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ABSTRACT

Estimating the likely outcome of a litigation process is crucial for many organizations. A specific

application is the “Contingents Liabilities,” which refers to liabilities that may or may not occur

depending on the result of a pending litigation process (lawsuit). The traditional methodology for

estimating this likelihood is based on the opinion from the lawyer’s experience which is based on

a qualitative appreciation. This dissertation presents a mathematical modeling framework based

on a Deep Learning architecture that estimates the probability outcome of a litigation process

(accepted & not accepted) with a particular use on Contingent Liabilities. The framework offers

a degree of confidence by describing how likely an event will occur in terms of probability and

provides results in seconds. Besides the primary outcome, it offers a sample of the most similar

cases to the estimated lawsuit that serve as support to perform litigation strategies. We tested our

framework in two litigation process databases from: (1) the European Court of Human Rights

(ECHR) and (2) the Brazilian 4th regional labor court. Our framework achieved to our knowledge

the  best-published  performance  (precision  =  0.906)  on  the  ECHR database,  a  widely  used

collection of litigation processes,  and it  is  the first  to  be applied in  a  Brazilian labor  court.

Results  show that  the  framework  is  a  suitable  alternative  to  be  used  against  the  traditional

method  of  estimating  the  verdict  outcome from a  pending  litigation  performed  by  lawyers.

Finally, we validated our results with experts who confirmed the promising possibilities of the

framework. We encourage academics to continue developing research on mathematical modeling

in the legal area as it is an emerging topic with a promising future and practitioners to use tools

based as the proposed, as they provides substantial advantages in terms of accuracy and speed

over conventional methods.    

Keywords: Deep Learning, NLP, Legal Analytics



RESUMO

Estimar o resultado de um processo em litígio é crucial para muitas organizações. Uma aplicação

específica são os "Passivos Contingenciais", que se referem a passivos que podem ou não ocorrer

dependendo do resultado de um processo judicial em litígio. A metodologia tradicional para

estimar essa probabilidade baseia-se na opinião de um advogado quem determina a possibilidade

de um processo judicial ser perdido a partir de uma avaliação quantitativa. Esta tese apresenta a

um modelo matemático  baseado numa arquitetura de Deep Learning cujo objetivo é estimar a

probabilidade de ganho ou perda de um processo de litígio, principalmente para ser utilizada na

estimação  de Passivos Contingenciais. A arquitetura,  diferentemente  do  método  tradicional,

oferece um maior  grau de confiança ao prever o resultado de um processo legal em termos de

probabilidade e com um tempo de processamento de segundos. Além do resultado primário, a

arquitetura estima uma amostra dos casos mais semelhantes ao processo estimado, que servem de

apoio para a realização de estratégias de litígio. Nossa arquitetura foi testada em duas bases de

dados  de processos legais: (1) o Tribunal Europeu de Direitos Humanos (ECHR)  e (2) o 4º

Tribunal Regional do Trabalho brasileiro  (4TRT).  Ela  estimou de  acordo  com  nosso

conhecimento, o melhor desempenho já  publicado (precisão = 0,906) na base  de dados da

ECHR, uma coleção amplamente utilizada de processos legais, e é o primeiro trabalho a aplicar

essa metodologia em um tribunal de trabalho brasileiro. Os resultados mostram que a arquitetura

é uma alternativa adequada a ser utilizada contra o método tradicional de estimação do desfecho

de um processo em  litígio realizado por advogados. Finalmente, validamos nossos resultados

com especialistas que confirmaram as possibilidades promissoras da  arquitetura. Assim,  nos

incentivamos os académicos a continuar desenvolvendo pesquisas sobre modelagem matemática

na área jurídica, pois é um tema emergente com um futuro promissor e aos usuários a utilizar

ferramentas baseadas como  a  desenvolvida  em  nosso  trabalho, pois fornecem vantagens

substanciais em termos de precisão e velocidade sobre os métodos convencionais.

Palavras-chave: Deep Learning, NLP, Direito, Analytics
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1. INTRODUCTION

1.1 Motivation

Since the seminal work of image classification (KRIZHEVSKY; SUTSKEVER; HINTON, 2012), the

world  experimented  with  a  new  wave  of  believing  that  machines  could  replicate  complex  tasks

performed by humans – Artificial Intelligence (AI). One innate behavior is the Natural Language that

humans learn unconsciously. But for a machine, it is a complex task. This feature encourages us to

explore a problem that involves Natural Language in organizations: litigation processes. 

We explored a fundamental problem that challenges organization: how to estimate the probability of

winning or losing a litigation process with a quantitative methodology. Estimating this probability is a

fundamental task as it involves forecasting resources that can be earned or loose (e.g., Tax law & labor

demands). It is a critical part of risk management.  In financial terms, a resource that can be loose in a

legal  dispute  is  defined  as  a  “Contingent  Liability,”  which  refers  to  an  uncertain  obligation.  The

traditional methodology to deal with this problem of Contingent Liabilities depends on Accounting

Standard  rules  which  stays  that  the  possibilities  of  loose  of  resources  that  depend  on  litigation

outcomes must be quantified according to the opinion from lawyers into the categories: high, low, or

remote chance of losing (FASB, 2010). This classification is a qualitative validation as it depends on a

particular appreciation from lawyers according to his experience. Many financial statement users have

complained that the estimation of the likelihood by this methodology provides qualitative clues about

the probability of loss, but are limited in quantitative detail (HENNES, 2014; HOFFMAN; PATTON,

1997).

As an attempt to solve this problem, we propose an AI framework, where its input is a legal claim

(petition) and  its output a probability of loss. As an example, an organization has a legal dispute that

involves an amount of resources to be paid to the government. Translated into our framework the input

will be the legal claim in its original form and the output the probability of the organization loose the

dispute.   
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A primary aspect  of  a litigation  process is that it is stored as a text document (lawsuit). In its basic

form, a lawsuit  contains  a  petition and a  verdict.  Thus,  the legal  outcome estimation is  a  Natural

Language Problem (NLP) that aims to classify a text document into two categories (win or loose)

according to a probability.  Our proposed framework is composed of three main blocks: the first pre-

process and transforms the petition text into a structure array. The second transforms the text into a

tensor representation and estimates the probability of loose. The third provides a ranking of the more

similar  litigation  cases  to  the  one  estimated.  The  framework  is  based  on  a  Deep  Learning  (DL)

architecture that has provided promissory results for Natural Language problems (COLLOBERT et al.,

2011; LECUN; BENGIO; HINTON, 2015; MIYATO; DAI; GOODFELLOW, 2016). The results from

this  study will  contribute both to  academics  and practitioners.  For academics,  it  will  provide new

insights of DL architectures applied to modeling legal texts (CHALKIDIS; ANDROUTSOPOULOS;

ALETRAS, 2019). For practitioners, it will provide a tool to manage risk in the context of “Contingent

Liabilities” (e.g., lawyers, accountants, clients) (FISHER; GARNSEY; HUGHES, 2016). 

Text modeling has been successfully applied to problems such as mail  spam detection  (WU et al.,

2017),  sentiment  analyses  (YENTER;  VERMA,  2017),  and  social  media  hate  speech  detection

(MALMASI; ZAMPIERI, 2017). However,  this technique has been little explored in the problem of

estimating  litigation  process  resolutions.  Some  pioneering  works  have  used  the  technique  to  trial

documents  of  countries  from  the  US  (KATZ  et  al.,  2014) and  the  EU  (CHALKIDIS;

ANDROUTSOPOULOS; ALETRAS, 2019). However, there is a lack of research for the Brazilian

context. Therefore, this work aims to answer the following research question: what is the probability of

winning or losing a labor court litigation process using a AI framework for CL’s management? 

1.2 Objectives

To answer the research question, we divide our  study into four specific objectives:

- To perform a review of modeling techniques used in litigation documents from literature and users.

- To develop an AI framework that can predict the probability of winning or losing a litigation process.
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- To test the proposed framework with international and local (Brazilian) litigation databases.

- To validate our results with experts. 

1.2 Structure of the Dissertation 

This document is divided into 8 chapters described as following:  

In chapter 2,

 We explore the problem of Contingent Liabilities estimation,  providing a description of the

actual process of estimation and its limitations.

 We performed a set  of 3 in-depth interviews from members of representative organizations

involved  in  the  estimation  of  Contingent  Liabilities,  who   described  how  the  process  is

estimated in their organizations, limitations, and the importance of having a framework like the

one we constructed. 

In chapter 3, 

 We reported a literature review of DL uses in the legal area, the methodology basis  of our

framework.  The  review  includes  categories  of  use,  journals  of  publication,  collaboration

networks, and future trends.

 In chapter 4,

 We describe the problem of Legal  Judgment Prediction,  which is  the reference to  model  a

litigation process, by providing its mathematical formulation, and previously reported works. 

In chapter 5, 

 We  outline  the  structure  of  our  framework,  which  includes  three  main  blocks:  (1)

Transformation  and  structuring  of  PDF files  into  a  suitable  input  form for  the  model.  (2)

Representation of texts into a  tensor structure and estimation of a probability. (3) Calculation of

similar litigation cases to the one provided as input from all database.
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In Chapter 6, 

 We report the results of the experiments from our framework performed into two databases, the

ECHR collection and a labor litigation process from a Brazilian regional labor court (Tribunal

Regional do Trabalho 4 região – TRT4). 

In Chapter 7 and 8,

 We end the discussion of the results, conclusions, and suggestions for future research. 

Finally, as a result of this work: (1) two congress papers were published, the first in the 2020 IEEE

International Conference of Big Data (MONTELONGO; BECKER, 2020b) and the second in the 2020

International  Conference  on  Data  Mining  (ICDM)  (MONTELONGO;  BECKER,  2020a),  (2)  the

project was awarded by the Nvidia company with a Graphic Process Unit (GPU) Titan XP to perform

the experiments of our proposed framework, and (3) we managed a contract for future opportunities of

research between the labor court (TRT4), and the Federal University of Rio Grande do Sul (UFRGS),

where TRT4 will provide lawsuits processes in a complete form from its data centers.
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2. CONTINGENT LIABILITIES

Contingent  Liabilities  (CLs)  refer  to  obligations  whose  timing  and  magnitude  depend  on  some

uncertain event outside the control of an organization, such as a pending lawsuit. Previous research on

CLs is divided between works performed on the public and the private sector. Some examples in the

public sector include discussions on CLs’ approaches to deal with government fiscal risks (BRIXI;

SCHICK, 2002), and policy implications of CLs not being reported on the balance sheet (off-balance

sheet) (BLEJER; SCHUMACHER, 2000). In the private sector, an example is the relationship between

the companies  turnover  and the  number  of  CLs (lawsuit  demands)  (AHARONY; LIU;  YAWSON,

2015).

The most conventional form of accounting, a liability, is in its discrete form (a cost that has been or not

used with  100% o certainty  -  discrete).  However,  there  exist  situations  in  which  potentially  costs

depend on uncertain events, not over an organization's control, such as a pending lawsuit. Hence it

represents a risk for organizations.  To manage this uncertainty the actual mechanisms of corporate

governance relies on providing transparency about the possibility of this event occurring. The main

mechanism of control from the US is the Financial Accounting Standard Board (FASB) that delineates

the regulations that US companies must adhere to when reporting their financial position and preparing

financial statements. We cited the example from the US as most of the international literature is based

on  these  standards  and  accounting  rules  from  other  countries  are  transiting  into  an  international

convergence  (CONSONI;  COLAUTO, 2016).  Thus,  the  corporate  governance  mechanisms of  CLs

between different countries behave similarly. In Brazil, CLs’ mechanisms of control (disclosures) are

regulated by the CPC25 (Comitê de Pronunciamentos Contábeis) (CPC, 2005), and on Europe by the

IAS37 (International Accounting Standard)  (COMMITTEE, 1998). FASB and similarly the CPC25

dictates that CLs must be categorized according to its likelihood of a loss into: probable, reasonably

possible,  and  remote.  The  FASB  defines  probable  as  when  the  future  event  is  likely  to  occur,

Reasonably possibly as when the chance of the future event is less than probable and remote as when

there is a slight chance of the future event occurring. Accounting standards also define the conditions

under which accountants must accrue CLs (report on a balance sheet). Contingencies that are probable

must be compulsory accrued on the balance sheet, probable only need to provide a disclosure note and
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remote does not need to be reported (KUNZ, 2015). In practical terms, when a litigation process that

involves resources against an organization is in dispute, the possibilities of the process to be loose are

estimated by a lawyer who provides the information to the accountant who registers in the company’s

balance sheet (accrued) the liability into one of the three categories (probable, reasonably possible and

remote). Table 1 summarizes information dictated by the FASB. 
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Table 1. Contingent Liabilities decision matrix. On the upper side, the range of possibilities in which
a litigation class can be classified according to its possibility of loss (Probable, Reasonably Possible
and Remote).  On the  left  side,  the  confidence  of  estimation  (known,  yes,  no).  Depending on the
combination from this matrix, the FASB dictates if the CL must be accrued.

Likelihood of occurrence

Probable Reasonably Possible Remote

Is

Contingent

Liability

reasonably

estimated?

Known
Liability accrued and

disclosure note

Disclosure note only No disclosure required*

Yes
Liability accrued and

disclosure note

Disclosure note only No disclosure required*

No Disclosure note only Disclosure note only No disclosure required*

*Except for certain guarantees and other specified off-balance sheet risk situations. Adapted from 
Kunz (2015).

Although accounting standards have been applied as the primary form of regulation,  the literature

identifies two significant problems in their use. The first is the variation in interpreting probability

meaning, between lawyers, as they have to assign a degree of it into a category (probable, reasonably

possible  and remote)  according  to  their  experience  (AMER; HACKENBRACK; NELSON, 1994).

Second, the existing disputes between lawyers and accountants (auditor’s) positions on liabilities as

they work with different foundations. Lawyers' work is based on the American Bar Association (ABA)

statement of Policy no 12 and auditors on the FASB. Particularly, ABA suggests that lawyers abstain

from expressing judgment on the outcome of a claim when the prospect of failure is doubtful or highly

doubtful. ABA Statement of Policy provides the following basis:

In view of the inherent uncertainties, the lawyer should normally refrain from expressing judgments as

to  the  outcome except  in  those  relatively  few clear  cases  where  it  appears  to  the  lawyer  that  an

unfavorable outcome is either” probable” or” remote” (Association, 1976) ;
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With  this  prerogative,  when  auditors  need  information  from  lawyers,  they  confront  an  obstacle.

Usually, auditors receive just a note from lawyers stating their inability to express an opinion. Figure 1

exhibits a chart representing the information flow process to estimate the CL likelihood of loss. As it

shows, a CL in a lawsuit must be first disclosed by a lawyer on an ABA basis. Later on, auditors

estimate  the likelihood of  loss using lawyer’s disclosures using FSBA basis. A conflict might exist

when auditors need information from lawyers.

Figure 1. Information flow process for Contingent Liabilities estimation. On the left, a resource of
an organization that is on a legal dispute (CL) is disclosed (estimated with a probability of loss) by a
lawyer that uses ABA as a basis and transmits the information to an auditor (accountant) to accrue the
information into a balance sheet. Both the lawyer and the auditor can have a conflict of interpretation
because the first use ABA as a basis and the second the FSBA basis.
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2.2 Contingent liabilities users

After performing our literature research, we also feel the need of understand from primary sources the

process of CLs management and its importance for organizations. We interviewed  the directors from  a

set of companies who directly manage the pending lawsuit processes. To perform the interviews we

selected  a  sample  of  companies  listed  on  B3 from different  sectors  and get  in  contact  to  ask  the

possibility to contribute to our study by providing an interview. We selected the enterprises from the

Brazilian Stock Exchange (B3) as their financial information is publicly available and they manage a

substantial  amount  of litigation processes.  Three organizations from the construction,  financial  and

media sector accepted to contribute with the interview. Our interviews were not structured (without a

protocol) as our intention was to have a first understanding of the CLs management process. 

2.2.1 Construction company 

We began by visiting a construction company that is one of the largest companies in southern Brazil.

The group is 50 years old and employs over 2,000 workers. We had an interview with its legal director,

who has  been working in  the  company for  over  26  years.  The interviewer  has  a  law degree  and

specialization in corporate and environmental affairs. We talked about many topics during the interview

that could be summarized into four broad categories: the Brazilian law system, the law department

structure  of  the  company,  the  process  of  lawsuit  handling,  and  the  risk  management  of  pending

lawsuits.

The law director described the Brazilian law system. He said that during the last years, it had been

through a process  of  transformation,  going from using traditional  paper  sheets  on processes  to  an

electronic  system. He visualized that  in  a  short  time,  all  court  systems would  be digital,  that  this

transformation would enable users to use technologies like the one we were proposing. He mentioned

that the Federal Court (“Tribunal Regional Federal - TRF”)   has the best electronic system structure.

He cited as an example of a type of case disputed in the Federal Court, federal taxes. He suggested us

to review the platform of the Federal Court because it offers the best electronic facilities to provide
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information. To conclude this topic, he added that the second-best electronic court, in his opinion, is the

STJ (“Superior Tribunal de Justiça”). However, that in the future, all of them would be standardized, he

said.

At this moment, the construction company has a volume of about 2,400 ongoing lawsuit processes. The

oldest was from 1980, and the newest was from 2018. The director said that the company used to have

a larger volume, about 6,000 processes, because there existed more legal instability in previous years.

The company has an internal legal team but also worked with external law offices. At the time of the

interview, the company works with six external law offices. The in-house lawyer’s department disputes

lawsuits that the company considers easy resolution. External offices take care of more complicated

cases. As an example of an easy resolution case, he mentioned a tax dispute, particularly the Property

and Urban Land Tax (IPTU - “Imposto Predial e Territorial Urbano”). As an example of a regular

complexity  case,  he  mentioned  returning  a  house  to  a  company.  And  a  complex  case related  to

environmental affairs.

He continued explaining that sometimes it is better to lose a legal case in the first instance than spend

money and going into further instances. The decision of losing or going into further instances is mainly

based on two aspects:  the money disputed and the possibility that the case turns into a precedent.

Losing a  case could be risky because it  can be used in subsequent  cases  with similar  issues  as  a

precedent.

He explained about pending lawsuits management. He said that public listed companies from B3 have

to report pending lawsuits and that The General Accounting Principles establish the criteria to register

expenditures that depend on a pending litigation process. He described the management of ongoing

lawsuits  in  accounting  terms and how the  company deals  with them. He said  that  the accounting

principles establish that pending lawsuits must be classified into remote, possible, and likely, according

to the possibility of loss. The management of pending lawsuits  inside the construction company is

performed by reports that should be carried out every three months by each of the lawyers that is in

charge of the litigation process.
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He explained how the process to estimate the possibility of losing the pending lawsuits  inside the

company is  organized.  He said  that  every  lawyer  is  responsible  for  a  specific  lawsuit  case.  They

estimated in which of the three status a process belongs to: remote, possible, and likely. He added that

cases could change status as long as they are not static. That is, a case that company estimated that is

won for sure in the first instance but advanced to a second instance with solid pieces of evidence from

the  author  will  change  its  status  from  remote  to  possible.  He  reinforced  that  the  law  has  many

particularities, which could be a difference between losing and winning a process. “When a lawsuit

goes to a second instance, the possibility of reverting a case in court is minimum”, he added. 

He  described  some  particularities  of  estimating  a  lawsuit  status  in  more  detail.  That  when  the

possibility of losing a case is remote, it was rarely reported. When it is possible, it must be reported,

and when it is probable, it must be compulsory reported. In the three cases, the money disputed must

also be updated. He cited that the public document where lawsuits can be consulted is the reference

form from B3.

He said that law processes are not determinant for a company to go bankrupt. However, they are an

excellent indicator of a company’s health performance. They are good future predictors, a signal of how

well organized a company is. For example, he said that cases involving extra hours of work as a type of

case that signal that a business is not well organized. He added there are classes of cases that a business

will always have according to its core, eg. a financial institution will have cases related to financial

debts. We also discussed if there existed a particular type of cases critical for a company. He said that

all depends on the company. For the ones with many employees, like a factory, cases related to work

could be critical. While for a construction company, environmental processes would be critical.

We discussed if some outcome cases were easier to predict than others. He cited consumption relations

as easier because there was a slight bias in the Brazilian law to protect the consumer. Cases difficult to

predict are the ones related to the labor law. To conclude, he said that estimating a pending lawsuit

always involves the subjective appreciation of a lawyer.
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2.2.2 Financial company

Our  second  interview  confirmed  the  importance  of  methodological  analyses  in  the  estimation  of

contingent liabilities. We interviewed the lawyer director of one of the biggest financial companies in

the South of Brazil. The company’s market share is about 5% and 6%, but it reaches between 10% and

15% in the south region.

After we described the objective of our research, the introductory phrase of the director was, “the study

that you are performing makes perfect sense. The lawyer needs to face the impacts that information

technology  is  having  on  the  law.  We are  in  the  process  of  renewing  our  management  system of

lawsuits. We would like to use the software e-law, which provides more accurate results in searching on

legal databases. The tool will help us to be more assertive in strategies to construct legal petitions. It

works with Watson’s IBM. Our institution is a financial cooperative audited by Brazilian’s Central

bank. We need to perform disclosures about the situation of juridical cases as the law establishes”, he

said

During the last  years,  the enterprise had been  developing   analyzing methodological  procedures to

analyses contingents liabilities. It implemented a process based on technical analysis from an internal

law group supported by an external law firm that reports the information for the accounting area. The

director recognized that the strategy is simple but efficient. It was implemented two years ago and he

estimated that the strategy has saved about 5 million Reais in two years. The lawyer director added that

the technical challenge is how to be the most assertive possible in predicting the result of a lawsuit. He

said, “A system that compares lawsuit to lawsuit and with jurisprudence will help a lot.” 

The methodology of estimation through technical analyses at the moment is only used for labor cases.

But  the financial company aims to implement it in other types of cases. He said, “all labor complaints

are saved and make available for been consulted at any time by our lawyer team. When a new case is

disputed,  a  technical  analyses  is  done  based  on  similar  cases  from historical  legal  petitions.  For

example, our enterprise is classified as a cooperative. A recurrent claim is that workers demand to be

recognized as bank employees, but the precedent 76 of TRT4 (Regional Labor Court 4 th region)  does

not recognize workers as bank employees”. Therefore, when a new petition of this kind is performed
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against the company, it is identified and the strategy is clearly defined with high chances of success.

Using value estimation and probability of loss has been the basic strategy of the enterprise during the

last years. The interviewer said, “the strategy is based on estimating a cost for a case. How much does

it cost?” If the probability of loss is high, the company tries to negotiate extra-judicially or with the

author. 

The director added that the enterprise has a severe concern for employers that work for the company,

that when a case involves an employee that promotes a legal petition against the company and loses the

case, the company tries to end the case by hurting the other party as little as possible. He cited as an

example  the  moral  damage  cause  that  has  a  high  probability  of  being  lost  by  the  petitioner  “our

company is successful in winning this type of cases, however, when we win a lawsuit, we tried to agree

with the other party by having the best possible between the parties”. During the last five years, the

director  added that  the  enterprise  had been qualified  among the  best  companies  to  work,  that  the

number of labor lawsuits at that moment was about 1,000, approximately 50% less than previous years.

We talked about other types of cases, the tax cases. He added, “there is a small amount of this type of

cases. They are not relevant for our business.” The director also said that a successful procedure for the

company for the legal petitions management was to detect the root causes of a demand and to decrease

the probability of happening again, in other words identifying the fault and acting in a predictive way.

For example, the  incorrect inclusion of a customer into the list of debt people the methodology of the

company is:

 Root: the case was not deleted from the list of debt people at the correct time.

 Action: look up in jurisprudence.

 Police: delete in time this type of cases of this type 
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We asked  if  there  exists  a  particular  kind  of  recurrent  demand.  He responded  that  services  from

outsourcing call centers, that often this kind of enterprises disappear, and the  company was affected by

labor demands that come from workers that use to belong to the outsourcing company.

The interviewer  described the law department  of  the  enterprise.  According to  him,  the number  of

lawsuits at the moment is around: 4,000 civil,  1,000  labor,  20  tax, and no environmental. For the

company, the environmental cases were relevant but small in quantity. The internal lawyer team of the

company is integrated by 23 people, 13 of them lawyers. Cases  are managed using two models:

 Local: each financial agency hires its own legal office considering the central office models.

The company has around 300 legal offices of this type.

 Systematically:  cases  are  managed  by  legal  offices  that  are  controlled  by  the  headquarters

offices. This type of management is in charge of around 50% of the legal cases. 

One important point that the company is concerned about is the management of the external offices.

The company intends to use technological resources to have more information available to make more

accurate decisions, however, they are concerned about how to provide this information to the external

offices. Regarding the possibilities of patterns among the legal system, the interviewer said that in his

opinion it could exist partiality in some legal verdicts depending on the judge that performs a decision.

For example, some judges make decisions in favor of employees. He concluded the conversation by

highlighting that the great advantage of the company against the competitors is that  the clients are also

the owners of the company.  

2.2.3 Media company

Our third interview was from one of the most prominent media communication groups from Brazil.

The company employs approximately 6,000 people and participates in television, radio, and newspaper

segments. Its revenues over last year were over a million of Reais. Unlike the other interviews, this one

was with a multidisciplinary team of directories from TI,  human resources,  and law, as they were

interested in  our research. 

We made an introduction to our research purposes. We explained the possibilities of estimating pending

lawsuits  with  mathematical  approaches  instead  of  classifying  them  with  the  traditional  methods
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performed by lawyers. The IT director responded, “We agree that people who have more historical

information about lawsuits will have more chances to win a lawsuit process.” We added our vision that

technology will help to make fairer judgments, using less human appreciation from the judges. We said

that in our perspective, an ideal system of justice would consist of an algorithm that automatically

received facts from petitioners and accusers and that it estimated a verdict, that it would provide fairer

decisions.

The interviewed lawyer  exposed that  he worked in jurimetrics,  and explained that  it  consists  of a

science  that  aims  to  map  behaviors  from the  judiciary,  that  it  exists  patterns  of  behavior  among

historically judged lawsuits. That he performed research on data from labor courts and found that some

judges have specific behaviors, for example, with a tendency to make decisions in favor of workers or

in organizations. He added that the selection of variables to perform his research was made manually,

that  some  difficulties  arose  in  structuring  the  text,  and  that  working  with  labor  court  cases  is  a

challenge as they involve lots of variables.

The company has about 1300 ongoing lawsuit processes. From this quantity, 950 were labor lawsuits.

We discussed that this phenomenon is due to the company’s nature which depends on service from

people. He added that the company has a turnover of between 80 and 90 people per month. In the same

line  as  refereed  in  the  interview from the  financial  sector,  the  strategy  that  the  company  follows

consists in identifying the root causes of lawsuit processes in order to avoid a systematic repetition.

   

The legal department of the company has 12 lawyers. Five worked with civil law, five with labor law,

and 2 with Contingent Liabilities. The function of the law department is to distribute the lawsuits to

external legal firms as they do not perform in-house process strategies. The lawyer ended, “ we are here

to clean the content of a lawsuit data so we can decide which external attorney is the most appropriate

depending on the type of case”. 
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3. DEEP LEARNING IN THE LAW CONTEXT

Lawsuits are formulated by humans to humans, thus in Natural Language. This assumption implies

that  interpreting the concept  of  a  lawsuit  by a  machine involves  a  deep understanding of  Natural

Language  structures.  But  this  is  not  an  easy  task.  Language  is  a  complex  cognitive,  adaptive

communication system with complex particularities (LARSEN-FREEMAN; CAMERON, 2008) that

include: its  construction consists  of multiple agents,  is  adaptive;   it  suffers from past,  and present

actions that interact to form future constructions, its structures of language emerge from interrelated

patterns of experience, social interaction, and cognitive mechanisms; the meaning of a text relies on a

text as an overall,  not from single words,  it  evolves,  is dynamic (HAUSER; CHOMSKY; FITCH,

2002). 

In  this  context,  the  field  of  Natural  Language  Processing  (NLP)  aims  to  convert  these  complex

behaviors  into  formal  representations  accessible  for  computers  to  manipulate  (NIRENBURG;

MCSHANE, 2016). Neural Networks (NN’s) and the subfield of Deep Learning (DL) have become the

state-of-the-art  methodology for  NLP (SUTSKEVER; VINYALS;  LE,  2014).  Although NN’s have

recently gained attention, this technique has been utilized in texts from different fields including the

legal domain since the late ’80s (BELEW, 1987). However, the scope of these first approaches was

limited due to the lack of large data sets and computational resources. Much of the work was just

demonstrative   (BENCH-CAPON,  1993)  with  small  data  sets  (MERKL;  SCHWEIGHOFFER;

WINIWARTER, 1999). New improvements in hardware capacity and data availability have enabled the

design of complex structures of NN’s with multiple hidden layers. This  is the so-called DL that  has

enabled  the  advancement  in  language  modeling  (LECUN;  BENGIO;  HINTON,  2015;

SCHMIDHUBER, 2015). Due that our framework is based on a DL architecture we believed it was

important to identified studies in legal texts (legal domain) that used  DL as primary methodology.

Therefore we performed a systematic bibliographic review  that focused on three key topics: 

 The problems (tasks) that have been solved using DL. 

 The corpus (texts) that have been used to train the models.

 The future directions of DL in the legal domain.
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3.1 Artificial Neural Networks and Deep Learning 

In its basic form, a NN is a collection of connected units (nodes) that can transmit a signal from one

node to another and that allows to solve AI problems such as classification and regression. Nodes are

disposed of as layers.  The first  one is  the input  of  raw data,  and the last  one produces the result

(classification  or  regression).  Layers  between  the  input  and  output  are  known  as  hidden  layers,

connections between neurons are known as edges and have a weight that adjusts while the learning

process takes place. Commonly, the signal from a node is restricted and transmitted if it  crosses a

threshold composed of the sum of a non-linear function (BASHEER AND HAJMEER 2000).

 DL is a type of NN structure composed of multiple hidden layers named Deep Architecture (BENGIO,

2009; LECUN; BENGIO; HINTON, 2015) that can be complemented with other techniques, such as

Convolutional Neural Networks (CNN) (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) and Long

Short-Term Memory (LSTM) (HOCHREITER; SCHMIDHUBER, 1997). This methodology enables

the transformation of raw data into higher abstract features by learning complex non-linear functions.

Over  the  last  years,  DL  has  become  the  state-of-the-art  methodology  of  NLP     (ABOOD;

FELTENBERGER,  2018;  CHALKIDIS;  KAMPAS,  2018;  KOWSRIHAWAT;  VATEEKUL;

BOONKWAN, 2018; SADEGHIAN et al., 2018).

Figure 2 illustrates the basic structure of a DL architecture composed of 4 layers. Where x represents

the  i  input,  w the weight value from the  i input in the  j layer and  y the activation  k.  The first layer

(bottom) represents the input, and the last layer (top) represents the output.  It can be observed that

between  the input and the output, there are two hidden layers represented as H1 and H2.  The input

exemplifies raw data that is transmitted into the hidden layers, and finally a classification output is

estimated. In this example, the input signal is represented as “i”. The second signal on layer H1 is

represented by the value j, the third signal on layer H2 is represented by the value k, and the output

signal is represented by the value I. Each input of the node is computed by functions illustrated on the

right side of figure 2.
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Figure 2. Representation of a DL architecture. A DL architecture composed of 4 layers that
perform a classification task. At the bottom, the signal is introduced and then processed until it
reaches  the  top  section,  where  a  classification  is  performed.  On  the  right,  the  activation
functions of each layer are formulated  (LECUN; BENGIO; HINTON, 2015).

3.2 Legal Documents

A particular  feature  of  most  current  litigation systems is  that  records  are  stored as  electronic  text

documents.  Over  the  last  years,  the  quantity  of  legal  information  in  digital  formats  has  been

exponentially increased. Thanks to the availability of this source of information, the quality of DL

models has become more reliable (it should be highlighted that the quality of the output of the DL

model dramatically depends on the quantity of information provided as input) (NAJAFABADI et al.,

2015). Legal documents are provided from two sources, either processed for research use (VOGEL;

HAMANN; GAUER, 2018) or provided for public access. For example, courts in the United States

provide public information of legal petitions on its  website  https://www.pacer.gov/,  whereas other

public legal courts as the Brazilian provide public information as a summary, not the complete legal

petition documents. There also exist other independent organizations, such as the Free Law Project, that

offers a wide range of resources on their website free law. 
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3.2.1 Systematic review of the literature

To perform our research of legal documents that use NN or DL as primary methodology, we retrieved a

set of articles from the most extensive databases, including IEEE Xplore, Science Direct, Emerald,

Springer, Web of Science, and Google Scholar. We utilized the terms: “Neural Networks” and” Deep

Learning” in combination with “legal” or “law.” Nevertheless, the word “law” appeared in multiple

ambiguous contexts, such as law of motion. Therefore, only the word” legal” was utilized. Later, we

examined specialized journals of law: Law and AI, Stanford law review, Yale law review, Columbia

law review, Computer law and security review, Law probability and risk, and Harvard law review.

Regardless of the many databases analyzed, we noticed that some relevant articles were missing during

this process. Therefore, we included an additional search within the top journals of law (herein, a top

journal should be in the top 10 of the Scimago Journal & Country Rank and Journal Citation Report)

and added referenced works we do not find by search mechanisms during the analysis and belonged to

the category. From the results of the databases, we identified a final sample of 137 works that satisfied

our criteria. We classified each article according to the objective (we defined nine categories through

criteria expanded in the following subsection). Finally, we retrieved the datasets utilized to train the

models and organized the information in a comprehensible structure.

3.2.2 Categories of the selected works

Our  primary  interest  was  the  understanding  of  the  research  objectives  of  the  selected  articles.

Therefore, we created a taxonomy to classify each article into 1 of 9 categories based on the objectives

of each work. The categories and criteria utilized to create the taxonomy were:

 Classification: Works that aimed to discriminate an object into one of several known categories

(e.g., patent classification) (LI et al., 2018);

 Feature extraction: works that tackled the problem of reducing the number of resources required

to  describe  a  large  data  set  (e.g.,  derive  the  profile  of  the  attackers)  (ADDERLEY;

MUSGROVE, 2001);

 Information  extraction:  works  that  identified  named  entities  such  as  places,  persons,
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organizations, and works that extract other complex information such as events and narratives

(e.g., recognize parts in legal texts) (NGUYEN et al., 2018);

 Information  retrieval:  works  that  retrieved  articles  of  interest  out  of  a  collection  of  legal

documents  that  entail  a query (e.g.,  automated identification of  directives)  (NANDA et  al.,

2018);

 Pre-processing: works that prepared data before processing,  including outliers detection and

network  pre-structuring  (e.g.,  pre-processing  texts)  (VIJAYARANI;  ILAMATHI;  NITHYA,

2015);

 Summarization: works that condensed new versions of the original documents (e.g., automatic

summarization) (YOUSEFI-AZAR; HAMEY, 2017);

 Text generation: models that aimed to produce human languages from some underlying non-

linguistic representation (e.g., automatic production of legal texts) (JOHN et al., 2017); and

 Theoretical: works that lacked of a direct implementation such as discussions, exemplifications,

and reviews (Discussion of logic-based and data-centric approaches) (BRANTING, 2017).

From these created categories, we estimated the frequency of works. As  fig3a shows, we found two

broad groups defined as “high” and “low” in the number of works. The high number is represented by

classification (0.39), theory (0.28), information extraction (0.15), and information retrieval (0.12). The

low number is represented by text generation (0.02), preprocessing (0.01), feature extraction (0.01),

translation  (0.01)  and  summarization  (0.01).  The  results  show  that  classification  and  theoretical

categories dominate the work with 39% of the total sample. We interpreted that classification has the

highest value because DL is mainly used for solving classification problems. The theoretical category

that we defined as works lacking an explicit implementation, such as discussions, exemplifications, and

reviews, represents a significant proportion of 28%. The majority of theoretical works were published

between the years 1987 to 2002, when the NNs were first proposed as a methodology to solve problems

in the legal area.  Information extraction and information retrieval stay in third and fourth positions,

both with 12%. In this group, we included the articles from the Competition on Legal Information

Extraction/Entailment COLIEE, which is the only competition of AI devoted to the legal domain that

we  identified.   Among  the  low-numbered  areas,  we  distinguished  text  generation  with  2%  and

preprocessing,  feature  extraction,  translation,  and  summarization  with  1%.  We  identified  text

generation  and  summarization  as  future  research  opportunities.  For  text  generation  because  new
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architectures (BROWN et al., 2020) have improved the accuracy in natural language generation, with

applications  such  as  interactive  conversations  (chatbots).  For  summarization  as  it  represents  an

essential tool for legal professional users as long as they need to consult large quantities of information.

Notice that pre-processing in our interpretation is not an area of opportunity because new architectures

such as BERT (DEVLIN et al., 201can) can handle inputs from raw text. 
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Figure 3. Tasks, location and a longitudinal representation of DL works from our sample.
(a) Frequency of works according to the task performed. We divided the groups into a high and
low number of published studies. Classification is the group with the highest number of reported
works, while text generation and summarization are with low number and research opportunities.
(b)  Corpus  used  to  train  the  models  according  to  its  country.  Europe  exhibits  a  high
conglomeration, COLIEE and CAIL are the only competitions focused on problems using legal
documents.  (c)  We divided the published works into three broad periods according to a visual
inspection. The NN’s period belongs to the first era of DL when theoretical studies that gained
attention.  After that, a second era started with a winter period,  with only some classification
works. Finally, the age of  DL in which a resurgence of the method began and the number of
works increased exponentially by 300% - between 2015 and 2018. In addition,  diversity has
increased, in particular with information extraction work. Interestingly, the number of articles
decreased  over  2019.  Further  research  is  needed  to  understand  the  nature  underlying  this
phenomenon.
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Fig 3b illustrates the geolocation areas of the data sets utilized to train the models. The most significant

number of databases within a country is the USA (23.53%). Europe (21.57%) represents an area with a

substantial number of works by country, and it is the only one that provides datasets that belongs to an

entire region (Europe Union) (CHALKIDIS; KAMPAS, 2018). The corpus of the COLLIE (Japan &

Canada) (TRAN et al., 2020) and CAIL (China) (CHEN et al., 2019)  are the only datasets that we

found devoted for competition purposes.  The last  region was Africa,  with no dataset  found in our

search.  Fig 3c Depicts a longitudinal representation of the DL works and the performed tasks. The first

article we found was in 1987 and the last one in 2020. As it can be seen, the works performed with a

DL have exponentially increased over the last  years,  which evidenced the increased interest  in the

methodology. 

Table 2. Categories and corpus of selected articles. 

Category Objectives of selected works Corpus

Classification Case classification (DA SILVA et
al., 2018; NGUYEN et al., 2018)

45532 Brazilian appeals;

Legal court classification 
(UNDAVIA; MEYERS; 
ORTEGA, 2018)

8419 USA Supreme Court 
opinions;

Contract resolution 
(CHAPHALKAR; 
SANDBHOR, 2015)

419 Indian contracts;

Court decision predictions 
(BOCHEREAU; BOURCIER; 
BOURGINE, 1991)

1000 judgments of Thailand 
Supreme Court;

Geospatial criminal activity 
prediction (CORCORAN et al., 
2001)

Collection

Patent classification (ABOOD; 
Case FELTENBERGER, 2018)

2679443 utility patents.

Feature extraction Profile of sexual attackers 
(ADDERLEY; MUSGROVE, 
2001)

2370 recorded sexual offenses 
from the UK;

Recognizing parts of legal texts 
(NGUYEN et al., 2018)

130000 citations from the US 
code;

Information extraction Identify information Collection;
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(THAMMABOOSADEE; 
WATANAPA; 
CHAROENKITKARN, 2012)

Contract elements extraction 
(CHALKIDIS; 
ANDROUTSOPOULOS, 2017)

3500 English contracts;

Exploratory analysis of concepts 
(MERKL; SCHWEIGHOFFER; 
WINIWARTER, 1999)

75 court decisions from the 
European Community;

Exploratory analysis of 
concepts

Identify national 
implementations (NANDA et al.,
2018)

43 European directives;

Pre-processing Detect outliers (SANDBHOR; 
CHAPHALKAR, 2019)

3094 cases of property Indian sale
instances;

Summarization Summarization of legal texts 
(TRAN et al., 2020)

COLIEE 2019 dataset;

Creation of a bilateral investment
text (ALSCHNER; 
SKOUGAREVSKIY, 2017)

Collection;

Text generation Dialogue system (JOHN et al., 
2017)

Collection.

Theoretical Analyze the representation of 
neurons (BORGES; BORGES; 
BOURCIER, 2003)

Collection.

 Table 2  presents a sample of each category, objective, and corpus utilized to train the models (the

complete list is presented as supplementary material). We founded 47 data sets. An increment in the

size of the corpus has been observed in recent years. For example, in the work of LI et al. (2018), a

model with 2,679,443 patents was trained, while an older work as the one from Bourcier et al. (1999)

used 378 judgments of public order. It can be highlighted that the quality of results in DL models

dramatically  depends  on  the  size  of  the  corpus  (SHAHINFAR; MEEK;  FALZON, 2020).   It  was

identified that 31 of the 47 corpus were published between 2017 to 2019, reflecting the electronic

availability of data has increased in recent years. 

3.2.3 Works published by journal 

Fig 4b reports the percentage of articles published by journal from a total sample of 138 works. We

identified  AI  and  Law  (21.7%),  ICAIL  (8.76%),  and  JURIX  (2.92%)  as  the  specialized
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journals/congress proceedings that concentrate most of the sample, 32.85%. By specialized, we mean

journals/congress whose scope mainly publishes studies of AI systems used in the legal domain. The

COLIEE contest on legal information and extraction was the only competition conference we identified

in the specific scope of legal documents. Cardozo Law Review was the only journal in the law area that

appeared  in  our  research.  Interestingly,  the  construction  area  appeared  within  two  journals  JCE

Management and KSCEJ of Management. For space reasons, the plot shows only the journals with two

or more publications. The ones with only one article were condensed into the category “other.”
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These results revealed that DL works in the legal domain are concentrated within three journals &

specialized congress proceedings. External publications show a low rate of reported works. In fig 4c,

we compare the number of publications using DL in the legal domain compared to other areas. We used

as reference the bibliometric review from Li et al. (2020) that cited the number of works using DL

among different research areas. We divided the results into two groups: fundamental and applied. The

first group refers to areas that traditionally performed fundamental AI research (Computer Science and

Engineering). The second group to areas where AI is used as support (applied). As observed, works of

DL in the legal domain belong to the applied research group. Our sample has 138 publications (our

complete sample), 51 less than the closer reported area (physics) with 189. However, this result reflects

a lack of interest in applying this methodology in the legal domain. 

Figure 4. Research methodology and frequency of articles in the legal domain with DL as a
primary  methodology.  (a)  Diagram  of  the  three  main  stages  for  retrieving  our  sample:
identifying the survey target, selecting the  relevant  articles according to criteria and retrieving
the  relevant  information of  the article.  (b)  Frequency of works  by Journal  & Congress.  The
research sample contains 138 works mainly concentrated on the specialized journals AI and Law,
JURIX, and ICAIL. Some also appear in journals dedicated to NNs, such as the IEEE conference
on  NNs.  (c)  The  number  of  publications  by  area  of  knowledge  using  DL as  the  central
methodology.  Most  publications  are  concentrated  among Computer  Science  and  Engineering
areas (fundamental research). Among the rest of the areas (applied research), “Law” appeared in
the last position with 138 works.
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3.2.4 Collaboration network

Figure 5 shows a representation of the collaboration network from the selected sample. Using a visual

inspection, we identified the four most prominent groups according to the time and works published:

Connectionism (1), NN's (1), and  (2). The circle size is proportional to the number of publications of

each author ranges from 1 to 6, as shown in the fig 5a. The authors that centralize the groups are Dieter

Merkl  (CHALKIDIS;  ANDROUTSOPOULOS,  2017;  MERKL,  1995a,  1995b;  MERKL;

SCHWEIGHOFER,  1997;  MERKL;  SCHWEIGHOFER;  WINIWATER,  1995;  MERKL;

SCHWEIGHOFFER;  WINIWARTER,  1999),  who  wrote  most  of  his  articles  during  the  90s  in

“Connectionism” (a term utilized to describe NNs). Karl Branting (BRANTING, 2017; BRANTING et

al., 2018; SADEGHIAN et al., 2016, 2018; SARTOR; BRANTING, 1998) centralized the “NN's.” He

has  been  an  influential  author  from  2000  to  recent  years.  Finally,  Chalkidis  (CHALKIDIS;

ANDROUTSOPOULOS,  2017;  CHALKIDIS;  ANDROUTSOPOULOS;  MICHOS,  2017,  2018;

CHALKIDIS; KAMPAS, 2018) and Adebayo (JOHN et al., 2017; NANDA et al., 2017) [19], [29]

centralize  the  DL groups.  The  plot  also  highlights  two  other  essential  authors  Zeleznikow  that

published  four  articles  (OATLEY;  EWART;  ZELEZNIKOW,  2006;  STRANIERI  et  al.,  1999;

STRANIERI;  ZELEZNIKOW,  2006;  ZELEZNIKOW;  VOSSOS;  HUNTER,  1993).  With  his  four

publications, Philipps pioneered the topic  (BROWN et al., 2020; PHILIPPS, 1989a, 1989b, 1991). 
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Figure 5. Network graphs of co-authorship and studies with high impact on DL works applied to
the  legal  domain. (a) Co-authorship  network  of  the  selected  works  from the  authors  with  more
publications in the topic. The size of the circle is proportional to the number of articles published by
their corresponding authors. We identified three groups that mainly depend on the publishing time of
their works. They are Connectionism (the 80s), NN's (90s, 2000s), and DL  (since 2012). The authors
that concentrate on these groups are Merkl, Branting, and Chalkidis (b) Network of works that have
been highly-cited connected with their respective citations. The works are identified by the numbers:
“one” till “ten.”  The authors five (OATLEY; EWART; ZELEZNIKOW, 2006) and three centralize the
network. While the well-known work of Mikolov et al. (MIKOLOV; YIH; ZWEIG, 2013) appears as
a reference from the network. A description of the works is depicted in Table 2.
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In the last section, we analyzed the most cited articles from our sample. However, we observed that the

age of the publication had a considerable impact on our measure. This means that older articles have a

more significant number of citations. To mitigate this impact of time, we created a rate index consisting

of the number of citations divided by the number of years from the publication date. 

Table 3 shows the top 5 articles of the sample according to an index composed of citations divided by

years of publication. The ranking is led by Chau, 2007 (CHAU, 2007) that applied NNs to predict

outcomes from litigation construction disputes. This work introduced one of the first NNs models that

demonstrated accurate results in a sector with one of the most complex litigation processes. The second

one is Trappey et al., 2006 (TRAPPEY et al., 2006) that developed a classification model for patent

documents. An area that has recently acquired an interest (ABOOD; FELTENBERGER, 2018). The

third one is Branting, 2017 that questioned the capabilities of logic and AI-based methodologies. He

also proposes that an intelligent system should be composed of both methodologies (logic & AI). The

fourth  from  Corcoran,  2003  (CORCORAN;  WILSON;  WARE,  2003)  proposed  a  crime  incident

forecast  method  by  focusing  on  geographical  areas  of  concern.  The  fifth  (OATLEY;  EWART;

ZELEZNIKOW, 2006)  from Oatley,  2006  presenting  a  system to  support  police  against  Burglary

Dwelling houses. 

Complementing our analysis, we selected the ten most extensive indexes. We also plotted them on fig.

5b on a network with their corresponding references used as support. Their ranking tags the selected

works to avoid overcrowding in the plot (e.g., “First” node refers to the highest index (CHAU, 2007)

and “Four” to the fourth-largest). Through a visual inspection on fig. 5b, we found that the author with

the highest centroid in the network is “Nguyen” (MORIMOTO et al., 2017; NGUYEN et al., 2018;

SON et al., 2016; TRAN et al., 2020), who has developed his work in applications such as recognizing

legal parts, summarization and legal questioning answering using LSTM and CNN neural architectures.

Those  are  prominent  topics  in  the  area.  The  second  centroid  is  “Branting”  (BRANTING,  2017;

BRANTING et al., 2018; BROWN et al., 2020; SADEGHIAN et al., 2016), who appeared both as a

high-cited author and with the third highest-index work “Three.” In this work, “Three” (OATLEY;

EWART;  ZELEZNIKOW,  2006),  Branting  et  al.  2017  describe  approaches  for  intelligent  legal

machines and has been a high cited reference by the AI & Law community research in recent years.
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The highest impact “First” (CHAU, 2007) does not centralize the network. This result is due to the low

quantity of references utilized.  Finally,  another well-known work that  appears  in the network as a

reference is  the one from “Micholov et  al.” (MIKOLOV; YIH; ZWEIG, 2013) who developed the

seminal  technique  of  Word2vec,  which  objective  is  to  represent  a  text  into  a  vector  space,  a

fundamental processing tool in DL methodologies.

Table 3. Top 5 cited works according to the proposed index. 

Number Authors Index Objective

One (CHAU, 2007) 19.92 Predicts the outcome of construction claims.

Two (TRAPPEY et al., 2006) 10.69 Propose a method for document patent classification.

Three (BRANTING, 2017) 9 Discuss capabilities and challenges of logic and data-

centric models.

Four (CORCORAN;  WILSON;

WARE, 2003)

6.69 Proposes  a  method  for  crime  incident  forecast  by

focusing on geographical areas of concern.

Five (OATLEY;  EWART;

ZELEZNIKOW, 2006)

5.92 Propose  a  system  to  support  police  against  Burglary

Dwelling houses.

From this  systematic  research,  we found clear evidence of the rising interest  in applying DL as a

method in the legal domain and that is suitable to be used in our problem Legal Judgment Prediction,

described in the following section 4. As shown in fig 4, 16% of all sample articles were published in

2018,  while  in  2014,  only  2% of  articles  were  published.  The  legal  domain  has  been  lagging  in

applying state-of-art computational methodologies. For example, Word2Vec (STRANIERI et al., 1999),

a seminal development for NLP with DL, was first proposed in 2013, while the first work that  used

this method in the legal documents, appeared in 2018 (BANSAL; SHARMA; SINGH, 2019). This

reflects the lack of transdisciplinary effort between computational and legal areas.  DL in the legal

domain is in the early adoption stage and will seemingly increase in the coming years. 

Publications of DL in law are concentrated in a few specialized publications. We believe that these

phenomena occur because the law area depends on particular knowledge that limits researchers from

quantitative  areas  such  as  Computer  Science  to  perform studies  on  the  topic.  On  the  other  side,
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researchers from the legal area have not historically focused on using quantitative methodologies. It

can be observed in the generated sample that only two works (PHILIPPS, 1991; THAGARD, 1991)

were published in law journals. Hence, an approach involving both groups will improve the quality and

understanding of the models. The availability of resources such as the increase in public legal datasets

will escalate the collaboration from interdisciplinary areas such as Computer Science and Law. Our co-

authorship  analysis  has  shown that  networks  of  researchers  were  deployed  according  to  the  time

research  period.  We identified  those  in  three  groups:  Connectionism,  NNs,  and DL.  It  is  visually

evident  that  the  number  of  researchers  during  the  DL  period  has  increased  consistently.  This

phenomenon is due to the availability of better hardware and larger data sets (for example (LAI; CHE,

2009) uses 65 patent infringement lawsuits (LI et al., 2018) 2,679,443 patents to train their models).

Finally, our author network plot showed the two main groups of DL research. Those are centered by the

authors Chalkidis and Adebayo, and Nguyen and Branting, who are the most highly-cited authors used. 
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4. LEGAL JUDGMENT PREDICTION

This chapter intends to explain the Legal Judgment Prediction (LJP) problem, which is the  basis of our

proposed framework. The chapter is divided into four topics: 

 A general description of how a litigation process takes place.

 The mathematical formulation to represent the LJP.

 Types of text representations as vector spaces. 

 Review of published works that have solved the LJP problem.  

4.1 The process of a litigation 

A legal proceeding or lawsuit is a systematic procedure where a dispute between two parties is decided

in court. Three participants generally characterize a lawsuit:

 A petitioner or complainant who is the party that promotes a legal action.

 A defendant party who is indicted for committing an offense.

 And the institution named the court with the authority to judge or adjudicate. 

The procedure to conduct a lawsuit is called litigation (HERR, HAYDOCK & STEMPEL, 2018). The

overall process of litigation involves three stages: initial petition, analysis, and resolution. The initial

petition (statement of claim) is the starting point of the process. It is the document where the petitioner

describes its claims. Brazilian legislation states that the initial petition must contain (art 329): 

I.- The type of judgment.

II.- Identity of people and organizations involved in the legal case.

III.- The claim.

IV.- Value of the claim.

V.- Proofs that identify the veracity of the facts based on a legal basis.
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VI.- Option of mediation schedule.

The analysis involves examining the facts, both from the petitioner and defendant, by the court. The

resolution  is the decision taken by a court, win or lose. If one party disagrees, the decision can be

appealed and goes to further instances. 

An illustrative example of the overall process is depicted in fig. 6: A person named A  buys a TV set

broken from store  B. Person  A wants a complete refund of his money, but store  B does not want to

make the refund. Store B argues that the TV was in good condition at  the moment when it was sold.

Person A promotes a legal claim in court trying to enforce store B to give his money back. The starting

point is the initial  petition promoted by person  A in court,  including facts  and evidence about the

purchase. For example, how did he notice the problem? It will also include petitions that person  A

claims from store B and basement on a law that support claims for buyer A (ex.  the law of consumer).

The court authority will analyze the petition and give a resolution. If some of the parties do not agree,

the resolution can be appealed and go through the next instance.

Figure 6. Stages of a litigation process. The overall process includes three stages: an initial
petition, a court’s analysis, and a final decision (resolution). The starting point is the initial
petition where person A promotes a legal petition against store B (money back of TV set), then
the court analyses the evidence from A and B, finally, a verdict (decision) is performed by the
judge (win or lose). In legal terms, win & lose is represented as accepted or not accepted a
petition.

A sample from a real lawsuit process is illustrated in fig 7, which includes the essential parts from the

petition and resolution. The upper part of the document describes the initial petition composed be four

claims from the petitioner, and the lower part shows the decision. All lawsuits have a similar structure
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that starts with the petition and follows a chronological order. A limitation of working with this type of

documents is that the language used to describe the process usually contains words that are specific to

lawyers. For people who are not involved in the legal area, these characteristic limits to have a clear

understanding of the process. In our opinion, the language of these documents could be simplified to

more conventional words that will enable people from outside of the legal area to understand in a

clearer way the core of the process.
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Figure 7.  Sample of a real lawsuit from a labor court.  In the upper is depicted the petition
composed by a  set  of 4  petition :  a) “benefício da gratuidade” free legal  assistance,  b)  “A
notificação da reclamada” notification to the accused party, c) a total payment of R$ 12,464
d)“TOTALMENTE  PROCEDENTE”  all  decisions  to  be  accepted.  In  the  lower  part  it  is
illustrated the resolution defined by the word “IMPROCEDENTES” so the petitions were not
accepted and the claimer lose the case. The involved people were unidentified.   



45

4.2 Problem formulation

In mathematical terms, the problem of a legal litigation decision is defined as the Legal Judgment

Prediction problem (LJP)  (YANG, JIA, ZHOU, & LUO, 2019). The LJP aims to predict the judgment

results  of  legal  cases  according  to  the  factual  descriptions.  Formally,  the  LJP is  described  as  a

supervised binary text classification problem, where the input is a  starting petition X , and the output is

a binary label y ϵ {0 , 1}  with a corresponding probability. This indicates the loss or wins a legal dispute

(KATZ et al., 2014; KOWSRIHAWAT; VATEEKUL; BOONKWAN, 2018; SHARMA et al., 2015).

The problem will be solved using a  DL architecture (LECUN; BENGIO; HINTON, 2015),  thus the

objective will be to optimize the cost function (MIYATO; DAI; GOODFELLOW, 2016):

J (w)=
1
M

∑
m=1

M

L( ŷ(m ), y(m )
)                                                             (1)

where: 

M  is the sample size.

ŷ(m ) is the predicted probability denoted in the logistic function   
1

(1+e−wT x
)

 where w is a vector of

the  model parameters and x are the independent variables.

ŷ(m ) is the assigned label 1 to win 0 for loss to the petition. 

Text classification is  a  NLP problem that  has the objective of discriminating a source of text into

predefined classes (MIRONCZUK; PROTASIEWICZ, 2018). Formally, given a description d∈ X  of a

document, where  X is the  document space and  C={ c1 ,c2 , ... , c j }  a set of classes, the objective is to

learn  a  classifier  or  a  classification  function    that  maps  documents  to  classes  (MANNING;

RAGHAVAN; SCHÜTZE, 2010):

 γ : X →C                                                             (2)
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Classes  are  also  called  categories  of  labels  and  are  human-defined  according  to  the  needs  of  an

application. Typically, the document X is high-dimensional. This learning is called supervised learning

because it contains examples to teach the model how the function must be learned. As an example of a

lawsuit outcome, a training set D of labeled documents ⟨d , c⟩ where ⟨d , c⟩∈⟨X , C ⟩ will be:  

<Person A wants its money back from store B because store B sold a broken TV to person A, Win>1

 

The  methodology  for  classifying  text  is  broadly  divided  into  six  steps  (MIRONCZUK;

PROTASIEWICZ, 2018):

 1)  Data  acquisition:   The  process  of  obtaining  the  documents  either  from public  repositories  or

particular domains. It also includes pre-processing such as lemmatization and steam.

 2) Data analysis and labeling: The process of allocating labels, single or multiple, for each instance.

 3) Element construction and weighting:  The process of transforms the text into a digital form.

 4) Selecting and projecting elements:  The process of constructing the elements and projecting the data

into a lower dimension.

 5) Functional learning:  The methodology used to construct the model that learns to discriminate

against a class, typically a Machine  Learning technique.

 6) Assessment:   The metrics used to measure the performance of the algorithm. Table 4 describes the

phases and examples of work that describe or use the techniques.  

Table 4. Stages to perform a classification problem.

Stage Methodologies

Data acquisition -  Pre-processing  techniques  such  as  lemmatization  and  stemming

(KORENIUS et al., 2004).

-  Some public  data  sets  are  Reuters  (LEWIS et  al.,  2004),  TDT2

(WAYNE, 2000), and WebKB (CRAVEN et al., 1998).

Data analysis and labeling - Multi-instance learning (YANG et al., 2016).

1  This particular example is a simplified version of a real lawsuit. In a real context, initial petitions have a minimum length of 3 pages.
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Feature  construction  and

weighting

Feature construction:

- Keywords or phrases, including uni-grams, bi-grams, and n-grams

(ABOU-ASSALEH et al., 2004; WANG; MANNING, 2012)

- Taxonomies or ontologies (DE ARAUJO; RIGO; BARBOSA, 2017;

LI; YANG; PARK, 2012);

-  Embedded features  (BENGIO et  al.,  2003;  COLLOBERT et  al.,

2011;  DEVLIN  et  al.,  2018;  MIKOLOV;  YIH;  ZWEIG,  2013;

PETERS et al., 2018);

Weighting:

-  Term  frequency  (tf),  Inverse  term  frequency  document  (idf

frequency) and term-frequency inverse document frequency (tf.idf),

uni-grams,  bi-grams,  and  n-grams  (CHEN  et  al.,  2016;  FATTAH,

2015; HADDOUD et al., 2016).

Feature  selection  and

projection.

Feature selection:

- Multivariate relative discrimination criterion (MRDC) (LABANI et

al., 2018)

- Feature unionization (JALILVAND; SALIM, 2017)

Feature projection:

- Principal component analysis (PCA) (AITCHISON, 1983)

- Latent semantic index (DUMAIS, 1995);

- Convex sparse PCA (CSPCA) (CHANG et al., 2016)

Model trains - Naive Bayes (NB) (KIM et al., 2006; NG; JORDAN, 2002; RISH,

2001)

-  Hidden  Markov  Models  (KANG;  AHN;  LEE,  2018;

KUSHMERICK;  JOHNSTON;  MCGUINNESS,  2001;  YI;

BEHESHTI, 2009)

- K-nearest neighborhood (BAOLI; QIN; SHIWEN, 2004; ZHANG;

ZHOU, 2005)

-  Maximum  entropy  (ME)  (NIGAM;  LAFFERTY;  MCCALLUM,
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1999; ZHU et al., 2005)

Regression Classifiers (WOOFF, 2004; ZHANG; OLES, 2001)

- SVM (JOACHIMS, 1998; SCHÖLKOPF; SMOLA; BACH, 2002;

ZHANG; OLES, 2001)

-   DL  (BORGES;  BORGES;  BOURCIER,  2003;  KIM,  2014;

SHARMA et al., 2015)

Evaluation methods -  Accuracy,  precision,  recall,  and  F-measure  (FORMAN,  2003;

SOKOLOVA; JAPKOWICZ; SZPAKOWICZ, 2006).

4.3 Text representation

NLP tasks require the text to be represented in a numerical vector space. Approaches to perform this

procedure  are  divided into  three  categories  (SOCHER; MUNDRA, 2016):  Word Vectors,  Singular

Value Decomposition (SVD), and iteration methods. Word Vectors are the most basic methodology.

The corpus is represented as RVx1 one-hot vector encoding, with all 0’s and 1’s at the index of each

word. This technique represents syntactic knowledge but lacks frequency and relationship information

(semantic knowledge). The second category   performs some word co-occurrence counts in a matrix 

and  then a SVD over X   is performed to estimate a USV T  where “U” is a mxm    orthogonal matrix, S

is  a  m  by  n  diagonal  matrix,  and  V is  a  nxn  orthogonal  matrix.  Some of  the  most  used  SVD

methodologies  are  the  Word-Document  Matrix  (SCHUETZE,  1997),  the  Latent  Semantic  Analysis

(DUMAIS, 1995), and Global Vectors for Word Representation (GLOVE) (PENNINGTON; SOCHER;

MANNING, 2014) models. These methodologies provide information on frequencies but have  some

limitations: (1) the size of the matrix changes often is sparse since most words do not co-occur, (2) it is

high dimensional and (3) has a quadratic cost to train (SOCHER; MUNDRA, 2016).    

The third category, named iteration methods, optimize word representations by making use of local

contexts. The first iteration method is the language models that assign a probability to a sequence of
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tokens, an n-gram. The most basic form of a language model is a bi-gram, where the probability of a

word depends on the previous word. Formally, a bigram is represented as:

P(wordn∣wordn−1)=
C (wordn−1 wordn)

C (wordn−1)

(3)

Where word   represents the nth word of a sentence. Despite bigrams optimize numerical representation

by using local contexts, they also have the limitation. They learn only pairwise connections.  

A more refined language model approach is the pre-trained vector space representations (DEVLIN et

al., 2018; PENNINGTON; SOCHER; MANNING, 2014; PETERS et al., 2018). With this method, a

NN is trained over a massive corpus of data,  usually of millions of words which enables to learn

intrinsic properties of words, such as relationships and frequencies. These approaches have proved to

be efficient in learning both syntactic and semantic attributes from words. Among the vector space

representation models, the works from Bangui Bengio  et al., (2003) and Collobert et al., (2011) were

precursors  of  the  technique.  However,  the  Continuous  Bag of  Words (CBOW) (MIKOLOV; YIH;

ZWEIG, 2013) was the first work that brought attention to the academic community.  In the same

direction, FastText an extended version of the CBOW improved the model  by representing words as

characters. For example, the word apple is the app, ppl, and pale (ignoring the starting and ending

boundaries of words) (JOULIN et al., 2016). The main advantage of this process is that words that are

out of the corpus can be take into account. Recently, the model  Embeddings from Language Models

(ELMO) (PETERS et al.,  2018), Bidirectional Encoder Representations from Transformers (BERT)

(DEVLIN et al., 2018), and GPT-3 (BROWN et al., 2020) are works based on DL architectures that

have proved to be the state-of-art  in  the language modeling representation.  The following  table 5

summarizes categories and proposed models for transforming a text into a numerical representation.

    

Table 5. Classification of methodologies for transforming a text into a numerical representation.
On the left-side, each of the three categories: Word Vectors, SVD, and Iteration methods. On the right
side, methodologies for each category. As it has been described, Word Vectors are the fundamental
techniques. SVD provides discrete results while the state-of-art methods are the Iteration.  

Category Methodology

Word Vectors One-hot vector encoding.
Bag of words.



50

SVD Word-Document Matrix.
Latent Semantic Analysis.
GLOVE.

Iteration CBOW, TagLM, context2vec, FastAI, ELMO, CoVe, 
BERT, GPT-3.

4.4 Modeling  legal court process

Advances  in  information  retrieval  have  allowed  academics  to  propose  quantitative  methods  for

estimating  outcomes  of  court  decisions,  as  information  is  stored  in  electronic  form  and  can  be

processed  by  algorithms.  One  of  the  first  works  was  from Rugers  et  al.,  (2004),  who  compared

prediction outcomes of the United States Supreme Court (USSC) between a statistical model and legal

specialists. The model was trained using a Random Forest model constructed with six features. The

work cited that the model predicted 75% of cases correctly, while the experts got 59.1% right. The

statistical model considered the outcome of 628 cases, and the legal experts did not have limitations on

information to consult. Katz et al., (2014) published a highly cited work, as it was first one that used a

high volume of legal petitions, sixty years of decisions by the Supreme Court of the United States

(1953 -2013). The authors stated that the model correctly forecasted 70.9% of 7700 tested cases, used

100 variables, and applied an Extremely Randomized Trees (ERT) model. The study from Aletras et al.,

(2016) predicted outcomes of cases tried by the European Court of Human Rights (ECHR) using a

Support  Vector  Machine (SVM) classifier.  The  authors  argued  to  be  the  first  systematic  study of

predicting cases based solely on textual content without feature engineering. The model was referred to

have a 79% of accuracy on average, and results from work suggested that the “formal facts” of a case

are the most important predictive factor.

Initial works of LJP were in the English language, particularly from the United States Supreme Court.

However, recent studies that use databases in other languages were published, such as the CAIL2018,

which contains 2.6 million criminal cases published by the Supreme Court of China and it is the basis

for the only LJP competition found  (Zhong et al., 2018),  which consists of attending the maximum
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accuracy prediction according to a chronological list of litigation processes.  Table 6 lists the sample of

works that proposes models for the LJP problem. As it can be seen, the accuracy of the models goes

from 70.9% to 88.3%. Older models use conventional Machine Learning techniques such as SVM,

while recent approaches are based on DL. 

Table 6. List of works that proposes models to solve the LJP problem. The column from the left
specifies  its  authors,  the  rest  to  the  litigation  collection  (database),  methodology  and  reported
accuracy

Authors Database Methodology Reported accuracy

(RUGER et al., 2004) 268 cases of 
USSC.

Classification tree with 6 
features

75%

(MONTGOMERY; 
HOLLENBACH; 
WARD, 2012)

214 cases of 
USSC.

Ensemble Bayesian Model 
Averaging

77.10%

(KATZ et al., 2014) Sixty years of 
decisions from 
the USSC. 
Tested over 
7700 cases

Extremely randomized 
trees ERT with the manual 
feature of 100 variables.

69.7%

(ALETRAS et al., 2016) 584 cases of 
ECHR

Contiguous Word 
sequences with an SVM 
classifier.

79%

(SULEA et al., 2017) 126425 cases 
from French 
Supreme Court

SVM classifier trained on 
lexical features

75.9%

(LIU; CHEN, 2017) 584 cases of 
ECHR

Compared performance of 
SVM, logistic regression, 
Random Forest, bagging, 
and K-means.

73.4%

(YANG et al., 2019) 1,588,894 
cases from the 
Chinese AI law
challenge.

Multi-Perspective based 
BiFeedback Network 
(MPBFN) and a Word 
Collocation Attention 
(WCA) mechanism

88.3%

(KOWSRIHAWAT; 
VATEEKUL; 
BOONKWAN, 2018)

1,207 cases of 
Thai Supreme 
Court Cases 

Bidirectional GRU Neural 
Network.

79.87%
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(TSCC)

(CHALKIDIS; 
ANDROUTSOPOULO
S; ALETRAS, 2019)

584 cases of 
ECHR

Hierarchical BERT-
MODEL

82.00%
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5. PROPOSED FRAMEWORK

To model our problem of LJP which is the basis for Contingent Liabilities estimation we propose a

framework composed of three primary blocks:

(1) A pre-process section that transforms the raw files into a structured array form. 

(2) A DL architecture section that convert the documents into a numerical tensor representation and

estimates a probability.

(3) A  similarity estimator section that provides the most similar documents to the one provided as

input.  

Fig. 8 depicts an illustration of the complete framework with its corresponding blocks, where its input

(left) is a litigation petition document and its output (right) is the probability outcome and set of similar

petitions to the estimated document.   

Figure 8. Proposed framework of the study. The framework comprises three main blocks. Block 1
transforms raw lawsuits into a structured array suitable to train/predict the model by converting image
files into text, detecting the type of outcome, and structuring the information. Block 2 transforms the
information  into  a  vector  representation  by  dividing  long  texts  into  chunks,  representing  a  high
dimensional tensor using a BERT architecture, unifying and assigning a class probability.  Block 3
provides a ranking of similar documents to identify intrinsic properties of lawsuits accepted/rejected
(winners vs. losers) by estimating a similarity index.
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5.1 Pre-processing input (block 1) 

This section discusses the methodology used to perform block one that transforms the PDF documents

to text  and structures the information according to  the required input  to  create  a  numerical  tensor

representation. The code used to perform this operation is provided as an attachment (a, b, c). 

5.1.1 Documents to text

A basic assumption of a  NLP process is to have the corpus in machine-encoded text. The sample we

will use to train the framework was a set of PDF documents provided by the Brazilian labor court state

of Rio Grande do Sul (4 Tribunal Regional do Trabalho 4- TRT4) processed by an Optical Character

Recognition (OCR) engine, explained in more detail on section 6.2. The OCR processed the documents

because, in their original form, they were printed and submitted by users. This process is used because

it provides flexibility to scan different documents, ex. Photos, that frequently are used as proofs of the

court From the sample of the PDFs provided by the court, we extracted their text using an open pdf to

text extractor. However, the documents exhibited inconsistencies. The extracted text does not match

with the ground truth. The following fig 9 illustrates the problem:  

Figure 9. Inconsistencies of a PDF document when the text is extracted. The left image shows a
set of rows of a PDF of the sample. The right-hand one is the extraction of the last two lines of that
text. As we can see, there are inconsistencies in this provision. The word “PORTO” is not extracted in
the same line. The numbers 917 and 545 and the word “aduzidos” are repeated.

To correct the problem, we look upon literature for open-source OCRs engines that could transform

images, with more accuracy, into text. The state-of-art OCR engines are based on NN's, particularly

Long Short-Term Memory (LSTM) (Hochreiter  & Schmidhuber,  1997),  a  kind  of  Recurrent  NN's
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(RNN) (BREUEL et. al,  2013; Wick, Reul, & Puppe, 2018b). LSTMs methods reported accuracies

beyond 98% (Wick, Reul, & Puppe, 2018a) on a variety of typographies, ranging from early printed

books to modern prints. 

Based  on  benchmark  results  from  (WICKET  AL.,  2018B),  we  tested  four  LSTMs  OCR  based

algorithms: OCRopus (BREUEL ET AL., 2013), Tesseract (SMITH, 2007), Calamari (WICKET AL.,

2018A), and Kraken (ROMANOV, et al., 2017), using the default models. The first engine we tested

was  OCRopus,  which  was  the  pioneering  algorithm  to  implement  bidirectional  LSTM  networks.

However, results on the sample were not satisfactory, as reported in the literature. Tesseract was the

second engine we tested. It is the oldest of the engines we analyzed, developed since 1984. The results

were  superior  to  the  ones  from  OCRopus.  However,  during  this  step,  we  realized  that  to  have

successful results, fine-tuning or training from scratch must be performed. However, Tesseract lacks the

flexibility  to  perform these two procedures.  Next,  we tested   with  Calamari,  which  implements  a

combined  deep  CNN-LSTM  network  structure  instead  of  the  shallow  LSTM  used  by  OCRopus

(WICKET AL., 2018B). However, it lacked elements to be a complete OCR framework, including the

flexibility to train. Kraken was the last engine we tested. It showed the best results, and it also provides

flexibility to train a model either from scratch or fine-tuning.   

The first tests we performed were using the default pre-trained models provided by the OCR engines.

However, for the documents we needed to perform, they showed limitations. The provided models

were trained in English, while the lawsuits are in Portuguese. That contains accents and characters

different from English. They are trained in conventional layouts, while the lawsuit is not always in

conventional layouts. They are trained with the most used typographies, while some lawsuits do not use

conventional typographies.  In summary, the  task to process the lawsuit documents by an OCR will

need to be performed by training a custom model for this purpose.

LSTMs  engines  work  as  a  conventional  supervised  Machine  Learning  Algorithm  trained  using

image/text pairs. Two files are provided: one from the image and the other as a text file. This capability

enables  to  train  of  specific  documents  where  conventional  OCRs do  not  have  the  capability.  For

example,  perform  complex  tasks  such  as  number  recognition  using  street-level  photos
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(GOODFELLOW ET AL. 2013). Fig 10 shows a simple example of how the image/text pair data are

provided.

Figure 10. Sample of image-pair data. The image from the left is a sample of a scanned image. The
one from the right is its transcription (text file). They are provided as two files: one for the image and
the other for the text file.

The straightforward method to create the data is by human labeling. A person transcribes the text from

the  image.  One  requirement  is  to  provide  images/pairs  as  line  texts,  not  the  whole  document

(ROMANOV  ET  AL.,  2017).  Kraken  enables  us  to  perform  this  stage  flexibly.  It  subsets  the

transcription of the whole document into its corresponding lines of text. To perform the first test, we

manually transcribe a document lawsuit, trained the model, and tested in an out-of-sample line from the

same document. To check the results, we count the number of errors from the text. 

The results were with 0 errors. However, this process was biased and had its limitations. The document

we transcribed contained one type of typography, while the universe of documents to be processed

contains different types. Tests were made in the same document. So, the model overfitted. It was a

biased test.  We realized that making the transcription by human will be high time-consuming so we

look for alternatives. Literature suggests a second approach to train the model by creating synthetic

data (ROMANOV ET AL., 2017; SIMISTIRA ET AL., 2015). Kraken also offers a module to create

synthetic data. From a text, an image is created that can be tuned in distortion, type of typography, size,

and width. Thus, tuning these parameters, a universe of substantial typographies can be reached. Fig 11

illustrates an example of synthetic data.  
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Figure 11. Sample of synthetic data. The phrase "entidade representativa de classe social sem fins"
is  transformed into an  image with distortion.  This  example  is  tuned with  extreme parameters  to
illustrate the concept. Mixing. The parameters allow the creation of the different typographies (ex.
Bold).

The first test we performed was using a corpus of 7776 words representing the Portuguese language.

We created artificial data using default parameters. But the model did not learn. Results were most

flawed  than  with  default  pre-trained  models.  We  realized  that  the  text-to-data  creation  has  to  be

provided in lines (sentences), not only words. We used documents similar to our domain. So, we look

up templates of labor cases from Brazil. We used a set of 12 templates and merged them into a single

document.  That gave  us an approximate total  length of 1500 lines,  which is the suggestion of the

algorithm.

 

We created artificial data using the set of petitions. We first used the default parameters of distortion

and noticed that the model start learning. We continued using this strategy and tuning the parameters.

We adjust  parameters  based  on a  visual  inspection  between the  data  to  be  tested  and the  created

artificial data.  Table 7 lists results with different parameters. As it can be seen, the worst result is the

model with an error rate of 38% and the best with 2%, which coincides with reported results (Wicket

al., 2018a) of state-of-art OCRs.

Table  7.  Results of synthetic data with different parameters.  The left column depicts the model
used, and the right its error rate. Results are ordered by error rate in increasing order. The worst result
was with the corpus of individual words. The model does not learn there, and the best with a 2% of
error. Four parameters were tuned: typography size (s), distortion (d), font size (fs) and font-weight
(fw). The first line corresponds to the synthetic data created from the corpus of individual words. The
subsequent is from the corpus of petitions templates.  Parameter (s) is described as size. However,
evidence suggested that accuracy is better controlled by the parameter (fs). Few is referring to font-
weight, which in practice is tuned to have bold typographies. 

Model Error rate

Individual words Not learning

Petitions default 38%
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Petitions s_12 d_0 34%

Petitions s_12 d_0 fw_400 31%

Petitions fw_350 27%

Petitions d_0 fs_64 fw_350 14%

Petitions d_0 fs_40 fw_350 9%

Petitions d_0 fs_47 fw_350 2%

5.1.2 Structuring text

After  transforming  PDF  files  into  text,  block  1  performs  additional  processes:  (a)  Remove  noise

elements that are not part of the process. (b) Detect verdicts within the text decisions as long as they are

written as a free text, not as a single variable word (c) the decisions are long documents with a range

between 3-120 pages, (d) each lawsuit involve multiple petitions, as these cases (labor court) usually

involve multiple demands. Therefore, multiple decisions are decided in a single outcome document.

Fig. 12 illustrates an example of the exposed issues.
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In addition to the described limitations the verdict of a petition  is not write uniform (eg. accepted or

not accepted). Each judge has its style to write, e.g., to define that a petition was lost. They can write

“improvement,” “reject,” or some custom words/phrases, and some cases do not have a decision. Fig.

13 shows a sample that illustrates this issue.

To overcome these limitations, we developed an algorithm  that performs the following steps

 

1) Store all text petitions and their corresponding text outcome  into an array matrix.

Figure 12. Sample of an accepted lawsuit decision (win). The lawsuits are provided with noise
elements  uniformly  distributed  on  all  documents.  The  outcome  is  defined  in  the  phrase
“PROCEDENTES EM PARTE” (accepted petition) that is write inside a text, not as a single
word and usually appears at the end of the decision document.  Multiple petitions are decided
into a single document (aviso prévio, salário proporcional, multa.) 
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2) Sample documents, visually inspect to identify systematic noise elements such as logos, and remove

them from the texts. 

3) Sample some of the decision documents and  identify the most frequent terms that judges use to

define an outcome (e.g., “procedentes em parte” = win, “improcedente” = loose). Search these terms

over all the decision documents and classify each as a win or lose. Some terms appear multiple times

among a decision, e.g., starting the paragraph, the term “lose” (improcedente) appeared, referring to a

historical decision and at the end appeared “win” (procedente).  We identified that final decisions are

written in the last paragraphs. We, therefore, decided that if we could find more than one term, the one

used would be the one that eventually appeared. Some cases matched none of our criteria either. The

judge did not have the elements to make a decision or because the terms did not match our criteria.   

4) We found that most win decisions were “partly win” because it is common that  multiple petitions

are performed within one lawsuit in labor cases, therefore multiple petitions are decided.

5) Finally, we make a qualitative inspection to validate our process.

6) Our output is a structured array of the form mxn where m  corresponds to the ith lawsuit and n  the
petition text and its corresponding outcome. 

Figure  13. Samples of two non-accepted lawsuit petitions. (a)  The term to identify that  a
petition was not accepted is defined in the word “improcedente” (b)  A second sample of a non-
accepted petition, but with a different writing style. Here, it is write with the word “rejeito.” In
both cases, the personal information of the involved people was removed.  
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5.2 Tensor representation (block 2)

Block 2 from the framework represents  the  text  into a  tensor  form and estimates  a  class  with  its

corresponding  probability.  This  section  comprises  a  Bidirectional  Encoder  Representations  from

Transformer  (BERT)  (DEVLIN  et  al.,  2018)  and  a  Long  Short-Term  Memory  (LSTM)  DL

architectures. We used BERT because is the DL technique that has shown the most accurate results in

NLP during the last years (LI et al., 2019). In addition with the LSTM, to overcome the maximum

number of words (n<512) that BERT restricts - detailed in the following section. The code to perform

the experiments is provided as an attachment 1.d. 

5.2.1 BERT

BERT is a DL architecture that uses pre-trained models to perform specific problem solutions  on

custom datasets (e.g., classification of a litigation process). The pre-trained models are trained on  large

corpuses that usually are texts from Wikipedia or book collections. This methodology has shown to be

beneficial  for  NLP tasks  as  pre-trained  models  stores  information  from  the  large  collection  and

complements by fine-tuning on a custom dataset (ALSENTZER et al., 2019). Its principle is based in

the same way as humans process language by storing information and retrieving to perform a specific

language requirement. Pre-trained models used to be only available in English. However,versions in

other  languages  such as  Brazilian  Portuguese have  been recently  trained and provided to  perform

research (RODRIGUES et al., 2020).

BERT is pre-trained using a Masked Language Model (MLM) objective, where some tokens from the

input are randomly masked, and the objective is to predict the original vocabulary. The architecture

uses a bidirectional network that enables to consider words before and after the tokens. BERT is a

model that contains between 110 and 345 million parameters in its base and large versions. So, training

from  scratch  demands  substantial  hardware  resources.  For  our  particular  problem  of  litigation

predictions, we used pre-trained BERT base uncased model in English  (DEVLIN et al., 2018) and
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Brazilian  Portuguese  (RODRIGUES et  al.,  2020)  as  support,  and then  fine-tuned  (trained)  in  our

lawcase databases. 

BERT model exhibits one important limitation. The maximum number of words (tokens) that can be

processed for each text is less than 512. This limitation is  due to the fact that most of the problems

developed to train the models involve text datasets that satisfied this restriction - e.g., the Google Play

app reviews dataset (MCILROY et al., 2017), a widely cited problem that consist to classify according

to reviews from users,  has a maximum length of 250 words. But litigation processes collections have

higher  lengths  of  up  to  20000  words,  a  difference  of  100x.  When  texts  excess  the  limitation,  a

commonly proposed approach is to truncate the number of words up to 512 as performed in the IMBD

review dataset - a database that involves the classification of reviews from text films (ADHIKARI et

al., 2019). This approach has succeeded for datasets such as the IMBD for the reason that the number

of documents that surpass the restriction represents a small proportion of the entire sample. Therefore,

truncating the texts do not take out important information. However, in our custom lawsuit dataset,

almost all  the samples exceed the limitation of 512 words and the maximum length of the texts is

~20000.  As  Fig. 15 shows the number of words from our custom legal database dataset (TRT4) is

almost  17x bigger  than  the IMBD (3071 vs  174)  which  evidence the  limitations  of  working with

Figure 14. The process to train a BERT model from scratch. On the left side, the pre-training
stage trains the model from scratch in extensive collections such as Wikipedia or book documents
which usually take several days of training and demand high computational resources.  On the
right fine-tuning (training) for specific datasets on problems such as Named Entity Recognition
(NER) and Text Classification. For the objective of our work, pre-trained English and Portuguese
models were used a support and fine-tuned in our custom  collection. 
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conventional methodologies on large documents such as legal petitions. 

 Figure  15: Frequency of words from conventional and lawsuits datasets.(a) The frequency of

words  from the  IMBD reviews  dataset.  Most  of  the  text  has  less  than  512  words  which  is  the

maximum acceptable length of BERT. The ones that surpass the restriction are truncated with minimal

information loss (b) The frequency of words from our custom litigation process database (TRT4). A

minimal number of documents is suitable to be processed by BERT restriction less than 512 words.

The maximum number of words from the lawsuits dataset is 20000, almost 10x more than from the

IMBD reviews dataset.

To alleviate this limitation of size, we divided the text into parts (chunks < 512) trained (fine-tuned)

separately  with its corresponding class  and then unified using a second DL structure  - LSTM.  The

final block  comprised a BERT-LSTM architecture.

5.1.2 LSTM

LSTM (HOCHREITER;  SCHMIDHUBER,  1997)  is  a  Recurrent  Neural  Network (RNN) that  can

process  sequence  elements.  Therefore,  it  is  suitable  for  time  dependency  situations  (e.g.,  speech

recognition, time series forecasting). We chose LSTM as a second DL architecture to unify the chunks

created  by  BERT as  they  followed  an  ordered  sequence  of  elements.  Formally  we  divided  each

document d into a sequence of x1, x2, … xm chunks. Where x1 corresponded to the first document section

of 512 < words, x2  to the second document section of 512 < words, and xm to the last document section
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of < 512 of words. We processed each xi by BERT that provides a R768vector representation for each xi.

Thus, the final representation of the first architecture (BERT) for each document will be a  RMx768 ,

where M is the number of chunks. In the second stage,  the LSTM architecture unified the vectors

(chunks) into a single vector and estimated P (c |d ) that document d belongs to class c (accepted or non-

accepted).

Sequence modeling problems depend on timely information that can have close or long dependencies.

This requirement is observed in text structure as some words have a  close dependency. e.g., in the

phrase “The president of France is Macron,” the word “Macron”  depends on the previous side-by-side

“The president of France.” But other phrases have a dependency on information from more prolonged

periods,  e.g.,  information  detailed  at  the  beginning of  the  document,  as  the  name of  a  person,  is

required to model a part of the text at the end of the document. This is why LSTM architectures have

this name, as they can store information from Short (close) and Long (extended) periods. To unify the

chunks  created  by  BERT  into  the  complete  document,  we  identified  the  LSTM  as  a  suitable

architecture for the reason that the chunks follow an ordered side-by-side sequence (Short) and depend

on information not necessarily together (Long).

Figure 16. Representation of a RNN and LSTM cell. (a) Illustration of the time dependency of an
RNN. On the left side, an input X (blue) is processed at each time t  by a unit A (green) that stores
information used to provide a feedback, and the rest of the information is sent to the hidden cell h1. On
the right, the same process is represented as a set of multiple NNs. The first one refers to input  x1

(chunk 1) that stores helpful information for the second input x2  (chunk 2) in memory A up to time xt

(chunkt). (b) An internal LSTM cell comprises 4 main sections. The LSTM cell uses input information
from the current xt, previous state xt -1 (Short), and Long states Ct,  which is the Cell State (upper) - a
memory that  interacts  over  all  the process  and stores  Long dependencies.  The Forget  Gate  (left)
defines  which  information  to  dismiss  previous  states.  The Input  Modulation  Gate  σ adds helpful
information to the Cell State memory, and the Output Gate provides the output used in the next state ht.
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The behavior of a LSTM can be regarded as a set of networks that can store and reject information

depending on the time and importance of the data fig. 16.  The main difference between a conventional

RNN and an LSTM is its capability to store information from long dependency periods (Cell state)

(HOCHREITER; SCHMIDHUBER, 1997). To represent a sequence, the LSTM depends on a current

state xt that  interacts  with  the  previous  state  h(t-1) (Short  memory)  and  historical  states  Ct (Long

memory). This process is performed in three broadly steps: 

1) Forget Gate: The section discards the information that is not useful in the Cell State (Memory). The

process is performed using a NN with a sigmoid of the following form:

f t=σ(W f [ht−1 , x t]+b f ) (1)

2) Input modulation Gate: The section that selects information to be added. The process is performed

using two NN’s, the first one (2) decides which information will be added using a sigmoid form and (3)

this information that must have to be added to the Cell State (Long term) using a hyperbolic tangent

function.  

it=σ(W i .[ht−1,x t
]+b i) (2)

Ct=tanh(W C .[ht −1 , x t]+bC) (3)

3) Output Gate: Selects information used as support to the next state (Short Term). Using two NN’s, the
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first one is a sigmoid  function (4) that decides which information will be used and a hyperbolic tangent

function (5) that decides the intensity of this information used.  

ot=σ(W o [h t−1 , x t ]+b0) (4)

ht=o t∗tanh(C t) (5)

Our  architecture  of  block  2  (BERT-LSTM) is  the  probability  that  a  litigation  process  (document)

belongs to a binary class  c (lose or win). Each document is represented as a set of chunks (words <

512) trained on a BERT architecture and unified using an LSTM.  BERT represents each chunk as an Rn

vector. Therefore, the final result will be a matrix  Rmxn for each document, where m is the number of

chunks and n the vector size representation. By convention, BERT represents the n vector by a size of

768. The vectors of each chunk are merged using an LSTM that estimates a probability  p(d|c), that

document d belongs to class c.

Figure 17. Framework block 2 representation. The process of block 2 that represents and estimates
a probability from a lawsuit. In the example documents, d1 and d2 are cut into m chunks and fine-tuned
by  the  BERT architecture  using  a  pre-trained  model  as  support.  The  result  is  an  RDxMx768  tensor
representation that is merged using an LSTM, which estimates the probability and its corresponding
class according to the maximum probability value.
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5.3 Document similarity (block 3)

Argumentation is an essential tool used by lawyers to develop a court petition. Identifying components

used in previously judged similar cases will provide support elements that can be used  in favor of  a

new petition. We identified this particular feature from the interviews that we performed with experts

of the area (directors of the organizations), as they agree that similar cases tend to have similar results

and  that  a  feature  to  identified  similar  lawsuits  will  be  suitable  for  his  work.  In  addition  to  the

probability outcome, our framework provides in block 3 the most similar cases to the case provided as

input, using as reference decisions from the training database. For example, regarding our previous

example of a person asking for money back after buying a TV set, identifying similar judged cases of

legal petitions from the consumer protection law area will provide the argumentation elements used as

support, such as a particular law that led to favorable (win) or not favorable results (not accepted). With

this  information  lawyers  and users  could  create  strategies  such  as  reformulating  a  case  before

submitting to court. The code used to perform the operations from this block is provided in attachment

1e. Fig 18 illustrates the process and possibilities of this block.

Figure  18.  Framework block 3 illustration. (a)  A petition is  used as input  and compared
against the set of all petitions from the database. The result is a measure of similarity. A high
similarity means that documents are almost identical, a medium means that the document has
elements in common and a low that are different. (b) The degree of similarity is estimated using
a normalized dot product of a vector space representation between a query (q) and a set  of
documents (d). A document x i is query against a set of documents y N from a database using a
normalized  dot  product.  The  result  is  the  angle  cosθ for  each  of  the  y N documents.  For
illustration  purposes  the  example  is  in  a  3-dimensional  space,  however,  the  technique  is
generalized for a Rn dimensional space.  
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To estimate the similarity from the set of documents, the block of the framework calculates a similarity

index using a  dot product  of each of the documents represented as a tensor array.  The results  are

ordered from the lowest to  the highest  value,  where the lowest  will  represent  the closest  distance

between two documents (the most similar). We chose this method (dot product) as it can be analytically

solved, which provides optimization of computer performance. Formally, a lawsuit  q⃗ to be query is

compared to a set of documents d⃗ j (previous judged cases) represented in a Rtvector space. Where t is

the tensor dimension, represented by block 2 of our framework (BERT-LSTM), the result will be a set

of  j  number of pairwise comparisons. In practice, the first value will be 0 because the document is

compared against itself. For practical purposes, we defined that the framework to provide the 50 most

similar documents, but this number can be adjusted.       

cos ( d j , q )=
d⃗ j . q⃗

|d⃗ j|.|q⃗|
=

∑
i=i

t

W ij .W iq

√∑
i=i

t

W ij ² .∑
i=i

t

W iq ²

(4)

5.4 Baseline (Fast Text)

Besides our proposed architecture, we used as  baseline the FasText model  (JOULIN et al. 2016) to

perform faster experiments as long as it has provided closer results to the state-of-art models but with

better computer performance.  It  is important to highlight that litigation documents have distinctive

features  of  being long texts,  making the  performance a  critical  feature,  therefore we considered a

baseline model to accelerate the experiments as a desirable element. FastText is  a model based on the

CBOW structure that works by estimating the probability of the presence of a word due to its context,

according to a defined asymmetric window (MIKOLOV et al. 2017). Formally, given a sequence of T

words, w1 , ... , wT  the objective of the CBOW model is to maximize the log-likelihood of the probability

of the words given their surroundings:

∑
t=1

T

log p(w t∨C t) (5)
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Where CT is the context of the t-th word, e.g., the words wt−c , ... wt−1 , wt+1 , ... ,w t+c ,for a context window

of size 2c. A natural candidate for the conditional probability in Eq. 5 is a softmax function. However,

it is cited that it  is impractical for large vocabulary  (MIKOLOV et. Al,  2017). An alternative is to

replace this probability with independent binary classifiers over words. More precisely, the conditional

probability of a word w given its context c  in Eq. 5 is replaced by the following quantity:

log (1+e−s (w , C)
)+∑

n ϵ Nc

log(1+es(w ,C )
) (6)

Where s(w ,C) is a scoring function between a word w and it is context C 

 N c is  a set  of negative examples sampled from the vocabulary.  The maximized CBOW objective

function is obtained by replacing the log probability in Eq (5) by the quantity defined in Eq (6):

∑
t=1

T

[ log (1+e−s (w t, C t))+ ∑
nϵ NCt

log (1+es(n ,C t ))]  (7)

                   

A parameterization  for  this  model  is  to  represent  each  word   w  by  a  vector  vw.  The  context  is

represented by the average of the word vectors υw ' of each word w ' in its window. The scoring function

is simply the dot product between these two quantities:

s(w ,C )=
1
C ∑

w'∈C

uw'
T V w . (8)
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6. EXPERIMENTS

6.1 ECHR dataset

The first  step to  test  our  framework was  to  estimate  its  performance in  a  database  with  reported

benchmarks. We used the ECHR database that analyses human rights violations (ALETRAS et al.,

2016). We chose this database as it has the highest reported accurate results on the LJP problem in

English, and it is available as open-source (CHALKIDIS; ANDROUTSOPOULOS; ALETRAS, 2019).

It is essential to highlight that the language is a fundamental factor to consider in the NLP area as most

of the state-of-art literature is based on English corpus (documents), and the pre-trained models are

primarily published to be used in English texts. The ECHR describes judicial proceedings related to

violations of political  or civil  rights. The text below illustrates a sample of the ECHR dataset.  An

applicant (Mr. Murat Arslan) demanded that his rights were violated as long as he was taken to the

headquarters of the anti-terrorism security police. Then the case was judged as non-violated. 

“The applicant, Mr Murat Arslan, is a Turkish national who was born in 1979 and is currently

detained in Nazilli Prison (Turkey). He was represented before the Court by Mr E. Yildiz, a

lawyer practicing in Izmir.,  On 9 October 2001, the applicant was arrested and taken into

police custody at the  headquarters of the anti-terrorism branch of the Izmir security police.,

On 12 October 2001, after being interviewed by the public prosecutor at the Izmir National

Security Court, he was taken before a judge of that court who on 13 October 2001 ordered his

detention pending trial., On 19 October 2001 the public prosecutor committed the applicant

for trial in the National Security Court., The criminal proceedings against the applicant are

still pending., The applicant’s lawyer dated his application 12 April 2002 and took it on 19

April to the post office in Konak (central Izmir), where post is collected regularly several times

a day.” Judged = 0 (non-violated).

The ECHR dataset contains 11748 cases distributed in 5263 (non-violated) and 6485 (violated).  We

used the division for training (90%) and validation (10%) provided by the authors. We also tagged the

decisions as 0 when the cases were judged as no human rights violation and 1 when cases were judged
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as human rights violations. The data were provided as a set of JSON format files that we transformed

into a matrix array form. The first algorithm we tested was our baseline (Fast Text). 

6.1.1 Baseline (Fast Text)

We performed a pre-process of the ECHR dataset by transforming it into lower case and removing non-

alphanumeric characters. Tables 8 and 9 show our experiments' results in decreasing order according to

their macro-F1 value. We executed tests with different learning rates and epoch values. We divided the

results  for  each  class  into  (label  =  0)  for  non-violated  and (label  =1)  for  violated.  We make this

distinction as we wanted to validate in which class the framework performed the best.  Table 8 refers to

the performance of the algorithm for the class non-violated (label 0), with the highest values (precision

= 0.614), (recall = 0.706), (f-score = 0.657) and a (macro-F1=0.729).  

                                                       

Table 8.  Results of the ECHR database for cases judged as not human rights violated  (Label 0 -
Baseline).

Precision Recall F1 Macro-F1 Epochs LR

0.614 0.706 0.657 0.729 100 0.1

0.614 0.702 0.655 0.728 50 0.1

0.614 0.698 0.654 0.727 200 0.1

0.607 0.697 0.649 0.723 1000 0.1

0.608 0.693 0.648 0.722 500 0.1

0.612 0.677 0.643 0.721 40 0.1

0.613 0.657 0.634 0.717 30 0.1

0.608 0.657 0.632 0.714 5 1.9

In the same line, Table 9  refers to the performance for the class accepted petitions (label 1).  The

highest values were (precision = 0.835), (recall = 0.780), (f-score = 0.801) and a (macro-F1 = 0.729).

Using our baseline algorithm (FastText), we identified that the class violated human rights (label 1) has

a better performance than the class non-violated (label 0) and the overall performance of the algorithm

provides a macro-F1 value of 0.729.  It was also important to note that the best accuracy performance

was attended with 100 epochs (macro-F1 = 0.729),  but approximated results were reached using 50
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epochs  (macro-F1  =  0.728)  which  let  us  conclude  that  the  performance  does  not  have  a  linear

dependency.    

Table 9. Results of the ECHR database for cases judged as human rights violated (Label 1 -
Baseline).

Precision Recall F1 Macro-F1 Epochs LR

0.835 0.770 0.801 0.729 100 0.1

0.833 0.771 0.801 0.728 50 0.1

0.832 0.773 0.801 0.727 200 0.1

0.830 0.766 0.797 0.723 1000 0.1

0.828 0.768 0.797 0.722 500 0.1

0.823 0.778 0.799 0.721 40 0.1

0.815 0.785 0.800 0.717 30 0.1

0.814 0.780 0.797 0.714 5 1.9

6.1.2 Proposed Framework

Our second  algorithm to  test  was  our  proposed  framework (BERT-LSTM).  A limitation  of  BERT

architectures  is  the  requirement  for  high  computational  resources  as  it  contains  about  110 million

parameters  so it is suggested to train the models using a Graphic Process Unit (GPU). To train our

framework, we use a Nvida Titan XP GPU (we can use this resource due to Nvidia's grant contribution

to  our  project)  using  the  library  Pytorch  during  123 epochs.  In  contrast  to  conventional  text  ML

algorithms such as FastText BERT- based algorithms do not  need pre-processed text (transform to

lowercase,  remove accents,  etc.)  as  input.  Therefore,  we did  not  perform this  pre-process.  As  we

already cited in our work, the BERT model requires a pre-trained model. Therefore we used the BERT-

base  uncased  pre-trained  model  in  English,  which  is  a  widely  used  model  with  the  suggested

parameters (batch = 10, learning rate=6e-5) and tested with different epoch values (DEVLIN et al.,

2018). The time to process was ~30 mins/epoch. We also analyzed the results separately as our baseline

model for each non-accepted class (label 0), accepted class  (label 1) and arranging with an increased

order according to its macro-F1 value.  Table 10 shows the results of non-accepted petitions, with the

highest values (precision = 0.979), (recall = 0.807) and (macro-F1 = 0.891). The number of epochs that
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provided the best results was 10. Therefore the total processing time was of 4 hrs (30min/epoch). 

Table 10. Results of the ECHR database for cases judged as not human rights violated  (Label 0 -
Proposed Framework).

Precision Recall F1 Macro-F1 Epochs

0.979 0.797 0.879 0.891 10

0.996 0.780 0.875 0.888 11

0.979 0.796 0.878 0.887 8

0.977 0.791 0.874 0.886 13

0.977 0.791 0.874 0.886 14

0.980 0.780 0.868 0.883 7

0.939 0.807 0.868 0.879 9

0.956 0.794 0.868 0.879 6

In the same line, Table-11 shows the results for the accepted petitions category (label 1), with the

highest values of (precision = 0.832), (recall=0.997), and a (macro-F1=0.891). 

Table 11. Results of the ECHR database for cases judged as human rights violated (Label 1 -
Proposed Framework).

Precision Recall F1 Macro-F1 Epochs

0.829 0.986 0.901 0.891 10

0.819 0.997 0.899 0.888 11

0.823 0.983 0.896 0.887 8

0.825 0.981 0.896 0.886 13

0.825 0.981 0.896 0.886 14

0.821 0.983 0.894 0.883 7

0.832 0.955 0.889 0.879 9

0.824 0.964 0.888 0.879 6
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We compared our results to the reported on literature for the ECHR dataset. Table 12 details the macro-

F1 values for each of the cited methodologies. These values were reported as a macro average for both

labels  that  we  estimated  to  create  a  direct  comparative  measurement.  These  results  exceeded  our

expectations, as shown in Table 12, the most accurate values in all the measurements to the best of our

knowledge are from our proposed framework (BERT-LSTM) As it can be seen   the highest reported

values are (HIER-BERT) (CHALKIDIS; ANDROUTSOPOULOS; ALETRAS, 2019) with a precision

(0.906 vs. 0.904), recall (0.876 vs. 0.793), and macro-F1 (0.884 vs. 0.884). Our baseline algorithm

(FastText) showed the lowest accurate results  (precision = 0.75), (recall = 0.738) and (f1 = 0.729), just

above the BOW-SVM (precision = 0.715), (recall = 0.720) and (f1 = 0.718)  that is the only algorithm

that does not belong to the category of DL methodologies. The BIGRU-ATT and HAN are DL models

that depend on attention mechanisms and provide similar results to the HIER-BERT (macro-F1 ~0.80).

Finally,  the  results  were  also  compared  to  randomly COIN-TOSS p  (0.5)  values,  which  provided

precision and recall (~0.50) as the dataset comprises equal sample sizes of binary categories.  Finally,

using  a   BERT single  model  (precision=0.240)  demonstrates  that  using  a  strategy without  chunks

provide weak results.
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Table 12. Macro result values for the ECHR dataset. Our proposed framework BERT-LSTM shows
the best performance in precision, recall,  and F1 metrics against the highest reported results in the
literature.  The best results overall are based on BERT architectures that utilize chunk strategies. BERT
single model estimated the weakest result from the sample. HAN and BIGRU are based on attention
mechanisms that provide close results to BERT. Our baseline model FastText performed better than
conventional ML techniques (BOW-SVM).

Author(s) Precision Recall F1

*  BERT-LSTM  (our
work)

0.906 0.876 0.884

HIER-BERT
(CHALKIDIS;
ANDROUTSOPOUL
OS; ALETRAS, 2019)

0.904 0.793 0.820

BERT 0.240 0.500 0.170

HAN  (CHALKIDIS;
ANDROUTSOPOUL
OS; ALETRAS, 2019)

0.882 0.780 0.805

BIGRU-ATT
(CHALKIDIS;
ANDROUTSOPOUL
OS; ALETRAS, 2019)

0.871 0.772 0.795

FAST-TEXT*
(baseline)

0.725 0.738 0.729

BOW-SVM
(ALETRAS  et  al.,
2016;  CHALKIDIS;
ANDROUTSOPOUL
OS; ALETRAS, 2019)

0.715 0.720 0.718

COIN-TOSS 0.504 0.505 0.397

6.2 TRT4 dataset

After testing the performance of our framework in  a public  dataset  with reported benchmarks,  we

evaluated it in a Brazilian custom dataset. The Brazilian court system is divided into first, second and

third instance. We chose litigation processes from the  first instance, because we  defined as criteria to

use judicial sentences without any previous appeal (second and third instance). We used data provided
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directly from court data-centers because the public available information on sites from Brazilian courts

does not contain the complete text petitions, only the processes summary. To have access for the full

litigation documents we searched for possibilities on some of the Brazilian courts. We look up on the

federal (TRF4) and state (TJRS) courts with unsuccessful results. After searching this two possibilities

we performed an agreement with  the Brazilian labor court, “Tribunal Regional do Trabalho 4 região”

(TRT4)  that demanded multiple meetings and agreements but finally collaborated with the information

for our study. The TRT4 dataset exhibits differences against the public ECRH dataset. The size of the

TRT4  database  was  composed  100,000  litigation  processes  provided  as  a  set  of  raw  PDF  files

structured into two files (petition and sentence) in Brazilian Portuguese language.  We pre-processed

the dataset using block one from our framework and discarded the documents that  did not satisfied the

established criteria   (e.g.,  did not have a verdict defined by any  of the sample of words  that  we

established as basis). The final size of our sample comprised 58169 lawsuits, divided into 34265 as

“not accepted” and 23904 as “accepted” as plotted in fig. 19. 

Figure 19. Distribution of lawsuits according to its final decision from TRT4. “Improcedente” 
refers to petitions that lose and “Procedente em parte” to petitions that win.
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6.2.1 Baseline (FastText)

We first performed the experiments using  the baseline algorithm in a computer with a conventional

CPU processor (4 cores). Each epoch delayed ~0.72 mins. Therefore, the total time for 25 epochs took

18 min. We used the suggested parameters of learning rate ranges (0.1 – 1) and trained till we perceive

that the model attend a maximum accuracy (no. epochs = 25). Table  13 shows the results of the class 0

(non-accepted) petition. The highest value for the precision was 0.675 (epochs = 20 & lr = 1), recall of

0.854 (epochs = 5 & lr = 0.1), F1 of 0.726 (epochs = 5 & lr =0.8) and macro-F1 of 0.613 (epochs = 15

& lr =1).  

Table 13. Results of the TRT4 database for cases judged as non-accepted (Label 0 - Baseline)

Precision Recall F1 Macro-F1 Epochs LR

0.673 0.744 0.707 0.613 15 1.0

0.668 0.782 0.721 0.612 10 1.0

0.675 0.718 0.696 0.611 20 1.0

0.674 0.716 0.694 0.610 25 1.0

0.656 0.806 0.723 0.597 5 0.9

0.654 0.809 0.723 0.594 5 0.5

0.653 0.816 0.726 0.593 5 0.8

0.617 0.854 0.716 0.522 5 0.1

Similarly,  Table 14 shows statistic values for the accepted petitions (class 1). The highest precision

value was 0.589 (epochs = 5 & lr = 0.8), recall 0.503 (epochs = 20 & lr = 1.0), F1 0.527 (epochs = 20

& lr = 1.0) and macro-F1 0.522 (epochs = 15 & lr = 1.0) . Overall, the accuracy was lower than the

class 0.  

Table 14. Results of the TRT4 database for cases judged as accepted (Label 1 - Baseline).

Precision Recall F1 Macro-F1 Epochs LR

0.566 0.479 0.519 0.613 15 1.0

0.554 0.503 0.527 0.611 20 1.0

0.551 0.502 0.525 0.610 25 1.0
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0.573 0.427 0.489 0.602 4 1.0

0.585 0.394 0.470 0.597 5 0.9

0.584 0.386 0.464 0.594 5 0.5

0.589 0.377 0.460 0.593 5 0.8

0.531 0.237 0.328 0.522 5 0.1

In  addition  to  the  previous  estimates,  we  trained  the  model  using  first  a  pre-processing  text  by

converting to lowercase and removing non-alphanumeric characters and accents. We used the same

parameter suggestions of learning rate ranges (0.1-1) and epochs (1-25). Table 15 shows the results for

class 0 (non-accepted). Overall, the accuracy increased against the non-processed text values, precision

from 0.675 to 0.735,  recall from 0.502 to 0.852, f1 from 0.527 to 0.752, and the macro-F1 from 0.613

to 0.684.

Table 15 Results of the TRT4 database for cases judged as accepted with pre-processing (Label 0
-  Baseline).

Precision Recall F1 Macro-F1 Epochs LR

0.734 0.762 0.748 0.648 10 1.0

0.729 0.771 0.749 0.682 25 1.0

0.729 0.767 0.747 0.680 15 1.0

0.735 0.742 0.738 0.679 20 1.0

0.719 0.782 0.749 0.674 7 1.0

0.696 0.817 0.752 0.654 5 0.8

0.696 0.809 0.748 0.653 4 1.2

0.631 0.859 0.725 0.552 5 0.1

Table 16 also shows the results for the pre-processed text for class 1 (accepted).  As well as class 0,

results were superior to the non-processed texts. The results goes on precision from 0.589 to 0.650,

recall from 0.502 to 0.615, f1 from 0.613 to 0.620, and a macro-F1 from 0.613 to 0.684. 

Table 16. Results of the TRT4 database for cases judged as non-accepted with pre-processing
(Label 1 -  Baseline).

Precision Recall F1 Macro-F1 Epochs LR

0.638 0.603 0.620 0.684 10 1.0

0.641 0.589 0.614 0.682 25 1.0
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0.638 0.590 0.613 0.680 15 1.0

0.624 0.615 0.620 0.679 20 1.0

0.642 0.560 0.598 0.674 7 1.0

0.650 0.487 0.557 0.654 5 0.8

0.643 0.494 0.558 0.653 4 1.0

0.570 0.289 0.383 0.553 5 0.1

We concluded that  pre-processing a  text   using a  conventional  ML text  algorithm as the FastText

increased  accuracy.  That  class  0  (non-accepted)  performed  better  than  class  1  (accepted),  which

coincides with the results ECHR dataset.

6.2.2 Proposed framework 

After performing the first tests using our baseline algorithm, we run the experiments on our proposed

framework  (BERT-LSTM).  We  processed  the  framework  using  a  GPU.  But  in  contrast  to  the

experiments performed on the ECHR dataset, our first tests failed due to the high demand for RAM

resources as long as the length of the texts was substantially longer than those from the ECHR. To

overcome this limitation, we create a swap space of 40 GB additional to the 10 GB of memory of the

machine. Each epoch demanded ~2.7 hours and trained until we observe that accuracy does not have a

better performance (123 epochs) . Therefore, the total processing time was 14 days. This high demand

of processing time also demanded to create mechanisms to store partial results.  Table 17 shows the

accuracy measures of the framework for the class non-accepted (label 0). The values are ordered in

decreasing order according to the macro-F1. The highest precision value (0.741) was obtained on the

13 epochs. While the highest recall value (0.723) was obtained in the last epoch (123), which implies

the framework tried to obtain better results for label 0 in the first training stages,  but then the model

compensated the results for label 1 for increasing the overall accuracy.

Table 17. Results of the TRT4 database for cases judged as accepted (Label 0 – Proposed
Framework).

Precision Recall F1 Macro-F1 Epochs

0.724 0.718 0.721 0.677 47

0.731 0.690 0.710 0.672 68

0.716 0.719 0.717 0.670 79
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0.738 0.668 0.701 0.669 92

0.723 0.694 0.708 0.668 113

0.706 0.723 0.715 0.665 123

0.741 0.604 0.665 0.646 13

0.728 0.504 0.596 0.602 9

Table 18 complements the results for label 1 (accepted petitions). Overall, results were less accurate

than with label 0. We obtained the highest precision value (0.614) on epoch 47, which coincides with

the highest macro-F1 value (0.677). The highest recall value (0.742) in the initial steps (epoch 13),

similar to the F1 value (0.627) obtained at epoch (13). 

Table 18. Results of the TRT4 database for cases judged as non-accepted (Label 1 – Proposed
Framework).

Precision Recall F1 Macro-F1 Epochs

0.614 0.618 0.616 0.677 47

0.600 0.647 0.623 0.672 68

0.607 0.604 0.605 0.670 79

0.592 0.671 0.629 0.669 92

0.598 0.632 0.615 0.668 113

0.604 0.585 0.594 0.665 123

0.563 0.707 0.627 0.646 13

0.517 0.742 0.609 0.602 9

Finally, we illustrate the examples of 2 lawsuits processed by our proposed framework.  Figure 20

shows a lawsuit that the framework classified as non-accepted and figure 21 as accepted.  For space

purposes, we only show some parts of both lawsuits to exemplify the estimation of the model. Figure

20 refers  to the case  of a technician nurse (description) who was punished (facts) for performing an

incorrect triage of a patient. The petitioner (nurse) is demanding the suspension of the punishment. The

framework  estimated  the  class  0  (non-accepted)  with  a  probability  of  0.949  that  agrees  with  the

historical decision of non-accepted.
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Figure  20.   Example of a lawsuit estimated as non-accepted (lose).  The document illustrates the
input and output result from our proposed framework of a sample from the TRT4 database that refers
to a nurse labor case. The upper sections refer to the input (initial petition) written as free text and
include three sections: description, facts, and demands. The middle section shows the estimated (not
accepted)  class  and  its  corresponding  probability  (0.9799)  from the  framework.  Then,  the  lower
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section shows the real decision from the judge who decided as non-accepted the claims from the
petitioner defined in the word “IMPROCEDENTES,”   and agrees with the estimated result from our
framework.

Figure 21 describes a case that the framework estimated as accepted. The petition refers to a telephone

technician (description) who  claims that some of his labor rights were not respected (facts). He  is

asking for a compensation (demands). The output of the framework estimated the petition as accepted

with  a corresponding probability of 0.9799. The right decision agrees with the framework result as

accepted described in the phrase “procedure em part.”  
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Figure 21.  Example of a lawsuit estimated as accepted (win). The document illustrates the
input  and  estimated  result  from  our  framework  that  corresponds  to  a  labor  case  from  a
telephone  technician  (description),  that  performed  dangerous  activities  (facts),  and  claimed
compensation due to this fact (demand). The upper sections show the input (initial petition)
written in free text, which includes the description, facts and demands. The following section
shows the estimated class (accepted) with its corresponding probability. The last section shows
the real decision (accepted), defined in the phrase “procedente em parte”.
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6.2.4 Document similarity

Using the last block of our framework, we estimated similar cases to the document provided as input.

This process is crucial, as it was referred to in our text. It provides clue elements that were used by

similar previous litigation processes. Table 19 exposes the example of a particular litigation case of the

TRT4 dataset that was estimated from our experiments. The column “query id” (left) represents the

index of the lawsuit. The column “distance” (center) represents the degree of similarity from the query

id  index  against  all  the  sets  of  documents  from  the  database.  The  column  “retrieved  id”  (right)

represents the id of the similar retrieved documents. The rows are in increased order according to the

“distance” (similarity column). For practical purposes our framework is limited to provide the 50 more

similar documents. The first line represents the most similar document, the distance is 0 because the

retrieved lawsuit  is  precisely the same.  The following line is  the second more similar  lawsuit  and

subsequently to the 50th  most similar. 

Table  19.  Example of similarity estimation. The left column identifies a  document of a particular
lawsuit compared against the rest of the documents from a database. The center column estimates how
similar are the query id document against the rest of the documents. A distance 0 means exactly the
same document.   For practical purposes, it is limited to provide the 50 most similar documents. In this
example the retrieved id  20518 is the 1stsimilar and the 26512 id the 50th more similar to the query id
document (7553).  

Query id Distance (similarity) Retrieved id

7553

0.00000000000 7553 (same)

0.00044500828 20518 (1st)

0.0004966259 14711 (2nd)

... ...

0.0009752512 26512 (50th)

 

To provide a better understanding of the process, in fig 22, we illustrate two examples of similar cases

estimated  by  our  framework  from  the  TRT4  database. In  both  examples,  we  use  anonymous

information of the involved people. The first pair,  fig 22 a1  and  fig 22 a2, shows a section of two

lawsuits with a lower index value (very similar). It can be seen that both lawsuits have exactly the same

elements in the argumentation section (the three paragraphs:  Pleliminarmente,  ainda, cumpre). They
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only differ in the petitioner's name. In fig 22 a1 Alessandra da Silveira in fig 22 a2 Viviana Moraes.

Fig 22 b1 and  fig 22 b2  compare two cases with a medium similarity. In contrast to the previous

example, both lawsuits have elements in common but are not entirely the same. The categories of the

case (“Accidente de trabalho” & “Doença ocupacional”) and the argumentation codes (997, 186 and

187) are the same but not the rest of the lawsuit.

Figure 22. Comparison of similar lawsuits  a1.2)  a pair of lawsuits with a low index value (high

similarity) that are identical. They only differ in the name of the petitioners.  b1.2) a pair of lawsuits

with  a  medium  index  value.  They  both  corresponded  to  the  same  case  category  (DOENÇA

OCUPACIONAL) and used the same argumentation elements  (art 927 CCB, art 186-187).  In both
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cases, information about the people involved in the cases was unidentified (gray region).
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7. CONCLUSION AND FUTURE RESEARCH

We proposed a framework to estimate the probability of loss of liabilities subject to a litigation process

(Contingent Liabilities) that we represented as solving the LJP problem. We identified from literature

review and primary sources (interviews) the lack of existence of a framework like the one we proposed.

Using a literature review, we identified that DL is the methodology that has shown better performance

on the NLP area, and its use is exponentially increasing among the academic community. We developed

a framework based on a DL architecture and tested it in two lawsuit databases: ECHR an international

database with reported benchmarks, and TRT4 a Brazilian litigation database composed of ~ 100,000

lawsuits from a regional state labor court. Our tests provided to our knowledge the highest estimated

reported accuracy on the ECHR collection compared to published results with a precision of 0.906

(CHALKIDIS; ANDROUTSOPOULOS; ALETRAS, 2019). The TRT4 as far as we know is the first

work to  estimate the probability  outcome from a Brazilian labor  court  litigation database,  using a

mathematical model (LJP problem).  

Despite  using  the  same  framework  in  both  databases  (ECHR  &  TRT4),  the  estimated  outcomes

provided different accuracies allowing us to identify important points to be discussed. The language is

a fundamental aspect to be considered when using a DL framework that depends on pre-trained models

such as the one that we used (BERT) because they are mainly published to be used in problems that

involve  English  language  texts.  Regardless  of  using  a  pre-trained  model  in  Brazilian  Portuguese

language (RODRIGUES et al., 2020), English pre-trained models are provided with high quality since

they are trained on more extensive databases (DEVLIN et al., 2018) and offer broader possibilities, for

example, BioBERT is a model pre-trained in medical and biological specialized literature texts (LEE et

al., 2020). Nonetheless, the most important fact of using pre-trained models in English is that the state-

of-art NLP literature is published and validated in the English language, which motivates the use and

increases the quality of the models. 

The structure of both databases (ECHR & TRT4) also exhibited substantial differences. The ECHR was

provided in a structure form ready to be trained. It was already used in previous works (ALETRAS et

al., 2016; CHALKIDIS; KAMPAS, 2018), which offers historical validations. On the other side, the

TRT4 database was not structured. It was provided as a set of PDF files that we need to transformed
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into text and organized into an array form. We believe that during this process, some potential noise

could be added to the texts. The no. of lawsuits (n=7100) and their average length (median = 1573

words) were considerable smaller on the ECHR than on the TRT4 (n=58169) (median = 3071 words),

which let us conclude that the size of a document is a fundamental piece that affects to the model,

bigger  texts  have  less  power  to  be  modeled.  We  believe  that  that  the  ECHR  dataset  is  more

homogeneous and less stochastic as long as the no. of possibilities from the ECHR is lower than the

TRT4, that is cases from the ECHR are more objective, less redundant than the TRT4, but we suggest a

qualitative analysis for future research to corroborate this possibility. On the other side, a similar aspect

between both databases was that the framework has a better performance in the class 0 (non-accepted)

than accepted (1). On the ECHR, the precision were (label 0 = 0.97, label 1 = 0.832) and on the TRT4

(label 0 = 0.741, label 1 = 0.614), which let us conclude that the models have a better performance in

identifying cases that will be not accepted than accepted. Other possibilities for this performance will

be that accepted cases exhibit a more stochastic form.   

We also validated our framework with experts in that area of Contingent Liabilities (two lawyers and

two accountants)  by  presenting  the  objectives  and  results  of  our  work.  The  first  observation  that

lawyers brought was about the difference between both databases of the studies (ECHR and TRT4).

That there is an impossibility of performing an analogy between them because law systems among

countries provide substantial differences and depend on local cultural perceptions. They explained that

law systems are divided into two broad groups: Common Law and Civil Law. Common-law is mainly

used in English-speaking countries. Its primary characteristic is that decisions are based on prior cases,

and  they  depend  on  the  similarities  and  differences  of  the  cases.  They  added  that  the  Civil  Law

(Brazilian system) is based on codes that judges interpret,  that precedents are less important critical,

and that every case is intended to be framed into a legal concept. However, they emphasized that both

systems converged in many aspects. Such as implementing the jury, the appeal of a court ruling, and

the construction of legal precedents.  However,  the lawyers concluded that  the structure of a  triple

argumentation (first, second, third instance) is the same. Synthetically the only difference is the way of

how a litigation process is structured. Based on the comments we hypothesize that these structural

differences  between both databases affected the framework performance.  In particular,  on  how the

algorithm identified similar terms to estimate the output.  In the ECHR dataset previous cases have

more impact. Therefore, a case to be estimated will be more predictable than the TRT4. According to
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our results, we interpret that the Civil law system (Brazilian) relies more on interpreting a case by the

judge against a code - more subjective - than the Common law, which promotes more homogeneity

between decisions.      

    

The second aspect  relates  to  the  areas  of  law.  The interviewers  highlighted  that  each area  has  its

peculiarities. For example, tax law has substantial differences from civil law. The labor area, as the one

we worked on (TRT4),  use to have multiple petitions and multiple decisions. Legal actions from other

legal areas usually have one petition and one decision, such as moral damage from the civil courts. This

clarification went in line with our findings when we performed the data pre-processing from the TRT4,

as most accepted petitions were marked as “partially accepted”,  which means that some petitions were

not accepted. For future research, it will be desirable to experiment with other types of Brazilian law

areas. 

A point remarked from the interviewers is the block of our framework to analyze the similarity between

cases. They said that performing previous analyses of a case is important to understand if a litigation

case is worthwhile and affirmed that similar cases usually tend to have similar decisions. “With this

tool,  a  petition  can  be  verified  to  look  at  the  chances  of  success.  If  it  does  not  have  success,  a

reconstruction can be performed before submitted to the court, a system for an initial review,” they

added. From these comments, we interpreted that a litigation process could depend on how a lawsuit is

structured  and  not  exactly  on  concrete  facts.  Therefore  providing  suggestions  of  changes  to  be

performed  on a  process  text  to  increase  the  probability  of  favorable  decisions  will  be  a  research

opportunity. This interpretation was also reinforced with the comment, “what is written on the process

are abstractions, words, concepts. None of this is an actual reality.” It was also emphasized that the law

is not an exact science, and the organic process is not sealed from society's mistakes, that  there are

innumerable external factors involved,  so it will not reach the same limits as the exact sciences. We

concluded from these comments that a legal process will always have a limitation of being  exactly

translated into a mathematical representation.    

 Our interviewers also pointed out that this tool can bring better ethical issues for users & organizations

involved in a petition. For example, lawyers sometimes know in advance that a process will not have

chances  of  success.  But  they make the  petition in  a  non-ethical  course  of  action.  In  this  line,  we
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identified that our framework tool,  besides organizations support, can potentially help users who are

part of a litigation process to provide an accessible way to understand the possibilities of win & lose a

litigation process, mainly because lawsuit documents look like a black-box due to the specific language

used by lawyers. That is  a tool like the one we constructed will provide more transparency to users

outside of the law area.

Interviewers also noted that the tool could also be helpful for law firms whose strategy is to search for

more straightforward cases with high odds of winning as their core business is based on submitting a

high quantity of cases instead of analyzing in-depth a particular case. For example a law firm that will

prefer to submit multiple cases related to consumer protecting rights than a case that demands more

time to by analyzed because the protecting consumer rights type will have higher chances of victory.

Finally, it was also emphasized the complexity of working with such an amount of data  as lawyers are

usually limited to review a minimal set of documents, that  it is impossible to review all the related

information that a process demand and that a tool like this one  will make more efficient their work. 

It is plausible that a number of limitations may have influenced the results obtained. The first is that we

only use a type of method (DL) and pre-trained model (RODRIGUES et al., 2020) to perform our

estimations. The second is that the process for detecting decisions in the TRT4 database depended on a

Regex search  with defined criteria  (a  set  of  pre-defined terms that  appear  in  the last  paragraphs),

however some of the resolutions may appeared with other type of terms and in other parts of the text.

The third is that we only use a specific type of cases from Brazil (labor – rito ordinario), and each type

of cases have their particularities such as multiple decisions for one type of case. 

Future studies on the current topic are therefore recommended, we propose to perform a qualitative

analysis of the estimated results from the framework to understand how the algorithm is internally

allocating its weights due to the fact that DL-based algorithms are black-box limited in explaining

(cause-reasoning)  (CASTELVECCHI, 2016). It will also be helpful to test with a different class of

algorithms, such as Random Forests, that provide a logical understanding. Other possibilities can be a

topic modeling technique to create clusters of winning and losers. We believe that testing models in

other classes of Brazilian litigation databases, such as tax law, will provide helpful insights into the

differences between law litigation classes. In addition,  there is also a recent interest  in developing
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algorithms not constrained to a fixed number of characters, such as the BERT base. One of these is the

“Longformer” (BELTAGY; PETERS; COHAN, 2020) that has gained substantial attention. However,

there  is  no version available  in  Portuguese.  So,  there  is  an  opportunity  to  pre-train  this  model  in

Portuguese texts.
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Attachment 1

a) Unify petitions and resolutions

################################################################################################
###
# Programming language: R 
# Description: Unify petitions and resolutions that are stored in different folders. We created this script as information 
were provided in two separated folders one corresponding to the petitions and the other to the resolutions. Moreover, the
script check that each of the petitions have its resolution, as some of the files were incomplete.       
# Input: two folders: one containing a set of petitions and the other the resolutions in the form of PDF.
# Output: a matrix array form saved as csv. 
################################################################################################
###

library(data.table)

# Diretory to read
setwd("/media/alfredo/F/iniciais_com_sentenca/RtOrd")

# Read file names. Distinguish between incial and sentenca.
inicial <- list.files(pattern="inicial.pdf", full.names = FALSE, ignore.case = TRUE)
sentenca <- list.files(pattern="sentenca.pdf", full.names = FALSE, ignore.case = TRUE)

# Match inicial with sentencas. There are some sentences that do not have their pair. I make a match. 
inicial_clean <- gsub("_inicial.pdf", "", inicial)
sentenca_clean <- gsub("_sentenca.pdf", "", sentenca)
inicial_clean <- data.table(no_processo=inicial_clean)
sentenca_clean <- data.table(no_processo=sentenca_clean)
complete_process <-merge(inicial_clean, sentenca_clean, by = "no_processo")
complete_process[, inicial:=paste0(no_processo, "_inicial.pdf")]
complete_process[, sentenca:=paste0(no_processo, "_sentenca.pdf")]
#setwd("~/MEGA/2020/Doutorado/Defensa/pdf_to_text/lists")
#write.csv2(complete_process, "complete_process.csv", row.names = FALSE)

# Read data from file
complete_process <- read.csv("/home/alfredo/MEGA/2020/Doutorado/Defensa/pdf_to_text/list_of_process_numbers/
RTord_all.csv", sep=";", stringsAsFactors = FALSE)
complete_process <- as.data.table(complete_process)

# Select samples
samples_to_select <- sample.int(dim(complete_process)[1], 300)
selected_processes <- complete_process[samples_to_select]

# All samples
selected_processes <- complete_process
initial_sample <- selected_processes$inicial
sentenca_sample <-selected_processes$sentenca

#setwd("/home/alfredo/MEGA/2020/Doutorado/Defensa/pdf_to_text/samples")
#write.csv2(selected_processes, "samples_300.csv", row.names = FALSE)

# Folder of origin
setwd("/media/alfredo/F/iniciais_com_sentenca/RtOrd")

# Divide iniciais and sentencas
new_folder <- "/media/alfredo/F/working/RTOrd/iniciais"
file.copy(initial_sample, new_folder)
new_folder <- "/media/alfredo/F/working/RTOrd/sentencas"
file.copy(sentenca_sample, new_folder)





b) Transform PDF into text

#############################################################################################
######
# Programming language: R 
# Description: Transform a set of petitions in the form of PDF into text and save as an array form.      
# Input: a folder containing a set of petitions in the form of PDF.
# Output: a matrix array form saved as csv. 
#############################################################################################
######

# Extract text and find resolution sentences.
library(pdftools)
library(stringr)
library(data.table)
library(hunspell) # Check spelling

# Path for a folder to read
process.path <- "/media/alfredo/F/RTSum/iniciais"
setwd(process.path)

# Create a vector of file names to extract.
file.list <- list.files(".", full.names = TRUE, pattern = '.pdf$')

# Empty list to store sentence
# resolution.list = list()
files.processed = list()

# Read all sequence of files
for (i in 1:length(file.list)){
  no.process <- file.list[i]
  print(i)
  setwd("/media/alfredo/F/RTSum/iniciais")
  process <-pdf_text(no.process) # Read data
  
  # Extract type of resolution
  no.petition <-substr(no.process, 3, nchar(no.process)) # Create id to store table
  process <- tolower(process)

  # Save sentence resolution into a DT
  files.processed[[i]] <- no.petition
  
  # Save into a data table. Each row represents a page
  mylist <- do.call(rbind, as.list(process))
  process <- data.table(mylist)
  
  ### Section to process an save resolutions as text. 
  # Remove last page of sentences. It seems extra information
  last.row <- dim(process)[1]
  process <- process[1:last.row-1]
  
  # Create output file names
  petition.no <- substr(no.process, 1, nchar(no.process)-3) # Substract "pdf" strings
  petition.no <- substr(petition.no, 3, nchar(petition.no)) # Substract ./ to avoid possible errors in future reading.
  f.name.output <- paste0("petition_", petition.no, "txt")
  f.name.output.erro <- paste0("erro_", petition.no, "txt")



  
  ### Remove unecessary lines
  petition <- process
  text.lines <- lapply(petition$V1, function(x)readLines(textConnection(x))) # Convert each line to row
  text.lines <-lapply(text.lines, str_squish) # Remove white spaces from start
  
  # Specify text pattern to remove 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Fls")]) # Start of the page
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Documento assinado pelo Shodo")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Assinado eletronicamente.")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "https://pje.trt4.jus.br/")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Número do processo:")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Número do documento:")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Data de Juntada:")]) 
  
  # Colapse text
  text.lines.collapsed <- lapply(text.lines, paste, collapse = " ") # Collapse vector of each page.
  vec.text.lines <- unlist(text.lines.collapsed) # Unlist to create a unique vector document
  petition.text <-paste(vec.text.lines, collapse = " ") # Transform the vector into a piece of text

  # Write file 
  setwd("/media/alfredo/F/RTSum/iniciais_text")
  fileConn <- file(f.name.output)
  writeLines(petition.text, fileConn)
  close(fileConn)
}



c) Detect decisions

#############################################################################################
######
# Programming language: R
# Description: Detect the decision according to a  predefined set of words.      
# Input: a folder containing a set of resolutions in the form of PDF.
# Output: a matrix array form saved as csv. 
#############################################################################################
######

# Libraries
library(pdftools)
library(stringr)
library(data.table)
library(hunspell) 

# Seth process path to read the samples.
process.path <- " " # Set the path of the folder
setwd(process.path)

# Create a list to extract
file.list <- list.files(".", full.names = TRUE, pattern = '.pdf$')

# Empty list to store resolutions
resolution.list = list()

# Read all sequence of files
for (i in 1:length(file.list)){
  setwd(process.path)
  no.process <- file.list[i]
  no.process
  print(i)
  process <-pdf_text(no.process) # Read data
  
  # Extract type of resolution
  no.petition.resolution <-substr(no.process, 3, nchar(no.process)) # Create id to store table
  process <- tolower(process)
  
  improcedente <- str_detect(process, c("improcedente", "improcedentes")) # Detect words for improcedente.
  improcedente.pos <- max(which(improcedente, TRUE)) # Select the maximum position. Locating the page 
number.
  procedente_em_parte <- str_detect(process, c("procedente em parte|procedentes em parte"))
  procedente_em_parte.pos <- max(which(procedente_em_parte, TRUE))
  sem_resolucao.pos <- str_detect(process, c("sem resolução de mérito"))
  sem_resolucao.pos <- max(which(sem_resolucao.pos, TRUE))
  resolucoes <- data.table(no_petition=no.petition.resolution, improcedente=improcedente.pos,   
procedente_em_parte=procedente_em_parte.pos, sem_resolucao=sem_resolucao.pos)

  # Save into a DT
  resolution.list[[i]] <- resolucoes
  
  # Save into a data table. Each row represents a page
  mylist <- do.call(rbind, as.list(process))
  process <- data.table(mylist)
  



  # Remove last page of sentences. It seems extra information
  last.row <- dim(process)[1]
  process <- process[1:last.row-1]
  
  # Create output file names
  petition.no <- substr(no.process, 1, nchar(no.process)-3) # Substract "pdf" strings
  petition.no <- substr(petition.no, 3, nchar(petition.no)) # Substract ./ to avoid possible errors in future reading.
  f.name.output <- paste0("petition_", petition.no, "txt")
  f.name.output.erro <- paste0("erro_", petition.no, "txt")
  
  ### Remove unecessary lines
  petition <- process
  text.lines <- lapply(petition$V1, function(x)readLines(textConnection(x))) # Convert each line to row
  text.lines <-lapply(text.lines, str_squish) # Remove white spaces from start
  
  # Specify text pattern to remove 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Fls")]) # Start of the page
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Documento assinado pelo Shodo")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Assinado eletronicamente.")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "https://pje.trt4.jus.br/")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Número do processo:")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Número do documento:")]) 
  text.lines <- lapply(text.lines, function(x) x[!startsWith(x, "Data de Juntada:")]) 
  
  # Colapse text
  text.lines.collapsed <- lapply(text.lines, paste, collapse = " ") # Collapse vector of each page.
  vec.text.lines <- unlist(text.lines.collapsed) # Unlist to create a unique vector document
  petition.text <-paste(vec.text.lines, collapse = " ") # Transform the vector into a piece of text

  # Write file 
  # setwd("/home/alfredo/MEGA/2020/Doutorado/Defensa/pdf_to_text/samples/RTOrd_results/sentencas")
  #fileConn <- file(f.name.output)
  #writeLines(petition.text, fileConn)
  #close(fileConn)
}
  
resolutions.table <- rbindlist(resolution.list)
resolutions.table.melt <- melt(resolutions.table, id.vars = c("no_petition"))
resolutions.table.melt[, max.page:=max(value), by=c("no_petition")]
resolutions.table.melt[, max.value:=value-max.page, by=c("no_petition")]
resolutions.table.melt[max.value==0, no.sentencas:=.N, by=c("no_petition")]
resolutions.table.melt[max.value==0, sentenca:=variable]

# Organize data
resolutions_clean <- resolutions.table.melt[max.value==0]
resolutions_clean_one <- resolutions_clean[no.resolucoes==1]

write.csv2(resolutions.table.melt, "resolucoes_all.csv", row.names = FALSE)
write.csv2(resolutions_clean_one, "resolucoes_one.csv", row.names = FALSE)



d) Numerical representation

#############################################################################################
######
# Programming language: Python 
# Description: Train and predict a set of document texts and predict is classification, using a BERT-LSTM 
architecture. 
# Input: a matrix array of texts with their corresponding class.
# Output: a trained model used to predict a class according to a text. 
#############################################################################################
######

from transformers import CONFIG_NAME, WEIGHTS_NAME
from transformers.modeling_bert import BertConfig
from transformers.tokenization_bert import BertTokenizer
from torch import nn
import torch,math,logging,os
from sklearn.metrics import f1_score, precision_score, recall_score

from .document_bert_architectures import DocumentBertLSTM

def encode_documents(documents: list, tokenizer: BertTokenizer, max_input_length=512):
    tokenized_documents = [tokenizer.tokenize(document)[:10200] for document in documents]  #added by AD (only
take first 10200 tokens of each documents as input)
    max_sequences_per_document = math.ceil(max(len(x)/(max_input_length-2) for x in tokenized_documents))
    assert max_sequences_per_document <= 20, "Your document is to large"

    output = torch.zeros(size=(len(documents), max_sequences_per_document, 3, 512), dtype=torch.long)
   
    for doc_id in range( len(documents) ):
        for seq_id in range( max_sequences_per_document ):
            output[doc_id,seq_id,0]=torch.LongTensor( tokenizer.convert_tokens_to_ids( [ '[CLS]' , '[SEP]' ] )
+[0]*(512-2)  ) #input_ids
            output[doc_id,seq_id,2]=torch.LongTensor( [1]*2+[0]*(512-2)  ) #attention_mask
    
    
    document_seq_lengths = [] #number of sequence generated per document
    #Need to use 510 to account for 2 padding tokens
    for doc_index, tokenized_document in enumerate(tokenized_documents):
        max_seq_index = 0
        for seq_index, i in enumerate(range(0, len(tokenized_document), (max_input_length-2))):
            raw_tokens = tokenized_document[i:i+(max_input_length-2)]
            tokens = []
            input_type_ids = []

            tokens.append("[CLS]")
            input_type_ids.append(0)
            for token in raw_tokens:
                tokens.append(token)
                input_type_ids.append(0)
            tokens.append("[SEP]")
            input_type_ids.append(0)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            attention_masks = [1] * len(input_ids)



            while len(input_ids) < max_input_length:
                input_ids.append(0)
                input_type_ids.append(0)
                attention_masks.append(0)

            assert len(input_ids) == 512 and len(attention_masks) == 512 and len(input_type_ids) == 512

            #we are ready to rumble
            output[doc_index][seq_index] = torch.cat((torch.LongTensor(input_ids).unsqueeze(0),
                                                           torch.LongTensor(input_type_ids).unsqueeze(0),
                                                           torch.LongTensor(attention_masks).unsqueeze(0)),
                                                          dim=0)
            max_seq_index = seq_index
        document_seq_lengths.append(max_seq_index+1)
    return output, torch.LongTensor(document_seq_lengths)

document_bert_architectures = {
    'DocumentBertLSTM': DocumentBertLSTM,
}

class BertForDocumentClassification():
    def __init__(self,args=None,
                 labels=None,
                 device='cuda',
                 bert_model_path='bert-base-uncased',
                 architecture="DocumentBertLSTM",
                 batch_size=10,
                 bert_batch_size=7,
                 learning_rate = 5e-5,
                 weight_decay=0,
                 use_tensorboard=False):
        if args is not None:
            self.args = vars(args)
        if not args:
            self.args = {}
            self.args['bert_model_path'] = bert_model_path
            self.args['device'] = device
            self.args['learning_rate'] = learning_rate
            self.args['weight_decay'] = weight_decay
            self.args['batch_size'] = batch_size
            self.args['labels'] = labels
            self.args['bert_batch_size'] = bert_batch_size
            self.args['architecture'] = architecture
            self.args['use_tensorboard'] = use_tensorboard
        if 'fold' not in self.args:
            self.args['fold'] = 0

        assert self.args['labels'] is not None, "Must specify all labels in prediction"

        self.log = logging.getLogger()  
        if 'Distil' in self.args['architecture']:
            ArchitectureConfig=DistilBertConfig
            self.bert_tokenizer = DistilBertTokenizer.from_pretrained( self.args['bert_model_path']  )

        else:
            ArchitectureConfig=BertConfig



            self.bert_tokenizer = BertTokenizer.from_pretrained( self.args['bert_model_path']  )

        
        if os.path.exists(self.args['bert_model_path']):
            if os.path.exists(os.path.join(self.args['bert_model_path'], CONFIG_NAME)):
                config = ArchitectureConfig.from_json_file(os.path.join(self.args['bert_model_path'], CONFIG_NAME))
            elif os.path.exists(os.path.join(self.args['bert_model_path'], 'bert_config.json')):
                
                config = ArchitectureConfig.from_json_file(os.path.join(self.args['bert_model_path'], 'bert_config.json'))
            else:
                raise ValueError("Cannot find a configuration for the BERT based model you are attempting to load.")
        else:
            config = ArchitectureConfig.from_pretrained(self.args['bert_model_path'])
        config.__setattr__('num_labels',len(self.args['labels']))
        config.__setattr__('bert_batch_size',self.args['bert_batch_size'])

        if 'use_tensorboard' in self.args and self.args['use_tensorboard']:
            assert 'model_directory' in self.args is not None, "Must have a logging and checkpoint directory set."
            from torch.utils.tensorboard import SummaryWriter
            self.tensorboard_writer = SummaryWriter(os.path.join(self.args['model_directory'],
                                                                 "..",
                                                                 "runs",
                                                                 self.args['model_directory'].split(os.path.sep)[-
1]+'_'+self.args['architecture']+'_'+str(self.args['fold'])))

        self.bert_doc_classification = 
document_bert_architectures[self.args['architecture']].from_pretrained(self.args['bert_model_path'], config=config)
        
        
        #Change these lines if you want to freeze bert, unfreeze bert, or only freeze last layers of BERT
        self.bert_doc_classification.freeze_bert_encoder()
        self.bert_doc_classification.unfreeze_bert_encoder_last_layers()
        
        self.optimizer = torch.optim.Adam(
            self.bert_doc_classification.parameters(),
            weight_decay=self.args['weight_decay'],
            lr=self.args['learning_rate']
        )

    def fit(self, train, dev):
        """
        A list of
        :param documents: a list of documents
        :param labels: a list of label vectors
        :return:
        """
        
        train_documents, train_labels = train 
        dev_documents, dev_labels = dev

        self.bert_doc_classification.train()

        document_representations, document_sequence_lengths  = encode_documents(train_documents, 
self.bert_tokenizer)



        correct_output = torch.FloatTensor(train_labels)

        loss_weight = ((correct_output.shape[0] / torch.sum(correct_output, dim=0))-1).to(device=self.args['device'])
        self.loss_function = torch.nn.BCEWithLogitsLoss(pos_weight=loss_weight)

        assert document_representations.shape[0] == correct_output.shape[0]

        if torch.cuda.device_count() > 1:
            pass
            #self.bert_doc_classification = torch.nn.DataParallel(self.bert_doc_classification)
        self.bert_doc_classification.to(device=self.args['device'])

        for epoch in range(1,self.args['epochs']+1):
            # shuffle
            permutation = torch.randperm(document_representations.shape[0])
            document_representations = document_representations[permutation]
            document_sequence_lengths = document_sequence_lengths[permutation]
            correct_output = correct_output[permutation]

            self.epoch = epoch
            epoch_loss = 0.0
            for i in range(0, document_representations.shape[0], self.args['batch_size']):

                batch_document_tensors = document_representations[i:i + 
self.args['batch_size']].to(device=self.args['device'])
                batch_document_sequence_lengths= document_sequence_lengths[i:i+self.args['batch_size']]
                #self.log.info(batch_document_tensors.shape)
                batch_predictions = self.bert_doc_classification(batch_document_tensors,
                                                                 batch_document_sequence_lengths,
                                                                 device=self.args['device'])

                batch_correct_output = correct_output[i:i + self.args['batch_size']].to(device=self.args['device'])
                loss = self.loss_function(batch_predictions, batch_correct_output)
                epoch_loss += float(loss.item())
                loss.backward()
                self.optimizer.step()
                self.optimizer.zero_grad()

            epoch_loss /= int(document_representations.shape[0] / self.args['batch_size'])  # divide by number of batches
per epoch

            if 'use_tensorboard' in self.args and self.args['use_tensorboard']:
                self.tensorboard_writer.add_scalar('Loss/Train', epoch_loss, self.epoch)

            self.log.info('Epoch %i Completed: %f' % (epoch, epoch_loss))

            if epoch % self.args['checkpoint_interval'] == 0:
                self.save_checkpoint(os.path.join(self.args['model_directory'], "checkpoint_%s" % epoch))

            # evaluate on development data
            if epoch % self.args['evaluation_interval'] == 0:
                self.predict((dev_documents, dev_labels))

    def predict(self, data, threshold=0):

        document_representations = None
        document_sequence_lengths = None



        correct_output = None
        if isinstance(data, list):
            document_representations, document_sequence_lengths = encode_documents(data, self.bert_tokenizer)
        if isinstance(data, tuple) and len(data) == 2:
            self.log.info('Evaluating on Epoch %i' % (self.epoch))
            document_representations, document_sequence_lengths = encode_documents(data[0], self.bert_tokenizer)
            correct_output = torch.FloatTensor(data[1]).transpose(0,1)
            assert self.args['labels'] is not None

        self.bert_doc_classification.to(device=self.args['device'])
        self.bert_doc_classification.eval()
        with torch.no_grad():
            predictions = torch.empty((document_representations.shape[0], len(self.args['labels'])))
            for i in range(0, document_representations.shape[0], self.args['batch_size']):
                batch_document_tensors = document_representations[i:i + 
self.args['batch_size']].to(device=self.args['device'])
                batch_document_sequence_lengths= document_sequence_lengths[i:i+self.args['batch_size']]

                prediction = self.bert_doc_classification(batch_document_tensors,
                                                          batch_document_sequence_lengths,device=self.args['device'])
                predictions[i:i + self.args['batch_size']] = prediction

        for r in range(0, predictions.shape[0]):
            for c in range(0, predictions.shape[1]):
                if predictions[r][c] > threshold:
                    predictions[r][c] = 1
                else:
                    predictions[r][c] = 0
        predictions = predictions.transpose(0, 1)

        if correct_output is None:
            return predictions.cpu()
        else:
            assert correct_output.shape == predictions.shape
            precisions = []
            recalls = []
            fmeasures = []

            for label_idx in range(predictions.shape[0]):
                correct = correct_output[label_idx].cpu().view(-1).numpy()
                predicted = predictions[label_idx].cpu().view(-1).numpy()
                present_f1_score = f1_score(correct, predicted, average='binary', pos_label=1)
                present_precision_score = precision_score(correct, predicted, average='binary', pos_label=1)
                present_recall_score = recall_score(correct, predicted, average='binary', pos_label=1)

                precisions.append(present_precision_score)
                recalls.append(present_recall_score)
                fmeasures.append(present_f1_score)
                logging.info('F1\t%s\t%f' % (self.args['labels'][label_idx], present_f1_score))

            micro_f1 = f1_score(correct_output.reshape(-1).numpy(), predictions.reshape(-1).numpy(), average='micro')
            macro_f1 = f1_score(correct_output.reshape(-1).numpy(), predictions.reshape(-1).numpy(), 
average='macro')

            if 'use_tensorboard' in self.args and self.args['use_tensorboard']:
                for label_idx in range(predictions.shape[0]):



                    self.tensorboard_writer.add_scalar('Precision/%s/Test' % self.args['labels'][label_idx].replace(" ", "_"), 
precisions[label_idx], self.epoch)
                    self.tensorboard_writer.add_scalar('Recall/%s/Test' % self.args['labels'][label_idx].replace(" ", "_"), 
recalls[label_idx], self.epoch)
                    self.tensorboard_writer.add_scalar('F1/%s/Test' % self.args['labels'][label_idx].replace(" ", "_"), 
fmeasures[label_idx], self.epoch)
                self.tensorboard_writer.add_scalar('Micro-F1/Test', micro_f1, self.epoch)
                self.tensorboard_writer.add_scalar('Macro-F1/Test', macro_f1, self.epoch)

            with open(os.path.join(self.args['model_directory'], "eval_%s.csv" % self.epoch), 'w') as eval_results:
                eval_results.write('Metric\t' + '\t'.join([self.args['labels'][label_idx] for label_idx in 
range(predictions.shape[0])]) +'\n' )
                eval_results.write('Precision\t' + '\t'.join([str(precisions[label_idx]) for label_idx in 
range(predictions.shape[0])]) + '\n' )
                eval_results.write('Recall\t' + '\t'.join([str(recalls[label_idx]) for label_idx in range(predictions.shape[0])]) 
+ '\n' )
                eval_results.write('F1\t' + '\t'.join([ str(fmeasures[label_idx]) for label_idx in range(predictions.shape[0])])
+ '\n' )
                eval_results.write('Micro-F1\t' + str(micro_f1) + '\n' )
                eval_results.write('Macro-F1\t' + str(macro_f1) + '\n' )

        self.bert_doc_classification.train()

    def save_checkpoint(self, checkpoint_path: str):
        """
        Saves an instance of the current model to the specified path.
        :return:
        """
        if not os.path.exists(checkpoint_path):
            os.mkdir(checkpoint_path)
        else:
            raise ValueError("Attempting to save checkpoint to an existing directory")
        self.log.info("Saving checkpoint: %s" % checkpoint_path )

        #save finetune parameters
        net = self.bert_doc_classification
        if isinstance(self.bert_doc_classification, nn.DataParallel):
            net = self.bert_doc_classification.module
        torch.save(net.state_dict(), os.path.join(checkpoint_path, WEIGHTS_NAME))
        #save configurations
        net.config.to_json_file(os.path.join(checkpoint_path, CONFIG_NAME))
        #save exact vocabulary utilized
        self.bert_tokenizer.save_vocabulary(checkpoint_path)



e) Similarity estimation

#############################################################################################
######
# Programming language: Python 
# Description: Provides a ranking of similar documents according to a vector representations.        
# Input: a list of vectors.
# Output: list of similar vectors. 
#############################################################################################
######

# Import libraries
import faiss
import math
import numpy as np
import pandas as pd  
from sklearn.preprocessing import normalize

# Read VECTORS 
train_vec = pd.read_table('data/rtord_vec.txt', delim_whitespace=True, header=None)
xb = train_vec.to_numpy().astype('float32') # Convert to array
xb = np.ascontiguousarray(xb) # Transform with this operation because it was giving an error.
d = 100             # dimension
xb = normalize(xb, axis=1, norm='l2')

# Example of a vector form.
print(xb[0:1])
[[ 0.14301404  0.17411718  0.00039257 -0.11284501  0.2616674   0.28336972
  -0.2148459  -0.13802391  0.20567684  0.27512777 -0.13181874  0.10296308
  -0.17787118  0.1345684  -0.17087588  0.04051801 -0.01847647 -0.00425969
  -0.03471071 -0.02843214  0.03463942  0.05297402  0.0276715  -0.00775349
  -0.1279664  -0.03411056  0.07524522 -0.0520996  -0.05577986  0.02421388
  -0.03763841  0.00938046 -0.02362673 -0.01913421 -0.055822    0.00487459
  -0.05375713 -0.03195367 -0.01429262  0.01252589 -0.07041313  0.13401005
   0.02516134  0.12824382  0.2058138  -0.08227916  0.1867839  -0.05888772
  -0.00113354  0.15429011 -0.18790762  0.06527199 -0.06849924  0.04962737
  -0.07879204  0.0244892  -0.06730878  0.04656867  0.07403369  0.01811968
  -0.02515713  0.04348891  0.15082055  0.11404952 -0.03084362  0.05174843
  -0.16937989 -0.02137608 -0.01360714  0.00182015 -0.0289919   0.08673903
   0.0152162  -0.02668788 -0.03831969  0.00378737  0.03792286  0.01373075
   0.01265161 -0.01787807  0.01951171  0.01286231  0.0562118   0.00988052
   0.04438088 -0.02346238  0.00570827  0.07870074 -0.16239864  0.04618239
   0.1350214  -0.0010809   0.1891929  -0.10092981 -0.05334626 -0.14973193
  -0.03131454  0.02555465 -0.05517234 -0.11232177]]

 # Build the index
index = faiss.IndexFlatL2(d)  

 # Add vectors to the index
index.add(xb)                 
print(index.ntotal)

# Sanity check
k = 50                        # we want to see 50 nearest neighbors



D, I = index.search(xb[0:1], k) # sanity check
print(I)                       # Index
print(D)                       # distance of each index
last = xb.shape[0]

# Read all queries
D, I = index.search(xb[0:last], k) # 
#print(I)                       # Index
#print(D)                       # distance of each index

# Change into one list
index_query = np.sort(np.array(list(np.arange(last))*k))
distances = np.concatenate(D, axis=0)
index_retrieved = np.concatenate(I, axis=0)

# Create a df with all information
pd.set_option("display.precision", 15)
distances_all = pd.DataFrame({"index_query": index_query, "distances": distances, 
"index_retrieved":index_retrieved})
distances_all = distances_all.sort_values(by="distances")
distances_all_1 = distances_all.loc[distances_all.index_query!=distances_all.index_retrieved]



f) Baseline  

#############################################################################################
######
# Programming language: Python 
# Description: Provides a ranking of similar documents according to a vector representations.        
# Input: a list of vectors.
# Output: list of similar vectors. 
#############################################################################################
######

# Import libraries
import csv
import datetime
import nltk
import re
import pandas as pd
import numpy as np
from io import StringIO
from datetime import datetime
from sklearn.model_selection import train_test_split
from nltk.tokenize import RegexpTokenizer
from nltk.stem import WordNetLemmatizer,PorterStemmer
from nltk.corpus import stopwords
from unidecode import unidecode
np.random.seed(1337)

# Read data
data_input = pd.read_csv("data/rtord/process_all_rtord.csv", sep=";") # Processes
process["id"] = process.index
train = process
train = train[["petition_clean", "text", "sentenca"]]
train.columns = ["petition_clean", "text", "label"]
train = train[["text", "label"]]

# Preprocess text
train['cleanText']=train['text'].str.lower()
train['cleanText'] = train['cleanText'].apply(unidecode)
train['cleanText']=train['cleanText'].replace('{html}',"")
train['cleanText']=train['cleanText'].replace(r'[^A-Za-z0-9 ]+', ' ', regex=True)
train['cleanText']=train['cleanText'].replace(r'\d+',' ')
train['cleanText']=train['cleanText'].replace(r"http\S+", " ")
train['cleanText']=train['cleanText'].replace(r"\S*@\S*\s?", " ")
train['cleanText']=train['cleanText'].str.replace('\W', ' ')
train['cleanText']=train['cleanText'].replace('\s+', ' ', regex=True)
train_clean = train

# Remove sem resolucao 
train_clean = train_clean[["text", "sentenca"]]
train_clean.columns = ["text", "label"]
train_clean = train_clean.loc[train_clean.label!="sem_resolucao"]

# Split samples into train and validation
train, val = train_test_split(train_clean, test_size=0.2, random_state=35)

# Reset indexs



train.reset_index(drop=True, inplace=True)
val.reset_index(drop=True, inplace=True)
train.shape, val.shape

# Using the split data with FastText
train_df = train
val_df = val

train_df["label"] = train_df.label.astype(str)
val_df["label"] = val_df.label.astype(str)

# Transform into the suitable form FastText
col = ['label', 'text']
train_df = train_df[col]
train_df['label']=['__label__'+ s for s in train_df['label']]
train_df['text']= train_df['text'].replace('\n',' ', regex=True).replace('\t',' ', regex=True)

col = ['label', 'text']
val_df = val_df[col]
val_df['label']=['__label__'+ s for s in val_df['label']]
val_df['text']= val_df['text'].replace('\n',' ', regex=True).replace('\t',' ', regex=True)

# Save output as desired to process on C++.
train_df.to_csv(r'data/rtord/not_clean/no_chunks/rtord_train.txt', index=False, sep=' ', header=False, 
quoting=csv.QUOTE_NONE, quotechar="", escapechar=" ")
val_df.to_csv(r'data/rtord/not_clean/no_chunks/rtord_val.txt', index=False, sep=' ', header=False, 
quoting=csv.QUOTE_NONE, quotechar="", escapechar=" ")

# Create a model
!fastText-0.9.2/fasttext supervised -input "data/rtord/not_clean/no_chunks/rtord_train.txt" -output 
"data/rtord/not_clean/no_chunks/model_rtord_notclean_lr1_e4_n2" -lr 1 -epoch 4 -wordNgrams 2 

# Metrics
!fastText-0.9.2/fasttext test "data/rtord/clean/no_chunks/model_rtord_lr1_e25_n2.bin" 
"data/rtord/clean/no_chunks/rtord_val.txt"
!fastText-0.9.2/fasttext test "data/rtord/not_clean/no_chunks/model_rtord_notclean_lr1_e4_n2.bin" 
"data/rtord/not_clean/no_chunks/rtord_val.txt"

# Get probabilities
!fastText-0.9.2/fasttext predict-prob "data/rtord/clean/no_chunks/model_rtord_lr1_e25_n2.bin" 
"data/rtord/clean/no_chunks/rtord_val.txt" > "data/rtord/clean/no_chunks/probs_rtord_rtord_lr1_e25_n2.txt"
!fastText-0.9.2/fasttext predict-prob "data/rtord/not_clean/no_chunks/model_rtord_notclean_lr0.9_e5_n2.bin" 
"data/rtord/not_clean/no_chunks/rtord_val.txt" > 
"data/rtord/clean/no_chunks/probs_rtord_notclean_lr0.9_e5_n2.txt"

# Test with different parameters
parameters = [25, 50, 100, 200]

for i in parameters:
  a = str(i) 
  dir_prob = "data/rtord/clean/no_chunks/probabilities/probs_lr_1_e" + a + "n2.txt"  
  !fastText-0.9.2/fasttext supervised -input "data/rtord/clean/no_chunks/rtord_train.txt" -output 
"data/rtord/clean/no_chunks/model" -lr 0.1 -epoch $i -wordNgrams 2 
# Create a model 
!fastText-0.9.2/fasttext predict-prob "data/rtord/clean/no_chunks/model.bin" 
"data/rtord/clean/no_chunks/rtord_val.txt" > $dir_prob



names = ["model_rtord_notclean_lr0.1_e5_n2", "model_rtord_notclean_lr0.5_e5_n2", 
"model_rtord_notclean_lr0.8_e5_n2", "model_rtord_notclean_lr0.9_e5_n2", "model_rtord_notclean_lr1_e4_n2", 
"model_rtord_notclean_lr1_e5_n5", "model_rtord_notclean_lr1_e7_n2", "model_rtord_notclean_lr1_e10_n2", 
"model_rtord_notclean_lr1_e15_n2", "model_rtord_notclean_lr1_e20_n2", "model_rtord_notclean_lr1_e25_n2", 
"model_rtord_notclean_lr1.2_e5_n2", "model_rtord_notclean_lr1.5_e5_n2", "model_rtord_notclean_lr2_e5_n2"]

for i in names:
  dir_model = "data/rtord/not_clean/no_chunks/" + i +".bin"
  dir_prob = "data/rtord/not_clean/no_chunks/probabilities/"+ i + ".txt"

!fastText-0.9.2/fasttext predict-prob $dir_model "data/rtord/not_clean/no_chunks/rtord_val.txt" > $dir_prob

# Extract vectors
!fastText-0.9.2/fasttext print-sentence-vectors "data/rtord/clean/no_chunks/model_rtord_lr1_e25_n2.bin" < 
"data/rtord/clean/no_chunks/rtord_train.txt" > "data/rtord/clean/no_chunks/rtord_vec.txt" # Train 
!fastText-0.9.2/fasttext print-sentence-vectors "data/rtord/clean/no_chunks/model_rtord_lr1_e25_n2.bin" < 
"data/rtord/clean/no_chunks/rtord_val.txt" > "data/rtord/clean/no_chunks/rtord_val_vec.txt" # Val

# Read vectors 
train_vec = pd.read_table('data/rtord/clean/chunks/rtord_vec.txt', delim_whitespace=True, header=None)
tr_emb = train_vec.to_numpy() # Convert to array
test_vec = pd.read_table('data/rtord/clean/chunks/rtord_val_vec.txt', delim_whitespace=True, header=None)
val_emb = test_vec.to_numpy()
tr_emb.shape, val_emb.shape

# Label to numeric
train.loc[train.label=="improcedente", "label"] = 0
train.loc[train.label=="procedente_em_parte", "label"] = 1
val.loc[val.label=="improcedente", "label"] = 0
val.loc[val.label=="procedente_em_parte", "label"] = 1



g) Statistics measurements

#############################################################################################
######
# Programming language: Python 
# Description: Estimate statistics from FastText output   
# Input: an array of results estimated by FastVector with its corespondent true result
# Output: an array of the statistics: Acuracy, Precision, Recall, F1, TP, TN, FP, FN.
#############################################################################################
######

# Import libraries
import pandas as pd
import numpy as np
from os import listdir
from os.path import isfile, join
from sklearn.metrics import precision_recall_fscore_support as score

# Read all probabilities from fast text
mypath = '’ # Set path
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
#true_val = pd.read_table('data/rtord/not_clean/no_chunks/df_val.csv', sep=";")

# One sample, to test
true_val = pd.read_table('data/rtord/clean/no_chunks/df_val.csv', sep=";")
val_prob = pd.read_table('data/rtord/clean/no_chunks/probabilities/probs_lr_1_e20n2.txt', delim_whitespace=True, 
header=None)

data = pd.concat([true_val.reset_index(drop=True), val_prob], axis=1)
data.loc[data[0]== "__label__improcedente", 0 ] = 0
data.loc[data[0]== "__label__procedente_em_parte", 0 ] = 1
data.columns = ["text", "padrao_ouro", "algo_result", "probability"]
data.loc[data["padrao_ouro"]== "improcedente","padrao_ouro"] = 0
data.loc[data["padrao_ouro"]== "procedente_em_parte","padrao_ouro"] = 1
data.loc[data["algo_result"]== 0,"probability"] = 1 - data["probability"]
data_1 = data

pd.options.display.max_colwidth = 100
procedente = data_1.sort_values('probability', ascending=False)
procedente.loc[procedente.probability < 0.98][0:10]

# Style sklearn
data_results=pd.DataFrame()
for i in range(len(onlyfiles)):
  print(onlyfiles[i])
  file_to_read = "./data/rtord/not_clean/no_chunks/probabilities/" + onlyfiles[i]

  # Estimate from FastText
  val_prob = pd.read_table(file_to_read, delim_whitespace=True, header=None)

  # Arrange data
  data = pd.concat([true_val.reset_index(drop=True), val_prob], axis=1)
  data.loc[data[0]== "__label__improcedente", 0 ] = 0
  data.loc[data[0]== "__label__procedente_em_parte", 0 ] = 1
  data.columns = ["text", "padrao_ouro", "algo_result", "probability"]
  data.loc[data["padrao_ouro"]== "improcedente","padrao_ouro"] = 0



  data.loc[data["padrao_ouro"]== "procedente_em_parte","padrao_ouro"] = 1
  data.loc[data["algo_result"]== 0,"probability"] = 1 - data["probability"]
  data_1 = data

  # Sklearn style
  predicted = data_1['algo_result'].tolist()
  y_test = data_1['padrao_ouro'].tolist()

  precision, recall, fscore, support = score(y_test, predicted)
  results_list = [precision, recall, fscore, support]
  results_1 = pd.DataFrame(results_list).T
  results_1.columns = ["precision", "recall", "fscore", "support"]
  results_1["Macrof"] = results_1["fscore"].mean()
  results_1["label"] = results_1.index 
  results_1["id"] = onlyfiles[i]
  data_results=data_results.append(results_1, ignore_index=True)

data_results = data_results.sort_values('fscore', ascending=False)
data_results

data_results.to_csv("./data/rtord/not_clean/no_chunks/results/results_not_clean_no_chunks.csv", sep=";", 
index=False)

#data_results

# List to store results
Treshold_results = []
Total_results = []
TP_results = []
TN_results = []
FP_results = []
FN_results = []

# Iterate over all posible values
prob_1 = data_1['probability'].tolist()

for i in prob_1:    
    data_1.loc[(data_1["probability"] >= i), "algo_result"] = 1
    data_1.loc[(data_1["probability"] < i), "algo_result"] = 0

    # Estimate statistics
    data_1['TP'] = np.where((data_1["algo_result"]==1) & (data_1["padrao_ouro"]==1), 1,0)
    data_1['TN'] = np.where((data_1["algo_result"]==0) & (data_1["padrao_ouro"]==0), 1,0)
    data_1['FP'] = np.where((data_1["algo_result"]==1) & (data_1["padrao_ouro"]==0), 1,0)
    data_1['FN'] = np.where((data_1["algo_result"]==0) & (data_1["padrao_ouro"]==1), 1,0)

    # Estimate measures
    data_1 = data_1.fillna(0)
    TP =  data_1["TP"].sum()
    TN =  data_1["TN"].sum()
    FP =  data_1["FP"].sum()
    FN =  data_1["FN"].sum()
    Total = TP + TN + FP + FN
    
    # Apend results
    Treshold_results.append(i)
    Total_results.append(Total)



    TP_results.append(TP)
    TN_results.append(TN)
    FP_results.append(FP)
    FN_results.append(FN)

# Create df to estimate metrics
metrics = pd.DataFrame(list(zip( Treshold_results, Total_results, TP_results, TN_results, FP_results, FN_results)), 
                  columns =['Treshold', "Total", 'TP', 'TN', 'FP', 'FN'])

# Measures
metrics["Total"] = metrics.TP + metrics.TN + metrics.FP + metrics.FN
metrics["Acuracy"] = (metrics.TP + metrics.TN) / metrics.Total
metrics["Precision"] = metrics.TP / (metrics.TP + metrics.FP)
metrics["Recall"] = metrics.TP / (metrics.TP + metrics.FN)
metrics["Total_N"] = metrics["TN"] + metrics["FN"]
metrics["Total_P"] = metrics["TP"] + metrics["FP"]
metrics["F1"] = metrics.TP / (metrics.TP + (0.5*(metrics.FP + metrics.FN)))
metrics = metrics.sort_values('Acuracy', ascending=False)metrics.to_csv('data/rtord/clean/no_chunks/metrics.csv', 
sep =";", index=False, float_format='%.3f', decimal= ",")
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