
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

VALÉRIA SOLDERA GIRELLI

A Study of the Prefetcher Impact on
High-Performance Computing Applications

Work presented in partial fulfillment of the
requirements for the degree of Bachelor in
Computer Science

Advisor: Prof. Dr. Philippe O. A. Navaux
Coadvisor: Dr. Francis Birck Moreira

Porto Alegre
June 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Helena Lucas Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Rodrigo Machado
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

I would like to thank my parents for always supporting me and teaching me since

my childhood that I could do anything I wanted. Thanks to my mom, Lurdes, for always

showing me so much strength and always knowing exactly what I needed to hear when

things became difficult. Thanks to my dad, Gilmar, for teaching me how to be patient

and hardworking. I cannot thank my friends enough for all the support and understanding

during all these years.

I would like to give a special thanks to those whose contributions were essential to

the development of this work: to my advisor, Prof. Navaux, for all his support, guidance,

and for having always shown me the right directions; to my co-advisor, Francis, for being

fundamental in my growth and for being by my side during the most significant moments

of this path; to all my friends at GPPD for every tiny thing you taught me.

I wish I could name here everyone who has been indispensable through every step

I gave, but you know me, and you know how incredibly grateful I am for everything you

have done for me.

ABSTRACT

Data prefetching algorithms are widely used in modern processors as a tool to mitigate

the higher latency of memory accesses with respect to processor latency to execute in-

structions. However, understanding the contribution of prefetching to the application

performance is a difficult task when we consider the high complexity found in the sev-

eral architectures and prefetchers available. Developing accurate architecture simulators

is also a challenge, especially when considering High-Performance Computing systems

(HPC) with several processor cores. In this work, we contribute to shed light on the role

of data prefetchers in the performance of parallel HPC applications, considering both the

prefetcher algorithms offered in the real hardware and in the simulators. We performed a

careful experimental investigation, executing the NAS parallel benchmark (NPB) on a real

Skylake machine and in a simulated environment with the ZSim and Sniper simulators,

using prefetcher algorithms offered by both Skylake and the simulators. Our experimen-

tal results show that: (i) prefetching from the L3 to L2 cache is responsible for the larger

percentage of performance improvement, (ii) the memory contention in the parallel exe-

cution constrains the effectiveness of the prefetcher, (iii) the parallel memory contention

in Skylake is poorly simulated by ZSim and Sniper, and (iv) the non-inclusive L3 cache

present in the Skylake architecture hinders the accurate simulation of NPB with the Sniper

prefetchers.

Keywords: Architecture Simulation. Computer Architecture. Parallel Architecture. Data

Prefetching.

Um Estudo Sobre o Impacto de Prefetchers em Aplicações de Alto Desempenho

RESUMO

Algoritmos de prefetching são vastamente utilizados em processadores modernos como

uma forma de mitigar a diferença de desempenho que existe entre o processador e o sis-

tema de memória. No entanto, se considerarmos a complexidade das diversas arquiteturas

de computadores e dos algoritmos de prefetching disponíveis, compreender como o pre-

fetcher afeta o desempenho das aplicações se torna uma tarefa difícil. Além disso, desen-

volver simuladores de arquiteturas que sejam precisos também é desafiador, e essa tarefa

pode se tornar ainda mais difícil em um contexto no qual sistemas de computação de alto

desempenho (High-Performance Computing – HPC) possuem dezenas de núcleos de pro-

cessamento. Neste trabalho, nós buscamos ampliar o conhecimento a respeito do papel

do sistema de prefetching sobre o desempenho de aplicações paralelas de alto desempe-

nho, estudando tanto os algoritmos presentes em uma máquina real quanto os oferecidos

por simuladores de arquiteturas. Em nossa investigação experimental, nós executamos o

conjunto de benchmarks paralelos NPB (NAS Parallel Benchmarks) em uma máquina de

arquitetura Skylake, bem como em um ambiente de simulação composto pelos simulado-

res de arquiteturas paralelas ZSim e Sniper. Nossos resultados mostram que: (i) realizar

prefetcher da cache L3 para a cache L2 apresentou os melhores ganhos de desempenho,

(ii) a contenção de memória observada durante a execução paralela acaba restringindo

o efeito do prefetcher, (iii) ambos os simuladores ZSim e Sniper simulam de forma im-

precisa a contenção de memória observada na máquina Skylake, e (iv) a característica

não-inclusiva da cache L3 da Skylake dificulta a simulação do NPB com os algoritmos de

profetching do Sniper.

Palavras-chave: Simulação de Arquitetura. Arquitetura de Computadores. Arquiteturas

Paralelas. Prefetch de Dados.

LIST OF FIGURES

Figure 2.1 Memory hierarchy example of a modern desktop. As we go further
away from the processor, the memory becomes larger and slower. Source: The
Author. ..22

Figure 2.2 Abstraction of the prefetcher behavior. Source: The Author.25

Figure 5.1 IPC results for the real execution of the NPB applications with input
class A. Standard deviation lower than 5%...51

Figure 5.2 Number of prefetch requests of the real machine executions with the
input class A. Standard deviation lower than 5%. ..53

Figure 5.3 CG communication pattern for 32 threads. Figure obtained from: Cruz
et al. (CRUZ; DIENER; NAVAUX, 2018)..55

Figure 5.4 CG main memory accesses per core, originated by demand reads and
prefetches requests, for input class A. Standard deviation lower than 5%.56

Figure 5.5 IPC results for the real execution of the NPB SP application, using input
classes W, A, and B. Standard deviation lower than 5%. ...57

Figure 6.1 Obtained IPCs when no prefetcher is used for ZSim and Sniper simula-
tions and the real execution...60

Figure 6.2 Comparison of Sniper L2 and L1+L2 prefetchers performance to the
real executions results. ..61

Figure 6.3 Number of prefetches issued by the simulation with the Sniper prefetch-
ers, in ratio of their real counterparts. (log scale on y axis).62

Figure 6.4 Useless prefeteches performed by the simulation and by the real hard-
ware, in ratio of the total number of prefetches. ...63

LIST OF TABLES

Table 2.1 Architecture simulators summary table...38

Table 4.1 Real machine, ZSim and Sniper configurations. ...46
Table 4.2 Prefetcher algorithms. ...47

LIST OF ABBREVIATIONS AND ACRONYMS

ARM Advanced RISC Machines

B Bytes, a unit of digital information equal to 8 bits

CPU Central Processing Unit

DCU Data Cache Unit

DBT Dynamic Binary Translation

DRAM Dynamic Random-Access Memory

EDP Energy-Delay Product

EmbPar Embarassingly parallel

FIFO First In, First Out

FPGA Field-Programmable Gate Array

GHB Global History Buffer

GHz Gigahertz, a unit of frequency equal to 1,000,000,000 (one billion) Hz (hertz)

GB Gigabyte, a unit of information equal to 1,073,741,824 bytes

HPC High-Performance Computing

I/O Input/Output, communication between an information processing system

ILP Instruction Level Parallelism

IPC Instructions Per Cycle

ISA Instruction Set Architecture

KB Kilobyte, a unit of information equal to 1024 bytes

L1 First Level Cache

L1D First Level Data Cache

L1I First Level Instruction Cache

L2 Second Level Cache

L3 Third Level Cache, usually is the last level of cache

LLC Last Level Cache

LRU Least Recently Used

MB Megabyte, a unit of information equal to 1,048,576 bytes

MLP Memory Level Parallelism

MIPS Microprocessor without Interlocked Pipelined Stages, a RISC instruction set ar-

chitecture developed by MIPS Computer Systems

MSHR Miss Status Holding Register

NPB Numerical Aerodynamic Simulation Parallel Benchmark

PAPI Performance Application Programming Interface

PMC Performance Monitor Counter

RFO Request for Ownership

ROB Reorder Buffer

SRAM Static Random-Access Memory

TLB Translation Lookaside Buffer

CONTENTS

1 INTRODUCTION...17
2 BACKGROUND..21
2.1 The Memory Subsystem and The Prefetcher...21
2.2 Designing a Prefetcher: Constraints and Trade-offs ...28
2.3 Computer Architecture Simulators...31
2.3.1 Simulation Detailing Classification ...32
2.3.1.1 Full-System or User-Level Simulation ...34
2.3.2 Simulation Input Classification..35
2.3.3 Sequential or Parallel Simulation...36
2.3.4 A Summary of Architecture Simulators ..37
3 MOTIVATION ..39
4 METHODOLOGY AND EXPERIMENTAL ENVIRONMENT...........................43
4.1 Simulators..43
4.1.1 ZSim...43
4.1.2 Sniper ...44
4.2 Experimental Setup ..45
4.3 NAS Parallel Benchmarks..48
5 INVESTIGATING CURRENT ARCHITECTURE PREFETCHERS51
5.1 The CG Case..54
5.2 Effects of Different Input Classes ..56
6 INVESTIGATING PREFETCHERS ON SIMULATION......................................59
7 DISCUSSION AND FINDINGS..65
8 CONCLUSION AND FUTURE WORK ..69
8.1 Published Papers...70
REFERENCES...71

17

1 INTRODUCTION

In the last decades, there have been significant advances in the performance of pro-

cessors, exemplified by the reduction of transistor size and the increase in the number of

cores in a processor. Conversely, the memory subsystem did not advance as significantly

as processors due to technological constraints that keep the memory from achieving a

higher performance. This problem is referred in the literature as the memory wall (WULF;

MCKEE, 1996) and it is the responsible for several architectural inefficiencies, such as

the instruction execution stall (HENNESSY; PATTERSON, 2017) and the emergence of

contention on shared resources (BAKHSHALIPOUR et al., 2019a). For this reason, there

is a keen effort in computer architecture research to overcome these memory limitations.

An example of a technology used to mitigate the memory latency is prefetching, a tech-

nique that identifies access patterns from each core, creates speculative memory requests,

and fetches data that can be potentially useful to the cache prior to the request is actually

made.

In High-Performance Computing (HPC) systems, many other problems associ-

ated with the parallel nature of applications and architectures may arise. Typically, HPC

applications are parallel, mainly using shared memory for communication between the

threads (HENNESSY; PATTERSON, 2017). When distinct threads access the same mem-

ory addresses, it becomes crucial for the correctness of the application to maintain data

coherence in the cache levels of the several cores; that is, a given data cannot present

different values depending on at which core it is found. Moreover, the action of the data

coherence protocol results in a set of data transfers between cores and data invalidation,

which may also unpredictably change the data path through the memory hierarchy. The

complexity of the memory system in multi-core architectures along with the prefetching

introduces a new level of complexity. The hindrance lies, therefore, in understanding how

a prefetcher affects the processing performance of parallel HPC applications.

To further complicate the matter, in computer architecture research, physical im-

plementation and analysis are infeasible due to the high complexity and manufacturing

costs. Consequently, it became fundamental to develop a way of simulating computer ar-

chitecture behavior. Architecture simulators with various detailing levels and approaches

were proposed (AKRAM; SAWALHA, 2019), and simulation is now considered the pri-

mary mechanism to implement and evaluate new ideas (SKADRON et al., 2003), such

as new prefetching algorithms. In the context of HPC systems, simulators also need to

18

consider the obstacles that arise with the inherent parallelism of such systems. multi-core

architecture simulators that support parallel workloads and accurately simulate interac-

tion between cores are crucial. However, given the complexity of multi-core systems and

the difficulty of fully understanding parallel interactions, many gaps in parallel simulation

still remain to be filled.

In this work, a state-of-the-art overview is presented, introducing information

regarding the memory hierarchy behavior, distinct prefetching mechanisms, and archi-

tecture simulation approaches. We developed a careful experimental investigation, ex-

ecuting the Numerical Aerodynamic Simulation Parallel Benchmark (NPB) (JIN et al.,

1999) in an Intel Skylake machine and in two broadly used architecture simulators, the

ZSim (SANCHEZ; KOZYRAKIS, 2013) and Sniper (CARLSON; HEIRMANT; EECK-

HOUT, 2011) simulators. We aimed to shed light on the following questions: (i) how

does prefetching affect the processing performance of parallel, HPC applications?, and

(ii) how accurately can state-of-the-art architecture simulators simulate HPC applica-

tions, with and without prefetchers?

More specifically, this work presents the following set of contributions:

• We show experimental evidence that an L2 memory prefetcher is more efficient

in comparison with an L1 prefetcher. Since the L3 access latency is higher than

the L2 access latency, the L2 prefetcher avoids excessive L3 cache accesses and

better contributes to performance when comparing to the L1 prefetcher; in fact,

we demonstrate that the standalone L2 prefetcher can achieve similar performance

gains compared to using both prefetchers enabled;

• We show evidence that the contribution the prefetchers has on the performance is

limited by the level of parallelism of the application, mainly due to the increase in

communication and memory contention as the level of parallelism increases;

• The Skylake and NPB simulation with ZSim and Sniper had poor accuracy in pre-

dicting the NPB applications performance, with and without simulating prefetcher

algorithms, mainly due distinctions of the models and prefetcher algorithms present

in ZSim and Sniper when compared to Skylake.

The remainder of this monograph is organized as follows: In Chapter 2 we delve

into the background of this work, illustrating in details the memory system and the prefetcher

system action, as well as the related works. In this Chapter, we also introduce computer

architecture simulators and their possible classification categories. Chapter 3 embodies

19

the motivation behind the work proposed in this monograph, demonstrating some gaps

that remain to be filled and are addressed by this work. In Chapter 4, we present the sim-

ulators applied for this work and describe the experimental campaign performed – such

as the experimental setup and the benchmarks used. In Chapter 5 and 6, we present the

experimental results, the main findings and observations obtained by our study regarding

the real machine and the simulation environment, respectively. In Chapter 7 we propose

a discussion regarding prefetching, good practices and guidelines, and in Chapter 8, we

give our concluding remarks, and we discuss future research directions.

We follow a reproducible and open methodology in our investigation. A com-

plementary material of this work is publicly available1, containing the application code,

the data analysis code, and all data collected during experiments that culminated in this

monograph and in the paper "Investigating Memory Prefetcher Performance Over Parallel

Applications: From Real to Simulated" (GIRELLI et al.,).

1<https://gitlab.com/msserpa/prefetcher-ccpe>

https://gitlab.com/msserpa/prefetcher-ccpe

20

21

2 BACKGROUND

In the following sections, we delve into the memory system, detailing the tech-

nologies applied, the hierarchical organization, and the performance constraints involved.

We also examine prefetching, its function in the memory hierarchy, and state-of-the-art

prefetching algorithms. Moreover, we present the possible classifications and implemen-

tation techniques applied by computer architecture simulators while analyzing each class’

main works.

2.1 The Memory Subsystem and The Prefetcher

In the organization of a computer, the memory available for a processor is dis-

tributed in different levels, in both on-chip and off-chip regions. One of the main dis-

tinctions between on-chip and off-chip memories is their access latencies, a result of the

different technologies applied in their manufacturing process. The technology commonly

used in memories found outside the processor is the DRAM (Dynamic Random-Access

Memory). The DRAM, normally employed as the computer main memory, is organized

in several banks, and each bank contains several rows and columns in a conceptually ma-

trix fashion. In order to put more bits per chip, DRAM modules use only one capacitor

to store a bit, which works together with a transistor that controls access to the capaci-

tor. This capacitor is periodically "refreshed" in order to prevent data loss due to charge

dissipation (HENNESSY; PATTERSON, 2017). To read the information from a DRAM

row, its electrical values are loaded into a row buffer, destroying the information on the

row and requiring the data to be written back after a read (HENNESSY; PATTERSON,

2017). This complex process of reading from a DRAM row and the need for restoring the

bit-line values, storing back into the physical row, and periodically refreshing every row,

are the main reasons why accessing data stored inside DRAM memories requires a higher

time.

On the other side, the technology frequently used for on-chip memories is the

SRAM (Static Random-Access Memory). SRAM memories, also known as cache mem-

ories, most commonly use six MOS transistors to store a bit, eliminating the need for

refresh and preventing the data to be disturbed when read (HENNESSY; PATTERSON,

2017). These electrical differences, and especially the higher size and capacity of the

DRAM physical memory blocks, can make the cache access time up to 100 times faster

22

Figure 2.1: Memory hierarchy example of a modern desktop. As we go further away from
the processor, the memory becomes larger and slower. Source: The Author.

than the DRAM access time, as shown in Figure 2.1. Despite the higher performance,

having large cache memories is infeasible for a set of reasons: SRAM technology is more

expensive and occupies a larger area per bit since more transistors are necessary to store

a bit; power and temperature constraints also need to be taken into account; furthermore,

increasing the cache size can lead to an increase in the hit latency (FERDMAN et al.,

2012; ESMAILI-DOKHT et al., 2018; NORI et al., 2018).Therefore, the size of cache

memories in modern processors typically does not surpass 32 KB in levels closer to the

processor and 2 MB per core in more distant levels (MORGAN, 2017; CUTRESS, 2017),

in contrast with the several GB observed in DRAM memories. Unfortunately, the reduced

size of cache memories prevents the application working set (a portion of data necessary

to the application execution at a given moment) to fit inside the on-chip memory. There-

fore, it results in accesses that miss the closer levels of the processor internal memory

hierarchy, and the further a request needs to go into the memory hierarchy in order to be

served, the higher is the latency and the power consumption.

In modern processors, a three level cache hierarchy is commonly used (MOR-

GAN, 2017; CUTRESS, 2017). In this configuration, the first level data cache (L1) and

the second level data cache (L2) are usually private to each processor core. These cache

memories are closer to the processor, have less storage capacity, and provide more effi-

cient data access. A third level of cache (L3, also know as Last Level Cache – LLC) is

shared among the system cores. Its response time is frequently several times larger than

23

the private cache levels latency, but with the advantage of providing a larger storage ca-

pacity. When a processor issues a request for data to the memory, several situations can

occur:

• Initially, the request is delivered to the L1 cache. This memory is relatively small

(32 KB) and presents low latency (i.e., 4 processor cycles) (FOG, 2012; HEN-

NESSY; PATTERSON, 2017). Simultaneously, the Translation Lookaside Buffer

(TLB) is accessed to check whether the page is physically present in the main

memory. The TLB returns the translation of the virtual address into a physical

address (HENNESSY; PATTERSON, 2017). In the case that both information are

found, the data is quickly delivered to the processor.

• If the address translation from virtual to physical address is not found in any TLB

level, a page table walk must be performed; that is, the page table – stored in the

main memory – needs to be accessed to check what is the virtual to physical address

translation. Subsequently, an additional access to the main memory needs to be

performed to obtain the data requested. These several main memory requests are

very likely to profoundly harm the application performance.

• A second situation occurs when the address translation is found inside the TLB but

the requested data is not present in the L1 data cache. In such scenario, it is not

necessary to perform a page walk, but the data request now needs to be forwarded

to the next level of cache memory, now using the physical address obtained through

the TLB. The L2 is usually larger, typically around 256 KB, which increases the

probability of finding the data but at the cost of a higher response time (FOG, 2012;

HENNESSY; PATTERSON, 2017). The L2 cache repeats the procedure of search-

ing for the requested data. If the data is found, it translates into a data request that

misses L1 cache but hits L2 cache, taking 14 cycles to be delivered to the processor

when added to the L1 latency (e.g., for the Skylake architecture (FOG, 2012)).

• If the data is not found in the scenario described above, it results in a much higher

impact to the application performance due to the necessity of accessing the LLC.

Although the LLC storage capacity is much bigger (around 2 MB per core, increas-

ing even more the probability of finding the data), its access latency can be at the

order of 80 processor cycles (FOG, 2012; HENNESSY; PATTERSON, 2017).

• Whenever the data request misses all three levels of cache (L1, L2, and LLC), the

LLC then forwards the request to the off-chip main memory, which again harms the

24

performance given the even greater access latency, a result of the aforementioned

technological differences.

These technological constraints observed in the memory system are even more

relevant when we consider the huge performance gap between memory and processor. In

recent years, several improvements in the processor performance have been observed. An

example is the increase in the number of cores, which requires memories with a higher

data transfer bandwidth to handle the data requests issued by these several cores. We can

also highlight the processor’s ability of sending multiple instructions per cycle into the

execution units (also known as multiple issue processors) (HENNESSY; PATTERSON,

2017), which may create the necessity of multiple demands for data in a single processor

cycle. However, the memory technologies have not improved as much as processors, cre-

ating a performance gap referred in the literature as the memory wall (WULF; MCKEE,

1996).

Several problems can arise from such performance disparity. For instance, to cor-

rectly execute an application, two instructions that depend on one another must be exe-

cuted in their original order. If the first instruction is a load and its required data is not

quickly delivered by the memory system, the execution of both instructions might get

stalled (HENNESSY; PATTERSON, 2017). To avoid such stalls, the load-to-use latency

must be reduced, that is, the number of cycles from when the processor issues a load to

the moment it can actually use the data should be as small as possible. Moreover, given

the multiple issue nature of modern processors, a big number of memory requests can

be issued in just a few cycles, possibly creating contention in some level of the memory

hierarchy. Hence, finding the requested data in closer on-chip cache levels is preferable,

otherwise, the memory hierarchy can become quite a bottleneck for the application per-

formance (BAKHSHALIPOUR et al., 2019a).

In light of these several problems, the prefetcher hardware was added to mitigate

the memory latency (BAER; CHEN, 1991). Prefetching, as a technique implemented

in hardware, aims to predict which will be the next memory addresses to be requested

by the processor. By monitoring the previous memory requests, a prefetcher is able to

identify possible access patterns. Based on these patterns, it speculates which might be

the next addresses to be requested and then performs the requests in advance, before the

processor actually needs them. Thus, when the data is finally requested by the processor,

it will already be in cache levels closer to it (HENNESSY; PATTERSON, 2017). The

aforementioned main memory latency is therefore hidden by other processor instructions

25

Figure 2.2: Abstraction of the prefetcher behavior. Source: The Author.

Core

Cache L1D

Cache L2

Cache L1I

LLC

Prefetcher

2. Prefetcher snoops request flow
and detects patterns

3. And then creates
speculative requests:
“800, 900, 1000, ...”

1. Requests:
100,200,300,...

Demand Requests

Speculative
Requests

Request
Snooping

previous to the effective load instruction that required the prefetched data.

With the data already at closer levels, (i) the critical load-to-use latency can be

reduced (KANG; WONG, 2013; GUTTMAN et al., 2015), and (ii) an important per-

formance metric is improved, the cache hit ratio. The hit ratio represents the portion

of requests that are found in a given cache level without the need of going deeper into

the memory hierarchy – and consequently requiring a higher execution time. These

performance gains allowed prefetchers to become a prevalent mechanism in current ar-

chitectures (MORGAN, 2017; CUTRESS, 2017; FOG, 2012). Examples of patterns

identified by common prefetching mechanisms are stride (CHEN; BAER, 1995) and

stream (LE et al., 2007).

Figure 2.2 shows an example of a L2 prefetcher detecting a stride access pattern.

The L2 cache forwards requests to the LLC (shown in Figure 2.2 as the event 1). The

L2 prefetcher, in turn, intercepts these requests by snooping the cache interconnection

(event 2) and identifies the access pattern being generated. Based on the pattern identi-

fied, speculative memory requests are inserted into the L2 Miss Status Holding Register

(MSHR) (3), a buffer that keeps track of miss events that still need to be handled. These

speculative requests are made directly to the L2 cache in order to avoid a redundant cache

fill if the speculated data block already resides in the cache. These accesses are seen as

regular requests made to the L2 by the prefetcher, so the L2 does not actually need to

forward the response to the L1. If the speculated address is not present in the L2 yet,

26

the next levels in the hierarchy will forward the response to whoever requested it, as in

a regular access. Thus, when the processor needs the data requested by prefetch, it will

already be at a closer cache level (in this case, the L2 cache).

Due to the layout of applications’ data structures and the algorithm characteris-

tics, several different types of memory access patterns are generated. Surveys regarding

state-of-the-art prefetchers (MITTAL, 2016; BAKHSHALIPOUR et al., 2019b) classify

these types of patterns accordingly with their complexity and the main pattern observed.

For example, the stride prefetcher (CHEN; BAER, 1995) predicts the next addresses to

be requested based on a regular stride information detected in the previous accesses. Con-

sidering that the last access sequence has followed the pattern A, A + S, A + 2S, A + 3S,

then the next address to be requested might possibly be the A + 3S + S. When S = 1,

we observe a stream pattern. However, many applications do not present such regular

strided access patterns, being much more complex and hard to predict. Irregular patterns

are often addressed by correlation prefetching techniques that aim to detect some spa-

tial (SOMOGYI et al., 2006) or temporal (WENISCH et al., 2005) correlation among the

accesses.

Aiming to cover as many different patterns as possible, a large number of prefetch-

ing techniques have been proposed over the years. Strided prefetchers (CHEN; BAER,

1995; JOUPPI, 1998; IACOBOVICI et al., 2004; ZHU; CHEN; SUN, 2010; KIM; ZHAO;

VEIDENBAUM, 2014) take into account the constant distance between each address of

a sequence of memory accesses. Such equally spaced addresses are usually found in ap-

plications with dense matrices and in applications that make use of pointer-based data

structures where memory allocators arrange the data in a sequential manner. Due to the

simplicity of the patterns, strided prefetchers demand small area and power overheads.

However, as mentioned before, if accesses are irregular or with a more complex pattern,

such prefetchers can be less efficient.

Spatial data prefetchers (Kumar; Wilkerson, 1998; NESBIT; SMITH, 2004a; CHEN

et al., 2004; CANTIN; LIPASTI; SMITH, 2006; SOMOGYI et al., 2006; ISHII; INABA;

HIRAKI, 2009; PUGSLEY et al., 2014; SHEVGOOR et al., 2015; KIM et al., 2016;

MICHAUD, 2016; BAKHSHALIPOUR et al., 2019a) divide the memory into contigu-

ous and fixed-size memory sections and rely on the spatial correlation perceived among

these different memory pages. Many applications use complex data structures such as

logs, buffers, and headers, where each field is usually of a fixed size and result in similar

memory layouts. Therefore, different pages of the memory can be accessed similarly,

27

since the layout of the data in the cache translates into relative addresses with recurring

patterns. Spatial prefetchers commonly store offsets (the difference between an address

and the beginning of the memory page) or deltas (the distance between two consecu-

tive addresses inside the same memory page) as metadata information, resulting in small

area overhead. By using the patterns observed on previous memory pages to predict the

accesses for a newly accessed page, spatial prefetchers perform very well on avoiding

compulsory misses. On the other hand, they tend to perform poorly in applications with

high usage of pointers, since dynamic objects can potentially be allocated in different

memory pages where no pattern can be easily identified. It is worth noting that, although

they may appear similar, spatial prefetchers are different from strided prefetcher. While

strided prefetchers are only able to identify patterns with constant offsets, spatial prefetch-

ers consider varying offsets between the address inside a given memory page.

Temporal data prefetchers (SOLIHIN; LEE; TORRELLAS, 2002; WENISCH et

al., 2005; FERDMAN; FALSAFI, 2007; WENISCH et al., 2009; JAIN; LIN, 2013;

BAKHSHALIPOUR; LOTFI-KAMRAN; SARBAZI-AZAD, 2018), in its turn, record

information about the sequence of addresses that follow a miss into a history table, and

use this history to predict future accesses. Upon a cache miss, the history table is searched

for a matching entry, and the sequence of accesses is used to replay the sequence. Relat-

ing a sequence of addresses to a miss is very useful when considering dependent cache

misses. Dependent cache misses are commonly found in pointer-chasing applications and

refer to a cache miss that is dependent on the data of an earlier cache miss. However,

since temporal data prefetchers rely on the repetition of the addresses, they are unable to

avoid compulsory misses. Unlike spatial prefetchers, temporal prefetchers need to store

the full correlation between accesses, requiring a larger area that usually does not fit in

the on-chip region.

Several recent works introduce combinations of prefetching techniques. Perceptron-

based prefetchers (BHATIA et al., 2019) propose a method to enhance the efficiency

of usual prefetchers, such as the Signature Path spatial prefetcher (KIM et al., 2016).

Moreover, many of the aforementioned prefetchers also use heuristics in their predic-

tions (PUGSLEY et al., 2014; SHEVGOOR et al., 2015; KIM et al., 2016; MICHAUD,

2016). For example, (PUGSLEY et al., 2014) proposed the Sandbox Prefetch, a technique

that defines at run-time the most efficient prefetching mechanism to a given program by

making use of a Bloom filter. A Bloom filter is a probabilistic data structure employed

to test whether an element is a member of a set in a memory-efficient way. Rather than

28

directly bringing the prefetched data into the cache, the address generated by a given

prefetching candidate is added to the Bloom filter to check if this mechanism could have

accurately prefetched the data. When the accuracy of the current candidate surpasses a

given threshold, then real prefetches are performed.

2.2 Designing a Prefetcher: Constraints and Trade-offs

Despite the several benefits that data prefetching can bring to the system perfor-

mance, the design of a prefetch mechanism must take into account a set of aspects and

constraints. One common misconception is to believe that the more data blocks brought

into the cache by the prefetcher, the better, presuming that this data would be cover-

ing more possible misses. However, that is not entirely true. The aggressiveness of a

prefetcher is defined by the number of prefetches issued at once (what is known as prefetch

degree) and by how far of the demand stream the prefetch speculates (known as prefetch

distance) (EBRAHIMI et al., 2009). An overly aggressive prefetcher that is unable to cor-

rectly predict the future accesses of a given pattern might generate requests for data that

will not be used. Since the cache size is fixed, these wrongly predicted data blocks might

end up evicting from the cache data blocks with high probability of use in a near future.

This circumstance is called cache pollution (MITTAL, 2016; BAKHSHALIPOUR et al.,

2019b) and prior work proposed prefetching mechanisms that try to mitigate its occur-

rence (ZHUANG; HSIEN-HSIN, 2006; SRINATH et al., 2007; EBRAHIMI et al., 2009;

ZHU; CHEN; SUN, 2010; WU et al., 2011).

Several works noticed that some applications performed better with more ag-

gressive prefetchers, while others would benefit more from less aggressive mechanisms.

Therefore, a set of related works proposed techniques that dynamically adapt the prefetch-

ers accordingly to the system feedback. The work proposed by (NESBIT; DHODAPKAR;

SMITH, 2004) divides the memory space address into zones and detect delta correlations

between the miss addresses of different zones. On a program-phase fashion, the prefetcher

degree and the size of the memory zones are dynamically adjusted.

An additional problem exacerbated by an overly aggressive prefetcher is the cache

thrashing (JALEEL et al., 2010; MITTAL, 2016). The prefetcher-related cache thrashing

occurs when the blocks predicted by the prefetcher will indeed be used, but still cause

the eviction of other blocks that will also be used in a near future. This happens mainly

because the working set of a given application does not fit in the cache limited capacity.

29

Moreover, the extra requests spawned by an overly aggressive prefetcher will also battle

for memory bandwidth alongside demand requests (loads and stores), creating memory

contention and significantly harming the system performance (SRINATH et al., 2007;

EBRAHIMI et al., 2009; PUGSLEY et al., 2014). It is worth noting, however, that other

reasons could be behind cache thrashing, such as the application access pattern and the

cache replacement policy.

Regarding area and power constraints, the matter is much more complex than sim-

ply wasting potentially useful area on prefetching and consuming extra power. When an

overly aggressive prefetcher generates cache pollution, the number of cache misses in-

creases, requiring data requests to go further into the memory hierarchy. Consequently,

the power consumption can increase dramatically (SRINATH et al., 2007; EBRAHIMI

et al., 2009). Furthermore, several works pointed out that a given prefetcher design is

only beneficial if its performance gains are able to outweigh its area overhead (LOTFI-

KAMRAN et al., 2012; KAYNAK; GROT; FALSAFI, 2013; ESMAILI-DOKHT et al.,

2018). Prior work also considered a metric called performance density (KAYNAK; GROT;

FALSAFI, 2013; ESMAILI-DOKHT et al., 2018; BAKHSHALIPOUR et al., 2019a), de-

fined as the throughput per unit area, quantifying how efficiently a prefetcher design uses

the silicon area.

Another essential aspect that has several implications is the inter-core interference.

With the increasing core count of multi-core systems, the prefetchers of each core will

compete for shared resources. For instance, the conflicts among demand requests and

prefetch requests from different cores might displace useful data from shared levels of

cache. Moreover, prefetches from the entire system will require a portion of the available

memory bandwidth, competing with the demand requests and again leading to memory

contention (EBRAHIMI et al., 2009; PUGSLEY et al., 2014). As a straightforward con-

sequence, both demand and prefetch requests can be delayed, affecting the delivery time

of these requests in the whole system. Since the goal of a prefetch mechanism is to hide

the memory latency, it is crucial to have the data in the cache soon enough to avoid a miss.

Considering the competition that may exist among the several cores, (EBRAHIMI

et al., 2009) proposed a technique that adjusts the prefetcher aggressiveness in a coordi-

nated way across the system. Their mechanism uses information of the inter-core inter-

ference to throttle the prefetcher in a hierarchical global-based way. First, the aggressive-

ness of each core is defined locally, attempting to optimize the local core performance.

The global mechanism then considers information gathered from the entire system re-

30

garding inter-core interference on shared memories and on the system bandwidth, and

can override the decision made by the local controller. The aforementioned Sandbox

Prefetcher (PUGSLEY et al., 2014) defines at run-time the most applicable prefetching

algorithm by adding to a Bloom filter the address to be prefetched. The mechanism can

be applied to multi-core systems by rising the required accuracy before performing real

prefetches.

The concept of timeliness of a prefetcher refers to how accurate it is in fetching the

data at the right time (SRINATH et al., 2007; ZHU; CHEN; SUN, 2010). A prefetch is

defined as late if the prefetched data is not yet in the cache when the processor requires it.

Besides not contributing to the performance, it is also strengthening cache pollution and

memory contention by uselessly requiring memory bandwidth. An early prefetch, by its

turn, represents a prefetched block evicted from the cache by other blocks before being

used by a demand instruction, mainly due to the limited cache size. Despite appearing

merely useless, an early prefetch can also cause cache pollution and bandwidth overhead.

With bandwidth contention affecting the timeliness and therefore resulting in more pol-

lution, extra accesses to the off-chip memory might be necessary, again requiring extra

power and increasing the load-to-use latency.

Prior work (CHOU, 2007) proposed an epoch-based correlation prefetcher to im-

prove prefetching timeliness. Epochs consist in recurring periods of on-chip computation

followed by off-chip accesses. Their proposal tries to eliminate the off-chip accesses

of these epochs, therefore eliminating the epoch itself and improving the system perfor-

mance. Using stream localization, (ZHU; CHEN; SUN, 2010) classify miss addresses

into streams and maintain their timing information. Since the timing information of a

particular access inside a stream is also predictable, the streams are later chained accord-

ing to the time and this information is used when prefetching. A mechanism proposed

by (SRINATH et al., 2007) considers the accuracy, timeliness and prefetch-related cache

pollution to adjust the aggressiveness. Moreover, a run-time estimation of the cache pol-

lution is performed and applied to decide where to place prefetched data into the LRU

stack.

As we can notice, the several aspects regarding prefetching profoundly interact

with each other. The prefetcher aggressiveness affects the cache pollution and the mem-

ory contention, that by its turn affects the prefetcher timeliness. If the prefetches are

not performed in a timely manner, then we can again observe cache pollution, which

straightforwardly resonates over the number of misses. Consequently, a bigger portion

31

of the available memory bandwidth is required and more off-chip accesses are necessary,

intensifying power consumption. When considering multi-core systems, the complexity

increases with the core count and the inter-core interactions. Therefore, a prefetching

mechanism must consider several aspects in order to achieve performance gains.

2.3 Computer Architecture Simulators

In computer architecture research, analysis of physical implementation are infeasi-

ble due to the complexity and high cost for manufacture (SKADRON et al., 2003). Conse-

quently, architecture simulators are considered the primary mechanism to implement and

evaluate a new idea in this research field. In HPC systems, there are many other problems

besides those inherent to the architecture. For instance, in order to communicate, several

threads might require access to the same memory addresses in the application data struc-

tures. To maintain the program correctness, it is necessary to keep data coherence in the

several cache levels of the different cores. Moreover, these memory interactions among

different threads may also unpredictably change the data path through the memory hi-

erarchy. Therefore, to develop and analyze new ideas that attenuate such problems that

arise from parallelism, we require multi-core architecture simulators that support parallel

workloads (AKRAM; SAWALHA, 2019).

As computational systems’ complexity has increased over the years, accurately

simulating entire systems has become a challenge. As a consequence, several different

simulation techniques have been proposed to simulate a given characteristic appropri-

ately. Each of these techniques distinctly balances simulation accuracy, low development

efforts, and simulation speed. Although each aspect is relevant, a single simulator can

hardly achieve all of them (DUBOIS; ANNAVARAM; STENSTRM, 2012), leaving the

choice of which simulator to use for computer architecture researchers. The following

sections classify state-of-the-art simulators in terms of their simulation detailing – and

also as full-system or application-level simulation, their input, and as sequential or par-

allel simulators. The classifications are not mutually exclusive, meaning that a given

simulator can apply one or more of the following techniques.

32

2.3.1 Simulation Detailing Classification

The depth of details simulated is a crucial element for classification. A highly de-

tailed simulator requires significant development efforts and will probably demand sev-

eral simulation hours. However, it is more likely to deliver a satisfying simulation ac-

curacy than a simulator that implements fewer architecture aspects. The main detailing

classes are functional, timing, and integrated functional/timing simulators. Functional

simulators base their simulation model on the target architecture functionalities, not im-

plementing microarchitectural specific aspects (DUBOIS; ANNAVARAM; STENSTRM,

2012; AKRAM; SAWALHA, 2019). By separating the functionalities and the logic be-

havior from the microarchitectural elements, functional simulators act like instruction

set emulators. Given the less detailed nature of such simulators, simulation time is usu-

ally shorter. SimpleScalar (AUSTIN; LARSON; ERNST, 2002) is a toolset with various

simulation models, one of which is sim-safe, an example of functional simulator. Sim-

ics (AARNO; ENGBLOM, 2014) also provides a functional simulation model and is able

to simulate the program forwardly and backwardly. SimCore (KISE et al., 2004) is an

Alpha processor functional simulator, and AtomicSimple (BINKERT et al., 2011) is a

Gem5 functional model. Many simulators also apply binary instrumentation over the

program binary, collecting information during the execution in a real hardware (EECK-

HOUT, 2010; AKRAM; SAWALHA, 2019). Based on the information obtained with

binary instrumentation tools such as Pin tools (REDDI et al., 2004), the simulators then

perform the functional simulation. Examples of simulators that employ this technique are

CMP$im (JALEEL et al., 2008) and Sniper (CARLSON; HEIRMANT; EECKHOUT, 2011).

On the other hand, timing simulators perform microarchitectural simulation and

are able to provide detailed statistics about the performance and the execution of a target

system (DUBOIS; ANNAVARAM; STENSTRM, 2012; AKRAM; SAWALHA, 2019).

Microarchitectural structures and their timing information are implemented, and several

other components are configured by the user, e.g., the cache size and associativity, and

the number of entries in the reorder buffer (ROB). Timing simulators can be classified as

cycle-level, event-driven, and interval simulators. Cycle-level simulators drive the sim-

ulation based on each processor cycle, and therefore are usually slower and use more

memory space if compared to functional simulators (DUBOIS; ANNAVARAM; STEN-

STRM, 2012; AKRAM; SAWALHA, 2019). SimpleScalar contains a cycle-level model

called sim-outorder, which implements an out-of-order superscalar processor that sup-

33

ports speculation. MSim (SHARKEY; PONOMAREV; GHOSE, 2005) is a multi-thread

timing simulator that implements major pipeline structures of the Alpha processor.

Event-driven simulators, on the other hand, are timing simulators that base their

simulation on events instead of processor cycles (DUBOIS; ANNAVARAM; STENSTRM,

2012; AKRAM; SAWALHA, 2019). Instead of simulating cycle by cycle, they skip the

time where no event occurs, jumping directly to the time when there is an event scheduled

and allowing the simulation to be shorter. Examples of event-driven timing simulators are

SESC (RENAU et al., 2005), which supports the MIPS instruction set architecture (ISA),

and SimFlex (HARDAVELLAS et al., 2004), a cycle-level simulator that has some of its

modules implemented in an event-driven fashion.

Finally, interval simulators are a type of timing simulators that divide the execution

flow in the pipeline in intervals based on miss events (e.g., cache misses and branch mis-

predictions) (GENBRUGGE; EYERMAN; EECKHOUT, 2010; DUBOIS; ANNAVARAM;

STENSTRM, 2012; AKRAM; SAWALHA, 2019). The basis for interval analysis is the

observation that, in the absence of miss events such as branch mispredictions and cache

misses, a well-balanced superscalar out-of-order processor should smoothly stream in-

structions through its pipelines, buffers, and functional units (EYERMAN et al., 2009).

Sniper (CARLSON; HEIRMANT; EECKHOUT, 2011) is a timing simulator that extends

the original interval model by proposing the instruction-window centric (IW-centric) sim-

ulation model. The IW-centric model is a high-level core model that implements both

interval modeling and a detailed simulation of the instruction window.

As an alternative, it is also possible to integrate functional and timing simulators in

order to bring together the flexibility and accuracy of both models (AKRAM; SAWALHA,

2019). The two simulation types might or might not be coupled together in the same sim-

ulator. Simulators that couple the two models are known as execute-in-execute and are of-

ten much more complicated than the simulators which apply both techniques decoupled.

However, this approach usually provides a more accurate simulation of timing-dependent

instructions such as synchronization and I/O operations. A well-known simulator which

couples both functional and timing models is gem5 (BINKERT et al., 2011). On the other

hand, many simulators decouple the functional and the timing models to simplify the de-

velopment. For instance, both SimFlex (HARDAVELLAS et al., 2004) and Gems (MAR-

TIN et al., 2005) make use of Simics (AARNO; ENGBLOM, 2014) for the functional

simulation, and Graphite (MILLER et al., 2010) and Sniper (CARLSON; HEIRMANT;

EECKHOUT, 2011) both employ Pin (REDDI et al., 2004) for binary instrumentation.

34

2.3.1.1 Full-System or User-Level Simulation

Despite achieving higher accuracy, timing-simulators do not consider several as-

pects of the system as a whole and their impact on performance. For instance, the oper-

ating system might directly influence cache contents and thread migration, and the long

latency access of hard disks can cause significant performance loss. However, these char-

acteristics will not always be relevant or desired, since one might be interested in simulat-

ing an architecture without considering the operating system noise, for instance. Having

that in mind, it is also possible to classify a simulator according to its target scope, that is,

whether the entire system or only the processor component is being simulated. User-level

simulators choose to simulate only the processor itself, ignoring other system compo-

nents as I/O devices and co-processors (DUBOIS; ANNAVARAM; STENSTRM, 2012;

AKRAM; SAWALHA, 2019). Whenever the application calls for an extra component,

as an I/O device, only the architectural impact of the resource allocation is emulated.

System calls are therefore simply bypassed to the host operational system. Examples

of state-of-the-art user-level simulators are SimpleScalar (AUSTIN; LARSON; ERNST,

2002), Graphite (MILLER et al., 2010), Sniper (CARLSON; HEIRMANT; EECKHOUT,

2011), ZSim (SANCHEZ; KOZYRAKIS, 2013), and SiNUCA (ALVES et al., 2015).

Full-system simulators, on the other hand, are able to simulate the entire operating

system and the application running on it as it would typically run on a real target ma-

chine. In the full-system simulation, all external components are simulated, such as I/O

devices and network. Full-system state-of-the-art simulators can be exemplified by PTL-

sim (YOURST, 2007), Gem5 (BINKERT et al., 2011), and MARSS (PATEL; AFRAM;

GHOSE, 2011).

The differences between the two techniques result in relevant characteristics that

might influence the simulator choice. Designing user-level simulators is much simpler

than designing full-system simulators, and implementing modifications into the user-level

simulator code might as well be easier. Moreover, the simulation time on the user-level

tends to be smaller. Furthermore, full-system simulation can introduce noise into the

evaluation when it is not acceptable (ALVES et al., 2015). For instance, one might not

be interested in evaluating how the operational system interferes with the values residing

in the cache. Nevertheless, in the execution of parallel applications, the operating system

plays an essential role in scheduling the threads, which might be relevant depending on

the evaluation purpose.

35

2.3.2 Simulation Input Classification

State-of-the-art simulators apply two different methods to manage instructions

to be simulated: trace-driven and execution-driven (DUBOIS; ANNAVARAM; STEN-

STRM, 2012; AKRAM; SAWALHA, 2019). In a trace-driven fashion, trace files contain

prerecorded streams of the instructions executed by a given application. In order to record

these instructions streams, the application must first be executed in an ISA-compatible

processor. During the execution, the application is instrumented and the instructions are

logged into the trace file by a trace generator (which is part of the simulator). In the case

of executing in a multi-core system, the trace contains the instructions of each thread in

an interleaved manner according to the order in which they occurred. The trace file is

therefore provided as the input file for the simulator. Examples of trace-driven simulators

are Shade (CMELIK; KEPPEL, 1994), which supports SPARC and MIPS systems and is

also used for trace generation. Simplescalar (AUSTIN; LARSON; ERNST, 2002) also

employs trace files for its simulation.

One drawback of this approach is the large size of trace files, which restricts the

number of instructions in the trace file and may lead to a slow simulation time (SHARKEY;

PONOMAREV; GHOSE, 2005). Usually, only a particular portion of the application is

instrumented. Furthermore, simulators that employ the trace-driven approach are un-

able to accurately model branch misprediction events (DUBOIS; ANNAVARAM; STEN-

STRM, 2012; AKRAM; SAWALHA, 2019). Since the trace files do not contain the

wrongly predicted-path, the simulator can only add a time penalty to the simulation,

without the possible effects of the wrong-path prediction (e.g., a mispredicted branch

that fetches the wrong instruction, requiring the pipeline to be flushed and consequently

stalling the execution). An additional limitation of trace-driven simulators is the inability

of modeling the non-deterministic behavior of parallel applications (AHN et al., 2013).

Despite that, a few recent works propose trace-driven simulators of parallel architectures,

such as Sinuca (ALVES et al., 2015), a FPGA-based simulation framework (ELRABAA

et al., 2017), and SynchroTrace (SANGAIAH et al., 2018).

On the other hand, execution-driven simulators make direct use of binary files

and executables instead of trace files (DUBOIS; ANNAVARAM; STENSTRM, 2012;

AKRAM; SAWALHA, 2019). The application is executed directly on the target system,

enabling the simulation of wrongly-speculated paths. Some examples of execution-driven

simulators are SimpleScalar (AUSTIN; LARSON; ERNST, 2002), Rsim (HUGHES et

36

al., 2002), Sniper (CARLSON; HEIRMANT; EECKHOUT, 2011), and ZSim (SANCHEZ;

KOZYRAKIS, 2013). It is worth mentioning, however, that neither ZSim nor Sniper are

able to simulate wrongly-speculated paths. Even though they are both execution-driven

simulators, they are also Pin-based simulators, and the Pin tool does not record wrongly-

speculated events.

2.3.3 Sequential or Parallel Simulation

With the continuous increase in core count inside the same monolithic chip – or

integrated multi-processor –, it has become crucial to simulate multi-core and manycore

systems. However, parallel architectures introduce many new aspects that must be taken

into account when modeling simulators. For instance, a simulator must ensure the data

coherence across the memory hierarchy of the several cores, as well as properly consider

the contention that may arise in shared resources. Therefore, an additional aspect of clas-

sification is whether the simulation of parallel architectures is performed sequentially or

in parallel is also a classification factor (DUBOIS; ANNAVARAM; STENSTRM, 2012;

AKRAM; SAWALHA, 2019).

The sequential simulation relies on a single thread simulating the entire target ar-

chitecture behavior, with the cores simulated in a round-robin manner. However, in a

more fine-grained context, many structures require a specific simulation order since there

may be dependencies among them. Therefore, the components inside a given core are

simulated in a time unit of one cycle. First, we simulate one LLC cycle, and then we

proceed to simulate one cycle of the L2, and so on. The same happens to each pipeline

component until we are able to reproduce the pipeline effects through the core private

caches. Once the simulation of one core cycle is finished, the same cycle is simulated

in the next core, and so on. After simulating this one cycle for all cores of the target ar-

chitecture, then the simulator must simulate the global events that may have been caused

by each core individual simulation. Examples of such global events are inter-core com-

munication, which requires forwarding the data through the interconnection network, and

cache miss events on some core private cache levels, requiring the data to be sent to the

shared LLC (DUBOIS; ANNAVARAM; STENSTRM, 2012). Some state-of-the-art sim-

ulators from this group are MINT (VEENSTRA; FOWLER, 1994), RSIM (HUGHES et

al., 2002), GEMS (MARTIN et al., 2005), and SiNUCA (ALVES et al., 2015).

The parallel simulation, in its turn, makes use of several simulator threads to sim-

37

ulate the target architecture cores. By the nature of parallel programming, the design of

parallel simulators is usually harder, but it allows a much faster simulation time. State-of-

the-art simulators that exemplify this methodology are ZSim (SANCHEZ; KOZYRAKIS,

2013) and Sniper (CARLSON; HEIRMANT; EECKHOUT, 2011).

2.3.4 A Summary of Architecture Simulators

In the last Sections, we explored several distinct aspects that encompass the devel-

opment of architecture simulators. Akram et al. (AKRAM; SAWALHA, 2019) categorize

the current architecture simulators in terms of their supported hosts and targets, their

pipeline model, whether they support multi-core systems, and according to their simula-

tion technique. In Table 2.1, we present a fragment of this categorization, containing the

simulators relevant to this study. The complete categorization can be found in (AKRAM;

SAWALHA, 2019). For a matter of space, the categories are abbreviated as follows:

• FUNC: functional;

• TIM: timing;

• EvDr: event-driven;

• Fsys: full system;

• UM: user mode;

• EDr: execution-driven;

• TD: trace-driven;

• MOD: modular;

• HMP: heterogeneous multiprocessor.

38

Ta
bl

e
2.

1:
A

rc
hi

te
ct

ur
e

si
m

ul
at

or
s

su
m

m
ar

y
ta

bl
e.

Si
m

ul
at

or
s

Su
pp

or
te

d
H

os
ts

Su
pp

or
te

d
Ta

rg
et

s
Pi

pe
lin

e
M

od
el

M
ul

ti-
co

re
C

at
eg

or
y

(I
SA

/O
S)

(I
SA

)
Su

pp
or

t
C

M
P$

im
x8

6
x8

6
–

ye
s

Pa
ra

lle
lU

M
ca

ch
e

D
R

A
M

Si
m

x8
6/

L
in

ux
In

pu
tt

ra
ce

fil
es

–
no

T
D

cy
cl

e-
le

ve
lD

R
A

M
ge

m
5

x8
6/

L
in

ux
x8

6,
A

R
M

,M
IP

S,
in

-o
rd

er
,o

ut
-o

f-
or

de
r

ye
s

FS
ys

/M
O

D
/T

IM
A

lp
ha

,S
PA

R
C

cy
cl

e-
le

ve
l

G
E

M
S

x8
6/

L
in

ux
,A

M
D

64
-L

in
ux

,
SP

A
R

C
,x

86
ou

t-
of

-o
rd

er
ye

s
FS

ys
/T

IM
(d

ec
ou

pl
ed

SP
A

R
C

V
9

(S
ol

ar
is

8)
fu

nc
tio

na
la

nd
tim

in
g

m
od

el
s)

G
ra

ph
ite

x8
6/

L
in

ux
x8

6
in

-o
rd

er
,o

ut
-o

f-
or

de
r

ye
s

pa
ra

lle
lU

M
/T

IM
m

em
or

y
co

m
pl

et
io

n
(d

ec
ou

pl
ed

)
M

A
R

SS
x8

6
x8

6/
L

in
ux

x8
6-

64
in

-o
rd

er
,o

ut
-o

f-
or

de
r

ye
s

FS
ys

/T
IM

(d
ec

ou
pl

ed
fu

nc
tio

na
la

nd
tim

in
g

m
od

el
s)

M
cP

A
T

x8
6/

L
in

ux
A

lp
ha

,A
R

M
,x

86
C

–
ye

s
(H

M
P)

po
w

er
,a

re
a,

T
IM

SP
A

R
C

M
IN

T
SG

I,
SP

A
R

C
an

d
M

IP
S

–
ye

s
U

M
/E

D
r

D
E

C
st

at
io

ns
M

ul
ti2

Si
m

x8
6/

L
in

ux
M

IP
S3

2,
x8

6,
A

R
M

,A
M

D
,

ou
t-

of
-o

rd
er

ye
s

(H
M

P)
U

M
/M

O
D

/T
IM

E
ve

rg
re

en
,N

V
ID

IA
Fe

rm
i

M
Si

m
x8

6/
L

in
ux

,W
in

20
00

,
A

lp
ha

in
-o

rd
er

,o
ut

-o
f-

or
de

r
ye

s
(H

M
P)

U
M

/T
IM

SP
A

R
C

/S
ol

ar
is

(c
yc

le
-l

ev
el

)
PT

L
si

m
x8

6/
L

in
ux

x8
6

ou
t-

of
-o

rd
er

ye
s

FS
ys

/T
IM

(c
yc

le
-l

ev
el

)
SE

SC
U

ni
x-

ba
se

d
sy

st
em

s
M

IP
S

ou
t-

of
-o

rd
er

ye
s

U
M

/T
IM

/E
vD

r
Si

m
C

or
e

x8
6/

L
in

ux
,A

lp
ha

,
A

lp
ha

–
ye

s
U

M
FU

N
C

SP
A

R
C

/S
ol

ar
is

SI
M

IC
S

A
lp

ha
,P

PC
,U

ltr
aS

PA
R

C
,

x8
6

L
in

ux
,S

PA
R

C
,A

lp
ha

–
ye

s
FS

ys
/F

U
N

C
L

in
ux

/x
86

,W
in

do
w

s
So

la
ri

s,
W

in
do

w
s,

A
R

M
,P

PC
Si

m
pl

eS
ca

la
r

L
in

ux
/x

86
,W

in
20

0/
x8

6,
A

lp
ha

,P
is

a,
A

R
M

,x
86

ou
t-

of
-o

rd
er

no
U

M
/E

D
r/

T
IM

SP
A

R
C

/S
ol

ar
is

Si
N

U
C

A
x8

6-
64

/L
in

ux
x8

6-
64

ou
t-

of
-o

rd
er

ye
s

(H
M

P)
T

D
/U

M
/T

IM
Sn

ip
er

x8
6/

L
in

ux
x8

6,
R

IS
C

-V
in

-o
rd

er
,o

ut
-o

f-
or

de
r

ye
s

(H
M

P)
pa

ra
lle

lU
M

/T
IM

Z
Si

m
x8

6-
64

/L
in

ux
x8

6-
64

in
-o

rd
er

,o
ut

-o
f-

or
de

r
ye

s
pa

ra
lle

lU
M

/T
IM

39

3 MOTIVATION

With the increasing necessity for higher computational power in the diverse areas

of computing, multi-core systems are becoming more and more crucial. Applications deal

with a growing amount of data, which makes the prefetcher even more relevant given its

ability to hide the memory latency, directly impacting the system performance. Therefore,

it is essential to examine how the prefetcher interacts with the different applications’

access patterns in such complex systems with dozens of cores.

Mittal (MITTAL, 2016) provides a survey on the recent development of prefetch-

ing techniques up to 2016. In the survey, the authors describe the relevant prefetch met-

rics, such as accuracy, coverage, and timeliness (SRINATH et al., 2007), as well as the

different types of approaches to improve prefetching, such as new pattern detection tech-

niques (NESBIT; SMITH, 2004b), filtering prefetches (ZHUANG; HSIEN-HSIN, 2006),

dropping prefetches (LEE et al., 2008), changing prefetches’ priority on the memory con-

troller (EBRAHIMI et al., 2009), and so on. When considering the elevated costs of chip

development and manufacturing, it became fundamental to employ architecture simula-

tors for such progress of prefetching research. However, given all these distinct tech-

niques and the active development of new ones, one can hardly keep up with the design

of prefetchers and additional techniques in the industry, which are not publicly disclosed

to avoid competition and intellectual property breaches. Most simulator designers end

up facing difficulties when modeling prefetchers, as they cannot detail all the techniques

used in real hardware. Interestingly, many of these techniques are not tested in multi-

thread applications where communication plays a major role in the memory hierarchy

latency (JAIN; LIN, 2018; WU et al., 2019; BHATIA et al., 2019).

Previous works already pointed out several complications of working with com-

puter architecture simulators (DESIKAN; BURGER; KECKLER, 2001; NOWATZKI et

al., 2015). Due to the lack of explicit information that hardware companies employ to

avoid competition and breaches of their intellectual property, it is difficult to obtain an

accurate simulation that correctly presents all the characteristics of a processor and its

architecture. Several works base their results on top of simulators that are almost treated

as black boxes, with non-validated information and possible bugs and modeling errors.

The detail level also plays an important role, with oversimplified models that simplify

many key features, or an unnecessary detail level and possible overfitting, compromising

the generalization to other hardware being simulated. Moreover, there is a tendency of

40

following the "overall trends" provided by the simulation, ignoring the impact of errors in

specific details.

Since Desikan’s work, several simulators have been created along with a validation

effort to evaluate their accuracy. In Akram et al’s research (AKRAM; SAWALHA, 2019),

the authors evaluated and compared the gem5 (BINKERT et al., 2011), Multi2Sim (UBAL

et al., 2012), MARSSx86 (PATEL; AFRAM; GHOSE, 2011), PTLsim (YOURST, 2007),

Sniper (CARLSON et al., 2014), and ZSim (SANCHEZ; KOZYRAKIS, 2013) simula-

tors. After thorough characterization of the simulators, the authors performed experi-

ments with single-core and multi-programmed workloads on each simulator. The results

of each simulator were compared with Intel Haswell architecture (HAMMARLUND et

al., 2014). The authors then highlighted the simulators’ error sources, their sensitivity to

different architectural parameters, and their relative error. Thus, they concluded that the

lack of validation of a simulator for the target architecture, no matter how popular it is

(e.g., gem5, which was only validated for ARM (GUTIERREZ et al., 2014)), leads to low

accuracy and may render experiments invalid due to erroneous conclusions. Therefore,

despite the validation against a specific architecture, one can not generalize the validation

results or simply change configuration parameters expecting a similar performance and

behavior for a distinct target (NOWATZKI et al., 2015).

A more recent work (WALKER et al., 2018) automates the process of finding the

source of simulator error. The main objective of the work is to obtain more accurate en-

ergy consumption models for gem5, but to do so they required a more accurate processor

model. Using gem5 and the processor configurations provided by Gutierrez et al.’s gem5

validation (GUTIERREZ et al., 2014), Walker et al. created GemStone, a framework to

find the sources of simulation error based on empirical hardware Performance Monitor

Counters (PMCs) models. GemStone selects the events in gem5, correlating them with

the PMC events, and at last, performs one regression analysis to approximate the relation-

ship between hardware PMCs and gem5 error, and another to approximate the relationship

between gem5 events and gem5 error.

Given these substantial disparities between the real hardware and architecture sim-

ulators, many works might have their results questioned. It becomes challenging to attest

how accurate and representative a given prefetching mechanism is if it is built upon a non-

validated simulator. Even if the simulator is validated, this process is frequently based on

top of a specific architecture, again confusing the assessment of the study correctness.

Moreover, simulator designers often need to choose which key features will receive a big-

41

ger focus and detail level, which might produce oversimplified models that culminate in

several inaccuracies and wrong conclusions.

To further complicate the matter, most state-of-the-art prefetchers and simulators

are built upon single-core systems, which are less and less prominent in everyday sce-

narios. As mentioned in Chapter 2.2, it is challenging to understand the entire behavior

and effects of prefetching algorithms over the system performance. One needs to take

into account several aspects, many of those who are intensified in multi-core systems.

The mechanism aggressiveness level (which can exacerbate cache pollution and cache

thrashing), area and power constraints, the inter-core interference highly present in multi-

core systems (increasing shared resource competition and causing system contention), and

several other conditions deeply interact with each other. Therefore, given these various

challenges, many simulators do not validate their prefetcher implementations or validate

it only against sequential applications (CARLSON; HEIRMANT; EECKHOUT, 2011),

while many others not even model the prefetcher (SANCHEZ; KOZYRAKIS, 2013).

Together with the necessary design simplifications, the lack of validation can result in

misleading conclusions in several works related to the memory system.

Through a careful experimental campaign, we ambition to fill some gaps in under-

standing how these aforementioned aspects relate to each other in such complex systems

with multi-level memory hierarchy and with several processing cores. We investigate the

performance of the different prefetchers available in the real hardware and analyze the

system behavior when increasing the application parallelism. The behavior of multi-core

architecture simulators and their prefetching techniques is also addressed in this work,

comparing to the performance and measurements from a real hardware environment with

multi-thread high-performance applications. At the end of this work, we hope to bring

further knowledge on the characteristics of the complex multi-core systems prefetching

and their memory hierarchy.

42

43

4 METHODOLOGY AND EXPERIMENTAL ENVIRONMENT

In this Chapter, we discuss the entire methodology campaign adopted in this work.

We introduce details regarding the simulators employed, such as their implementation

choices and validation. Moreover, we describe the experimental environment, covering

the available prefetching algorithms provided by both the real machine hardware and

Sniper, and the different prefetcher combinations executed and simulated, following with

the methodology applied in the experiments and the benchmark used.

4.1 Simulators

As already discussed, computer architecture simulators play a crucial role in de-

veloping and analyzing new ideas in computer architecture research. As presented in

Section 2.3, it is possible to classify state-of-the-art simulators according to many dif-

ferent parameters since each of them approaches a given set of architectural aspects and

proposes distinct implementation techniques. However, depending on the detailing level

and on implementation choices, many simulators may present high error rates and inac-

curacies, compromising the simulation validity. When we consider multi-core systems,

the question is further complicated since many other aspects arise with parallelism and

are sometimes harder to be implemented in simulators. Therefore, this work proposes an

evaluation of the prefetcher simulation accuracy of two parallel architecture simulators,

ZSim (SANCHEZ; KOZYRAKIS, 2013) and Sniper (CARLSON et al., 2014). Details

about the simulators are depicted in the following sections.

4.1.1 ZSim

ZSim was selected for our study due to its speed and accuracy when simulating

x86 architectures, characteristics presented in its validation study (SANCHEZ, 2016). It

is an instruction-driven simulator that uses Dynamic Binary Translation (DBT) to perform

the instruction execution and dynamic instrumentation. The simulation uses a two-phase

method called Bound and Weave. In the Bound phase, a few thousand cycles are simu-

lated, ignoring the contention and applying a minimal latency for all memory accesses.

In this phase, a trace of all memory accesses is recorded, including which caches lines

44

were accessed, evicted, invalidated, and so on. In the Weave phase, a parallel simula-

tion is performed, oriented to the events of the recorded interval to determine the actual

latency of each memory request in each component. Once the interactions between mem-

ory accesses have already been identified in the first phase, this timing simulation of these

accesses can be done efficiently, maintaining high precision.

The authors observed that, in an interval of a few thousand cycles, most of the

concurrent accesses between different cores happen to unrelated cache lines. Therefore,

simulating these unrelated accesses first out-of-order and ignoring contention and, later,

simulating them in order respecting time constraints, is equivalent to simulating them

entirely in order. However, when accesses are related, i.e., access the same cache line, it

is necessary to maintain the coherence of the different copies of the data in the different

cores. An example of this is when a core demands exclusive access over a shared cache

line to write into it, causing the cache coherence protocol to invalidate the other copies of

the line in the cache hierarchy system.

The set of requests and messages necessary to invalidate the other copies of the

line to obtain it as exclusive is known as Request for Ownership - RFO. However, for

being considered rare, the order of these accesses to the same line is not modeled by

ZSim, which can change the path of this data in the cache hierarchy. Changing the path

of the data through the cache can impact the number of cycles, misses, and coherence

messages observed in the simulation. In addition, the generation and the paths of prefetch

requests can also change, preventing the modeling of prefetcher in this simulation model.

In its validation, ZSim uses the benchmark PARSEC (BIENIA et al., 2008) and

shows only that the speed-up is close to that obtained with real executions by varying the

number of threads. Therefore, since the prefetcher is not simulated, we seek to understand

the impact of its absence and evaluate the accuracy of the Bound and Weave simulation

method used to simulate multiple structures and threads in parallel.

4.1.2 Sniper

Sniper (CARLSON et al., 2014) is a parallel architecture simulator that extends the

original interval simulation model (GENBRUGGE; EYERMAN; EECKHOUT, 2010).

The authors’ proposal is the instruction-window centric (IW-centric) simulation model, an

approach that puts together the interval modeling with a more detailed simulation model

of the instruction window. Through a detailed analysis of the micro-op dependency at

45

issue stage, their extension improves the simulation accuracy with a low increase in sim-

ulation time. Moreover, an improved memory access dependency analysis is performed,

differentiating instructions that depend on long-latency loads and those which do not.

The basis for the interval simulation is the concept that, if no miss events occur

(such as branch mispredictions and cache misses), then the execution should continue

smoothly throughout the processor pipeline, functional units, and buffers (EYERMAN et

al., 2009). However, this can only be observed under unrealistic conditions. Therefore,

the effect of such miss events is the division of the execution into intervals, which serve as

the fundamental entity for analysis and modeling for the interval simulation. The original

interval modeling is itself a simulation model that allows the simulation of prefetchers in

Sniper.

The interval simulation works with two structures named new window and old

window (CARLSON et al., 2014). Each window admits as many micro-ops entries as

exist in the reorder buffer of an out-of-order processor. While the new window represents

the upcoming micro-ops and is completely filled the entire time, the old window contains

a list of the most recently dispatched micro-ops. Through the micro-ops found at the new

window, it is possible to identify memory level parallelism (MLP). The instruction level

parallelism (ILP), on the other side, is calculated by analyzing the critical path of the old

window micro-ops list.

In its validation, Sniper uses the benchmark SPLASH-2 (WOO et al., 1995) and

also shows that the average speed-up error is small when varying the number of threads.

Although Sniper provides an implementation of the prefetcher behavior, it has only been

recently validated for the Cortex-A53 and Cortex-A72 ARM cores (ADILEH et al., 2019).

The prefetcher model is responsible for over half of the simulation error in the povray and

x264 benchmarks, as some implementation details of the real hardware are unknown.

However, the validation used only sequential benchmarks. In contrast, this study con-

tributes to a better understanding of the accuracy of the simulated prefetch model and

how it behaves in simulations of parallel architectures.

4.2 Experimental Setup

To collect information about the application execution in the real machine, we

make use of the PAPI (TERPSTRA et al., 2010) tool. PAPI allows the obtaining of hard-

ware counters values, a set of registers that provide information about CPU events such

46

as the number of instructions and the number of cycles. In each real execution, only one

hardware counter is evaluated, thus avoiding aggregations or approximations that the tool

performs when calculating several metrics in the same execution. The performance and

the real executions statistics were evaluated with 10 executions of each metric, for each

benchmark. The execution environment was composed of an Intel Xeon Silver 4116 CPU

with 2.1 GHz of frequency, the Skylake microarchitecture (DOWECK et al., 2017). The

simulation environment is an approximation of the real hardware, respecting the simula-

tors limitations. Each simulation was executed only once, and all statistics were extracted

from the same deterministic simulation. All the executions in the real machine were per-

formed with the Intel Turbo Boost (ROTEM et al., 2012) technology disabled.

An important observation regarding the Skylake architecture is the change from

an inclusive L3 cache to a non-inclusive one. The Skylake predecessor architecture was

Intel Broadwell, which presents an inclusive L3 cache, meaning that all data brought into

the L2 cache is also brought into the LLC. However, in non-inclusive L3 caches like the

one used by Skylake, the data found at the L2 cache may or may not be found in the LLC,

and there is no guarantee regarding how it will behave. Which data is brought to which

level depends on the application access pattern, code and data sizes and their layout in the

memory, and also on the inter-thread communication and sharing behavior.

Table 4.1 presents the configuration of the real machine and the processor sim-

ulated by ZSim and Sniper. The Sniper out-of-order core model was based on the Ne-

halem architecture (CARLSON; HEIRMANT; EECKHOUT, 2011), while ZSim based

its out-of-order core model implementation on the Westmere architecture (SANCHEZ;

KOZYRAKIS, 2013), a process shrink of Nehalem. Therefore, both simulators present

a 16 stages pipeline, while the real machine architecture may present between 14 and 19

Table 4.1: Real machine, ZSim and Sniper configurations.
Real ZSim Sniper

Processor Frequency 2.1 Ghz 2.1 Ghz 2.1 Ghz
Number of Cores 12 12 12
Pipeline Stages 18 16 16
Cache Line Size 64 B 64 B 64 B
L1 Data Cache 8-way 32 KB 8-way 32 KB 8-way 32 KB
Latency 4 4 4
L1 Instruction Cache 8-way 32 KB 8-way 32 KB 8-way 32 KB
Latency 4 4 4
Unified L2 Cache 16-way 1 MB 16-way 1 MB 16-way 1 MB
Latency ca. 14 14 14
Last Level Cache L3 Non-inclusive 11-way 16.5 MB Inclusive 11-way 16.5 MB Inclusive 11-way 16.5 MB
Latency ca. 60-80 77 77
Prefetchers L1 IP Stride Simple (Stride L1 Prefetcher)

Adjacent Line prefetcher No Prefetcher Global History Buffer
L2 DCU Stream prefetcher (L2 Prefetcher)

47

stages (FOG, 2012). Other parameters such as cache associativity and cache access la-

tency are easy to configure in the simulators and can be found in (FOG, 2012; DOWECK

et al., 2017).

In Table 4.2, we present the description of the prefetcher algorithms considered

in this work. The algorithms found in the L1 cache hardware are the Data Cache Unit

(DCU) Prefetcher (INTEL, 2019) and the DCU IP Prefetcher (INTEL, 2019). The DCU

Prefetcher, also known as the streaming prefetcher, is triggered by an ascending access to

very recently loaded data. The processor assumes that this access is part of a streaming

algorithm and automatically fetches the next line. The DCU IP Prefetcher keeps track of

individual load instructions (based on their instruction pointer value). If a load instruction

is detected to have a regular stride, then a prefetch is sent to the next address which is the

sum of the current address and the stride.

The L2 Hardware Prefetcher (INTEL, 2019) and the L2 Adjacent Cache Prefetcher

(INTEL, 2019) are the prefetcher algorithms found in the real machine L2 cache. The L2

Hardware Prefetcher monitors read requests from the L1 cache for ascending and de-

scending sequences of addresses. Monitored read requests include L1 data cache requests

initiated by load and store operations and also by the L1 prefetchers, and L1 instruction

cache requests for code fetch. When a forward or backward stream of requests is de-

tected, the anticipated cache lines are prefetched. This prefetcher may issue two prefetch

requests on every L2 lookup and run up to 20 lines ahead of the load request. The L2

Adjacent Cache Prefetcher fetches two 64-byte cache lines into a 128-byte sector instead

of only one, regardless of whether the additional cache line has been requested or not.

The prefetcher algorithms in Sniper are the Simple and the Global History Buffer

(GHB) (NESBIT; SMITH, 2004b). Based on an analysis of the Simple prefetcher code,

we observed that it is similar to a strided prefetcher algorithm. Thus, we use the Simple

prefetcher as the L1 cache prefetcher in our experiments. The GHB prefetcher is an n-

entry FIFO table that holds the n most recent L2 misses addresses. Each GHB entry

stores a global miss address and a link pointer that is used to chain the GHB entries into

address lists. Each address list is a time-ordered sequence of addresses issued by the

Table 4.2: Prefetcher algorithms.
Prefetchers Description L1 L2 Real Sniper

DCU Prefetcher Streaming prefetcher, fetches the next cache line into L1D Cache X X
DCU IP Prefetcher Strided prefetcher of next L1D line based upon sequential load history X X

L2 Hardware Prefetcher Mid Level Cache (L2) streamer prefetcher X X
L2 Adjacent Cache Prefetcher Prefetching of adjacent cache lines into L2 Cache X X

Simple Strided prefetcher of L1D line X X
Global History Buffer L2 Prefetcher based on global miss addresses X X

48

same instruction pointer. Therefore, based on the information of the address lists, it is

possible to implement a correlation based prefetcher (CHARNEY; REEVES, 1995) and a

stride prefetcher (NESBIT; SMITH, 2004b). The L2 prefetcher found in Sniper is a GHB

correlation based prefetcher, and in our experiments it is used as the L2 cache prefetcher.

The hardware prefetchers present in Skylake can be enabled and disabled by chang-

ing the values of Model Specific Registers (MSR) through the instructions RDMSR (read

MSR) and WRMSR (write MSR). MSRs are a set of control registers used for debug-

ging, program execution tracing, computer performance monitoring, and toggling certain

CPU features (INTEL, 2021). Therefore, based on the aforementioned prefetchers, we

conducted experiments on the real machine considering the following configurations:

• All Skylake L1 cache prefetchers;

• All Skylake L2 cache prefetchers;

• All Skylake prefetchers from both L1 and L2 cache;

• No prefetcher.

Based on the Sniper prefetchers, the following systems were simulated:

• Only the L2 data prefetcher (GHB);

• Both L1 (Simple) and L2 (GHB) prefetchers;

• No prefetcher.

Since ZSim does not model the prefetcher behavior, there are no variations of the

simulated system. With ZSim we only perform simulations with no prefetcher, which we

refer to as ZSim.

4.3 NAS Parallel Benchmarks

For this study, we used a known HPC benchmark in the literature called Numer-

ical Aerodynamic Simulation Parallel Benchmark (NPB) (JIN et al., 1999). This set of

applications comprises ten applications, each of which encapsulates a certain type of com-

putation that is often processed by HPC applications, e.g. computational fluid dynam-

ics (CFD), adaptive meshes, parallel I/O, and computational grids. We used nine of the

ten NPB applications, namely: CG (Conjugate Gradient), EP (Embarrassingly Parallel),

FT (Fourier Transform), IS (Integer Sort), MG (Multi-Grid), UA (Unstructured Adaptive

mesh), BT (Block Tri-diagonal solver), LU (Lower-Upper Gauss-Seidel solver), and SP

49

(Scalar Penta-diagonal solver). The Data Cube (DC) application was discarded because

DC mainly stresses I/O operations, which are not modeled by the architecture simulators.

All NPB applications are optimized to perform homogeneous memory accesses, with a

small or nonexistent load unbalance.

The benchmark set presents different input classes that offer different input sizes

and complexities. The available input classes are: S, W, A, B, C, D, E, and F. The class

S was designed for quick testing purposes; class W was originally designed for standard

testing considering a 90’s workstations, and nowadays is used for quick test purposes as

well; classes A, B, and C are standard test problems, whose size increases four times

from one class to another; and classes D, E, and F, for large-size problems, whose size

increases sixteen times from one to another. Most of the experiments in this work were

made using class A since it is large enough to make assessments over the memory system

of the Skylake architecture and small enough to avoid exceeding the feasible simulation

time.

50

51

5 INVESTIGATING CURRENT ARCHITECTURE PREFETCHERS

In this Chapter, we present the main results obtained through the aforementioned

experimental setup, taking into account the real execution of the NPB benchmark. More

specifically, here we shed light to the following question: How do the different prefetchers

affect the execution of NPB over a real machine with a varying thread level parallelism?

Figure 5.1 shows the instructions per cycle (IPC) for each NPB application, us-

ing the input class A, taking into account different numbers of threads and prefetchers,

and with hardware prefetcher disabled as well. The IPC can be understood as a general

performance metric of the prefetchers when executing the applications, since an efficient

prefetcher will enable more processed instructions per cycle by fetching the right data at

the right time. The error bars represent the variability observed among both the cores of

a certain execution and the 10 distinct repetitions of the executions.

As expected, we can observe that any prefetcher increases the execution perfor-

mance of NPB, with the exception of the EP application. Since EP is known to have a

small memory footprint (JIN et al., 1999), processor stalls due to memory access latency

Figure 5.1: IPC results for the real execution of the NPB applications with input class A.
Standard deviation lower than 5%.

MG SP UA

FT IS LU

BT CG EP

1 2 4 8 12 1 2 4 8 12 1 2 4 8 12

1 2 4 8 12 1 2 4 8 12 1 2 4 8 12

1 2 4 8 12 1 2 4 8 12 1 2 4 8 12
0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.0
0.5
1.0
1.5
2.0
2.5
3.0

0.0
0.5
1.0
1.5
2.0
2.5

Number of Threads

In
st

ru
ct

io
ns

 p
er

 C
yc

le

No Prefetcher L1 Prefetcher L2 Prefetcher L1 + L2 Prefetcher

52

rarely occur during its execution. Therefore, there is little difference in the IPC given

different prefetcher configurations for EP. For the other applications, memory prefetching

significantly contributes to a better IPC, specially for executions up to four threads.

However, the increase in performance from a standalone L2 prefetcher to the com-

bination of L1+L2 prefetchers is not as large, with an overall average IPC improvement

of 2.9%, when compared to the 31.9% of performance increase from no prefetcher to the

standalone L2 prefetcher. This can be explained by the ability of the L2 prefetcher to

detect more relevant memory access streams that are dependent on the LLC long-latency

response, while the L1 prefetcher detects access to data that might be found at the on-core

L2 cache level. Since the difference in latency from the L1 to the L2 is small, and the

latency from the L2 to the LLC is much larger, this means the main performance gains

would be obtained by the L2 prefetcher and the associated access streams it detects. For

concrete numbers, the L2 cache access latency is of 14 cycles, only 10 cycles higher than

the L1 cache, while the LLC latency in Skylake is measured to be approximately between

60 and 80 processor cycles, presenting a much more substantial overhead and a higher

probability of stalling the processor execution (ALVES et al., 2015). Furthermore, in

Figure 5.2 we present the sum of all prefetch requests performed by the active prefetch-

ers of each active core in the real execution, also for the input class A. We can observe

that, for some applications (e.g. BT, FT, SP, and some executions of LU), the number of

prefetch requests performed by the L1 prefetcher is larger than the number of requests

performed by the L2 prefetcher, and, in some cases, it almost reaches the same amount of

requests performed by the two prefetchers combined (the L1+L2 executions). Despite the

L1 prefetcher issuing more prefetches than the L2 prefetcher in several cases, the fewer

L2 prefetches are the ones who deliver the most crucial performance gains, as seen in

Figure 5.1.

Another complementary explanation for these small performance gains observed

for the L1 prefetcher is that its requests may be detrimental to performance, since they

may compete with demand data for the rather limited cache space on the L1 cache level, as

pointed out on Section 2.2. Moreover, these prefetch requests may also occupy too many

entries on the line fill buffers present in the L1 hardware, competing again for shared

and limited resources with the critical demand accesses, which are more relevant for the

immediate processor execution than the prefetched lines.

The L1+L2 prefetcher combination is often set as the default setting in the ma-

chine configurations. One of its main appeal is that it is the setting that provides the

53

Figure 5.2: Number of prefetch requests of the real machine executions with the input
class A. Standard deviation lower than 5%.

MG SP UA

FT IS LU

BT CG EP

1 2 4 8 12 1 2 4 8 12 1 2 4 8 12

1 2 4 8 12 1 2 4 8 12 1 2 4 8 12

1 2 4 8 12 1 2 4 8 12 1 2 4 8 12
0

15
30
45
60

0
600

1200
1800
2400
3000

0
400
800

1200
1600
2000

0
50

100
150
200

0
7

14
21
28
35

0
800

1600
2400
3200
4000

0
500

1000
1500
2000
2500

0
70

140
210
280
350

0
50

100
150
200
250

Number of Threads

N
um

be
r

of
 P

re
fe

tc
h

R
eq

ue
st

s
(M

ill
io

ns
)

L1 Prefetcher L2 Prefetcher L1 + L2 Prefetcher

best performance. However, one drawback of this approach lies in the interpretability

of what is being performed by the algorithms. The lack of understanding over the full

prefetcher hierarchy behavior hinders the accurate implementation of prefetching models

in architecture simulators, which will be demonstrated in detail in Chapter 6. For in-

stance, the interactions between the prefetchers of each cache level (e.g., whether the L2

prefetcher considers L1 prefetches as part of the application access stream or as prefetch

requests) can cause major changes in the behavior of the memory hierarchy. In contrast,

the L2 prefetcher in isolation provides a simpler, more transparent understanding of the

prefetches performed by the algorithm, facilitating reverse engineering and reproduction

or simulation of the prefetcher, almost reaching the best observed performance (L1+L2).

At the light of these results, it may be advisable to set the L2 prefetcher on its own, as

opposed to the L1+L2 setting, since the lack of transparency in the details of the L1 and

L2 prefetcher, the L1 line fill buffer contention, and the additional energy consumption of

the L1 prefetcher may not outweigh its increase in performance.

Another interesting trend observed in Figure 5.1 is the decrease in the IPC for an

increasing number of threads in the majority of applications and prefetchers, with the EP

application being an exception. Apart from EP – which, for the same reasons explained

54

above, the IPC is stable for any number of threads on all cores – the NPB applications

use memory accesses and inter-thread communications, that naturally increase in function

of the total number of threads. With a large number of threads, these memory accesses

and inter-thread communications generate contention that become a larger constraint in

the IPC, and the performance provided by prefetchers becomes small or negligible. This

effect can be clearly seen in the IPC graph for the MG application: MG is known to

use memory-intensive operations and to be communication-intensive, largely benefiting

from memory prefetchers. However, as the number of threads increases, the contention

becomes a more considerable constraint in the IPC results, significantly harming the per-

formance.

In this regard, we hypothesize that, when the number of concurrent threads exe-

cuted in a processor is high, the performance benefit from memory prefetchers for ap-

plications that use intense memory and inter-thread communications is negligible. These

characteristics would need to be alleviated on the applications for memory prefetchers to

be effective. However, an interesting exception to this observation are the executions of

the CG application with the L1 prefetcher and without prefetcher (Figure 5.1), where the

IPC increases in function of the number of threads. We explain the CG case with more

details in Section 5.1.

5.1 The CG Case

As previously explained, all NPB applications, except CG, suffer from a perfor-

mance decrease as a result of the increasing memory contention that harms the prefetcher

efficiency in highly parallel applications. However, the CG executions with the L1 prefetcher

and without prefetcher present a contrasting behavior, with the IPC increasing in function

of the number of threads, as demonstrated in Figure 5.1. This section aims to detail the

CG executions to better understand the CG results, showing how the application behavior

contributes to the different observations.

First, in Figure 5.3 we can observe the communication pattern found in CG. In this

figure, the darker a given cell is, the more shared memory accesses occurred between the

threads represented by row and column. The diagonal is filled with white as a thread does

not share data with itself. Thus, we can see that all threads of CG irregularly communicate

with all threads. These irregularly distributed memory accesses enable one thread to

request a memory address that had already been requested by another thread or even by

the prefetcher of another thread. Since the chosen processor model has a non-inclusive

55

Figure 5.3: CG communication pattern for 32 threads. Figure obtained from: Cruz et
al. (CRUZ; DIENER; NAVAUX, 2018)

0

5

10

15

20

25

30

0 5 10 15 20 25 30

L3 cache (as mentioned in Section 4.2), the data found in the L2 cache is not necessarily

duplicated at the L3 cache as would happen in an inclusive cache hierarchy, resulting in

more available cache space. Therefore, as we increase the number of threads, the amount

of cache space available for the application is increased by using each core private cache

levels (which include an 1 MB L2 cache per core). Consequently, a larger part of the

working set of the application fits inside the processor caches, reducing the number of

LLC misses, and thus reducing the number of long-latency DRAM accesses as well.

This behavior is shown in Figure 5.4, where we depict the number of DRAM ac-

cesses as we increase the number of threads. The instruction prefetcher has not been

disabled for any of these executions, which explains the presence of prefetch requests

when the hardware data prefetchers are disabled. As we use more threads, fewer DRAM

accesses per core need to be performed regardless of the prefetching mechanism, pre-

cisely because the application has the necessary data present in the cache. Moreover, a

more prominent decrease is observed on the demand read DRAM accesses for the exe-

cutions without prefetcher. These avoided DRAM accesses play an essential role in the

performance improvements observed in these executions. A prefetcher is accurate if it

can hide the main memory latency by effectively pulling data from the main memory to

cache memory before a demand access requests the data. An accurate prefetcher should

also generate a number of prefetches similar to the number of demand requests generated

by the processor without prefetchers, i.e., the actual number of load/store instructions that

would require data. Otherwise, it is generating unnecessary main memory accesses to

bring data that will not be used. This does not necessarily reduce the IPC, but it can in-

crease main memory contention, energy consumption, and cache pollution. Within this

context, Figure 5.4 shows that the L1 prefetcher is quite inaccurate, generating many more

speculative accesses to the DRAM in comparison with the execution without prefetcher.

In stark contrast, the L2 prefetcher on its own is a lot more accurate, as the total number

of DRAM accesses for each number of threads is close to the case of no prefetching.

56

Figure 5.4: CG main memory accesses per core, originated by demand reads and
prefetches requests, for input class A. Standard deviation lower than 5%.

L2 Prefetcher L1 + L2 Prefetcher

No Prefetcher L1 Prefetcher

1 2 4 8 12 1 2 4 8 12

1 2 4 8 12 1 2 4 8 12
0

20

40

60

0

10

20

0
5

10
15
20
25

0
5

10
15
20
25

Number of Threads

D
R

A
M

 A
cc

es
se

s
(M

ill
io

ns
)

Demand Reads Prefetch Requests

In Figure 5.1, we also notice a contrast in the performance of configurations with

the L2 prefetcher, and those without. Configurations with the L2 prefetcher do not have

an IPC increase with a higher number of cores, as the L2 prefetcher is correctly specu-

lating and bringing the data to the caches even with a low core count and low amount

of cache. On one hand, the IPC tendency of configurations with an L2 prefetcher is to

decrease, as the prefetcher effectively hides the latency of DRAM accesses, but increas-

ing the number of cores generates contention in the DRAM access. On the other hand,

configurations without the L2 prefetcher cannot hide this latency, and their IPC increase

as the application is able to retain larger portions of the working set in higher quantities

of private non-inclusive L2 caches.

5.2 Effects of Different Input Classes

Up to this point, we analyze the relationship between the prefetcher and the par-

allelism increase with fixed input size. However, the memory requirements of different

HPC applications may vary substantially, requiring different execution parameters. For

instance, when considering small input sizes, an execution with several threads may high-

light communication effects, which will play a decisive role in the application perfor-

mance. Simultaneously, the prefetcher effectiveness may also be disturbed if we increase

the parallelism in communication-intensive applications. In this section, we aim to bet-

ter understand how the prefetcher influences performance when we vary the application

memory requirements.

57

Figure 5.5: IPC results for the real execution of the NPB SP application, using input
classes W, A, and B. Standard deviation lower than 5%.

Class W Class A Class B

1 2 4 8 12 1 2 4 8 12 1 2 4 8 12
0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Number of Threads

In
st

ru
ct

io
ns

 p
er

 C
yc

le
No Prefetcher L1 Prefetcher L2 Prefetcher L1 + L2 Prefetcher

In Figure 5.5, we present the IPC results for the SP application with different

thread counts, different hardware prefetcher configurations, and variable input sizes, using

NPB classes W, A, and B. We present the results only for the SP application since the same

behavior is observed for all other NPB applications. The first point to be noted is that as

we increase the problem size, the prefetcher influence on the application performance

increases as well. If no prefetcher is enabled, class W suffers from a modest performance

loss, while classes A and B are able to improve their performance by up to two times with

all prefetchers activated. Since class W has smaller memory requirements, any prefetcher

that can predict a simple access pattern may already be able to fetch a significant part of

the application working set in advance. Therefore, the performance decrease observed

as we increase parallelism in class W is caused by the thread communication overhead

observed over small input sizes, which can not be entirely solved by the prefetcher.

When we compare the performance reduction observed with the increase of paral-

lelism for classes A and B, we identify that a bigger problem size suffers from a more dra-

matic loss. As we increase the parallelism of the execution with the class A, the execution

without prefetcher does not suffer performance reduction. For class B, however, a small

performance loss is observed even with all hardware prefetchers disabled. This points out

that the source of performance loss for class A is strictly related to the previously noted

contention that arises with the prefetcher action in a multi-core system. For class A, the

working set appears to fit entirely within the on-core memory levels; consequently, the ap-

plication only demonstrates performance loss when facing prefetcher-related contention.

However, as the problem size scales, more off-core long-latency memory accesses are

necessary since the working set does not fit entirely inside the on-core memory levels.

For this reason, these long-latency memory accesses, together with the prefetcher-related

memory contention, harm the application performance more fiercely in class B.

58

59

6 INVESTIGATING PREFETCHERS ON SIMULATION

As discussed in Chapter 1, parallel architecture simulation tools are necessary to

develop and evaluate new techniques such as new prefetcher algorithms. A key require-

ment is that these simulation tools can effectively simulate the parallel architecture and

the parallel applications, bringing similar values of the metrics when compared to the

real execution. However, in Chapter 3 we have already pointed out several problems of

working with computer architecture simulators. Specifically considering the prefetcher,

the increasing variety of prefetching mechanisms and the trade-offs presented at Chap-

ter 2.2 further complicate prefetch design in simulators. In this Chapter, we therefore

aim to clarify the following question: Using the ZSim and Sniper simulators, how do they

behave and how accurately do they simulate NPB, accounting distinct prefetchers when

possible?

While simulators are a useful tool to test new architecture techniques, one draw-

back is the large amount of time that is often required by the simulations. For instance,

the time to simulate the SP and BT applications of NPB using Sniper took more than one

week. Sinuca (ALVES et al., 2015), which is another parallel architecture simulator, took

even more time to simulate, exceeding the maximum execution time allowed by our com-

puting infrastructure. In this regard, we had to discard Sinuca from the study and with

Sniper we simulated only a subset of the NPB applications, notably CG, EP, FT, IS, LU,

and MG. We also only analyzed the simulation of prefetchers with the Sniper simulator,

since ZSim does not simulate memory prefetchers.

Figure 6.1 shows the obtained IPCs when no prefetcher is used for the simulations

and the real execution of six NPB applications, namely CG, EP, FT, IS, MG, and LU,

simulating the input class A. For that we disabled the prefetcher on both the real execu-

tion and the Sniper simulation. We did not make any specific changes to ZSim for this

experiment, since ZSim does not support prefetcher simulation.

The only application where both simulators follow the real execution performance

tendency is the EP. Since EP makes very little use of communication, it results in a sim-

ulation with very little contention events. This makes it easier for ZSim and Sniper to

simulate EP, since simulating the effects of contention is arguably one of the most com-

plex tasks in architecture simulation because of the out-of-order nature of contention

events (SANCHEZ; KOZYRAKIS, 2013). However, for applications where communi-

cation and contention are more predominant, we can notice discrepancies between the

60

simulation and the real execution. This discrepancy can be quite extreme. For instance,

the IS simulation with ZSim and with 12 threads resulted in an average IPC 30% lower

than in the real execution, and Sniper CG simulation with 12 threads resulted in an av-

erage IPC 426% lower than in the real execution. The CG application is an interesting

case because both Sniper and ZSim do not seem to accurately simulate the parallel CG

execution (see Section 5.1). Both simulators predict a decrease in IPC as the number of

threads increase, whereas in the real execution the trend is the opposite.

As aforementioned, accurately modeling contention is challenging. As mentioned

in Section 4.1.1, in the ZSim case it is assumed that most concurrent accesses happen

to unrelated cache lines when considering small time scales. ZSim was engineered in

such a way that requests to the same cache line may be simulated in a different order

than the observed in the real execution (SANCHEZ; KOZYRAKIS, 2013). Therefore,

the path of the data through the cache hierarchy may change, resulting in simulation

inaccuracies. This may explain the discrepancies of ZSim when simulating CG, as it is

straightforward to devise that the concurrent and irregular memory accesses present in

CG lead to concurrent accesses in same cache lines. This same explanation can also be

the case for the LU application, though a more detailed memory access analysis of LU is

required to attest this argument.

As a general trend, for NPB applications with communication and contention,

Figure 6.1: Obtained IPCs when no prefetcher is used for ZSim and Sniper simulations
and the real execution.

IS LU MG

CG EP FT

1 2 4 12 1 2 4 12 1 2 4 12

1 2 4 12 1 2 4 12 1 2 4 12
0.0
0.5
1.0
1.5
2.0
2.5

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0

0.4

0.8

1.2

1.6

2.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0

0.2

0.4

0.6

0.8

Number of Threads

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Real Machine Sniper ZSim

61

Figure 6.2: Comparison of Sniper L2 and L1+L2 prefetchers performance to the real
executions results.

CG EP FT IS LU MG

L2 P
refetcher

L1−
L2 P

refetcher

1 2 4 12 1 2 4 12 1 2 4 12 1 2 4 12 1 2 4 12 1 2 4 12

0.0

1.0

2.0

3.0

0.0

1.0

2.0

3.0

Number of Threads

In
st

ru
ct

io
ns

 p
er

 C
yc

le

Real Machine Sniper

ZSim tends to underestimate the contention effects, while Sniper tends to overestimate

the contention effects as the number of threads in the simulation increases. For ZSim,

this fact can be due to the above-mentioned design assumptions made during its devel-

opment. For Sniper, in its turn, the reason can be more complicated, as it has been re-

ported (CARLSON et al., 2014) that simulation errors in the memory model of Sniper

happen when simulating parallel applications with the interval model (see Section 4.1.2).

In Figure 6.2, we compare the performance, in terms of IPC, of the Sniper L2

prefetcher with the L2 prefetcher of the real machine, and the Sniper L1+L2 prefetcher

with the real counterpart, respectively. In all evaluated NPB applications, we can notice

discrepancies between the Sniper simulation results and the real machine results, with

Sniper mostly underestimating the IPC performance, and overestimating the communica-

tion and contention effects with increasing number of threads. Many reasons can explain

this fact. First, as mentioned above, Sniper presents errors in its memory model when

simulating parallel applications, even without considering prefetcher. These errors may

be further amplified by adding a memory prefetcher in the simulation. Second, Global

History Buffer (GHB) (NESBIT; SMITH, 2004b) L2 prefetcher implemented in Sniper

differs from the Stream (INTEL, 2019) L2 prefetcher present in Skylake. In this regard,

the GHB prefetcher offered by Sniper may not be suited to simulate Skylake. Modeling

prefetcher algorithms with the same level of specificity of the real algorithms may be

unfeasible, unfortunately, since manufaturers need to conceal key characteristics of their

62

Figure 6.3: Number of prefetches issued by the simulation with the Sniper prefetchers, in
ratio of their real counterparts. (log scale on y axis).

IS LU MG

CG EP FT

1 2 4 12 1 2 4 12 1 2 4 12

1 2 4 12 1 2 4 12 1 2 4 12
1

3

10

1

3

10

10

1000

100000

1

3

10

1

10

100

0.3

1.0

3.0

10.0

Number of ThreadsN
um

be
r

of
 P

re
fe

tc
h

R
eq

ue
st

s
N

or
m

al
iz

ed
 to

 R
ea

l M
ac

hi
ne

Sniper L1 + L2 Sniper L2

products (including prefetcher algorithms) in order to stay competitive. Another point

worth noting is that, as mentioned in Section 4.2, Skylake implements a non-inclusive L3

cache. This non-inclusive L3 adds new complexity to the memory subsystem simulation

since the data location in this new organization depends upon several aspects (INTEL,

2019). Similarly to other architecture simulators, Sniper implements an inclusive L3

cache. This difference can also contribute to the discrepancies between the real execution

using Skylake and the Sniper simulation.

In Figure 6.3 we present the total number of prefetch requests performed by the

Sniper L1+L2 prefetcher, the Sniper L2 prefetcher, in ratio of their real counterparts. The

number of prefetch requests for the L1+L2 prefetcher counts the prefetches on both L1

and L2 caches. As expected at this point, Sniper L2 prefetcher model was not capable to

accurately simulate the Skylake L2 prefetcher on the number of prefetch requests as well,

presenting large discrepancies (notice the log scale on the y axis of Figure 6.3). Sniper

L1+L2 prefetcher presented a total number of prefetch requests closer to the real execu-

tion. However, the similar number of prefetch requests of the Sniper L1+L2 prefetchers

does not translate in similar estimations of the applications performance, as shown in Fig-

ure 6.2. This may be due to the fact that the prefetches performed by Sniper are different

in terms of usefullness. To attest this argument, in Figure 6.4 we show the mean percent-

age of prefetches that were not useful during the executions in the real machine and in the

63

Figure 6.4: Useless prefeteches performed by the simulation and by the real hardware, in
ratio of the total number of prefetches.

1.9 1.6 2.0 0.7

6.0 4.5 6.3 2.7

16.4 16.2 16.2 16.2

88.5 87.9 85.6 69.6

0.7 2.1 1.9 4.8

2.5 7.8 6.7 17.8

58.7 62.9 62.8 56.3

96.1 89.4 87.8 67.4

0.3 0.2 0.1 0.2

0.8 0.5 0.4 0.5

24.5 24.7 25.2 26.4

60.5 59.1 55.7 68.3

2.6 2.7 4.6 2.2

13.9 13.4 30.4 20.1

70.7 66.2 23.6 16.8

67.3 67.1 68.0 57.2

4.5 4.5 5.1 4.7

50.1 52.3 54.3 45.2

4.8 4.8 4.9 4.5

34.7 34.7 35.3 31.1

1.1 1.2 1.3 1.6

4.3 4.6 5.5 6.2

70.0 40.5 42.2 34.8

70.2 79.3 82.0 62.1

IS LU MG

CG EP FT

1 2 4 12 1 2 4 12 1 2 4 12

1 2 4 12 1 2 4 12 1 2 4 12

Real L1 + L2

Sniper L1 + L2

Real L2

Sniper L2

Real L1 + L2

Sniper L1 + L2

Real L2

Sniper L2

Number of Threads

0
25
50
75
100

Useless L2
Prefetches (%)

Sniper simulation. We can notice that the only application that sniper managed to accu-

rately simulate the usefullness of the prefetches is the FT application. When simulating

the other applications with Sniper, Sniper considered the majority of prefetch requests

as useless, with useless prefetches close to 100% in some cases. This may indicate that

Sniper memory simulation module is having issues on simulating how the prefetched data

is interacting with cache hierarchy. The non-inclusive L3 cache may also be a cause of

this issue, since again Sniper considers an inclusive L3 cache. These several results fur-

ther emphasize that simulators are often designed for specific microarchitectures and can

not be used as general tools (NOWATZKI et al., 2015).

64

65

7 DISCUSSION AND FINDINGS

An important aspect highlighted throughout the entire work is the difficulty of

working with the memory system, with the prefetcher and its algorithms being a special

case. The obscurity and confidentiality around the real implementation makes accurate

models and algorithms impossible to be reproduced in simulators; moreover, for the same

reasons above, simulator users have difficulties in finding the proper parameters for the

prefetcher models. With the simulation design being focused on specific microarchitec-

tures and its details, the employment of simulators on memory-related research can be

easily questioned (DESIKAN; BURGER; KECKLER, 2001; NOWATZKI et al., 2015).

As proposed on the Section 2.2, there are several trade-offs involved on the prefetcher

design that directly impact the performance. For instance, overly aggressive prefetchers

are likely to generate pollution and thrashing, which exacerbate contention and power

consumption, and inter-core interference was broadly observed throughout this entire

work. In our experiments, we found interesting characteristics in the studied prefetch-

ers that may direct future works. We have discussed how the L1 data prefetcher snooping

the L1 cache requests can create contention by occupying the limited line fill buffers in

the L1 cache. Considering this and the L2 prefetcher impact on performance, prefetch-

ing algorithms that consider their interaction and their peculiarities may be beneficial to

performance. Moreover, the interaction between the L1 prefetcher and the L2 prefetcher

makes architecture studies that consider prefetchers harder to interpret. Analyzing ap-

plications’ performance, therefore, becomes harder due to the lack of control over the

prefetchers and their implementations.

We argue that the use of both prefetchers (L1+L2) does not necessarily warrant

significant performance gains, which is not intuitive. When considering the L2 prefetcher,

we obtained performance gains similar to when using both prefetchers, with the advan-

tages of having more control over the experiments and the noise in the memory subsystem,

faster simulation time, and less energy consumption due to the smaller number of prefetch

requests being performed. This is comprehensible, as the current cache memory technolo-

gies allow a small difference in latency between the L1 and L2 caches, while the access

latency to the off-chip L3 cache memory is considerably higher than the access latency

of the L2 cache (on average 7x, due to the mesh topology necessary to fully utilize the

cache, as it is distributed in L3 off-core banks). Therefore, avoiding accesses to the L3

cache is more critical in terms of latency, and it is advisable to use the L2 prefetcher as

66

a standalone instead of both prefetchers (which is the default setting). The L2 prefetcher

observes the more relevant access patterns, as it prefetches data that would always require

an access to the L3, thus hiding the large L3 latency.

With the increase in application parallelism, the execution time naturally becomes

smaller. However, we see that the performance per core decreases as we increase the level

of parallelism, showing the impact of memory accesses and communication over the ap-

plication performance. As the amount of communication increases, the contention for the

shared resources (interconnection network and LLC banks) increases as well. Thereby,

the request buffers of the caches and main memory become full, and the prefetcher cannot

sufficiently mitigate the memory latency, resulting in small IPC values. Thus, analyzing

the communication pattern of applications is an important task to improve their perfor-

mance, as applications which exert heavy memory pressure or communicate often can

diminish the usefulness of a prefetcher.

The degradation of the prefetcher usefulness has already been observed in other

applications, such as the experiences reported by Dell (DELL, 2006), which claim 8% in-

creased performance for the SAP NetWeaver Portal application when disabling the hard-

ware prefetchers. In recent years, Intel implemented forms of reducing the prefetcher

aggressiveness due to multiple reports such as Dell’s, in order to avoid performance

degradation. Our real execution results show that even with high parallelism, Intel’s strat-

egy works, as the prefetcher never loses performance compared to an execution without

prefetchers. However, it would be interesting to test this assumption with simultaneous

multi-threading.

Nevertheless, our research shows that computer architecture researchers should

always implement a prefetcher aggressiveness attenuator in the simulator model, and test

their new implementations on highly parallel applications which exert memory pressure

and inter-core interference (EBRAHIMI et al., 2009), so that the possible negative impacts

of their design can be properly evaluated.

The main scientific and technical findings that we experienced during the devel-

opment of this work are summarized below. These findings are framed into a list of good

practices and guidelines that we consider helpful and advisable for future research and

development on memory prefetcher with parallel applications, with and without simula-

tion.

• It is recommended to pay attention on how the profiling tool is collecting perfor-

mance data. Some profiling tools (such as Perf (MELO, 2010) and PAPI (TERP-

67

STRA et al., 2010)) collect performance data in either a system-wide (Perf) or

application-wide (Perf and PAPI) manner. For the former, system processes may

affect the profiling results. Therefore, when evaluating the performance of applica-

tions individually, we must assure that the profiling tool is collecting performance

data application-wide;

• One should be careful if a certain architecture research (notably prefetcher research)

relies on an evaluation/validation performed by architecture simulators. In the ac-

quired experience, we noticed that architecture simulators did not accurately repre-

sent real architectures, specifically when we consider memory prefetcher and par-

allel applications. Improving simulators’ accuracy is a concerning and essential

matter for the future of architecture research;

• Research on prefetcher algorithms for the L2 cache seems more promising to yield

significant performance improvements – as opposed to prefetcher algorithms for the

L1 cache – since, in our experience, accessing the L3 cache was a larger detriment

to performance, as opposed to accessing the L2 cache;

• For highly parallel applications (in the order of dozens of threads on a single ma-

chine), memory prefetchers may not be critical for the application performance

since, in our experience, the prefetchers’ performance seems to be bound by the

contention for memory access. When contention is created due to the large number

of requests that arrive on shared resources, prefetch requests might get so late that

they cannot hide the memory latency.

68

69

8 CONCLUSION AND FUTURE WORK

Prefetching algorithms have been widely used in processors to mitigate the per-

formance gap between the processors and the memory subsystem. Analyzing and de-

veloping new prefetching algorithms is a notoriously challenging task, especially due to

the complexities and obscurities behind computer architecture development. Hardware

prefetching research is mainly possible thanks to architecture simulators that attempt to

model the highly complex (and sometimes obscure) interactions present in the hardware.

When we account for parallel, High-Performance Computing (HPC) applications, under-

standing the prefetcher contribution to performance, on both the real hardware and in the

simulations, becomes an important matter.

In this work we performed an experimental investigation of the prefetcher role

in the performance of parallel applications. Our investigation included a pioneer study

on the prefetcher performance in a simulated environment, taking the Sniper simulator

as an example. Several insights were obtained regarding methodological aspects, the

behavior of the studied prefetcher models, and how researchers and end users should

handle prefetchers, in a both real and simulated scenario.

Among these insights, one can highlight: (i) prefetching from the L3 to L2 cache

presents a more substantial contribution to performance, (ii) memory contention becomes

a larger constraint in the performance as the level of parallelism increases, narrowing the

prefetcher contribution, (iii) Skylake parallel memory contention is poorly simulated by

ZSim and Sniper, and (iv) the non-inclusive L3 cache present in the Skylake architecture

hinders the accurate simulation of NPB with the Sniper prefetchers.

Since we observed that some prefetcher combinations perform unnecessary costly

DRAM accesses, it is perhaps relevant to evaluate how these inaccurate prefetch re-

quests impact energy consumption. Therefore, for future work, we intend to analyze

the prefetcher impact on energy consumption and Energy-Delay Product (EDP) (GON-

ZALEZ; HOROWITZ, 1996), since, for instance, the EDP may help us understand which

prefetcher configurations are more suitable considering both energy efficiency and execu-

tion time.

70

8.1 Published Papers

Several works assisted on the development of this monograph. The following set

represents publications that are directly related to the contributions presented in this work:

• Valéria S. Girelli, Francis B. Moreira, Matheus S. Serpa, and Philippe O. A.

Navaux. "Impacto do Prefetcher na Precisão de Simulações de Arquiteturas Par-

alelas". In XX Symposium on High-Performance Computing Systems (WSCAD),

2019. The full paper was published at the main track and received a Mention of

Honor Award.

• Valéria S. Girelli, Francis B. Moreira, Matheus S. Serpa, Danilo Carastan-Santos,

and Philippe O. A. Navaux. "Investigating memory prefetcher performance over

parallel applications: From real to simulated". Concurrency Computation: Prac-

tice and Experience, 2021. Qualis A2.

This work was also presented at the following workshop:

• 6th Career Workshop for Women and Minorities in Computer Architecture

(CWWMCA 2020): workshop in conjunction with the 53rd IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO-53). "Assessing the Prefetcher’s

Role in High-Performance Computing". Valéria S. Girelli, Francis B. Moreira,

Matheus S. Serpa, Danilo Carastan-Santos, and Philippe O. A. Navaux.

Besides the directly related publications, the following collaboration is also related

to this work:

• Arthur Krause, Francis B. Moreira, Valéria S. Girelli, and Philippe O. A. Navaux.

"Poluição de Cache e Thrashing em Aplicações Paralelas de Alto Desempenho". In

XX Symposium on High-Performance Computing Systems (WSCAD), 2019.

71

REFERENCES

AARNO, D.; ENGBLOM, J. Software and System Development using Virtual
Platforms - Full-System Simulation with Wind River Simics. [S.l.: s.n.], 2014. ISBN
9780128007259.

ADILEH, A. et al. Racing to hardware-validated simulation. In: WENISCH, T.;
AGARWAL, N. (Ed.). 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). [S.l.], 2019. p. 58–67.

AHN, J. H. et al. Mcsima+: A manycore simulator with application-level+ simulation
and detailed microarchitecture modeling. In: . [S.l.: s.n.], 2013. p. 74–85. ISBN
978-1-4673-5776-0.

AKRAM, A.; SAWALHA, L. A survey of computer architecture simulation techniques
and tools. IEEE Access, IEEE, 2019.

ALVES, M. A. Z. et al. Sinuca: A validated micro-architecture simulator. In: QIU, M.
(Ed.). 2015 IEEE 17th International Conference on High Performance Computing
and Communications. [S.l.], 2015. p. 605–610.

AUSTIN, T.; LARSON, E.; ERNST, D. Simplescalar: An infrastructure for computer
system modeling. Computer, IEEE, n. 2, p. 59–67, 2002.

BAER, J.-L.; CHEN, T.-F. An effective on-chip preloading scheme to reduce
data access penalty. In: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing. New York, NY, USA: Association for Computing Machinery,
1991. (Supercomputing ’91), p. 176–186. ISBN 0897914597. Available from Internet:
<https://doi.org/10.1145/125826.125932>.

BAKHSHALIPOUR, M.; LOTFI-KAMRAN, P.; SARBAZI-AZAD, H. Domino
temporal data prefetcher. In: 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). [S.l.: s.n.], 2018. p. 131–142.

BAKHSHALIPOUR, M. et al. Bingo spatial data prefetcher. In: LOURI, A.;
VENKATARAMANI, G.; GRATZ, P. (Ed.). 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). [S.l.], 2019. p. 399–411.

BAKHSHALIPOUR, M. et al. Evaluation of hardware data prefetchers on server
processors. ACM Comput. Surv., Association for Computing Machinery, New
York, NY, USA, v. 52, n. 3, jun. 2019. ISSN 0360-0300. Available from Internet:
<https://doi.org/10.1145/3312740>.

BHATIA, E. et al. Perceptron-based prefetch filtering. In: Proceedings of the
46th International Symposium on Computer Architecture. New York, NY,
USA: Association for Computing Machinery, 2019. (ISCA ’19), p. 1–13. ISBN
9781450366694. Available from Internet: <https://doi.org/10.1145/3307650.3322207>.

BIENIA, C. et al. The parsec benchmark suite: Characterization and architectural
implications. In: MOSHOVOS, A.; TARDITI, D.; OLUKOTUN, K. (Ed.). Proceedings
of the 17th international conference on Parallel architectures and compilation
techniques. [S.l.], 2008. p. 72–81.

https://doi.org/10.1145/125826.125932
https://doi.org/10.1145/3312740
https://doi.org/10.1145/3307650.3322207

72

BINKERT, N. et al. The gem5 simulator. SIGARCH Comput. Archit. News,
Association for Computing Machinery, New York, NY, USA, v. 39, n. 2, p. 1–7, aug.
2011. ISSN 0163-5964. Available from Internet: <https://doi.org/10.1145/2024716.
2024718>.

CANTIN, J.; LIPASTI, M.; SMITH, J. Stealth prefetching. In: . [S.l.: s.n.], 2006. v. 40,
p. 274–282.

CARLSON, T. E. et al. An evaluation of high-level mechanistic core models. ACM
Transactions on Architecture and Code Optimization (TACO), ACM, New York, NY,
USA, 2014. ISSN 1544-3566.

CARLSON, T. E.; HEIRMANT, W.; EECKHOUT, L. Sniper: Exploring the level of
abstraction for scalable and accurate parallel multi-core simulation. In: LATHROP,
S.; COSTA, J.; KRAMER, W. (Ed.). SC’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
[S.l.], 2011. p. 1–12.

CHARNEY, M. J.; REEVES, A. P. Generalized correlation based
hardware prefetching. 1995. <https://www.semanticscholar.org/paper/
Generalized-correlation-based-hardware-prefetching-Charney-Reeves/
86b3c8787a63f4d1d30ff53ac115cbd8881a7af7>. [Accesed in: 18 Apr. 2020].

CHEN, C. F. et al. Accurate and complexity-effective spatial pattern prediction. In:
10th International Symposium on High Performance Computer Architecture
(HPCA’04). [S.l.: s.n.], 2004. p. 276–287.

CHEN, T.-F.; BAER, J.-L. Effective hardware-based data prefetching for high-
performance processors. IEEE transactions on computers, IEEE, v. 44, n. 5, p.
609–623, 1995.

CHOU, Y. Low-cost epoch-based correlation prefetching for commercial applications.
In: 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007). [S.l.: s.n.], 2007. p. 301–313.

CMELIK, B.; KEPPEL, D. Shade: A fast instruction-set simulator for execution
profiling. SIGMETRICS Perform. Eval. Rev., Association for Computing Machinery,
New York, NY, USA, v. 22, n. 1, p. 128–137, may 1994. ISSN 0163-5999. Available
from Internet: <https://doi.org/10.1145/183019.183032>.

CRUZ, E. H.; DIENER, M.; NAVAUX, P. O. Thread and Data Mapping for Multicore
Systems: Improving Communication and Memory Accesses. [S.l.]: Springer, 2018.

CUTRESS, I. The AMD Zen and Ryzen 7 Review: A Deep Dive on 1800X, 1700X
and 1700. 2017. Available from Internet: <https://www.anandtech.com/show/11170/
the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700>.

DELL. Dell SAP NetWeaver Benchmark Info. 2006. <https://www.dell.com/
downloads/global/solutions/Dell_SAP_NetWeaver_Benchmark_Info.pdf>. [Accesed in:
24 Mar. 2020].

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718
https://www.semanticscholar.org/paper/Generalized-correlation-based-hardware-prefetching-Charney-Reeves/86b3c8787a63f4d1d30ff53ac115cbd8881a7af7
https://www.semanticscholar.org/paper/Generalized-correlation-based-hardware-prefetching-Charney-Reeves/86b3c8787a63f4d1d30ff53ac115cbd8881a7af7
https://www.semanticscholar.org/paper/Generalized-correlation-based-hardware-prefetching-Charney-Reeves/86b3c8787a63f4d1d30ff53ac115cbd8881a7af7
https://doi.org/10.1145/183019.183032
https://www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700
https://www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700
https://www.dell.com/downloads/global/solutions/Dell_SAP_NetWeaver_Benchmark_Info.pdf
https://www.dell.com/downloads/global/solutions/Dell_SAP_NetWeaver_Benchmark_Info.pdf

73

DESIKAN, R.; BURGER, D.; KECKLER, S. Measuring experimental error in
microprocessor simulation. ACM SIGSOFT Software Engineering Notes, v. 26, p.
266–277, 05 2001.

DOWECK, J. et al. Inside 6th-generation intel core: New microarchitecture code-
named skylake. IEEE Micro, IEEE Computer Society Press, Washington, DC,
USA, v. 37, n. 2, p. 52–62, mar. 2017. ISSN 0272-1732. Available from Internet:
<https://doi.org/10.1109/MM.2017.38>.

DUBOIS, M.; ANNAVARAM, M.; STENSTRM, P. Parallel Computer Organization
and Design. USA: Cambridge University Press, 2012. ISBN 0521886759.

EBRAHIMI, E. et al. Coordinated control of multiple prefetchers in multi-core systems.
In: ALBONESI, D. et al. (Ed.). Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. [S.l.], 2009. p. 316–326.

EECKHOUT, L. Computer architecture performance evaluation methods. In: Computer
Architecture Performance Evaluation Methods. [S.l.: s.n.], 2010.

ELRABAA, M. E. S. et al. A very fast trace-driven simulation platform for chip-
multiprocessors architectural explorations. IEEE Transactions on Parallel and
Distributed Systems, v. 28, n. 11, p. 3033–3045, 2017.

ESMAILI-DOKHT, P. et al. Scale-Out Processors Energy Efficiency. 2018.

EYERMAN, S. et al. A mechanistic performance model for superscalar out-of-order
processors. ACM Trans. Comput. Syst., Association for Computing Machinery, New
York, NY, USA, v. 27, n. 2, may 2009. ISSN 0734-2071. Available from Internet:
<https://doi.org/10.1145/1534909.1534910>.

FERDMAN, M. et al. Clearing the clouds: A study of emerging scale-out workloads on
modern hardware. SIGPLAN Not., Association for Computing Machinery, New York,
NY, USA, v. 47, n. 4, p. 37–48, mar. 2012. ISSN 0362-1340. Available from Internet:
<https://doi.org/10.1145/2248487.2150982>.

FERDMAN, M.; FALSAFI, B. Last-touch correlated data streaming. In: 2007 IEEE
International Symposium on Performance Analysis of Systems Software. [S.l.: s.n.],
2007. p. 105–115.

FOG, A. The microarchitecture of intel, amd and via cpus: An optimization guide
for assembly programmers and compiler makers. Copenhagen University College of
Engineering, p. 02–29, 2012.

GENBRUGGE, D.; EYERMAN, S.; EECKHOUT, L. Interval simulation: Raising the
level of abstraction in architectural simulation. In: DAS, C.; CJACOB, M.; YANG, Q.
(Ed.). Proceedings - International Symposium on High-Performance Computer
Architecture. [S.l.], 2010. p. 1 – 12.

GIRELLI, V. S. et al. Investigating memory prefetcher performance over parallel
applications: From real to simulated. Concurrency and Computation: Practice and
Experience, n/a, n. n/a, p. e6207. Available from Internet: <https://onlinelibrary.wiley.
com/doi/abs/10.1002/cpe.6207>.

https://doi.org/10.1109/MM.2017.38
https://doi.org/10.1145/1534909.1534910
https://doi.org/10.1145/2248487.2150982
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6207
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6207

74

GONZALEZ, R.; HOROWITZ, M. Energy dissipation in general purpose micro-
processors. IEEE Journal of Solid-State Circuits, v. 31, n. 9, p. 1277–1284,
1996.

GUTIERREZ, A. et al. Sources of error in full-system simulation. In: AAMODT, T.;
HEMPSTEAD, M. (Ed.). 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). [S.l.], 2014. p. 13–22.

GUTTMAN, D. et al. Performance and energy evaluation of data prefetching on intel
xeon phi. In: 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). [S.l.: s.n.], 2015. p. 288–297.

HAMMARLUND, P. et al. Haswell: The fourth-generation intel core processor. IEEE
Micro, IEEE, v. 34, n. 2, p. 6–20, 2014.

HARDAVELLAS, N. et al. Simflex: A fast, accurate, flexible full-system simulation
framework for performance evaluation of server architecture. SIGMETRICS
Perform. Eval. Rev., Association for Computing Machinery, New York, NY,
USA, v. 31, n. 4, p. 31–34, mar. 2004. ISSN 0163-5999. Available from Internet:
<https://doi.org/10.1145/1054907.1054914>.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture, Sixth Edition:
A Quantitative Approach. 6th. ed. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2017. ISBN 0128119055.

HUGHES, C. J. et al. Rsim: simulating shared-memory multiprocessors with ilp
processors. Computer, v. 35, n. 2, p. 40–49, 2002.

IACOBOVICI, S. et al. Effective stream-based and execution-based data prefetching. In:
Proceedings of the 18th Annual International Conference on Supercomputing. New
York, NY, USA: Association for Computing Machinery, 2004. (ICS ’04), p. 1–11. ISBN
1581138393. Available from Internet: <https://doi.org/10.1145/1006209.1006211>.

INTEL. Intel R© 64 and IA-32 Architectures Optimization Reference
Manual. 2019. <https://software.intel.com/sites/default/files/managed/9e/bc/
64-ia-32-architectures-optimization-manual.pdf>. [Accesed in: 16 Jan. 2020].

INTEL. Intel R© 64 and IA-32 Architectures Software Developer’s Manual Volume
4: Model-Specific Registers. 2021. <https://software.intel.com/content/dam/develop/
external/us/en/documents-tps/335592-sdm-vol-4.pdf>. [Accesed in: 18 Jan. 2020].

ISHII, Y.; INABA, M.; HIRAKI, K. Access map pattern matching for data cache
prefetch. In: . [S.l.: s.n.], 2009. p. 499–500.

JAIN, A.; LIN, C. Linearizing irregular memory accesses for improved correlated
prefetching. In: Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture. New York, NY, USA: Association for Computing
Machinery, 2013. (MICRO-46), p. 247–259. ISBN 9781450326384. Available from
Internet: <https://doi.org/10.1145/2540708.2540730>.

JAIN, A.; LIN, C. Rethinking belady’s algorithm to accommodate prefetching. In:
BILOF, R. (Ed.). 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). [S.l.], 2018. p. 110–123.

https://doi.org/10.1145/1054907.1054914
https://doi.org/10.1145/1006209.1006211
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/335592-sdm-vol-4.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/335592-sdm-vol-4.pdf
https://doi.org/10.1145/2540708.2540730

75

JALEEL, A. et al. Cmp$im: A pin-based on-the-fly multi-core cache simulator. Fourth
Annual Workshop on Modeling, Benchmarking and Simulation (MoBS), p. 28–36,
01 2008.

JALEEL, A. et al. High performance cache replacement using re-reference interval
prediction (rrip). In: Proceedings of the 37th Annual International Symposium
on Computer Architecture. New York, NY, USA: Association for Computing
Machinery, 2010. (ISCA ’10), p. 60–71. ISBN 9781450300537. Available from Internet:
<https://doi.org/10.1145/1815961.1815971>.

JIN, H. et al. The OpenMP Implementation of NAS Parallel Benchmarks and its
Performance. NASA Ames Research Center, 1999.

JOUPPI, N. Improving direct-mapped cache performance by the addition of a small
fully-associative cache prefetch buffers. In: . [S.l.: s.n.], 1998. v. 18, p. 388–397.

KANG, H.; WONG, J. L. To hardware prefetch or not to prefetch? a virtualized
environment study and core binding approach. In: Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems. New York, NY, USA: Association for Computing Machinery,
2013. (ASPLOS ’13), p. 357–368. ISBN 9781450318709. Available from Internet:
<https://doi.org/10.1145/2451116.2451155>.

KAYNAK, C.; GROT, B.; FALSAFI, B. Shift: Shared history instruction fetch
for lean-core server processors. In: 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). [S.l.: s.n.], 2013. p. 272–283.

KIM, J. et al. Path confidence based lookahead prefetching. In: 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). [S.l.: s.n.],
2016. p. 1–12.

KIM, T.; ZHAO, D.; VEIDENBAUM, A. V. Multiple stream tracker: A new
hardware stride prefetcher. In: Proceedings of the 11th ACM Conference
on Computing Frontiers. New York, NY, USA: Association for Computing
Machinery, 2014. (CF ’14). ISBN 9781450328708. Available from Internet:
<https://doi.org/10.1145/2597917.2597941>.

KISE, K. et al. The simcore/alpha functional simulator. In: WCAE ’04. [S.l.: s.n.], 2004.

Kumar, S.; Wilkerson, C. Exploiting spatial locality in data caches using spatial
footprints. In: Proceedings. 25th Annual International Symposium on Computer
Architecture (Cat. No.98CB36235). [S.l.: s.n.], 1998. p. 357–368.

LE, H. Q. et al. Ibm power6 microarchitecture. IBM Journal of Research and
Development, IBM, v. 51, n. 6, p. 639–662, 2007.

LEE, C. J. et al. Prefetch-aware dram controllers. In: GONZALEZ, A. et al.
(Ed.). Proceedings of the 41st Annual IEEE/ACM international Symposium on
Microarchitecture. [S.l.], 2008. p. 200–209.

LOTFI-KAMRAN, P. et al. Scale-out processors. SIGARCH Comput. Archit.
News, Association for Computing Machinery, New York, NY, USA, v. 40,

https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/2451116.2451155
https://doi.org/10.1145/2597917.2597941

76

n. 3, p. 500–511, jun. 2012. ISSN 0163-5964. Available from Internet: <https:
//doi.org/10.1145/2366231.2337217>.

MARTIN, M. M. K. et al. Multifacet’s general execution-driven multiprocessor simulator
(gems) toolset. SIGARCH Comput. Archit. News, Association for Computing
Machinery, New York, NY, USA, v. 33, n. 4, p. 92–99, nov. 2005. ISSN 0163-5964.
Available from Internet: <https://doi.org/10.1145/1105734.1105747>.

MELO, A. C. de. The New Linux ’perf’ Tools. In: KONGRESS, L. (Ed.). International
Linux System Technology Conference. [S.l.], 2010. p. 1–42.

MICHAUD, P. Best-offset hardware prefetching. 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA), p. 469–480, 2016.

MILLER, J. E. et al. Graphite: A distributed parallel simulator for multicores. In: HPCA
- 16 2010 The Sixteenth International Symposium on High-Performance Computer
Architecture. [S.l.: s.n.], 2010. p. 1–12.

MITTAL, S. A survey of recent prefetching techniques for processor caches.
ACM Comput. Surv., Association for Computing Machinery, New York, NY,
USA, v. 49, n. 2, aug. 2016. ISSN 0360-0300. Available from Internet: <https:
//doi.org/10.1145/2907071>.

MORGAN, T. P. Drilling Xeon Skylake Architecture. 2017. Available from Internet:
<https://www.nextplatform.com/2017/08/04/drilling-xeon-skylake-architecture/>.

NESBIT, K. J.; DHODAPKAR, A. S.; SMITH, J. E. Ac/dc: an adaptive data cache
prefetcher. In: Proceedings. 13th International Conference on Parallel Architecture
and Compilation Techniques, 2004. PACT 2004. [S.l.: s.n.], 2004. p. 135–145.

NESBIT, K. J.; SMITH, J. E. Data cache prefetching using a global history buffer.
In: 10th International Symposium on High Performance Computer Architecture
(HPCA’04). [S.l.: s.n.], 2004. p. 96–96.

NESBIT, K. J.; SMITH, J. E. Data cache prefetching using a global history buffer. In:
TIRADO, F.; ZAPATA, E. (Ed.). 10th International Symposium on High Performance
Computer Architecture (HPCA’04). [S.l.], 2004. p. 96–96.

NORI, A. V. et al. Criticality aware tiered cache hierarchy: A fundamental relook at multi-
level cache hierarchies. In: Proceedings of the 45th Annual International Symposium
on Computer Architecture. IEEE Press, 2018. (ISCA ’18), p. 96–109. ISBN
9781538659847. Available from Internet: <https://doi.org/10.1109/ISCA.2018.00019>.

NOWATZKI, T. et al. Architectural simulators considered harmful. IEEE Micro, v. 35,
n. 6, p. 4–12, 2015.

PATEL, A.; AFRAM, F.; GHOSE, K. Marss-x86: A qemu-based micro-architectural and
systems simulator for x86 multicore processors. In: MUELLER, W.; PADERBORN, U.;
PETROT, F. (Ed.). 1st International Qemu Users’ Forum. [S.l.], 2011. p. 29–30.

PUGSLEY, S. H. et al. Sandbox prefetching: Safe run-time evaluation of aggressive
prefetchers. In: 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). [S.l.: s.n.], 2014. p. 626–637.

https://doi.org/10.1145/2366231.2337217
https://doi.org/10.1145/2366231.2337217
https://doi.org/10.1145/1105734.1105747
https://doi.org/10.1145/2907071
https://doi.org/10.1145/2907071
https://www.nextplatform.com/2017/08/04/drilling-xeon-skylake-architecture/
https://doi.org/10.1109/ISCA.2018.00019

77

REDDI, V. J. et al. Pin: A binary instrumentation tool for computer architecture research
and education. In: Proceedings of the 2004 Workshop on Computer Architecture
Education: Held in Conjunction with the 31st International Symposium on
Computer Architecture. New York, NY, USA: Association for Computing Machinery,
2004. (WCAE ’04), p. 22–es. ISBN 9781450347334. Available from Internet:
<https://doi.org/10.1145/1275571.1275600>.

RENAU, J. et al. SESC simulator. 2005. Http://sesc.sourceforge.net.

ROTEM, E. et al. Power-management architecture of the intel microarchitecture
code-named sandy bridge. IEEE Micro, v. 32, n. 2, p. 20–27, 2012.

SANCHEZ, D. ZSim Tutorial Validation. 2016. <http://zsim.csail.mit.edu/tutorial/
slides/validation.pdf>. [Accesed in: 10 Sept. 2019].

SANCHEZ, D.; KOZYRAKIS, C. Zsim: Fast and accurate microarchitectural simulation
of thousand-core systems. SIGARCH Comput. Archit. News, Association for
Computing Machinery, New York, NY, USA, v. 41, n. 3, p. 475–486, jun. 2013. ISSN
0163-5964. Available from Internet: <https://doi.org/10.1145/2508148.2485963>.

SANGAIAH, K. et al. Synchrotrace: Synchronization-aware architecture-agnostic traces
for lightweight multicore simulation of cmp and hpc workloads. ACM Trans. Archit.
Code Optim., v. 15, p. 2:1–2:26, 2018.

SHARKEY, J.; PONOMAREV, D.; GHOSE, K. Abstract m-sim: A flexible,
multithreaded architectural simulation environment. 01 2005.

SHEVGOOR, M. et al. Efficiently prefetching complex address patterns. In: 2015 48th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[S.l.: s.n.], 2015. p. 141–152.

SKADRON, K. et al. Challenges in computer architecture evaluation. Computer, IEEE,
v. 36, n. 8, p. 30–36, 2003.

SOLIHIN, Y.; LEE, J.; TORRELLAS, J. Using a user-level memory thread for
correlation prefetching. In: Proceedings 29th Annual International Symposium on
Computer Architecture. [S.l.: s.n.], 2002. p. 171–182.

SOMOGYI, S. et al. Spatial memory streaming. In: 33rd International Symposium on
Computer Architecture (ISCA’06). [S.l.: s.n.], 2006. p. 252–263.

SRINATH, S. et al. Feedback directed prefetching: Improving the performance and
bandwidth-efficiency of hardware prefetchers. In: LOURI, A.; YOUSIF, M.; BYRD, G.
(Ed.). 2007 IEEE 13th International Symposium on High Performance Computer
Architecture. [S.l.], 2007. p. 63–74.

TERPSTRA, D. et al. Collecting performance data with papi-c. In: . [S.l.]: Tools for
High Performance Computing. Springer, 2010. p. 157–173.

UBAL, R. et al. Multi2sim: a simulation framework for cpu-gpu computing. In: YEW,
P.-C. et al. (Ed.). 2012 21st International Conference on Parallel Architectures and
Compilation Techniques (PACT). [S.l.], 2012. p. 335–344.

https://doi.org/10.1145/1275571.1275600
http://zsim.csail.mit.edu/tutorial/slides/validation.pdf
http://zsim.csail.mit.edu/tutorial/slides/validation.pdf
https://doi.org/10.1145/2508148.2485963

78

VEENSTRA, J. E.; FOWLER, R. J. Mint: a front end for efficient simulation of
shared-memory multiprocessors. In: Proceedings of International Workshop on
Modeling, Analysis and Simulation of Computer and Telecommunication Systems.
[S.l.: s.n.], 1994. p. 201–207.

WALKER, M. et al. Hardware-validated cpu performance and energy modelling.
In: NIKOLOPOULOS, D.; SUPINSKI, B.; DELIMITROU, C. (Ed.). 2018 IEEE
International Symposium on Performance Analysis of Systems and Software
(ISPASS). [S.l.], 2018. p. 44–53.

WENISCH, T. F. et al. Practical off-chip meta-data for temporal memory streaming.
In: 2009 IEEE 15th International Symposium on High Performance Computer
Architecture. [S.l.: s.n.], 2009. p. 79–90.

WENISCH, T. F. et al. Temporal streaming of shared memory. In: Proceedings of the
32nd Annual International Symposium on Computer Architecture. USA: IEEE
Computer Society, 2005. (ISCA ’05), p. 222–233. ISBN 076952270X. Available from
Internet: <https://doi.org/10.1109/ISCA.2005.50>.

WOO, S. C. et al. The splash-2 programs: Characterization and methodological
considerations. SIGARCH Comput. Archit. News, Association for Computing
Machinery, New York, NY, USA, v. 23, n. 2, p. 24–36, may 1995. ISSN 0163-5964.
Available from Internet: <https://doi.org/10.1145/225830.223990>.

WU, C. et al. Pacman: Prefetch-aware cache management for high performance caching.
In: 2011 44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). [S.l.: s.n.], 2011. p. 442–453.

WU, H. et al. Efficient metadata management for irregular data prefetching. In:
MANNE, S.; HUNTER, H.; ALTMAN, E. (Ed.). Proceedings of the 46th International
Symposium on Computer Architecture. [S.l.], 2019. p. 449–461.

WULF, W.; MCKEE, S. Hitting the memory wall: Implications of the obvious.
Computer Architecture News, v. 23, 01 1996.

YOURST, M. T. Ptlsim: A cycle accurate full system x86-64 microarchitectural
simulator. In: ALBONESI, D.; BROOKS, D. (Ed.). 2007 IEEE International
Symposium on Performance Analysis of Systems & Software. [S.l.], 2007. p. 23–34.

ZHU, H.; CHEN, Y.; SUN, X.-H. Timing local streams: Improving timeliness in
data prefetching. In: Proceedings of the 24th ACM International Conference on
Supercomputing. New York, NY, USA: Association for Computing Machinery,
2010. (ICS ’10), p. 169–178. ISBN 9781450300186. Available from Internet:
<https://doi.org/10.1145/1810085.1810110>.

ZHUANG, X.; HSIEN-HSIN, S. L. Reducing cache pollution via dynamic data prefetch
filtering. IEEE Transactions on Computers, IEEE, v. 56, n. 1, p. 18–31, 2006.

https://doi.org/10.1109/ISCA.2005.50
https://doi.org/10.1145/225830.223990
https://doi.org/10.1145/1810085.1810110

	ACKNOWLEDGEMENTS
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 The Memory Subsystem and The Prefetcher
	2.2 Designing a Prefetcher: Constraints and Trade-offs
	2.3 Computer Architecture Simulators
	2.3.1 Simulation Detailing Classification
	2.3.1.1 Full-System or User-Level Simulation

	2.3.2 Simulation Input Classification
	2.3.3 Sequential or Parallel Simulation
	2.3.4 A Summary of Architecture Simulators

	3 Motivation
	4 Methodology and Experimental Environment
	4.1 Simulators
	4.1.1 ZSim
	4.1.2 Sniper

	4.2 Experimental Setup
	4.3 NAS Parallel Benchmarks

	5 Investigating Current Architecture Prefetchers
	5.1 The CG Case
	5.2 Effects of Different Input Classes

	6 Investigating Prefetchers on Simulation
	7 Discussion and Findings
	8 Conclusion and Future Work
	8.1 Published Papers

	References

