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“My fault, my failure, is not in the passions I have,

but in my lack of control of them.”

— JACK KEROUAC





ABSTRACT

Reconstruction of 3D shapes from images using convolutional neural networks (CNN)

has become a very studied field in recent years and has demonstrated great performance.

Rigid and non-rigid objects have been reconstructed using several types of 3D representa-

tions and approaches with single or multiple images. However, the reconstructed objects

are part of the outside world (they are visible and can be photographed). The most used

imaging techniques to obtain visual information from organs are computerized tomogra-

phies (CT) and magnetic resonance imaging (MRI), which do not generate regular 2D im-

ages. Our main objective is to evaluate the feasibility of using deep learning approaches

to directly reconstruct 3D models of organs from medical images using free-form de-

formations (FFD). To do this, we combined existing algorithms used for segmentation of

medical images in 3D space with 3D object reconstruction techniques in a fully automatic

convolutional network model. We tested our proposed method by training models for two

different organs with higher and lower shape complexity (liver and prostate, respectively).

The reconstructed models generated by our network are coherent with the overall shape

of the organs demonstrating that it can be learned. However, more work needs to be done

to obtain organ models that truly represent their actual structure.

Keywords: Mesh generation. organ reconstruction. free-form deformation. deep learn-

ing.





Geração automática de modelos 3D de órgãos para pacientes específicos usando

abordagem unificada de aprendizado profundo

RESUMO

A reconstrução de formas 3D a partir de imagens usando redes neurais convolucionais

tornou-se um campo muito estudado nos últimos anos e tem demonstrado ótimo desem-

penho. Objetos rígidos e não rígidos foram reconstruídos usando vários tipos de repre-

sentações em 3D, e abordagens com uma ou múltiplas imagens. Contudo, os objetos

reconstruídos são parte do mundo exterior (são visíveis e podem ser fotografados). As

técnicas de imagiologia mais utilizadas para obter informações visuais a partir de órgãos

são as tomografias computadorizadas e a ressonância magnética, as quais não geram ima-

gens 2D regulares. Nosso principal objetivo é avaliar a viabilidade de usar abordagens

de aprendizado profundo para reconstruir diretamente modelos 3D de órgãos a partir de

imagens médicas usando deformações de forma livre. Para isso, nós combinamos algorit-

mos existentes usados para segmentação de imagens médicas no espaço 3D com técnicas

de reconstrução de objetos 3D em um modelo de rede neural completamente automático.

Nós testamos nosso método proposto treinando modelos para dois órgãos diferentes, com

maior e menor complexidade de forma (fígado e próstata, respectivamente). Os mode-

los reconstruídos gerados por nossa rede são coerentes com a forma geral dos órgãos,

demonstrando que a mesma pode ser aprendida. Entretanto, mais trabalho precisa ser rea-

lizado de forma a obter modelos de órgãos que representem autenticamente a sua estrutura

real.

Palavras-chave: geração de malhas, reconstrução de órgaõs, FFD, aprendizado profundo

.
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1 INTRODUCTION

Medical image analysis aims to extract clinically useful information from medical

images. Over the last decade, research in this area has made significant progress focus-

ing on challenging tasks such as image registration and image segmentation (RUECK-

ERT; GLOCKER; KAINZ, 2016). The latter can be used for purposes of computer-aided

diagnosis, computer-assisted surgery, surgery simulators, and general surgery planning,

allowing clinicians to design preoperative schemes that ensure the patients safety.

Computer-assisted surgical systems can improve the surgeons understanding of the

organ being treated. Also, the use of 3D geometric models has shown improvements in

tumor localization, precision of surgery planning, and even improved orientation and con-

fidence of the clinician during the surgery (PALOMAR et al., 2016). To accomplish this,

it is necessary to have patient-specific models accurately representing the organ geometry.

These models can be reconstructed from image data, such as those acquired through com-

puted tomography (CT) or magnetic resonance imaging (MRI). Manual, semi-automatic

or automatic reconstruction techniques are used depending on body part and acquisition

modality (BUCKI; LOBOS; PAYAN, 2010).

The reconstruction process can be tackled using different approaches. One of

them generates the 3D models in two steps: organ segmentation followed by 3D model

reconstruction. Data obtained from CT and MRI consist of a series of 2D images with

information in their pixels that can be stacked to create a volume. The volumetric infor-

mation can be used to separate the target organ from the other structures present in the

exam, in a process known as segmentation. This is a straightforward task when organs

have well-differentiated intensities. However, neighboring soft tissues such as skeletal

muscles, heart, liver, and stomach share similar intensities. The low contrast makes the

tissues boundaries merge and be difficult to perceive both with the eye and image pro-

cessing algorithms (LI et al., 2015).

A second approach can be understood as a single step method where usually

generic meshes are deformed to the specific target organ shape. This is more often useful

when intensities are well differentiated as in bone structures (BUCKI; LOBOS; PAYAN,

2010), but can also be applied to soft organs (Feng Ding et al., 2009).

The image segmentation part of the problem is based on different well-developed

methods as Isosurfaces and Level Sets, Markov Random Fields, Region Growing, Atlas-

Guided Approaches, among others (CARDENAS et al., 2019; LENCHIK et al., 2019).
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In recent years, however, convolutional neural networks (CNN) approaches have become

the methodology of choice as they yield outstanding results in imaging analysis tasks

(LITJENS et al., 2017). Once the organ segmentation step is completed, the generation

of the 3D models uses a reconstruction algorithm. The most widespread being Marching

Cubes (LORENSEN; CLINE, 1987) and its variations.

Research in computer graphics and vision have also explored the reconstruction of

3D models from sources different than medical scans. Specifically, it has studied the pro-

cess of recovering 3D shapes of objects with information obtained from one or multiple

regular 2D projection images (photographs or renderings). This is useful in applications

such as virtual reality, augmented reality, robotics, and CAD, where the system needs

to recognize objects in the real or virtual environment. Several methods have been pro-

posed to accomplish this, including the use of stereo-based techniques that use several

views of the same object to triangulate the 3D coordinates of the pixels along the images

(HARTLEY; ZISSERMAN, 2003). These methods require the cameras to be accurately

calibrated in order to obtain good results and doing so is not always feasible.

Recent approaches explored the use of machine learning algorithms, particularly

CNNs, to infer the 3D geometry of the objects using images as the input data. Differ-

ent kinds of network architectures had been used, as recurrent neural networks (RNN)

(CHOY et al., 2016), and variational auto-encoders combined with 3D generative adver-

sarial networks (3D-VAE-GAN) in a supervised manner (WU et al., 2016), as well as

different types of representations to model the shapes that the algorithm needs to learn,

as point clouds (FAN; SU; GUIBAS, 2017) or voxelized data (XIE et al., 2019). In a ba-

sic reconstruction architecture, information is obtained from the images using an encoder

to map the inputs into a high-dimensional feature vector, and then a decoder is used to

decode the obtained features to the desired output type (HAN; LAGA; BENNAMOUN,

2019). These techniques have been successfully used to generate rigid or man-made

shapes, such as planes, chairs, and cars, and non-rigid or organic shapes like hands and

faces.

Learning-based solutions for 3D object reconstruction and medical image seg-

mentation are similar because they use features acquired from the images to generate

their desired result. Motivated by the capacity of deep neural networks to obtain such

understanding that allows them to accomplish difficult segmentation tasks, added to their

showed capabilities to generate 3D representation of shapes, we explored their use in gen-

erating 3D models of organs in a single step, going from the medical tomographic dataset
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(CT or MRI) directly to the surface representation.

1.1 Objective

In this context, the general objective of this thesis is to automatically generate

patient-specific 3D models of organs from medical images using deep neural networks in

a single step approach. This goal was then delimited in the scope of the following specific

objectives.

1.1.1 Specific Objectives

• Gain understanding of the theoretical basis and state-of-the-art techniques to do

organ segmentation and mesh generation based on deep neural networks;

• Develop an algorithm using a deep neural network architecture able to learn mean-

ingful representations of organs, accomplishing the organ segmentation and 3D

model generation in a single step;

• Generate 3D models that accurately represent the geometry of the organ of interest

maintaining characteristic features and satisfying mesh quality requirements and

metrics;

• Investigate the applicability of the 3D models in surgical simulators and surgery

planning, making them easy to introduce in commercial software pipelines and us-

ing standard output file formats.

1.2 Thesis Organization

This thesis is organized as follows: Chapter 2 presents the theoretical background

on Machine Learning, representation of anatomy and deformation of meshes; Chapter 3

describes an overview of the most common 3D organ and objects generation techniques

based on state-of-the-art literature; Chapter 4 provides details about the proposed method

and each of its parts; Chapter 5 presents the data sets used in this work, the performed

experiments and the overall results of this research; and Chapter 6 points out our main

contributions, faced difficulties and limitations, and possibilities for future work.
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2 BACKGROUND

In this chapter we present a compilation of necessary information to better under-

stand the content of this work.

2.1 Machine Learning

The field of artificial intelligence (AI) had its origins solving tasks that were dif-

ficult for humans, but easy to solve for computers, as proving theorems (GELERNTER,

1959 apud RUSSELL; NORVIG, 2009) or playing chess (CAMPBELL; HOANE; HSU,

2002). However, when facing problems that were simple for humans, as speech recogni-

tion, understanding of images and text, or making medical diagnoses, AI encountered a

greater challenge.

A solution developed to solve these intuitive problems was machine learning,

which uses algorithms with the ability to learn from examples. These algorithms build

knowledge based in simple concepts and their hierarchical relations, and sometimes,

the structure connecting the concepts is deep, creating what we know as deep learning

(GOODFELLOW; BENGIO; COURVILLE, 2016). It is generally used as a tool to solve

complex AI tasks and problems containing data with high dimensionality.

2.1.1 Learning Algorithms

Machine learning algorithms are algorithms that have the capability to learn from

data (GOODFELLOW; BENGIO; COURVILLE, 2016). Here, learning is considered as

the process by which the algorithm obtains the ability to perform a certain task. To carry

out the learning process it is necessary to input the machine learning system data from

which it can obtain information. This set of data, usually called the training set, is com-

posed of examples defined by features that are used to tune the algorithm’s parameters,

allowing it to process new examples in the way it is expected.

There are many problems that can be solved using machine learning, some com-

mon tasks defined by Goodfellow, Bengio and Courville (2016) include:

• Classification: In this task the goal is to assign the inputs to one of a finite set of

classes. Examples of classification are object recognition from images or handwrit-
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ten digit recognition.

• Regression: In this type of task, the output of the training examples is not a class

but rather a continuous value. Examples of regression are temperature prediction,

or prediction of future prices of securities.

• Transcription: Here, the system receives unstructured representations of data and

its goal is to transcribe it into a textual form. The input could be an audio sample or

an image containing text and the expected output would be a sequence of characters

that represents the words on it.

• Structured prediction: These are tasks where the output consists of a vector with

important dependencies between its elements. Capturing these dependencies is as

important as capturing the input-output relationship. Pixel-wise segmentation of

images is an example of it as well as image captioning and other translation and

transcription tasks where the output needs to be a valid sentence.

• Density estimation: In this type of tasks, the computer program needs to find a

function that represents the distribution of data within the input space. It is called

the probability density function.

Depending of the type of feedback given to the algorithm, Russell and Norvig

(2009) define three main types of learning:

• Supervised learning, where the algorithm learns directly from input-output pairs

and tries to learn a function that will yield the desired output for a given input.

Classification and regression are common supervised tasks.

• Unsupervised learning, where the algorithm learns form the data even though no

feedback is given. It can be used to discern multiple categories in a collection of

objects, known as clustering, or to project data from a high-dimensional space to

two or three dimensions, known as principal component analysis.

• Reinforcement learning, where the algorithm receives rewards or punishments when

doing something "right" or "wrong" and uses that knowledge to determine which

of the actions prior to the reinforcement were most responsible for it in order to

maximize the total reward.

The supervised learning process usually consist of a training phase where the al-

gorithm is shown the training set, and an evaluation phase, where a test set composed of

data the algorithm hasn’t seen before is used to assess its performance. To do it, is nec-

essary to define quantitative performance metrics, known as cost, loss or error, that will
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depend of the specific task the system is trying to learn. When the cost is calculated in the

training set it is called the training error and by minimizing it during the training process,

the learning problem is being optimized. Likewise, when the error is calculated in the test

dataset, it is known as the test error or generalization error.

In general terms, an algorithm will perform well if it has a small training error and

the gap between the training and test errors is small. If the machine learning system is

not being able to achieve a low training error, it is said that it is under-fitting. If the gap

between the training and test errors is too big, it is said that the algorithm is over-fitting.

The ultimate goal of the learning process must be to perform well on the test set as this

will increase the possibility of performing well in new, unseen data.

2.1.2 Artificial Neural Networks

Research about the brain in the neuroscience area inspired some of the first AI

works that aimed to create artificial neural networks. The findings that motivated this

creation were about mathematical representations of how information is processed in bi-

ological systems (BISHOP, 2006), and hypothesis that the base of mental activity resides

in electrochemical connections in networks of brain cells called neurons (RUSSELL;

NORVIG, 2009). The proposed network model was composed of small units that re-

sembled these cells. The mathematical model of these units (MCCULLOCH; PITTS,

1943 apud RUSSELL; NORVIG, 2009) can be seen in Figure 2.1.

Figure 2.1: Mathematical model of a neuron. The output activation of the network is
calculated with the output activation of the previous unit.

Adapted from: Russell and Norvig (2009) (RUSSELL; NORVIG, 2009)

Inside the network, the units are connected so that activation ai is propagated from

unit i to unit j. Each connection has a weight wi,j that determines its strength. First, each
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unit j computes the weighted sum of its inputs

inj =
n∑

i=0

wi,jai (2.1)

and then transforms it applying a differentiable, non linear activation function g to calcu-

late its output activation

aj = g (inj) = g

(
n∑

i=0

wi,jai

)
(2.2)

The structure of the network is then formed by stacking units in layers and creating

the links between them. The layers that are not directly connected to the output units are

called hidden layers. As the activation functions in these layers are non linear, the network

becomes a linear combination of non linear functions that maps the input variables to the

output variables and is controlled by adjustable parameters or weights that are adapted

during the training.

The activation function of the last layer depends of the specific task the algorithm

is learning and the nature of the data. Examples of functions that can be used are the iden-

tity function for regression problems, logistic sigmoid functions for binary classification

problems, or softmax activation functions for multiclass problems, even thought different

activation functions can also be used for these tasks.

The way the units are structured determine the type of the network, the two basic

definitions being Feedforward Networks and Recurrent Networks (see Figure 2.2). In the

first type, the connections go in one direction without loops so the network represents a

function of its current input. The second type, recurrent networks, feeds its outputs back

to its inputs so the response to a given input depends of its initial state that may depend of

past inputs. The feedforward networks, also called Multilayer Perceptron (MLP) are the

most relevant model for deep learning.

Once the structure of the network is set, the optimization process starts by initial-

izing the network’s parameters and then moving through the weight space in an iterative

manner to minimize the error function. By propagating the errors backwards through the

network, the gradients of the error with respect to the weights can be calculated in a pro-

cess known as Backpropagation (RUMELHART; HINTON; WILLIAMS, 1988). These

derivatives are then used to compute the adjustments made to the weights, and the process

is repeated until any stopping criteria is met.
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Figure 2.2: Basic structure of feedforward (above) and recurrent (below) networks. In
feedforward networks the information flows in one direction without loops while recurrent
networks feed its outputs to its inputs.

Source: Original image

2.1.3 Convolutional Neural Networks

Convolutional networks (LECUN et al., 1989) are a special type of neural network

that uses convolution operations in at least one of its layers. They are useful when working

with data that has a known grid-like structure as time-series data and images.

The basic structure of a Convolutional Neural Network (CNN) can be seen in

Figure 2.3. The convolutional layer is composed of units arranged into planes known as

feature maps. All of the units inside a feature map share the same weight, so the whole

feature map will detect a specific pattern in different parts of the input image. Using

multiple feature maps in each layer allows the model to recognize different patterns in the

image.

With the received input, first, the layer performs convolutions in parallel to pro-

duce the linear activations than are then transformed by a non linear activation function

as with regular neural networks. Then, the output of the convolutional layer is passed to

the subsampling layer where the units receive inputs from small regions of the feature

maps performing the subsampling action (BISHOP, 2006). The functions used to sub-
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Figure 2.3: Basic structure of a convolutional neural network. The input image (left) is
followed but a convolutional layer (center) and then a sub-sample layer (right). Networks
are composed of several pairs of convolutional + sub-smapling layers.

Adapted from: Bishop (2006) (BISHOP, 2006)

sample the feature map can be max pooling, where the output is the biggest input within

the rectangular region, the average, the L2 norm of weighted averages, among others

(GOODFELLOW; BENGIO; COURVILLE, 2016).

The resulting values are then multiplied by adaptive weights and finally trans-

formed using non linear activation functions like in regular layers. This basic structure

can be repeated as necessary creating the architecture of the network. Then, the final layer

of the network has to be chosen based on the task the algorithm needs to learn.

As with a regular neural network, the training process can be accomplished by

minimizing the error metric using backpropagation. The main difference is that when

updating the weights, the constraint of the same weight for each feature map must be

maintained (BISHOP, 2006).

2.2 Representation of Anatomy in Computer Graphics

Medical imaging is a technique that allows the creation of images from anatomy,

specifically the structures hidden by the skin and bones, helping clinicians to reliably

detect and diagnose diseases. Some of the most common medical imaging modalities

include X-Ray, Computed Tomography, Magnetic Resonance Imaging, Ultrasound Imag-

ing, techniques based on nuclear emission (PET, SPECT), among others (BEUTEL; KUN-

DEL; METTER, 2000).

Images generated by the aforementioned techniques are different depending on

which technique was used. CT and MRI techniques yield a series of 2D image slices with



29

information stored in their pixels (see Figure 2.4). These individual slices can be stacked,

providing volumetric information in units of data known as a voxels. Voxel intensities

in medical imaging vary according to the physical response of the tissue to the scanning

modality.

Figure 2.4: Axial and sagittal slices of a computerized tomography of the abdominal area.

Source: Original Image

The resulting volume provides information about the whole area that originated

the scan (the part of the body that the scan is representing) but in the case of computer-

aided diagnosis, computer-assisted surgery, surgery simulators and general surgery plan-

ning, the clinicians usually need information about specific organs making it necessary to

change this representation. The process of separating a specific organ from the rest of the

scan is known as segmentation.

The usual result from a segmentation process is a scan whose voxels contain only

binary values indicating if said voxel belongs to the organ or not. Example of a seg-

mented CT scan can be seen in Figure 2.5. To generate a 3D model from that segmented

representation, the usual approach is to create a polygonal mesh.

Polygonal meshes are a collection of vertices, edges formed by vertex pairs, and

polygons formed by sequences of edges and vertices (SMITH, 2006). A polygonal mesh

of the same organ extracted using the marching cubes algorithm can be seen in Figure 2.6

(left).

When there is no information about how the vertices of the mesh are connected,

the set of points simply becomes a point cloud. The point cloud version of the same organ

can be seen in Figure 2.6 (right). In this work, we will represent 3D models with point

clouds that can be derived from polygonal meshes.
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Figure 2.5: Segmentation of the liver in a computerized tomography.

Source: Original image

Figure 2.6: Polygonal mesh (left) and point cloud (right) representations of reconstructed
model of a liver.

Source: Original image

2.3 Free-form Deformation

3D meshes can be deformed using Free-form Deformation (FFD) (SEDERBERG;

PARRY, 1986). FFD is a technique that uses a deformation grid placed around a 3D shape

and moves it in such a way that deformations made to the grid also deform the object in

it.

This technique places a local coordinate system defined by the vectors S, T , U

and origin p0, around the shape in a parallelepiped region. Thus, for any point p in the

original shape, its coordinates (s, t, u) can be calculated in the new coordinate system as:

s =
T × U · (p− p0)

T × U · S
, t =

S × U · (p− p0)
S × U · T

, u =
S × T · (p− p0)

S × T · U
. (2.3)



31

Then, the parallelepiped space is divided in l + 1, m + 1 and n + 1 planes in the

S, T and U directions respectively, where the intersections of the planes are the control

points of the deformation grid and their locations are defined as:

Pijk = p0 +
i

l
S +

j

m
T +

k

n
U. (2.4)

By moving the control points, the deformed position p′ of a point p can be calcu-

lated as:

p′ =
l∑

i=0

m∑
j=0

n∑
k=0

Bi,l(s)Bj,m(t)Bk,n(u) (Pijk + ∆Pijk) (2.5)

where Bn,m(x) =
(
n
m

)
(1− x)n−mxm is the Bernstein polynomial of degree m, and ∆Pijk

is the 3D deformation offset at the grid control point Pijk.

Equation 2.5 can be written in a matrix form as:

P ′ = B(P + ∆P ) (2.6)

were P ′ ∈ RN×3 are the deformed Cartesian coordinates of the 3D shape, B ∈ RN×M

is the deformation matrix, P ∈ RM×3 are the coordinates of the control points, N is the

number of points in the original shape, M is the number of control points calculated as

(l + 1)(m+ 1)(n+ 1) and ∆P are the control point offsets.

2.4 Comparison of 3D Meshes

To compare two meshes we need to measure how different they are. Relying only

on the vertices of the mesh, it can be treated as a point cloud, and metrics designed for

point clouds can be used. Next we explain two metrics to measure the difference between

two point clouds.

2.4.1 Chamfer Distance

As defined in Fan, Su and Guibas (2017), the Chamfer distance (CD) between

two point clouds measures the sum of the distances between each point and its nearest
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neighbor in the other cloud. Formally, CD between two point clouds S1 and S2 ⊆ R3 is:

dC (S1, S2) =
∑
x∈S1

min
y∈S2

‖x− y‖22 +
∑
y∈S2

min
x∈S1

‖x− y‖22 (2.7)

where ‖a‖2 is the L2 norm of a, also known as the Euclidean distance.

2.4.2 Mean Squared Distance

In the case where there is one to one correspondence between the two point clouds,

the mean of the squared Euclidean distance for every pair of points is defined as follows:

dMSD (S1, S2) =
1

np

∑
x∈S1

∑
y∈S2

‖x− y‖22 (2.8)

where np is the number of points in the cloud.
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3 RELATED WORK

The generation of 3D models of organs from medical data is a problem that in-

volves inferring a mesh from a volumetric image obtained by a medical imaging tech-

nique, as a CT or an MRI. The construction of these models has been a very active re-

search topic along the years and still today. Solutions for multiple, as well as specific

organs, have been proposed using all kind of techniques, e.g. deformable models, proba-

bility based methods, atlas guided methods, machine learning approaches, among others.

The techniques can be roughly classified in those having two-steps or having a

single step. When we refer to two-steps techniques, we are referring to those solutions

that do an initial segmentation process of the target organ in the medical scan and then

generate a polygonal mesh from the obtained segmentation. Single step methods, on the

other hand, can directly generate the shape of the organ using deformable models that

adapt the shape of a curve (2D) or mesh (3D) to overlap with the organ of interest. By

generating the 3D model of the organ, its segmentation is also implicitly obtained

In recent years the popularity of organ segmentation algorithms based on deep

learning has risen and these methods have become the state-of-the-art (CARDENAS et

al., 2019). This behavior has also been observed in the generation of 3D models of objects

from images, were CNNs have demonstrated impressive performance (HAN; LAGA;

BENNAMOUN, 2019). This is a different problem, as the initial data for which one wants

to generate the 3D representation only has two dimensions, making it necessary that the

machine learning algorithm learns to infer volumetric information from non-volumetric

data. Because of that, a lot or research has been conducted including a wide range of

reconstruction algorithms and types of 3D representations.

In this chapter, we present an overview of the most common techniques used in

each stage of the 3D organ generation process. Then, we summarize the most represen-

tative methods used to reconstruct 3D model of objects from images using deep learning

approaches, based on the recent review works of Han, Laga and Bennamoun (2019) and

Yuniarti and Suciati (2019).

3.1 Organ Reconstruction from Medical Images

In this section we present algorithms used to segment organs from medical data as

well as methods used to reconstruct the 3D models from the generated segmentation.
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3.1.1 Organ Segmentation Techniques

Initial methodologies to segment organs from medical scans were limited by the

low amount of segmented data available. This caused the proposed algorithms to use no

prior knowledge about the scans and do the segmentation based only in pixel intensities

using simple techniques as intensity thresholding or region growing (CARDENAS et al.,

2019).

In time more advanced techniques were proposed, as active contours and level

sets. These are considered deformable models as they deform closed surfaces to overlap

the shape of the target organs. Deformable models have two main characterizations: para-

metric and geometric. The former characterization explicitly represents the curves in their

parametric form during the deformation. Active contours are examples of it. The latter is

based on the theory of curve evolution and implicitly represents curves and surfaces as a

level set of a high dimensional scalar function (MESEJO et al., 2016).

Active contours, as Snakes (KASS; WITKIN; TERZOPOULOS, 1988), are spline

curves that deform under the influence of forces that pull them towards features of images

such as lines or edges. This is accomplished by minimizing an energy function until

the deformable model coincides with the edges of the object being segmented. As these

methods often rely only on local information at the control points, the quality of the results

severely depends on the contrast of the image intensities. Local minima also undermine

the chances of a fully automatic performance. In such way, user intervention is required

and semi-automatic approaches obtain better results.

In 2016, BERECIARTUA et al. used 3D active surfaces to segment the liver in

multi-sequence MRI images. They did it by using an active contour model designed to

work with uniform unconnected regions (liver and not-liver). This contour converged

towards the liver boundary with the influence of an energy function and the maximization

of the difference between the statistics of the liver and non-liver regions. Even though this

method used a 3D active surface, it was used in a local small region of 3 × 3 × 3 voxels

to improve the organ segmentation (see Figure 3.1), rather than to build a 3D model of it.

Probabilistic techniques can also be used to predict the possibility of a voxel be-

longing to a class. Gaussian Mixture models, k-nearest neighbors, and shallow artificial

neural networks (ANN) are example methods. However, they ignore region information

as they focus on the problem of single voxels.

Atlas guided techniques use reference images where the areas of interest are al-
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Figure 3.1: Liver segmentation of an MRI scan using 2D active contours (left) and 3D
active contours (right). By using local information about the neighboring voxels a better
segmentation can be achieved.

Source: Bereciartua et al. (2016) (BERECIARTUA et al., 2016)

ready segmented, called atlases, as prior knowledge to segment new images (CARDENAS

et al., 2019). The use of multiple atlases helps in dealing with inter-subject variability.

However, these techniques are prone to misrecognize the surrounding tissues (MOGH-

BEL et al., 2018). Saxena et al. (2016) proposed an automatic atlas based approach to

segment multiple organs in the abdominal region (spine, kidneys, liver, aorta, and spleen)

in CT scans. They use the spine as a landmark to extract regions of interest for each or-

gan that are then segmented using an algorithm specifically designed for the target organ.

These regions of interest are found at specific distances and angles from the spine. The

values were obtained from the observation of 152 scans making the creation of the atlas a

time consuming process as the features are handcrafted.

With more segmentation data available, traditional machine learning approaches

as Support Vector Machines and Random Forests have also been used. However, deep

learning approaches, particularly CNNs, have shown outstanding results in organ seg-

mentation tasks. Methods using CNNs perform well because they use local information

instead of single pixel information to produce the segmentation. However this is com-

putationally expensive as the overlapping regions used as input for each pixel cause the

same convolutions to be computed several times. To solve this, Long, Shelhamer and

Darrell (2015) developed fully convolutional networks (FCN) where the final fully con-

nected layers of regular CNNs were replaced by an up-sampling path to decode the image

features to produce accurate segmentation.

The most popular FCN architecture is U-Net (CARDENAS et al., 2019). De-

veloped by Ronneberger, Fischer and Brox (2015), U-Net combined the use of encoder-

decoder paths, with skip-connections that concatenate the layers in the the decoder path

with their correspondent feature map on the encoder path. The architecture showed im-

pressive results in the segmentation task, with low computational time and also demon-
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strated that the training process could be accomplished using a small set or training exam-

ples. A 3D version of this model, 3D U-Net, was proposed by Çiçek et al. (2016), making

it possible to train with 3D images. It was tested in segmentation of highly variable 3D

anatomical structures showing good results.

Another variation of U-Net networks are V-Nets implemented by Milletari, Navab

and Ahmadi (2016). Here, the author also developed a 3D version of U-Net, but added

a Dice coefficient loss function and the use of residual connections to improve the con-

vergence time. They tested their architecture in prostate segmentation from MRI scans.

Recently, an improved version of V-Net was proposed by Shen et al. (2019) allowing the

model to deal with multi-region segmentation and to process larger image volumes. The

authors included batch-normalization to accelerate the learning process and act as a reg-

ularization method. The algorithm was tested for multi-organ segmentation in CT scans

and an example of the generated results can be seen in Figure 3.2.

3.1.2 Reconstruction of Organs from Segmentation

When the segmentation is obtained, reconstruction algorithms can be used to cre-

ate a mesh from it. The traditional algorithm to obtain isosorfaces from voxelized data

is Marching Cubes (LORENSEN; CLINE, 1987). Meshes generated with it are usually

refined incorporating Laplacian smoothing and decimation.

Deformable model methods have also been applied to the problem of reconstruc-

tion from medical data. In 2010, LEDERMAN et al. presented a method to generate

tetrahedral meshes from 3D images with multiple region labels from already segmented

medical images. They used active surfaces to minimize an energy function with three

terms: "a smoothing term to remove the voxelization, a fidelity term to keep the mesh

from moving too far away from the image data, and an elasticity term to keep the tetra-

hedra from becoming flattened or inverted as the mesh deforms." (LEDERMAN et al.,

2010). Results applied to an MRI image of the brain can be seen in Figure 3.3.

Lamata et al. (2011) proposed an automatic method to generate patient-specific

cubic Hermite meshes and applied it to create bi-ventricular heart models from MRI scans.

First, they created binary representations of a template mesh and the patient’s anatomy

using binarisation and segmentation respectively. Then, they calculated a displacement

field between both binary representations and applied it to the template mesh to create the

personalized mesh.
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Figure 3.2: Ground truth (left) and prediction (right) in multi-organ segmentation in a CT
scan using improved deeper V-Nets with batch normalization.

Source: Shen et al. (2019) (SHEN et al., 2019)

Similar to this approach, our method also deforms a template mesh but it does it

without having the initial segmentation of the organ. Instead, it uses a V-Net architecture

to gain information directly from the medical scan and encodes the obtained features into

deformation parameters that modify the mesh using FFD.

3.1.3 Single Step Generation of Organ Models

Deformable models have also been used to directly generate organ meshes. In

Lu et al. (2011), the authors used this technique to generate liver meshes in CT scans

in an interactive approach. To do this, they created an initial liver mesh from a known

segmentation and deformed it towards the best fit of the data using multiple iterations and
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Figure 3.3: Single mesh of a segmented brain with 56 region labels created using active
surfaces.

Source: Lederman et al. (2010) (LEDERMAN et al., 2010)

a set of user defined parameters for the deformation filter. To refine the obtained mesh,

they used attractor points also defined by the user. Although our method also deforms

a mesh to create the organ model, intervention of the user is not necessary during the

process.

3.2 3D Object Reconstruction from Images using Deep Learning

We saw that deep learning is employed to generate segmentation data to recon-

struct the organs. However, studies have also focused on using machine learning to

directly generate 3D data. A good example is the reconstruction of 3D objects based

on images. Algorithms in this area of research usually can be grouped by the type of

representation they give to the 3D data, as it changes the way the problem needs to be

approached. The used strategies also depend of the input data type and the number of

images used. Single image, multiple images, and RGB-D images are different variations.

Some algorithms generate voxelized data as 3D representations. They are highly

used as one can easily perform 3D convolutions on voxel grids (CHOY et al., 2016; WU

et al., 2017). Choy et al. (2016) proposed a recurrent neural network called 3D-R2N2

(3D Recurrent Reconstruction Neural Network) to reconstruct objects from both single

and multi-view images. In their work, the authors used the ability of Long-Short Term

Memory (LSTM) networks to remember their inputs over a period of time. This way, the

network learned a suitable representation of the image and adapted it recursively over time

when new information about other viewpoints was presented to it. The model handled

object self-occlusions by incorporating new information about parts that were hidden in
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previous states and maintaining the information it had about the other parts. Examples of

the reconstruction can be seen in Figure 3.4.

Figure 3.4: Voxelized reconstruction of objects using 3R-R2N2 network.

Source: Choy et al. (2016) (CHOY et al., 2016)

One problem with RNN approaches is that when given the same input images

with different orders, the produced results are not consistent. Xie et al. (2019) proposed

a method that generated 3D reconstructions by fusing several coarse volumes predicted

by a decoder. The predicted coarse volumes were fed to a fusion module that selected

high-quality reconstruction for each part creating a fused model that then was refined

with skipped connections to create the final result. The coarse volumes were predicted in

parallel, making the model faster than LSTM methods and eliminating the effect of the

order of input images present in RNN.

Wu et al. (2017) also proposed a method to generate voxelized data using a net-

work with three parts. The first part, a 2.5D sketch estimator, predicted the depth, surface

normal and silhouettes of the input images, then, a 3D shape estimator inferred the object

shape with the voxel representation, and finally, a re-projection consistency function en-

forced the alignment between the predicted 3D structure and the inferred 2.5 sketches. A

big advantage of this method is that 3D reconstruction from 2.5 sketches can be trained

with purely synthetic data because realistic 2.5D sketches are easy to obtain from a graph-
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ics engine.

A downside of using voxel data, is that they are considered inefficient and less

scalable, as the computation complexity grows cubically with the grid resolution, thus

limiting the reconstruction to coarse representations that fail to recover fine details.

Figure 3.5: Hybrid grid-octree structure composed of several shallow octrees with a re-
stricted maximal depth allowing for significant compression ratios.

Source: Riegler, Ulusoy and Geiger (2017) (RIEGLER; ULUSOY; GEIGER, 2017)

A way to increase the efficiency when working with voxels is to use octree repre-

sentations (see Figure 3.5). An octree is a structure that divides the 3D space recursively

into octants in such a way that cells that contain relevant information (as the surface

boundary) are subdivided more times, while regions without information are represented

by large cells (RIEGLER; ULUSOY; GEIGER, 2017). They have several drawbacks as

the structure of the octree depends of the object so ideally the network needs to predict the

structure and its content. Also, using convolution operations is easier when the input is a

regular grid. Solutions as (WANG et al., 2017) execute the entire training and evaluation

process in the GPU by efficiently storing all the network features and octant information

in the graphical memory.

Besides from volumetric representations, 3D shapes can also be represented using

only the information about the surface of the 3D object, avoiding unnecessarily volumi-

nous data. However, common surface representations as meshes and point clouds are

highly unstructured and this is a problem when working with CNN architectures. Han,

Laga and Bennamoun (2019) classify the techniques used to work with surface data in

three main categories: point-based, parameterization-based, and deformation-based meth-

ods.

A type of point-based representation are point clouds. These are a simple and uni-

fied structure, which makes them easier to learn (QI et al., 2017a). The leading works to
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explore learning from point clouds were PointNet (QI et al., 2017a) and PointNet++ (QI

et al., 2017b). Here, the authors developed architectures that processed point clouds and

could be applied to object classification, part segmentation, and semantic scene labeling.

Fan, Su and Guibas (2017) used them to create a model that directly generates points’

coordinates using two main branches, one with flexibility to infer the complicated struc-

tures and other to maintain geometric continuity (see Figure 3.6). RealPoint3D by Xia

et al. (2018) improved the obtained results by integrating prior shape knowledge into the

network, enabling the reconstruction of images with complex backgrounds and captured

from arbitrary viewpoints.

Figure 3.6: Input images and reconstructed 3D point clouds using Point Set Generation
network.

Source: Fan, Su and Guibas (2017) (FAN; SU; GUIBAS, 2017)

Parameterization-based reconstruction (PUMAROLA et al., 2018; SINHA et al.,

2017; GROUEIX et al., 2018) uses alternative representations of 3D surfaces instead or

working directly with triangular meshes. The most commonly used are spherical param-

eterizations and geometry images (HAN; LAGA; BENNAMOUN, 2019). To obtain a

geometry image of a surface it is necessary to cut it into disk-like charts and then unfold

them into the 2D domain (see Figure 3.7). However, representing 3D objects within a

category using geometry images is a difficult task, as all the surfaces need to be put into

correspondence first and then the optimal cuts need to be calculated. Sinha et al. (2017)

proposed a method to create consistent representations of objects inside a category and

then used a deep learning approach to generate 3D surfaces said objects.

The final type of technique to work with 3D surface data are those based on de-

formations. Direct deformation of simple meshes using RNNs has been proposed (PAN

et al., 2018). Additionally, vertex deformations between the target shape and a template

mesh have been used (WANG et al., 2018; KANAZAWA et al., 2018). They assume

same topology and one-to-one correspondence between the two meshes. Free-form de-

formation can also be employed to describe the shape of an object by representing it as
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Figure 3.7: Original mesh with cuts and its generated geometry image.

Source: Gu, Gortler and Hoppe (2002) (GU; GORTLER; HOPPE, 2002)

the deformation of a grid structure controlled by a set of points (see Figure 3.8). FFD

techniques (JACK et al., 2018; KURENKOV et al., 2018; PONTES et al., 2018) infer the

deformation parameters instead of inferring the whole shape. FFD is the type of repre-

sentation we used in this work.

A great advantage of using this method is that by changing the template model,

we can generate meshes with an arbitrary amount of points, as only the deformation pa-

rameters are calculated and not the actual point coordinates.

Figure 3.8: Free form deformation of a 3D mesh. To the left the original model and the
deformation grid can be seen. To the right, the mesh is transformed by the deformation of
the grid structure.

Source: Pontes et al. (2018) (PONTES et al., 2018)
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4 AUTOMATIC GENERATION OF PATIENT-SPECIFIC 3D MODELS OF OR-

GANS USING AN UNIFIED DEEP LEARNING APPROACH

In this section, we explain our technique for generating patient-specific meshes of

organs. It is based in the work of Jack et al. (2018) to reconstruct 3D models from 2D

images of objects, however, we adapted the method to use volumetric medical data as the

input of our system. An overview of the method’s steps can be seen in Figure 4.1.

Our problem consists in generating a mesh of an organ having the medical scan of

the patient as an input. To achieve this, we trained a deep neural network model to learn

the deformation we would need to apply to a template mesh in order to obtain a result that

resembles the original shape of the organ.

Each part of the method is explained in more detail in Sections 4.2 - 4.4. Details

about different tested approaches that did not produce good results will also be discussed.

The final selected methodology can be found in Section 4.5.

Figure 4.1: Overview of our mesh generation method.

Source: Original image

4.1 Method Overview

The input of our system are 3D medical images whose information was mapped to

a feature space using a CNN. These features were then mapped to a deformation param-

eter ∆P . To generate the deformed models, we computed the Bernstein decomposition

P ′ = BP of the template mesh and then, using equation 2.6, we calculated the deformed

coordinate points of the template mesh.

To train our models, we used the obtained ∆P to deform the mesh and then com-
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puted the error between the predicted and the ground truth meshes.

4.2 Input Data

There were multiple options to feed data into our model. The input representation

would define important parts of the algorithm, for instance, the used architecture and

preprocessing steps. The necessary definitions were:

• Representation of the medical scans;

• Ground truth meshes computed for each medical scan for the selected representa-

tion;

• Template meshes for the selected representation.

The data we worked with are the result of medical imaging techniques, specifi-

cally, CT and MRI scans. These scans can be interpreted as regular 2D images or as 3D

images by stacking them together. We decided to use the 3D version of the data to bene-

fit from the local information that exists around each voxel when it is analysed along its

neighboring region.

Among the several options to represent 3D models presented on Section 2.2, we

decided to use point clouds that derived from meshes as our ground truth. Hence, only

the point cloud coordinates were processed but information about the original mesh con-

nectivity could be stored and used later to connect the processed point cloud.

To feed the scan data to the network, the simplest option was to use the raw vol-

umes as a whole. However, this represented a problem in several ways since the amount

of available segmented medical images to train the model was low and, as 3D data grows

exponentially, feeding the network with it would be expensive memory wise.

4.2.1 Cropped Subvolumes

One way to reduce the size of the input data of the network was to cut the original

volume into several smaller cubes in such a way that each cube contains a piece of the

original volume (see Figure 4.2). The first input data we used was composed of cropped

volumes of size 20× 20× 20. Before cropping the cubes, each scan was resampled to an

isotropic resolution of 1×1×1mm, so the used cubes had side of 20mm. The extraction
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of the subvolumes was made without overlapping, meaning that each voxel of the scan

appeared a single time the generated cubes.

Figure 4.2: Cropping subvolume cubes in a volumetric medical scan.

Source: Original image

Figure 4.3: Representation of cropped subvolumes containing big (left), small (center)
and several (right) pieces of organ edge.

Source: Original image

The target information we wanted to infer from each cropped cube was, in the

case of containing a piece of the organ’s edge, the shape of that border. So, the selected

template to deform for each subvolume was a triangular mesh of a plane represented by a

set of vertex coordinates V ∈ Rnv×3 with nv = 1024 as can be seen in Figure 4.4. This

plane was placed inside the cube and then was deformed to fit the organ boundary.

The ground truth for each cropped subvolume was obtained by cropping the same

region from the segmentation mask and then using Marching Cubes with Laplacian smooth-

ing and decimation to generate a point cloud representing the organ edge. However, using

the cropped subvolumes created a series of challenges:

• The cropped subvolumes could contain big or small pieces of organ edges (see
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Figure 4.4: Plane template mesh with 1024 points used for the reconstruction of the organs
with cropped subvolumes as input data.

Source: Original image

Figure 4.3 - left and center). Cubes with regions of edge much smaller than the

template mesh need bigger deformations.

• The cropped subvolumes could contain no edges at all. This represented a problem

as there was no direct way of deforming the template mesh to represent "no mesh"

for the empty cubes.

• It also affected the ground truth point clouds, making their number of vertices vary

greatly. Furthermore, for scan subvolumes without parts of the organ boundary, the

number of vertices was zero.

• In organs with complex shapes such as the liver, some cropped cubes could have

two or more pieces of edge (see Figure 4.3 - right). However, only one template

mesh was used making the network have to learn the deformation to fit only one of

the boundaries or maybe stay in the middle of both;

• Subvolumes inside the organ would also be considered as empty, making the amount

of examples without edges much higher than those with edges, thus causing our

training dataset to be imbalanced.

The imbalance problem was solved using random minority oversampling by copy-

ing samples containing edge until the dataset was balanced (BUDA; MAKI; MAZUROWSKI,

2017). Despite still having cubes with no edge, we proposed strategies to solve this during

the training stage (see Section 5.2.1).
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4.2.2 Whole Resized Volumes

To use the whole volumes without facing memory issues, we resampled all the

scans to have different resolutions but a fixed size of 256 × 256 × 128 using Nearest-

Neighbor interpolation. As this left us with a very low amount of training examples, data

augmentation was executed at the training stage as in (MILLETARI; NAVAB; AHMADI,

2016). This was done by performing random deformations in the scans using a deforma-

tion field obtained through a 2×2×2 grid of control points that was modified with random

values obtained from a Gaussian distribution with zero mean and a standard deviation of

15 pixels. Also, each scan had its intensity distribution matched to that of another training

example in the dataset using histogram matching.

As using the whole volumes allowed us to process the organ without dividing it,

the information to infer from the input was the deformation to create the whole organ

shape and, with it, the plane template used for cropped cubes was no longer useful.

For this case, we used a spherical template mesh represented by a set of vertex

coordinates V ∈ Rnv×3 with nv = 1538, were each vertex vi was a member of two

intersecting orthogonal contours. Thus, each vertex was connected to exactly four vertices

creating a quad-sphere structure as can be seen in Figure 4.5.

Figure 4.5: Quad sphere mesh with 1538 vertices used as the template mesh for the re-
construction of the organs with whole resized volumes as input data.

Source: Original image

The ground truth for the whole volumes was obtained from the whole resized seg-

mentation mask using Marching Cubes with Laplacian smoothing and decimation. A sec-
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ond ground truth version having correspondence with the template mesh was calculated

from the segmentation masks as explained in the next section.

4.2.3 Ground Truth Correspondence Resampling

As we saw before, the point clouds generated as ground truth for the training

process may have a variable number of points in them. Chamfer Distance between the

ground truth and the deformed template mesh could be calculated without a problem as

the metric does not require both point clouds to have the same size. Yet, we wanted to

analyse the effect of deforming the points by minimizing the difference between each

point and its correspondent point in the ground truth and to do this, we needed to have

one to one correspondence between both point clouds.

To achieve it, we generated a second ground truth version for the whole resampled

volume by doing the following: first, we generated the mesh from the segmentation mask

without using decimation. Then, we found the center of mass of the mesh. Next, we

intersected the mesh with rays originating at the center of mass and projecting in the

direction of each point in the sphere mesh. Finally, we saved the intersection points of the

rays with the mesh.

As the mesh is not convex, it could be intersected several times along one ray.

Then, only the furthest point was selected. Notice that this algorithm only works when

the center of mass lies inside the mesh.

4.3 Output Data

Defining the format of the output data also defined the final layers of our archi-

tecture. In Section 2.3, we saw that FFD can be used to deform any given 3D mesh by

modifying the ∆P offsets of some control points. As a result, it was possible to train our

network to generate the deformation parameters (offset of the control points) instead of

having it generate the raw points.

The output data was then defined by N control points Pijk ∈ RN×3 that could be

used to deform the template meshes, where N = (l+ 1)(m+ 1)(n+ 1), with l, m, and n

define the grid of control points.



49

4.4 Network Architecture

As in Jack et al. (2018) work, our network is composed of two main parts, one

for obtaining information from the input images and the other to perform the regression

of the deformation parameters. We used an existing network architecture to achieve the

former and added several fully connected layers at the end of it to achieve the latter.

4.4.1 Base Architecture

First, we used a simple 3D base architecture that was composed of 3 convolutional

layers with 3 convolutions each, the last one having stride=2 to act as a pooling layer. The

model structure can be seen in Figure 4.6.

Figure 4.6: Structure of our simple base architecture.

Source: Original image

However, as our input was volumetric medical data, we needed a 3D base archi-

tecture that could extract meaningful information about the organs’ shape. With this in

mind, we chose to use a V-Net model (MILLETARI; NAVAB; AHMADI, 2016) originally

meant to segment prostate data from MRIs. The architecture can be seen in Figure 4.7.

4.4.2 Regression Layers

At the end of the base model we added several fully connected layers, the final one

outputting the parameters of ∆P. The configuration of the regression layers changed with

the different trained models. Details can be seen in Table 5.2.
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Figure 4.7: V-Net base architecture structure.

Adapted from: Milletari, Navab and Ahmadi (2016) (MILLETARI; NAVAB; AHMADI, 2016)

4.5 Final Model

The structure and dimensions of our final working model can be seen in Figure 4.8.

Its input is composed of whole resampled volumes that are fed to a V-Net model, followed

by a regression model that outputs the deformation parameters used to deform the quad-

sphere template mesh (Figure 4.5).

Figure 4.8: Structure of the final working model.

Source: Original image

Before feeding the data to the network, we rescaled each medical image intensity
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to values between 0 and 1. Then, we augmented the input data as explained in Sec-

tion 4.2.2, and finally, we performed a standard feature scaling process normalizing each

scan by subtracting its mean and dividing by its standard deviation as in (MILLETARI;

NAVAB; AHMADI, 2016). The rest of the parameters for each trained model can be

found in Chapter 5.
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5 EXPERIMENTS AND RESULTS

In this chapter, we will explain the different experiments we performed and present

the outcomes from each of them. The final results obtained after refining the methods can

be seen in Section 5.3 and Section 5.4. All the experiments shown in this chapter use

FFD with l = m = n = 3 for a total of 64 control points to deform the template meshes.

During all the training processes only the model with the lowest development cost was

saved.

The experiments were conducted on a PC with Intel Core i7-8700 CPU @ 3.20

GHz, a 16 GBytes memory, and NVIDIA Quadro P6000. The proposed system was

implemented using TensorFlow 1.12.

5.1 Datasets

To evaluate our method, we used datasets of two organs with different levels of

shape complexity, the liver and the prostate.

5.1.1 Liver Data

For the liver we used 40 CT scan images, publicly available in the databases

Sliver07 1 (Heimann et al., 2009) and 3Dircadb 2. From the Sliver07 dataset we used 20

contrast-enhanced images with pixel spacing between 0.57 and 0.8mm, distance between

slices varying from 0.7 to 5mm, and number of slices from 64 to 394. The remaining 20

scans came from the 3Dircadb database. The pixel spacing varying from 0.56 to 0.87mm,

distance between slices from 1 to 4mm and number of slices from 74 to 260. All the scan

images had in-plane resolution of 512x512. Most of the CT images were pathological,

including tumors. The segmentation data was created manually by expert radiologists in

a slice by slice manner.

We split the data into train, development, and test sets having 32, 4, and 4 liver

scans, respectively.

1<https://sliver07.grand-challenge.org/>
2<https://www.ircad.fr/research/3dircadb/>

https://sliver07.grand-challenge.org/
https://www.ircad.fr/research/3dircadb/


54

5.1.2 Prostate Data

For the prostate we used 80 transversal T2-weighted MR images from the PROMISE123

dataset (LITJENS et al., 2014). Data included both benign disease and prostate cancer.

Pixel spacing varied between 0.25 and 0.75mm while distance between slices was be-

tween 2.2 and 4mm. The data was divided in the same way, resulting in 40, 10, and 30

prostate scans for train, development, and test sets, respectively.

5.2 Generating 3D Models of the Liver Using Cropped Subvolumes

Our first approach to generate liver volumes used the cropped subvolumes input

data type (see Section 4.2.1). As discussed before, this approach generates training exam-

ples with and without liver boundaries and as our method deforms the template mesh to

fit said boundary, it would be necessary to deform it until it represents the "no mesh" sta-

tus that occurs when there is no organ boundary present. To overcome this, we explored

the possibility of dividing the problem into a classification + regression model, where the

classification part would determine if the training example contained a part of the bound-

ary, and the regression part would receive only those examples that actually contain organ

edges, so the template mesh can be deformed to fit an existing shape. Both networks were

trained separately to assess their feasibility.

5.2.1 Classification of cropped subvolumes with and without liver edges

The model selected to classify the liver subvolumes into those containing a bound-

ary of the liver and those not containing it can be seen in Figure 5.1. The data used to train

this model were the cropped subvolumes as input with their corresponding binary labels

obtained from the original segmentation masks. This model was similar to our simple

base architecture having 3 convolutional layers, followed by a fully connected layer and

a final layer with 2 neurons, one for each class. All the network activation functions were

ReLU and we applied L2 regularization to our model with a λ penalty term. A batch size

of 32 was used. To define the model hyperparameters, we did several exploratory train-

ing iterations to define suitable values and then carried out a grid search process with the

3<https://promise12.grand-challenge.org/>

https://promise12.grand-challenge.org/
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following parameters, yielding a total of 12 models, each one trained during 55 epochs:

• Learning rate = [1× 10−4, 5× 10−5 ]

• Learning rate decay = [0.2, 0.5 ]

• λ = [0.01, 0.008, 0.005]

Figure 5.1: Model used to classify cropped subvolumes into those with and without liver
boundary.

Source: Original image

To evaluate our models, we calculated accuracy, precision, recall, and F1 score in

the test dataset as follows: The resulting values can be seen in Table 5.1.

accuracy =
true positive+ true negative

total
(5.1)

precision =
true positive

true positive+ false positive
(5.2)

recall =
true positive

true positive+ false negative
(5.3)

F1 =
2 · precision · recall
precision+ recall

(5.4)

5.2.2 Regression of cropped subvolumes containing liver edges

To test the regression process we created a dataset that contained only cropped

subvolumes with liver boundaries. This model had the same architecture as the model

described in Section 5.2.1, only changing the last layers to predict the ∆P parameters

used for the mesh deformation (see Figure 5.2). All the network activation functions

were ReLU and the model was trained using batch size of 32 during 1000 epochs. The
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Table 5.1: Results of grid search for hyperparameters optimization in classification of
liver subvolumes.

LR LR decay λ Accuracy Precision Recall F1
1 1× 10−4 0.2 0.01 0.88 0.97 0.89 0.93
2 1× 10−4 0.2 0.008 0.90 0.96 0.93 0.95
3 1× 10−4 0.2 0.005 0.92 0.97 0.94 0.95
4 1× 10−4 0.5 0.01 0.91 0.96 0.94 0.95
5 1× 10−4 0.5 0.008 0.91 0.97 0.93 0.95
6 1× 10−4 0.5 0.005 0.91 0.97 0.94 0.95
7 5× 10−5 0.2 0.01 0.91 0.97 0.93 0.95
8 5× 10−5 0.2 0.008 0.91 0.97 0.93 0.95
9 5× 10−5 0.2 0.005 0.91 0.97 0.93 0.95

10 5× 10−5 0.5 0.01 0.90 0.97 0.91 0.94
11 5× 10−5 0.5 0.008 0.91 0.97 0.93 0.95
12 5× 10−5 0.5 0.005 0.92 0.97 0.94 0.95

learning rate was 0.0001 and we used Adam optimizer with the default values β1 = 0.9,

β2 = 0.999 and ε = 10−8.

Even though we trained several models and this one had the lowest cost, the actual

results from the regression were very poor as seen in Figure 5.3. These results encouraged

us to try a different approach, either by changing the base model or by using a different

representation of the input data, as the one proposed in Section 4.2.2.

Figure 5.2: Model used to generate the meshes from cropped subvolumes containing liver
edges.

Source: Original image

5.3 Generation of Liver Models Using Whole Volumes

To generate our liver models we followed the approach explained in Section 4.5.

However, the base layers of the architecture had its weights initialized from the convolu-

tional layers of a network trained to segment the liver.

Details about the configuration of the regression layers of the model are in Table

5.2. We trained our model using Adam optimizer with β1 = 0.99, β2 = 0.999, and

ε = 10−8, and a learning rate of 10−4 that decayed by 0.1 every 50 epochs during 200
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Figure 5.3: Predictions generated with the regression model using only cropped subvol-
umes containing liver edges. Yellow points are the ground truth and blue points are the
deformed plane.

Source: Original image

epochs with batch size of 1. The cost function we used to measure the error between the

generated models was the Chamfer Distance.

The resulting meshes predicted using this model are in Figure 5.9. The image

shows, in the first column, the mesh generated directly from the ground truth segmenta-

tion of the original scans. The second and third column show the triangular mesh and

point cloud obtained after applying Laplacian decimation and smoothing to the original

meshes. This decimation process was made in order to reduce the number of points and

the computational cost. The third column shows the point cloud generated by the algo-

rithm. All the shown images have the same scale, reflecting the original liver size.

We can notice that for clearly different input scans, the generated deformations

are very similar. The system learnt to create an overall smoothed liver structure without

preserving specific shape details.

Figure 5.4 shows the mesh for one of the predicted liver point clouds generated

by the algorithm. The mesh was created by obtaining the normals for the point cloud

and then applying Screened Poisson surface reconstruction, resulting in a mesh with 5287

vertices and 10574 faces. The original connectivity of the template mesh could not be
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used as the deformation caused the mesh to self intersect.

Figure 5.4: Mesh of a liver predicted by the algorithm. The mesh was created applying
Screened Poisson surface reconstruction to the point cloud generated by the system.

Source: Original image

5.3.1 Pre-training the Base Architecture for a Segmentation Task

To train a model to segment the liver, we used the V-Net architecture as imple-

mented by Gibson et al. (2018) and followed the same steps described when working

with whole resized volumes. Our cost function was the Dice Loss coefficient as described

by Milletari, Navab and Ahmadi (2016):

D =
2
∑N

i pigi∑N
i p

2
i +

∑N
i g

2
i

(5.5)

where the sum runs over the N voxels of the predicted volume pi ∈ P and ground truth

gi ∈ G.

This model was trained using Adam optimizer with β1 = 0.99, β2 = 0.999,

and ε = 10−8, and a learning rate of 10−4 that decayed by 0.1 every 25 epochs during

100 epochs with batch size of 1. Although the achieved segmentation results were not

completely precise, it was a good starting point for the weights of our regression model.

Examples of the segmented results can be seen in Figure 5.5.
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Figure 5.5: Results generated by the segmentation model whose weights were used to
initialize the layers of the regression architecture.

Source: Original image

5.4 Generation of Prostate 3D Models

The generation of 3D models for the prostate was only tested using the whole

resampled volumes as the network input. As mentioned in Section 4.5, the base archi-

tecture used was V-Net, and the detailed information about the regression layers can be

found in Table 5.2. We used Adam optimizer to carry out the training, with β1 = 0.99,

β2 = 0.999, and ε = 10−8. The learning rate was 10−4 and decayed by half every 50

epochs during 200 epochs with batch size of 1. This model was trained with and without

mesh correspondence, using both Chamfer and MSD as the cost function, and with and

without loading pretrained weights. The configuration that gave the best visual results was

the one trained with mesh correspondence between the ground truths and the sphere mesh

but using Chamfer Distance as the cost function, and trained in an end-to-end manner

without using pretrained weights.

Figure 5.10 shows in the first column the mesh generated directly from the ground

truth segmentation of the prostate original scans. The second column shows the point

clouds sampled from the original meshes. Each one of the points in these clouds have

one-to-one correspondence with the points of the template mesh. The third column shows

the point cloud generated by the algorithms. All the shown images have the same scale,

reflecting the original prostate size.

Results generated for the prostate scans presented the same issues discussed in

Section 5.3. However, qualitative results suggest that more details were preserved, leading

to a better fit to the overall original shape and size. A possible reason for this, is that as
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Table 5.2: Summary of layers for our two main liver and prostate models. The "-" sign
indicates that the layer was not present in the architecture.

Layer Liver Prostate
Input 256, 256, 128, 1 256, 256, 128, 1
V-Net 256, 256, 128, 2 256, 256, 128, 2
Downsample Convolution 128, 128, 64, 1 64, 64, 32, 1
Downsample Convolution 128, 128, 64, 1 -
Flattened 131072 131072
Fully Connected 1024 1024
Fully Connected x 2 2048 2048
Fully Connected 1024 1024
Fully Connected 192 192
∆P 64, 3 64, 3

the prostate has a more homogeneous organ shape, the deformation needed to transform

a sphere into a prostate is less than that to generate a liver.

Figure 5.6 shows the mesh for one of the predicted prostate point clouds generated

by the algorithm. The mesh was created by obtaining the normals for the point cloud and

then applying Screened Poisson surface reconstruction, resulting in a mesh that had 4190

vertices and 8376 faces. The original connectivity of the template mesh could not be used

as the deformation caused the mesh to self intersect.

Figure 5.6: Prostate mesh for one of the predicted point clouds generated by the algorithm.
It was created using Screened Poisson surface reconstruction.

Source: Original image
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5.5 Cost Function Analysis

In order to verify if the training was possible, specifically if the amount of selected

control points could deform the sphere mesh to resemble a complex organ as the liver, we

carried out a test to directly learn the deformations of each sample in the training data.

We also used this test to compare the behaviour of different cost functions.

The test can be explained as follows: first we created a neural network with a

single fully connected layer which number of neurons was 192, i.e, 3 coordinates for

each one of the 64 control points. Using those values as the deformation parameters, we

deformed the sphere template. Then, using Adan optimizer we minimized the error metric

between the deformed sphere and the liver original point cloud. We trained a model for

each sample in the training dataset during 100000 epochs.

We repeated this process several times under the following conditions:

• Ground truth for the whole volumes as described in Section 4.2.2, and Chamfer

Distance as cost function (see Figure 5.7);

• Resampled ground truth (see Section 4.2.3) and Chamfer Distance as cost function

(see Figure 5.8 - left);

• Resampled ground truth and the maximum of the squared distance as cost function

(see Figure 5.8 - center);

• Resampled ground truth and MSD as cost function (see Figure 5.8 - right).

Visual analysis of the results yielded the following observations:

• The number of control points selected for the FFD process (64) deformed the tem-

plate to fit well the original mesh. However, most of the details were lost.

• Chamfer distance was the metric that better fitted the template to the original shape,

preserving well the shape but loosing sharp details.

• MSD created shapes that were too smoothed, maintaining a general shape but loos-

ing the specific characteristics of the organ.

• The maximum of the squared distance failed to properly fit the original shape and

created artifacts in the template mesh.
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Figure 5.7: To the left, comparison of a liver’s ground truth mesh (red) and the deformed
template mesh using 64 control points for the FFD (blue). To the right, only the deformed
template mesh (blue) is displayed.

Source: Original image

Figure 5.8: Above, comparison of a liver resampled mesh (red) and the deformed template
mesh using 64 control points for the FFD (blue). Below, only the deformed template mesh
(blue) is displayed. Columns depict the results obtained when using Chamfer Distance
(left), maximum of the squared distance (center), and mean squared distance (right) as
cost functions, respectively.

Source: Original image
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Figure 5.9: Visual results for the liver: mesh generated with marching cubes from the
original segmentation (left), triangular mesh of the decimated and smoothed original mesh
(center left), point cloud of the decimated and smoothed original mesh that was used as
the ground truth (center right),and predicted point clouds (right).

Source: Original image
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Figure 5.10: Visual results for the prostate: shape generated with marching cubes from
the original segmentation (left), sampled point cloud correspondence with the template
mesh (center), and predicted point clouds (right).

Source: Original image



65

6 CONCLUSION

In this thesis, we presented a method to generate 3D models of organs from dif-

ferent medical imaging techniques (CT and MRI) using a fully automatic deep neural

network architecture. Our algorithm is based on the deformation of template meshes us-

ing free-form deformation techniques. The novelty of this work consists in a single step

reconstruction algorithm that, for the first time, combines a deformation technique with

deep learning architectures to build patient specific anatomical geometry.

Considering the specific objectives of this work (Section 1.1.1) we can state that

they were partially achieved. A deep theoretical understanding of the subject was applied

throughout the algorithm development. A number of experiments allowed us to learn the

strengths and weaknesses of the techniques employed, as well as to better define and un-

derstand the problem of anatomy reconstruction. The reconstructed 3D models generated

by our network were coherent with the overall shape of the organs demonstrating that it

can be learnt, even when details are not preserved.

Several limitations affected the level of detail that could be achieved with our

approach. The first one resided in the use of FFD. As this technique has limitations in

the scale of the deformations, having a single resolution for the deformation grid does not

allow to reach the high levels of detail required for complex organs such as the liver.

The second important limitation was the cost function used to train our network.

Even though the Chamfer distance is a common metric used in object reconstruction prob-

lems, it does not properly penalizes the lack of sharp details in the shapes. Moreover,

Chamfer distance itself as a cost function does not take into account the original connec-

tivity of the template mesh, generating a deformation where it was not possible to directly

recover the mesh from the point clouds as the results were often self intersecting meshes.

As shown in Section 5.5, the deformation of the chosen templates using FFD and

Chamfer Distance in addition to the use of a learning approach, generated results with a

considerable loss of detail, even when the overall shapes were highly maintained.

Future work that might improve these limitations includes the use of more ad-

vanced deformation techniques, as hierarchical approaches of FFD where finer deforma-

tion grids are used to provide local refinability. Furthermore, it is possible to add mesh

quality terms to the cost function to maintain a good structure of the point clouds during

the deformation process, avoiding the artifacts generated by the use of Chamfer Distance

alone.
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Another change that could improve the fidelity of the reconstructed meshes, when

compared to the original ones, is to part from a template mesh more similar to the target

organ, like a mean model of it instead of a sphere. Is also possible to allow the network

to choose the template mesh among different options as proposed by Jack et al. (2018).

Finally, future works include training the networks with different datasets, partic-

ularly those of organs that are easier to segment because of their high contrast from the

background in the medical scans, as in bone structures. This seems to be a necessary

step-back to isolate the two fundamental problems of learning the shapes when they are

visible in the images and learning the shapes when they are not visible but can be inferred.

The long term goal of anatomy reconstruction research is to develop cost-effective

algorithms that can be seamlessly integrated in the clinical workflow. Arguably, machine

learning techniques have an important role to play if they can be combined with graphics

algorithms.
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