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ABSTRACT

Spherical cameras capture all the information around them with a field of view (FOV) of

360°×180°. The underlying images, called spherical, omnidirectional or panoramic im-

ages encounter several applications such as immersive exploration when visualized using

a Virtual Reality (VR) headset. For these and many other applications, the captured view

should be aligned with the viewing subject. This means that the upright vector of the cam-

era/image should be aligned with the gravity vector (which also means that the horizon of

the panorama should be aligned with the horizon of the Earth). However, images or video

sequences captured by spherical cameras might not be gravity-aligned, and feeding them

directly to the headset might cause uncomfortable sensations to the user. In this work, we

use Computer Vision and Machine Learning techniques to estimate the upright vector of

a panorama, which can be used for gravity-alignment. We also show an application of our

method by coupling the proposed upright-adjustment procedure with a single-panorama

depth estimation method, and show that our pre-processing step helps improving depth

estimates.

Keywords: Upright Adjustment. Spherical Images. Computer Vision. Machine Learn-

ing.



Ajuste do upright de imagens esféricas

RESUMO

Câmera esféricas capturam toda informação ao seu redor com um campo de visão de

360°×180°. As imagens resultantes, chamadas de esféricas, omnidirecionais ou panora-

micas possuem diversas aplicações como exploração imersiva quando visualizadas atra-

vés de um óculos de realidade virtual. Para essa e muitas outras aplicações, a vista cap-

turada deve estar alinhada com objeto observado. Isso significa que o vetor upright da

camera/imagem deve estar alinhado com o vetor da gravidade (o que também sigifica

que o horizonte da imagem panoramica deve estar alinhado com o horizonte da Terra).

Porém, imagens ou sequencias de vídeos capturadas por câmeras esféricas podem estar

desalinhadas em relação à gravidade, e apresentá-las diretamente no óculos de realidade

virtual pode causar desconforto ao usuário. Nesse trabalho é proposto o uso de técnicas

de Visão Computacional e Aprendizado de Máquina para estimar o vetor upright de uma

imagem panorâmica, que pode então ser usado para alinhá-la com a gravidade. Também

é mostrada uma aplicação acoplando o procedimento proposto de ajuste do vetor upright

com um métodos de estimativa de profundidade em uma única imagem, e mostra-se que

esse passo de pré-processamento ajuda a melhorar as profundidade estimadas.

Palavras-chave: Ajuste do upright, Imagens Esféricas, Visão Computacional, Aprendi-

zado de Máquina.
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1 INTRODUCTION

Spherical images, also called omnidirectional, panoramas, or 360 images, are im-

ages captured by a camera with a full horizontal field of view of 360° and a full vertical

field of view of 180°. In the last few years, these cameras have become cheaper and af-

fordable by non-professional photographers who are more likely to acquire images with

a tilted camera setup, a problem that is also common in perspective images. In spherical

images, however, there is enough information to automatically correct the photo (since

the horizon must be present unless occluded), as long as the rotation applied during the

capture is known. And when such rotation is not known, it can be estimated. Figure 1.1

shows an example before and after the upright adjustment (or gravity-alignment).

Providing a full field of view (FoV) allows a series of applications. For example,

panoramas have been widely used in the real state market, allowing buyers to have a com-

prehension of the whole ambient with a single shot. Websites like Facebook and YouTube

have also added support for this media type, allowing users to consume omnidirectional

content even without a Virtual Reality (VR) headset. However, to enjoy a more immersive

experience, a VR headset is recommended because it provides the users the ability to look

around the space just by moving their head, as long as a proper projection of a spherical

sector to a narrower-FoV image is used. Panorama images shine when computer vision al-

gorithms are used to extract data and process large volumes of data, creating applications

such as Google Street View.

In this work, we present a deep learning-based approach to estimate the camera

upright vector and rotate the image to generate a gravity-aligned version of the scene. It

enables post-capture processing of the full-FoV image and can be used either to improve

the image visualization or as a pre-processing step for rotation-sensitive methods, such as

single-panorama depth estimation (ZIOULIS et al., 2018) and layout inference (ZOU et

Figure 1.1 – Example of a VR photo before (left) and after (right) the upright adjustment. In this
case, the image in the left was synthetically rotated and the image in the right is the ground truth.
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al., 2018).

It is important to mention that state-of-the-art (SOTA) methods that regress the up-

right vector suffer from high errors when the image is nearly aligned or upside-down (JUNG

et al., 2019), so that the gravity-aligned images in these cases might be even more tilted

than the input.

1.1 Goals

Our main goal in this work is to develop an upright vector estimation approach that

produces roughly stable, acceptable errors for any input rotation. The following specific

goals are defined to achieve this main goal:

1. Review existing methods for upright adjustment;

2. Evaluate the use of a classification model to detect aligned and upside-down images;

3. Evaluate an alternative representation with respect to SOTA methods of the rotation

as the regression output of the model;

4. Evaluate the use of a spherical-adapted backbone to regress the upright vector;

5. Use the proposed method to improve single-view depth estimation.

1.2 Chapters organization

The rest of this document is organized as follows: Chapter 2 introduces a few

important concepts about spherical images and upright adjustment. Chapter 3 presents

an overview of related works in both spherical images and upright adjustment. Chapter 4

describes how we prepare our data and presents three machine learning models. Chapter 5

describes the results achieved by each of the models and shows how they can be used to

improve other computer vision tasks (e.g., single-image depth estimation). Chapter 6

provides an overview of everything presented, evaluate progress toward our goals, and

discusses future work.
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2 THEORETICAL FOUNDATION

Spherical images present a full-FoV of 360°×180°. Thus, a 360° image can be

seen as a mapping i(φ, λ) that relates a longitude λ ∈ [0◦, 360◦) and a latitude φ ∈

[0◦, 180◦) Although the image i is defined on the unit sphere (Figure 2.1), it can be repre-

sented in several ways, including the equirectangular projection - a [0◦, 360◦)× [0◦, 180◦)

planar representation and widely used by researchers and camera manufacturers (SU;

GRAUMAN, 2017; SILVEIRA; JUNG, 2020) - (Figure 2.2), and the cube map projection

(Figure 2.3). In immersive VR applications, one can prepare the image i for consuming

in VR headsets - which considers two perspective crops with a small FoV and a small

displacement (Figure 2.4), each one for each eye.

Ideally, the 3D unit vector related to φ = λ = 0, which is related to the “up”

vector of the camera, should be aligned with the earth gravity vector (and pointing up),

so that the horizon of the panorama would match the horizon of the world. However, a

rotation R might be accidentally applied during the capture and the resulting image ends

up rotated, as in Figure 2.5. If we know the rotation R(i,v) - that makes the up vector

of the camera point towards v - applied during the capture the rectified image could be

obtained by applying the inverse of R to the image irect = R−1(i,v), where R−1 is the

inverse of R. This process of realigning the image is known as upright adjustment (LEE

et al., 2013; JUNG et al., 2017; JEON; JUNG; LEE, 2018; JUNG; CHO; KWON, 2020).
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Figure 2.1 – Image projected to a unit sphere. Extracted from Coors, Condurache and Geiger
(2018)

Figure 2.2 – Image using equirectangular projection. Extracted from SUN360 (J. Xiao et al.,
2012)
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Figure 2.3 – Image projected to a cube (cube map). Extracted from Wan, Wong and Leung (2007)

Figure 2.4 – Image ready to be used in a VR headset. Extracted from Jung et al. (2017)
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Figure 2.5 – Image showing an aligned and a tilted image extracted from Jung et al. (2019).
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3 RELATED WORK

3.1 Spherical Images

As we have mentioned before, VR headsets are one way of visualizing panorama

images, which involves projecting spherical data to the plane, generating a narrower-FoV

image. These projections may allow the use of traditional visual computing methods (de-

signed to work with perspective images), but working directly in image representations of

the full sphere might fail due to distortions (EDER et al., 2019). The most common repre-

sentation is the equirectangular projection (EDER et al., 2019; SILVEIRA; JUNG, 2019),

which maps a unit sphere to a rectangular domain related to latitude and longitude angles.

As such, this representation allows the use of various methods designed for traditional

perspective images, including Convolutional Neural Networks (CNNs). However, the

equirectangular projection generates non-uniformly sampled images, which causes small

portions of data to occupy large portions of the projections (particularly near the poles)

so that using a fixed convolutional kernel might be less efficient in the feature extraction

process.

Many techniques were proposed to mitigate the effects of these distortions. They

include converting the equirectangular image to a graph and using Graph Convolution

Networks (GCNs) (KHASANOVA; FROSSARD, 2017), using dilated convolutions (YU;

KOLTUN, 2015) to increase the size of the convolution kernel near the poles (SU; GRAU-

MAN, 2017), using spherical convolutions (COHEN et al., 2018; COORS; CONDURACHE;

GEIGER, 2018) and transforming kernels from traditional perspective networks to the

spherical domain (SU; GRAUMAN, 2019).

Another research direction is the use of other image representations, such as the

cube map projection (ABREU; OZCINAR; SMOLIC, 2017; RUDER; DOSOVITSKIY;

BROX, 2018) in which the panorama is projected to six planar regions (the faces of a

cube). Even though this projection still has distortions, it reduces their effects, but in-

troduces discontinuities in the image. This means a trade-off between less distortion and

contextual information (SILVEIRA; DALAQUA; JUNG, 2018). There are also several

other representations, including a few based on icospheres (EDER et al., 2019), but as far

as we know they have not been used for any CNN-based upright adjustment application.
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3.2 Upright Adjustment

As mentioned before, upright adjustment can be applied in perspective images as

well. There are several methods (GALLAGHER, 2005; LEE et al., 2013) that automati-

cally perform the correction in perspective images, including some based on deep learn-

ing (FISCHER; DOSOVITSKIY; BROX, 2015; JOSHI; GUERZHOY, 2017; HOLD-

GEOFFROY et al., 2018; OLMSCHENK; TANG; ZHU, 2017; ZHANG et al., 2016).

However, in this section, we will focus on those that perform upright adjustment in spher-

ical images only.

3.2.1 Non-learning Approaches

Non-learning approaches usually explore geometric cues from the images, such

as lines and vanishing points (VP). Computing the vertical VP indicates the upright direc-

tion. Even though it is possible to compute each VP independently (BAZIN et al., 2008;

BAZIN et al., 2010), using geometric constraints as the Manhattan (BAZIN et al., 2012;

BAZIN; POLLEFEYS, 2012; BAZIN; SEO; POLLEFEYS, 2012; ZHANG et al., 2016)

or Atlanta (JOO et al., 2018; JUNG et al., 2017) worlds usually yield better results. One

thing that is common to all these methods is that they depend on the ability to distin-

guish between vertical and horizontal vanishing points. These VP-based methods tend to

work well in indoor and urban scenes, but tend to fail in natural images due to the lack of

structural information.

Another way to estimate the upright vector is to find the horizon line (DEMON-

CEAUX; VASSEUR; PÉGARD, 2006a; DEMONCEAUX; VASSEUR; PÉGARD, 2006b).

The horizon line can be estimated by maximizing a criterion for the sky/ground photo-

metric separation. In general, these methods are more suited to natural views (particularly

when there is a clear distinction between the sky and the ground) and tend to fail in urban

and indoor scenarios.

3.2.2 Deep Learning Approaches

In recent years, deep learning (DL) methods have produced SOTA results in many

computer vision tasks, such as image classification (HE et al., 2016), segmentation (RON-
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NEBERGER; FISCHER; BROX, 2015) and object detection (REDMON; FARHADI,

2018; REN et al., 2015). However, the use of DL for upright vector estimation in a

generic capture scenario (indoor, outdoor, urban and natural scenes) is relatively recent,

particularly when using panoramas.

Jeon, Jung and Lee (2018) propose a CNN that predicts the rotation in common

perspective images. To predict the upright in spherical images it generates several crops

from a panorama and then aggregates all the results to predict the rotation to the 360

image, which means more pre- and post-processing than a direct regression using the full

panorama as input.

Shan and Li (2019) propose two classification models to perform first a coarse

alignment (classifying within bins of 10°) and after that a fine alignment (classifying

within bins of 1°). Besides using two models, this method cannot fully describe the

domain of the problem, generating error even when all the classifications are correct.

Davidson, Alvi and Henriques (2020) use VPs to help a CNN segment pixels near

the vertical axis. This segmentation is used to find the vertical axis and to estimate the

upright direction. Segmentation models usually have more layers and are slower than

direct regression methods because after the feature extraction it has several up-scaling

layers instead of a fully connected one.

A recent method (JUNG; CHO; KWON, 2020) proposes the use of a CNN to

extract features and a GCN that finds a spherical representation of the input. Using a GCN

is slower than a fully connected layer. However, it also does not address the circularity

problem (explained in Chapter 4).

The Deep360Up model (JUNG et al., 2019) uses a DenseNet backbone with a

fully connected layer to regress the two relevant angles and align the horizon, and serves

as the basis for our method. We chose this method because it is simple to reproduce,

applies direct regression, and therefore is faster than the other methods presented in this

section. Despite the simple architecture and good overall results, the main issue in their

technique is the high errors for nearly aligned images. This happens because of the cir-

cularity problem - which will be further discussed in Chapter 4 - which is tackled in our

work. We also evaluate a backbone with spherical convolutions, but the tested imple-

mentation presented higher execution time and also higher errors than the backbone with

traditional convolutions.
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4 THE PROPOSED METHOD

Our solution is inspired by Jung et al. (2019), but focused on solving the large er-

rors reported by the authors in nearly aligned and upside-down images, which we believe

to be caused by the “circularity problem”. The circularity problem is a consequence of

the chosen rotation parametrization and happens when very distinct parameters lead to

very similar rotations. For example, the parametrization using Euler angles does present

this problem, since angles close to 0◦ and close to 360◦ lead to very similar rotations. In

the context of deep learning, regressing such parameters directly might lead to instabili-

ties or bad results, since samples that are visually very similar (with angles close to 0◦ or

360◦) generate similar values (because CNNs are continuous functions). Figure 4.1 shows

examples of such images.

In this work we propose two alternatives to overcome this issue. One of them is by

classifying edge cases and dealing with them separately. Another one is using a different

rotation parametrization than the one used by Jung et al. (2019), Jung, Cho and Kwon

(2020). In the following sections, we describe what we changed with respect to Jung et

al. (2019). Meta parameters such as learning rate, batch size and image size were chosen

empirically and, along with rotation parametrization, reduced the training time by a factor

of 4. Section 4.1 sets some standards on data preparation that are used in all the models.

Section 4.2 proposes the use of a classification model to detect edge cases. Section 4.3

suggests the use of a different parametrization to the rotation to overcome the circularity

problem. Finally, Section 4.4 evaluates a backbone with spherical convolutions.

4.1 Data Preparation

The dataset is probably the single most important part of the development of deep

learning models. To the best of our knowledge, there is no dataset with upright labels

Figure 4.1 – Two similar images with different parametrizations. Left image has roll of 5° and the
right image a roll of 355°.
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Figure 4.2 – Example of rotations. From top to bottom: original, roll of 60◦, pitch of 60◦ and yaw
of 60◦, respectively. The original image is part of the SUN360 dataset and the others were

synthetically rotated.
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Figure 4.3 – In the left the vectors positions in the uniform distribution in a 2D grid. In the right
the positions using Fibonacci Lattice. Both examples contain 512 points each.

that contains enough images to train a CNN. As previously done by Jung et al. (2019),

Jung, Cho and Kwon (2020) we use a dataset from another task and assume all images

are originally horizon aligned. To allow comparisons, we use SUN360 dataset (J. Xiao

et al., 2012), the same as used in Jung et al. (2019), Jung, Cho and Kwon (2020). The

dataset contains 67, 569 captures in both indoor and outdoor scenarios and the images are

all roughly aligned.

There are two relevant angles in the upright adjustment problem - Pitch and Roll.

The other angle, Yaw, only performs a rotation around the gravity direction, which trans-

lates to the image as a horizontal shift and keeps the horizon line unchanged. Figure 4.2

shows the result of varying each rotation angle independently. To create the variability

necessary to train our CNN, we artificially rotate images. Generating random uniformly

distributed values on a planar grid for both Pitch and Roll would create an oversampling

of vectors near the poles. Therefore, we use a Fibonacci Lattice (STANLEY, 1975) to

generate vectors as well distributed as possible on the sphere surface. Figure 4.3 shows

the difference between sampling the upright vectors using a 2D uniform distribution and

Fibonacci Lattice.

Applying rotation to low-resolution images produces artifacts that interfere in the

learning process, as noted by Jung et al. (2019). However, high resolutions images (9104×

4552) from SUN360 are not available anymore, and we only have access to 1024 × 512

images. In the attempt to prevent the CNN from learning these artifacts, we add noise to

create random artifacts and blur to make the existing ones less visible. We add Gaussian
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Noise in 40% of the images with a variance between 10 and 50 (255 is white) and blur in

50% of the images using a normalized box filter with a kernel size of 3, 5, or 7 (randomly

chosen). Both noise and blur can be applied simultaneously to the same image.

We also performed a cleaning step in the data. Besides some corrupted files, sev-

eral repeated images were removed from the SUN360 database. The resulting (cleaned)

dataset has 57.011 images, 10.558 less than the original one.

Evaluating a model always boils down to splitting the available data into three

sets: training, validation, and test (CHOLLET et al., 2018). In our work, we randomly

split the images using the same proportion as Jung et al. (2019): 70% of the images as

train, 15% as validation and 15% as test set. After the split, using a Fibonacci Lattice, one

unit vector was generated for each image in each set and the upright vectors were adjusted

to point in that direction.

Before being used by the network, all images are resized. The size depends on the

model and will be described in the following sections.

4.2 Classifying aligned images

One major problem with SOTA methods that regress the upright vector is that they

do not deal well with neither ground-aligned nor upside-down images. A naive solution

would be to manually select the images that are roughly aligned or upside-down and do

not pass them through the model. This would, however, be time-consuming, susceptible

to errors, and an obstacle to automatically processing large amounts of data. During the

course of this work, we evaluated the possibility of automatically classifying the images

as aligned, upside-down, or rotated.

For this purpose, we explored a network with a ResNet50 backbone (HE et al.,

2016). More precisely, we used pre-trained weights for the convolutional layers using

ImageNet (DENG et al., 2009), whereas the fully connected (classification) layer was

trained from scratch. We consider as aligned images with −5◦ ≤ β, γ ≤ 5◦ and as

upside-down images with −5◦ ≤ β ≤ 5◦ and 175◦ ≤ γ ≤ 185◦, where β is the pitch and

γ is the roll angle. The set of aligned images also includes the original image (without any

rotation). To train the model, we used the same data splits as mentioned in Section 4.1

with a difference in how we generated the virtual camera poses (rotation only). To keep

the data balanced, each image appeared three times: once aligned, once upside-down, and

once with a random rotation.
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The model was optimized for 100 epochs using the Stochastic Gradient Descent

(SGD) (ROBBINS; MONRO, 1951; KIEFER; WOLFOWITZ et al., 1952) with a learning

rate tailored for each layer: 0.001 in the pre-trained layers, and 0.01 in the classification

layers, aiming to update the (initially untrained) classification layers faster. An L2 regu-

larization of λ = 0.001 is applied to all layers.

In this model, input images have 224× 112 pixels, and we selected a batch size of

32 images. We use the traditional Cross-Entropy (COX, 1958) as the loss function.

Even though this approach might help reduce the errors in nearly aligned images,

it has some disadvantages:

• When the image is rotated, this method does not specify the upright vector. To

overcome this problem we could use a second CNN to regress the pose, but this

would increase the inference time;

• Even when the prediction of the model is correct, images with smaller rotations will

contain error.

• The circularity problem is still present, slowing down the convergence of the upright

regression model.

4.3 Direct Regression of the Upright Vector

Existing approaches for upright alignment, such as (JUNG et al., 2019), initially

estimate the rotation of the input panorama and then apply the inverse rotation for gravity

alignment. It is important to note that there are several ways to express a rotation, such

as Euler angles, Angle-axis, Rotation Matrix, Unit Quaternions (HASHIM, 2019). Each

parametrization has its peculiarities, with pros and cons. One characteristic that we are

interested in is whether they suffer or not from the circularity problem

It is interesting to note that Euler angles were the chosen parametrization for the

upright vector in (JUNG et al., 2019), and the authors report larger errors when the input

image is already roughly aligned (i.e., the rotation angles are close to zero). To alleviate

this problem, we model directly the upright camera vector instead of rotation parameters,

mitigating the circularity problem. More precisely, the upright vector is expressed as

v0 = [x0, y0, z0]
> with ‖v0‖ = 1, which means that it presents 2 degrees of freedom

(2-DoF). Note that such representation does not suffer from discontinuities.

As backbone, we used a DenseNet121 (HUANG et al., 2017) - same as used
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by Jung et al. (2019). To optimize the Mean Squared Error (MSE) loss, we used Adam

optimizer with a learning rate set to 0.001 in the pre-trained layers and 0.01 in the ran-

domly initialized layers. To preserve the fine-grained optimization in the late stages of the

training process, we used a scheduler that reduces the learning rate in a factor of 0.1 after

10 epochs without improvements in the angular error. For this model, the size of the input

images is 442× 221, the batch size was 48 and the model was trained for 200 epochs.

4.4 Backbone with spherical convolutions

As mentioned in Section 3.1, there are several methods to improve feature extrac-

tion in spherical images, particularly dealing with the problem of non-uniform sampling.

To evaluate if using such spherical adaptations indeed improve the results of upright ad-

justment, we decided to test one of these techniques. Among several existing possibili-

ties, we decided to use SphereNet (COORS; CONDURACHE; GEIGER, 2018), which

presents a spherical convolution and a spherical max pool layer. The main reasons for

choosing this particular spherical adaptation strategy were the straight-forward layer-wise

adaptation, the rotation variance of the convolution, and the existence of publicly avail-

able code at <https://github.com/ChiWeiHsiao/SphereNet-pytorch>.

In this new model, we use an adapted DenseNet121 (HUANG et al., 2017) as the

backbone, as in the planar version of the network described before. Originally, DenseNet

contains convolutions with kernel sizes 1, 3, and 7, but the adopted SphereNet imple-

mentation only allows convolutions with kernel size 3. Since convolutions with size 1

are not affected by the distortions in image, we kept them unchanged. The single pla-

nar convolution with kernel size 7 and all the other planar convolutions with kernel size

3 were replaced by spherical convolutions with a kernel size of 3. Also, all the planar

max-pooling layers were replaced by a spherical max-pool, also available in SphereNet.

The spherical convolutions of SphereNet are slower and consume much more

memory than conventional convolution. To compensate for this drawback and keep train-

ing time and memory usage similar to the values obtained in Section 4.3, we reduced the

size of the input images from 442×221 to 320×160. It is also important to note that such

a customized backbone does not present pre-trained weights. Hence, all layers were ran-

domly initialized, and we extended the training phase from 200 to 300 epochs, applying

the same learning rate (0.01) to all layers. The learning rate scheduler was also changed

to reduce the learning rate in a factor of 0.1 after 40 epochs instead of 10. Aiming to keep

https://github.com/ChiWeiHsiao/SphereNet-pytorch
https://github.com/ChiWeiHsiao/SphereNet-pytorch
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the experiments as similar as possible, the loss function, optimizer, and batch size were

kept the same as the planar network described in Section 4.3.
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5 RESULTS

In this chapter, we discuss the experiments and results of the methods described in

Chapter 4. We present both qualitative and quantitative results and compare our approach

with state-of-the-art upright adjustment methods. All the metrics presented in this chapter

were calculated using the entire test set described in Section 4.1, and all images used for

illustration are part of this same set.

To evaluate the classification task we adopt the accuracy metric given by

acc =
ncorrect

ntotal

, (5.1)

where ncorrect is the number of samples for which the predicted class is the same as the

ground truth and ntotal is the total of samples tested.

To compare the performance of different regressors, we adopt the angular error

given by

e(vgt,vout) = cos−1 〈vgt,vout〉, (5.2)

where vgt and vout represent the ground truth and estimated upward unit vectors, and

< ·, · > denotes the inner product.

Besides presenting numerical values, we also categorize the results into error bins.

For this purpose, we follow the thresholds proposed by Jung et al. (2019) after a user

study, in which upright-corrected images with an angular error e ≤ 5◦ were considered

very satisfactory, and images with e ≤ 12◦ are satisfactory, noting that the satisfactory

bin includes images considered very satisfactory.

5.1 Classifying aligned images

In Section 4.2, we propose to classify images into three categories: Aligned (−5◦ ≤

β, γ ≤ 5◦), Upside-down (−5◦ ≤ β ≤ 5◦ and 175◦ ≤ γ ≤ 185◦) and rotated (all other

angular configurations) using a ResNet50 (HE et al., 2016). Given a balanced dataset as

described in Section 4.2, our classification method achieved an accuracy of acc = 0.9886.

The confusion matrix in Table 5.1 indicates that the most common error is classifying

aligned or upside-down images as rotated images.

As far as we know, there is no existing method that performs this kind of classi-

fication, which compromises the comparison with SOTA. To establish some sort of com-
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Table 5.1 – Classification Confusion Matrix

parison, Deep360Up (JUNG et al., 2019) reports a median error of 5.2° in upside-down

images, which means that 50% of the upside-down images present an error e ≥ 5.2◦. Re-

call that Deep360Up takes advantage of high-resolution images for coupled rotation and

resize operations – which reduces artifacts.

Table 5.2 presents a few examples of images that were incorrectly classified. We

can see that most of the errors relate to images that are near the boundary between

aligned/rotated or rotated/upside-down. A few other errors arise from more complex im-

ages that sometimes make the CNN confuse aligned and upside-down images (such as the

last image).

5.2 Direct regression of the upright vector

This section evaluates the quality of the regressed upright vector using the ap-

proach described in Section 4.3. It is important to recall that existing methods (JUNG

et al., 2019; JUNG; CHO; KWON, 2020) that use regression report high errors in nearly

aligned and upside-down images, and one of our goals was to mitigate this problem. Our

average angular error was 4.28◦ with a standard deviation of 10.78◦. The small error and

high standard deviation might indicate that there are several outliers with higher errors, as

shown in Figure 5.1. In fact, the median angular error, a metric that is less influenced by

outliers, is 2.58◦.

Figure 5.2 shows the percentiles of the error distribution versus the angular error.

The sharp increase of the plot close to the origin indicates that most of the error distribu-

tion presents a small angular error. 82.77% of the samples present an angular error smaller

than 5◦, which is considered by people as a very satisfactory orientation, and 97.03% are

smaller than 12◦, which is considered a satisfactory orientation according to the discus-
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Figure 5.1 – Boxplot showing the distribution of the angular errors in degrees.

Figure 5.2 – Percentiles versus the angular error in degrees.

Figure 5.3 – Median error for each pitch and roll angles.
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Image Ground-truth Predicted

Rotated Upside-down

Rotated Aligned

Rotated Aligned

Rotated Upside-down

Upside-down Rotated

Upside-down Aligned

Aligned Rotated

Aligned Upside-down

Table 5.2 – Wrong Classification Examples

sion in the beginning of this chapter. For the sake of comparison, Deep360Up presents

fractions of 90.27% and 96.36% related to very satisfactory and satisfactory errors, re-
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spectively, as reported in Jung et al. (2019). Although our percentage of “high-quality”

estimates was lower compared to Deep360Up, we were able to produce a higher percent-

age of “satisfactory” estimates which indicates a more homogeneous error distribution as

a function of the input rotation angle. We also computed the median error for angular

bins (varying the pitch and roll angles over all possible values), as shown in Figure 5.3.

We can observe that our error estimates are indeed roughly homogeneous for all rotation

angles. The maximum median error was 3.64◦, compared to 5.2◦ in Jung et al. (2019).

In Figure 5.4, we show a few example images (possibly rotated), the gravity-

alignment obtained with our estimated upright vector, along with the corresponding an-

gular error assuming the image in the SUN360 dataset (J. Xiao et al., 2012) was originally

aligned. As we can see, most of the images are nearly aligned after our gravity-alignment

process. The last image shows a common mistake in complex scenes, in which an “in-

verted” upright vector is regressed so that the “aligned” image is roughly upside-down.

5.2.1 Improving Monocular Depth Estimation

Several computer vision methods are susceptible to non-aligned images, particu-

larly when dealing with panoramas (ZIOULIS et al., 2018; WANG et al., 2020; COORS;

CONDURACHE; GEIGER, 2018). To evaluate the applicability of our method as a pre-

processing step, we evaluate how it affects a single-image depth estimation model for

panoramas. Here, for proof-of-concept, we select OmniDepth (ZIOULIS et al., 2018)

since it has publicly available source-code and trained weights.

Let R(I,v) denote the rotation of an equirectangular image I according to a unit

upright vector v. Also, let fu(I) denote the upright correction module, which outputs

an estimate for v, and fd(I) denote the depth estimation module (such as Zioulis et al.

(2018)), which produces a pixel-wise depth estimate for the input image I . The complete

pipeline consists of obtaining the upright vector for the input image, gravity-aligning it by

applying a suitable rotation, estimating the depth, and then applying the inverse rotation

to align the depth map with the original input image. The depth map D aligned with the

input image I can be written as

D = R
(
fd

(
R−1 (I, fu(I))

)
, fu(I)

)
, (5.3)

where I is the input color panorama. For some applications such as AR and VR, it might
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Figure 5.4 – Example of inputs (left) rectified by the model (right). Errors are, from top to
bottom, 0.8°, 1.8°, 2.18°, 3.26°,6.53°, 10.7°, 158.74°
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be desirable to generate a 3D model of the captured scene aligned with the horizon. In

that case, it is possible to use R−1 (I, fu(I)) and fd (R−1 (I, fu(I))) in the 3D modeling

step, so that we obtain a gravity-aligned panorama with the corresponding depth map.

To evaluate our pipeline, we used images from the 3D60 dataset (ZIOULIS et al.,

2018) assuming all images are roughly aligned and generated 10, 000 panoramas with

random synthetic rotations. As proposed in Zioulis et al. (2018), we perform median

depth scaling of the predicted depth map Dpred by multiplying it by a scaling factor s

given by

s =
median(Dgt)

median(Dpred)
, (5.4)

where Dgt is the annotated depth map. Using the scaled predicted depth map we can

compute common evaluation metrics (EIGEN; PUHRSCH; FERGUS, 2014; da Silveira;

DAL’AQUA; JUNG, 2018; ZIOULIS et al., 2018; YANG; LIU; KANG, 2018; EDER;

MOULON; GUAN, 2019; TATENO; NAVAB; TOMBARI, 2018) (ignoring missing val-

ues in Dgt). The measurements are presented in Table 5.3 along with original OmniDepth

results in the original, non-rotated dataset. We can observe a considerable improvement

in all error metrics when correcting the image orientation. Even though we improve the

results, our error is still higher than in the original dataset. Of course estimating depth in

any image is a harder problem than estimating in any aligned input image. But besides

this, we believe that the errors estimating the upright vector are one of the factors that

cause this gap. Also, the artifacts created by the rotation of the image can also affect the

result.

Framework Orientation Abs Rel Sq Rel RMS RMSlog δ < 1.25 δ < 1.252 δ < 1.253

OmniDepth rotated 0.1797 0.1236 0.5972 0.2511 0.7126 0.9285 0.9783
OmniDepth + Upright rotated 0.1156 0.0547 0.3735 0.1701 0.8677 0.9741 0.9928

OmniDepth original 0.0641 0.0197 0.2297 0.0993 0.9663 0.9951 0.9984
Table 5.3 – Quantitative results for the baseline depth estimation method under rotation

scenarios. Results on the original dataset are also provided.

To better understand how rotation affects in depth estimation, Figure 5.5 presents

the depth inference error as a function of the rotation of the input panorama. We can

see that our method improves the results and makes the method more robust to rotated

images. The chosen baseline depth estimator (ZIOULIS et al., 2018) produces smaller

errors when the input panoramas are roughly aligned, but the quality degrades as the

rotation angle increases.

Figure 5.6 presents qualitative results of the depth maps produced by OmniDepth (ZIOULIS

et al., 2018) in the rotated input images with and without the proposed upright adjustment
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Figure 5.5 – Relative depth error varying the rotation angles (roll and pitch) without rotation
correction (left) and with (right).

Figure 5.6 – Qualitative comparison of the Omnidepth method with and without the Upright
module. The images are, from left to right input, ground-truth, Ominidepth and Omnidepth with

upright adjustment.

module. We can observe that the direct application of OmniDepth to rotated images gener-

ates artifacts, whereas the pre-processed images present results similar to the groundtruth.

5.3 Backbone with spherical convolutions

Our model trained with spherical convolutions and poolings achieved an average

angular error of 9.87◦ with a standard deviation of 20.76. This is more than twice the mean

error achieved by the model with conventional convolutions and the standard deviation is

twice the standard deviation achieved by the planar model. The median error was 5.05◦

Figure 5.7 – Percentiles versus the angular error in degrees using the spherical backbone.
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Figure 5.8 – Boxplot showing the distribution of the angular errors in degrees using the spherical
backbone.

Figure 5.9 – Median error for each pitch and roll angles in the spherical model.

Following the classification discussed in the beginning of this chapter, 49.48% of

the images were considered Very Satisfactory and 85.17% were considered Satisfactory.

Figure 5.7 shows a slower increase of the percentiles compared to those presented in

Section 5.2. In Figure 5.8, the boxplot shows that the error distribution is also similar,

containing a lot of high error outliers.

Similarly to conventional convolutions, our error is well distributed between all

the rotations, as show in Figure 5.9. Note that the scale is different that in Figure 5.3.

The maximum median value is 6.60◦, higher than both our planar model and Jung et al.

(2019).

Figure 5.10 shows some images before and after correction by the spherical model.

Despite having higher errors in average, the spherical model had smaller errors than the

planar in both first and last example images shown in Figure 5.10. Both of these images

are more complex scenes with several objects and different textures. This might indicate

that the model with spherical convolution performs better in those cases.
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Figure 5.10 – Example of inputs (left) rectified by the spherical model (right). Errors are, from
top to bottom, 1.78°, 2.66°, 2.76°, 4.89°, 4.91°, 15.23°, 112.16°
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6 CONCLUSION

This work presented three deep models for the gravity-alignment problem in panora-

mas. One model focuses on classification, and categorizes an input panorama into thre

classes: aligned, upside-down, and rotated. The other two models aim at regressing the

upright vector (which can be used to gravity-align the images). Even though we have

median errors slightly higher than state of the art, our method with planar convolutions is

one of the fastest for performing upright adjustment. Also, our regression models are the

only ones that deal with the circularity problem.

Even though the classification model does not specify where the upright vector

points to for rotated images, it allows dealing separately with the cases with higher errors

in Jung et al. (2019). It might be a good solution when most of the images are already

aligned (only one model needed) but when the image is rotated another module is neces-

sary to perform the adjustment. It is not useful in cases that prediction time is relevant,

because two CNNs are necessary to perform the correction.

The regression method with a DenseNet as backbone is probably the best option

presented in this work for most of the cases. Its robustness dealing with the entire range

of rotation allows handling virtually any input with small errors. It is also recommended

when efficiency is important because it uses only a single model and uses conventional

2D convolutions, which are faster than spherical convolutions.

We have also shown how our method can be used to add robustness to other com-

puter vision tasks, using Omnidepth (ZIOULIS et al., 2018), a single-image depth esti-

mation method, as an example. For this application scenario, high errors in nearly aligned

images (present in SOTA regression methods) represent an issue, because the use of the

upright adjustment module would make the resulting depth map worse for these cases.

Our method, however, deals with the circularity problem making Omnidepth obtain even

better depth estimations.

Finally, we presented a CNN using a DenseNet-like backbone but using spherical

convolutions. In our tests, the spherical model achieved higher angular errors than the

planar version. Therefore, our implementation is not a good match when there are time or

memory limitations since spherical convolution is a computationally expensive operation.

Without these limitations, it would be possible to use larger images that could present

more information to the CNN and probably improve the results. The model has potential

to achieve the same error as the planar model for simpler images, whilst being more robust
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in complex scenes. Ideally, there should also be a way to apply transfer learning, which

usually reduces training time and improves the results of the model.

As future work, a spherical backbone could be trained to perform another task

using a dataset with more images and after that perform transfer learning. Another impor-

tant improvement would be the creation of a dataset that is specific to the task of upright

adjustment. Ideally, this dataset should contain not only aligned images (which would

remove the issue of the artifacts generated by the rotation) and the annotation should be

more precise than assuming all images are originally aligned. Alternatively, it is possible

to manually label the rotation of all images of an existing dataset. Finally, an interest test

would be evaluate how the method behaves on spherical videos. Perhaps, additional steps

would be necessary to ensure stability in the video.
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