methodology described in Section 3.

4.0.1 Silent Data Corruption

Figures 4.1, 4.2, 4.3, and 4.4 show the PVF of SDCs, DUEs and Masked for

all the algorithms. In general, the manual version of all algorithms shows the highest

number of SDCs, up to 56.37% of the injected faults in the Basic Math algorithm. The

higher PVF for SDCs in the manual version of algorithms is given by the structure of the

code itself. Manual codes tend to not re-utilize variables, whereas Simulink and Scade

code generators utilize a greater amount of variable re-use. The variable re-use impacts

the code reliability, since one fault will be masked if the affected (obsolete) variable is

overwritten.

The smaller SDCs PVF in the Simulink version compared to the other implemen-

tations for each algorithm is justified by the higher amount of variables that are generated

in the code (see Table 4.2). Most of those variables are generated to be utilized in calcu-

lations, such as additions and divisions. As these variables are re-utilized in different cal-

culations and, then, are overridden, faults occurring after a read operation and before the

next calculation are masked. Additionally, the code generated by the Simulink tool tends

to utilize variables that represent signals and states for accumulators inside loops, that are

also overridden as the program executes. Our results show this effect when observing the

Matrix Multiplication algorithm, that heavily utilizes loops, but have a lower number of

generated variables. In addition, the Quicksort algorithm presents a greater number of

masked and also a reduced number of SDCs in the Scade version. As the quicksort algo-

rithm consists of swapping elements, finding positions, and iterating through the vector

of elements, its generated code remains similar throughout the three versions - as swap-

ping of the elements and index variables are commonly structured the same. However, in

the Scade version, conditional statements and variables utilized inside them happen to be

re-utilized - resulting in a higher number of masked results.

31

Figure 4.1 – PVF for the Inverse Fast Fourier Transform algorithm.

4.0.2 Detected Unrecoverable Errors

When analyzing the PVF of DUEs, the Scade version of all algorithms presents the

highest amount of crashes and hangs, up to 36.04% higher when compared to the Basic

Math algorithm, as seen in Figure 4.4. The high amount of DUEs in the Scade version

of the algorithm is justified by the higher amount of loop index variables and the overall

program context that are generated by the tool with respect to the other implementations,

as seen in Figure 2.3. Faults in these variables and context stuck the program, leading to

DUEs.

The program context is a type-specific global variable automatically generated that

holds information of all steps of the entire algorithm, such as accumulators, indexes and

even some auxiliary variables that are utilized in the program’s calculation. The context is

also passed-by as a pointer throughout several function calls. Faults that affect the context

memory address can cause severe harm to the program’s execution, since they can corrupt

a memory addresses that hold a lot of information. We also observe that some variables

in the code have a higher PVF than others. For example, the context variable present in

the Inverse Fast Fourier Transform generated code has a PVF of around 75%, while the

variable _L64_blockEndIterator_1_then_IfBlock1 that stores the result of comparisons

has the PVF of around 25%, as depicted in Table 4.1.

Finally, it is interesting to notice that, while exacerbating the PVF for DUEs, the

Scade version presents 52.46% less SDCs, on the average, when comparing to the man-

ual version. The use of Scade in safety-critical applications, then, should be carefully

32

Figure 4.2 – PVF for the Quicksort algorithm.

Table 4.1 – Variable name and PVF for variables that caused DUEs in IFFT Algorithm.

Variable Name PVF (%)

numSamples 96.34

outC 74.60

idx 38.02

_L64_blockEndIterator_1_then_IfBlock1 25.0

accumulator 30.76

accSecondBlockSizeIterator 8.33

engineered. The higher amount of DUE might not jeopardize the system reliability, once

watchdog or other mechanisms are employed to deal with detected events. If such mech-

anisms are adopted, Scade might be a good solution, as it reduces SDCs, that, being

undetectable, are much more harmful.

4.0.3 Execution time and Number of Variables

When looking at Table 4.2, we can notice that the execution time and number of

variables of each version are very different, since each code generator is built in a different

manner. The number of variables is composed of all local and global statically allocated

variables that are present in the code. In particular, the execution time increases from the

manual to the Scade version.

33

Figure 4.3 – PVF for the Matrix multiplication algorithm.

Observing the execution time for the Inverse FFT algorithm, we see that the Scade

version takes longer since the generated code is much denser. Even though the Scade

version takes the longest, results show a decrease in the probabilities of SDCs to occur,

when comparing to the manual version. It is worth noting that our data reports the PVF,

i.e., the probability for a fault to propagate to the output and generate an SDC or DUE.

No information is given, as in any fault injection experiments, on the probability for the

fault to occur. Such a probability can indeed be higher for codes with longer execution

time (there is more time for particles to hit the device). As a result, the execution time

increase might have a not negligible impact on the error rate of Scade and Simulink. In

the future we will measure such an impact with beam experiments.

In general, applications that require lots of logic and calculations, such as IFFT

and BasicMath, for example, are more likely to have an increased amount of variables

utilized in the generated code. These applications also have an increase in the execution

time, since the overall generated code and the required model-based logic are much more

complex then the manual version.

It is worth noting that, for applications that require a simpler logic, as is the case

of Matrix Multiplication algorithm, the use of pre-defined operators that are available in

the design tools is possible and results in a quicker and cleaner generated code.

In particular, the Scade version of the Matrix Multiplication algorithm is faster

than the manual version. Analyzing the generated code, we see that the specialized oper-

ators inside the tool are highly efficient. These operators make use of pointers so they can

avoid variables copies throughout function calls, yet these pointers are dangerous when

34

Figure 4.4 – PVF for the Basic Math algorithm.

bit flips change their memory values.

35

Table 4.2 – Execution time, SDC PVF, DUE PVF and number of variables for different
configurations.

Algorithm Version Variable # Exe. Time
(s)

PVF SDC
(%)

PVF DUE
(%)

Manual 36 4.92 34.6 15.02

Inverse
FFT Simulink 61 6.59 10.08 3.62

Scade 43 24.88 26.71 14.15

Manual 26 5.736 39.74 26.94

Matrix
Multiplica-

tion
Simulink 15 5.565 6.48 9.94

Scade 22 4.576 25.00 29.00

Manual 24 5.203 56.37 10.11

Basic
Math Simulink 100 5.822 6.71 4.54

Scade 28 8.68 21.60 36.40

Manual 13 2.62 19.71 27.37

Quicksort Simulink 21 8.07 19.46 19.71

Scade 31 3.98 8.86 17.8

36

5 CONCLUSION

This work investigated and discussed the impact on the reliability of codes gen-

erated in Scade and Simulink with respect to the manual, classical, implementation. We

considered four different algorithms, with unique characteristics and complexity.

We observe that the generated code structure has a great impact on both the SDC

and DUE rates, in all four algorithms. We also noticed some side effects regarding the

utilization of MBD tools. The generated code has more variables and can also have more

complex logic, whereas the manual code is cleaner - yet has a higher SDC rate.

Scade presents the greatest amount of DUEs among the three versions. This high

amount of DUEs are related to Scade’s code generator utilizing a global variable that

holds most of the variables utilized throughout all the code - the program’s context.

Even though a high amount of DUEs is observed in the Scade generated code, a

significant decrease in the amount of SDCs is noticed. Since the tool is often utilized in

safety-critical applications and our results show that the effect of transient faults in the

generated code is minimized, the Scade tool is a promising tool to be utilized, since the

project can take advantage of all certification aspects of the tool, and generate a more

reliable code.

When looking at the relation of the execution time, the number of variables, and

the associated reliability, we can see that the associated complexity of the algorithm to

be utilized in each tool must be taken into account since utilizing an automatic code

generator tool can bring extra costs, such as a slower execution time. Also, these code

generator tools offer the programmer highly optimized built-in operators, yet they can

make it difficult to elaborate complex logic, such as more elaborated algorithms.

In the future, we plan to see if the observed impact on the reliability of the use of

Model-based Design frameworks holds also for different architectures and we also would

like to expose these implementations to a neutron beam to measure the actual FIT rate

dependence.

37

REFERENCES

SC-205 RTCA. Software Considerations in Airborne Systems and Equipment
Certification. In.

ANICULAESEI, A.; VORWALD, A.; RAUSCH, A. Using the SCADE Toolchain to
Generate Requirements-Based Test Cases for an Adaptive Cruise Control System. In.
2019 ACM/IEEE 22nd International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C). [S. l.: s. n.], 2019. p. 503–513. DOI:
10.1109/MODELS-C.2019.00079.

ANSYS. [S. l.], 2021 (accessed January 7, 2021). Disponível em:
https://www.ansys.com/.

BAUMANN, R. C. Radiation-induced soft errors in advanced semiconductor
technologies. IEEE Transactions on Device and Materials Reliability, v. 5, n. 3,
p. 305–316, 2005. DOI: 10.1109/TDMR.2005.853449.

BOUALI, Amar; DION, Bernard. Formal Verification for Model-Based Development,
abr. 2005. DOI: 10.4271/2005-01-0781.

CAROL-FI Fault Injector. [S. l.], 2018 (accessed January 7, 2021). Disponível em:
https://github.com/UFRGS-CAROL/carol-fi.

F. M. LINS L. A. TAMBARA, F. L. Kastensmidt; RECH, P. Compiler Optimization
Effects on Embedded Microprocessor Reliability. IEEE Transactions on Nuclear
Science, IEE, 2017.

GOLDHAGEN, Paul. Cosmic-Ray Neutrons on the Ground and in the Atmosphere.
MRS Bulletin, Cambridge University Press, v. 28, n. 2, p. 131–135, 2003. DOI:
10.1557/mrs2003.41.

GOMEZ TORO, Daniel. Temporal Filtering with Soft Error Detection and
Correction Technique for Radiation Hardening Based on a C-element and BICS.
Dez. 2014. Tese (Doutorado).

HENNESSY, John L.; PATTERSON, David A. Computer Architecture, Fifth Edition:
A Quantitative Approach. 5th. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2011. ISBN 012383872X.

J. GAVA V. BANDEIRA, R. Reis; OST, L. Evaluation of Compilers Effects on OpenMP
Soft Error Resiliency. 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), IEE, 2019.

https://doi.org/10.1109/MODELS-C.2019.00079
https://www.ansys.com/
https://doi.org/10.1109/TDMR.2005.853449
https://doi.org/10.4271/2005-01-0781
https://github.com/UFRGS-CAROL/carol-fi
https://doi.org/10.1557/mrs2003.41

38

KRIZAN, J. et al. Automatic code generation from Matlab/Simulink for critical
applications. In. 2014 IEEE 27th Canadian Conference on Electrical and Computer
Engineering (CCECE). [S. l.: s. n.], 2014. p. 1–6. DOI:
10.1109/CCECE.2014.6901058.

MIBENCH. [S. l.], 2021. Disponível em:
http://vhosts.eecs.umich.edu/mibench/.

MOORE, Gordon E. Cramming more components onto integrated circuits. Electronics,
v. 38, n. 8, abr. 1965.

NETLAND, Ø.; SKAVHAUG, A. Software Module Real-Time Target: Improving
Development of Embedded Control System by Including Simulink Generated Code Into
Existing Code. In. 2013 39th Euromicro Conference on Software Engineering and
Advanced Applications. [S. l.: s. n.], 2013. p. 232–235. DOI:
10.1109/SEAA.2013.51.

OLIVEIRA, Daniel; FRATTIN, Vinicius et al. CAROL-FI: An Efficient Fault-Injection
Tool for Vulnerability Evaluation of Modern HPC Parallel Accelerators. In.
PROCEEDINGS of the Computing Frontiers Conference. Siena, Italy: Association for
Computing Machinery, 2017. (CF’17), p. 295–298. ISBN 9781450344876. DOI:
10.1145/3075564.3075598. Disponível em:
https://doi.org/10.1145/3075564.3075598.

OLIVEIRA, Daniel; PILLA, Laércio et al. Experimental and Analytical Study of Xeon
Phi Reliability. In. PROCEEDINGS of the International Conference for High
Performance Computing, Networking, Storage and Analysis. Denver, Colorado:
Association for Computing Machinery, 2017. (SC ’17). ISBN 9781450351140. DOI:
10.1145/3126908.3126960. Disponível em:
https://doi.org/10.1145/3126908.3126960.

OLIVEIRA, Daniel; PILLA, Laércio et al. Experimental and Analytical Study of Xeon
Phi Reliability. In. PROCEEDINGS of the International Conference for High
Performance Computing, Networking, Storage and Analysis. Denver, Colorado:
Association for Computing Machinery, 2017. (SC ’17). ISBN 9781450351140. DOI:
10.1145/3126908.3126960. Disponível em:
https://doi.org/10.1145/3126908.3126960.

SCADE Suite. [S. l.], 2021 (accessed January 7, 2021). Disponível em:
https://www.ansys.com/products/embedded-software/ansys-
scade-suite.

SIMULINK. [S. l.], 2021 (accessed January 7, 2021). Disponível em:
https://www.mathworks.com/products/simulink.html.

https://doi.org/10.1109/CCECE.2014.6901058
http://vhosts.eecs.umich.edu/mibench/
https://doi.org/10.1109/SEAA.2013.51
https://doi.org/10.1145/3075564.3075598
https://doi.org/10.1145/3075564.3075598
https://doi.org/10.1145/3126908.3126960
https://doi.org/10.1145/3126908.3126960
https://doi.org/10.1145/3126908.3126960
https://doi.org/10.1145/3126908.3126960
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.mathworks.com/products/simulink.html

39

SRIDHARAN, V.; KAELI, D. R. Eliminating microarchitectural dependency from
Architectural Vulnerability. In. 2009 IEEE 15th International Symposium on High
Performance Computer Architecture. [S. l.: s. n.], 2009. p. 117–128. DOI:
10.1109/HPCA.2009.4798243.

THE Polyhedral Benchmark suite. [S. l.], 2021. Disponível em:
http://web.cs.ucla.edu/~pouchet/software/polybench/.

UYEMURA, John P. CMOS Logic Circuit Design. USA: Kluwer Academic
Publishers, 1999. ISBN 0792384520.

WALDE, G.; LUCKNER, R. Bridging the tool gap for model-based design from flight
control function design in Simulink to software design in SCADE. In. 2016 IEEE/AIAA
35th Digital Avionics Systems Conference (DASC). [S. l.: s. n.], 2016. p. 1–10. DOI:
10.1109/DASC.2016.7778044.

ZIEGLER, J.; LANFORD, W. The effect of sea level cosmic rays on electronic devices.
In. 1980 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[S. l.: s. n.], 1980. v. XXIII, p. 70–71. DOI: 10.1109/ISSCC.1980.1156060.

https://doi.org/10.1109/HPCA.2009.4798243
http://web.cs.ucla.edu/~pouchet/software/polybench/
https://doi.org/10.1109/DASC.2016.7778044
https://doi.org/10.1109/ISSCC.1980.1156060

	Cover
	Acknowledgements
	Agradecimentos
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background Information
	2.1 DO-178
	2.2 Safety Critical Software Development
	2.3 Model-Based Design tools
	2.3.1 Use Cases

	2.4 Transient Faults
	2.5 Related Work

	3 Proposal
	3.1 Motivation
	3.2 Algorithms and different versions
	3.2.1 Algorithms
	3.2.2 Versions

	3.3 CAROL-FI Fault injector

	4 Experiments
	4.0.1 Silent Data Corruption
	4.0.2 Detected Unrecoverable Errors
	4.0.3 Execution time and Number of Variables

	5 Conclusion
	References

