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ABSTRACT

When studying the test suites from some Java libraries, it is possible to observe a cer-

tain redundancy in the execution paths that some of the test cases take, whose reason

is not known. In order to understand this issue, we establish two hypotheses: one that

this redundancy happens due to the suite being an automatically generated suite, and one

that it comes from test cases that test inputs of different natures, such as empty strings

or null strings. To validate these hypotheses, we perform a detailed study by analysing

the behavior of the test cases and the associated application code. We consider a code

coverage criterion, computed by generating the test path of each test case in the suite and

comparing these with the prime path coverage of the tested methods. For this procedure

we first adapted a coverage analysis tool that considers the prime path coverage criterion,

and afterwards we collected additional data about the application code and the test suite

in order to understand the rationale behind the tests. Finally, a manual analysis is made in

the source code of the methods being tested and their respective test cases. Results show

that the projects’ suites are closer to a developer-implemented suite, and not a generated

one. It also shows that, when studying the tests with redundant test paths, most consist of

cases that test different types of input - our second hypothesis. There are some cases that

do not have a clear purpose and test very similar inputs, with some being even duplicated,

but this occurs in a considerably insignificant scale.

Keywords: Test suites. Java Libraries. Prime Path Coverage. Test case redundancy.



Análise e validação de redundância em casos de teste em suítes de bibliotecas Java

RESUMO

Ao estudar suítes de testes de algumas bibliotecas Java, é possível perceber uma certa

redundância no caminho que alguns dos casos de teste tomam, cuja razão é desconhecida.

A fim de entender este problema, estabelecemos duas hipóteses: uma de que esta redun-

dância acontece devido à suíte ser automaticamente gerada utilizando uma ferramenta de

geração automática de testes, e uma de que ela se origina em casos de teste que testam

parâmetros de entrada de naturezas diferentes, como palavra vazia e palavra nula. Para

validar estas hipóteses, fazemos um estudo detalhado, analisando o comportamento dos

casos de teste associado ao código da aplicação. Levamos em consideração um critério

de cobertura de código, computado gerando o caminho de execução de cada caso de teste

presente na suíte e comparando estes com a cobertura de caminhos primos do método.

Para este procedimento primeiro adaptamos uma ferramenta de análise de cobertura que

considera o critério de caminhos primos, e posteriormente coletamos dados adicionais

acerca do código da aplicação e da suíte para entender os objetivos dos testes. Após isto,

uma análise manual é feita no código dos métodos sendo testado e seus respectivos ca-

sos de teste. Resultados mostram que as suítes dos projetos são mais próximas de uma

suíte implementada por desenvolvedores, e não de uma suíte gerada automaticamente.

Também é mostrado que, ao analisar os testes com caminhos de execução redundantes,

a maioria consiste de casos que testam diferentes tipos de parâmetros de entrada - nossa

segunda hipótese. Existem alguns testes que não possuem propósito e alguns que testam

valores de entrada semelhantes, sendo alguns inclusive duplicados, mas isto ocorre em

uma escala consideravelmente insignificante.

Palavras-chave: Bibliotecas Java. Suítes de teste. Cobertura de caminhos primos. Re-

dundância de testes.
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1 INTRODUCTION

One of the most important parts of software development is software testing,

which is responsible for detecting faults in the system. Part of this process includes the

elaboration of a test suite - a set of functions that execute the program’s logic with spe-

cific properties and verify its results. There are multiple ways to implement a suite - it can

be built based on testing requirements, obtained through a detailed analysis of the logic;

generated through an automated test generation tool; or, in most cases, manually written

by the software’s development team, based on the nature of the program’s functionalities.

Moreover, a test suite contains different properties such as code coverage, number of test

cases, number of redundant tests and, the most important, effectiveness. In this work, we

define test suite effectiveness as a synonym for test power, defined by (ZHANG et al.,

2019) as the power of a test suite in detecting faults.

Estimating the suite effectiveness becomes important in the process of fault de-

tection, and the most ideal measure for it is the number of faults detected. However,

counting the number of faults detected can be difficult and experiments that do it usually

consider a small set of real faults, preventing rigorous statistical analysis (GLIGORIC et

al., 2013). The second best measure is mutation testing, which consists of checking the

ability of the test suite to detect small changes to the source code. This is yet another

process that is considerably difficult to apply due to its computational cost (GLIGORIC

et al., 2013). Finally, the third best measure we have is code coverage, which detects the

amount of source code that the suite covers. Code coverage is usually the preferred way

of estimating a suite’s reach, and is also the focus of this work. There are multiple levels

of code coverage, such as node, edge, edge-pair and prime paths. We will focus mainly

on the latter one because it tests longer paths, providing better loop testing and ensuring

in a more reliable way that the system does not fail.

This work is part of a broader project produced by Keslley Lima and Érika F. Cota,

which aims to help developers in creating and maintaining an effective test suite using a

machine learning technique, with models derived from real test suites in Java libraries.

We focus initially on facilitating the analysis of the execution paths that the test suite

covers, in relation to all possible execution paths of the algorithm. Part of this process

included mapping the execution flow that the test suites from Java projects take, and

during this phase a notable redundancy was identified, i.e. there was a subset of test cases

that had the program execute the same set of instructions, in the same order. This raised
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the following question: why do these tests with duplicate flows exist and what is their

source? Furthermore, does this redundancy affect the previously mentioned generation of

models, needed to apply the machine learning technique and create effective test suites?

To answer this question we derive two hypotheses: one that the suite was automat-

ically generated, and thus containing redundant tests; and also one that the test cases with

equal execution flow cover different types of parameters (for instance, empty string and

null string). In order to validate these hypothesis, we compare the properties of the test

suites in the aforementioned projects with the properties of two other suites: a suite man-

ually created based only on the methods’ signatures and descriptions (when available),

and a suite generated using the automatic test generation tool EvoSuite.

To compare the test suites we analyzed their coverage for different criteria and

also consider some characteristics of the associated application code. Besides the basic

criteria of code and branch coverage, we used the prime path criterion as well. For this

step we need a tool that generates test requirements for the methods under test at a prime

path level, and since we do not currently have a tool for this we must create or look for

one. We go for the second option, as the operation of computing prime paths is not quite

simple, and there are a couple of solutions on-line which we can reuse. Some adaptations

are needed, which is also part of this work, so that the tool supports a great variation of

Java source code and can be run for large libraries instead of small pieces of code. Once

the tool is ready we use it to generate the ideal prime path coverage of the method under

test and compare it with the test execution paths in order to compute the coverage of the

test suite.

Therefore, the contributions made by this work are as follows: a tool that gen-

erates prime path coverage criteria for a Java source code, adapted and made to work

with a greater code base, available at its BitBucket repository (WOLFART; LEE; PLATT,

2020); and an analysis on the redundancy present in suites from Java libraries, providing

a conclusion on where they come from and a partial conclusion on their impact.

This work is organized as follows: Chapter 2 contains basic definitions and con-

cepts which help the reader understand the work described here, as well as information

regarding related work. Chapter 3 summarizes the main tools found in order to compute

the PPC criteria of the projects being studied. Chapter 4 goes through the modifications

made to one of the tools that were found to be the best for generating PPC criteria. Lastly,

Chapter 5 describes the research done under the redundancy in the test sets. Chapter 6

discusses the conclusions and possible future work.



12

2 TECHNICAL BACKGROUND AND RELATED WORK

There are some concepts that must be understood before getting into the details of

this work. We may recall that a test suite (or a test set) is a set of test cases that evaluate

the software’s functions (AMMANN; OFFUTT, 2016).

When talking about software testing, it must be mentioned that we have four levels

of testing: unit testing, integration testing, system testing and acceptance testing. The

main goal of this work is the first one, unit testing, which is usually the main focus of a

project’s test suite. For this work we assume that unit testing means to test each method

separately, evaluating its output given a specific input.

Besides test levels, we should also speak briefly about testing types. Some tra-

ditional terms are black box testing and white box testing. Black box testing consists of

deriving test cases from the software’s specifications, requirements and external descrip-

tions in general. On the other hand, white box testing consists of deriving tests from the

software implementation. Later, the term grey box testing appeared, combining elements

from both types and, soon, making this distinction quite obsolete. Ammann and Offutt

(2016) argue that the best way of deriving tests is to use mathematical abstractions and,

for unit testing, graphs are the most common abstraction used. Some types of graphs

include byte code graph and control flow graph. We will be using mainly the latter one

since it deals with the original, high-level source code.

2.1 Control flow graph

A control flow graph (CFG) is a graphical representation of the computation of

the method under test (MUT), where each node represents a set of instructions that are

executed in the same flow, and each edge represents a possible flow the execution can take.

The entry node represents the start of the execution flow, while the exit nodes represent

the end of the flow (blocks where the program returns).

We may mathematically define a CFG as a graph G = (V,E), where N 0 ∈ V

represents the starting node and V f ⊂ V represents the set of i exit nodes N f
0, ..., N f

i.

After defining the CFG, we may now also define some notions of paths in the

graph.
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2.2 Test path

Normally we have one CFG for each MUT, and when executing a test case for that

method, the program will produce a path p in the CFG, starting at node N 0 and ending

at an exit node N f
x, which represents the execution flow of the application. The path p is

called a Test Path (TP). It is important to note that the TP may be of length zero, in case

the set of nodes V from the CFG is empty.

2.3 Prime path

Before stating the definition of a prime path, we must define a simple path. A

simple path is a path ps in the CFG where no nodes appear more than once, with exception

that the first and the last nodes may be identical. This means that no simple paths can

contain internal loops.

A prime path (PP) is a path pp in the CFG that satisfies two rules: 1. It is a simple

path and 2. It is not a sub-path of any other simple path in the graph.

2.4 Test Requirement

A Test Requirement (TR) is a specific flow in the program execution that a test

case must cover. In the case of a CFG, it is a path pr that must be taken. As Ammann and

Offutt (2016) exemplify, from an if-else structure two TRs would be derived, one for

the false branch and another for the true branch.

2.5 Test coverage criteria

A test coverage criteria is a set of TRs that a test suite must satisfy. There are

many types of coverage criteria, but we will talk briefly about the main ones.

Node coverage (sometimes shown as "statement coverage"), as stated by Ammann

and Offutt (2016), requires that the test set visits each node in the CFG of the MUT at

least once. In other words, it requires all instructions in the source code to have been

called at least once. This is the simplest type of graph-based coverage.

Edge coverage (sometimes shown as "branch coverage"), requires that the test set
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Figure 2.1 – Difference between node coverage and edge coverage.

Source: Ammann and Offutt (2016)

visits each edge in the CFG at least once. It should be noted that a test set that satisfies

node coverage may not satisfy edge coverage. Figure 2.1 shows the difference between

node and edge coverage. Edge-pair coverage works similarly to edge coverage, but re-

quires all paths of length up to 2 (that is, all paths that visit 3 nodes or less) to be covered

by the test set.

Finally, we have prime path coverage (PPC), which requires the test set to cover

all prime paths in the CFG at least once. This coverage is particularly interesting because,

as mentioned in Chapter 1, it provides a better assurance that the system will not fail,

mainly because it tests longer paths and loops.

2.6 Input value equivalence partition

In this work we will also talk about boundary partition values, or inputs of equiv-

alent partitions. Two different input values come from different equivalence partitions if

they are, for the program’s logic, semantically different. For instance, in a method that

returns true for numbers greater than 20 and false for other numbers, values 30 and

1 are not partition-equivalent, while values 21 and 22 are partition-equivalent. More

information can be found in the book The Art of Software Testing (2011).

Having introduced the basic concepts we can now begin describing the work. Be-
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fore getting into the details, we will briefly present related approaches that discuss the

effectiveness of a test suite.

2.7 Related work

Namin and Andrews (2009) analyze the correlation among test suite effectiveness,

size and coverage. More specifically, the idea of that work is to analyze whether achieving

high coverage will lead to more effectiveness when preventing software faults, or if it will

only make the suite larger. Results show that using both size and coverage can yield a

more accurate prediction of effectiveness than when using size alone or coverage alone.

The work also shows that a nonlinear correlation exists among the three variables.

Inozemtseva and Holmes (2014) study the correlation between code coverage and

test suite effectiveness. It analyzes some common types of coverage, such as edge and

node coverage, and also some more specific types of coverage, such as dynamic basic

block coverage and predicate complete coverage. However, basic coverage types are more

deeply analyzed. The study shows that these coverage types are not suitable for measuring

the effectiveness of fault prevention in a test suite, but they work for identifying over-

tested and under-tested parts of the software under test (SUT) - i.e. parts of the software

that the suite covers with multiple test cases and parts that it covers with few test cases.

The study does not cover prime path coverage, probably due to the computational cost of

dealing with it at the time.

Gopinath, Jensen and Groce (2014) check how suitable are statement and branch

coverage when measuring a suite’s effectiveness. A test suite’s effectiveness is often

measured by its ability to kill mutants - modifications inserted into the program’s behavior.

The study shows that, between these two types of coverage, statement works best when

predicting mutants. This study also does not take prime path coverage into consideration.

None of the previously listed works deal with prime path coverage, and that is

the main difference between them and this work. Moreover, none of them study the

occurrence of redundancy in test suite’s.
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3 ANALYSIS OF CFG GENERATION TOOLS

As it was previously mentioned, we want to understand the possible redundancy

that was identified in the test suite of some Java projects. We need to investigate whether

this redundancy comes from a generated test suite or not and, if it does not, we must

also study the purpose of the test cases. For that, we must obtain the coverage properties

of the test suite and its reach, and that requires three steps: one to calculate the PPC of

the methods being tested; one to map the TPs of the test suite; and one to compute the

coverage percent itself, using the two previously obtained data.

To perform the first step, we need to read a source code and compute its CFG in

a non-visual way, so that we can manipulate the information (generating a PNG file with

the visual representation of the graph is not enough). After the CFG has been generated,

we can apply the PPC generation algorithm to obtain the requirements. In short, we first

generate the CFG from a source code, and later use it to output the PPCs.

To perform the second step of the property generation, which requires us to map

the TPs of the test suite, we use a tool called Execution Flow (NIEMEC, 2020). It is a

JUnit add-on that may be run for classes and projects, which goes through a JUnit test

and maps the TPs of each test case. More details can be found at the project’s repository.

For the third step, we simply calculate the percentage using any simple mathemat-

ics software.

This chapter focuses on the first step, and consists of an on-line survey on different

CFG and PPC generation tools. Table 3.1 shows the tools that were found. We will

study each of them, describe their characteristics, what they do and which limitations

they contain. We will then choose which one works best for us.

Table 3.1 – Researched CFG and PPC generation tools.
Name Author Year

Dr. Garbage Tools Dr. Garbage Community 2014
TRGeneration Stan Lee, Evan Platt 2014
Soot Open-Source Community 2020
Atlas EnSoft Corp 2020
Control Flow Graph A. Pena, N. Brondin-Bernard, J. Bardon 2014
Binnavi Zynamics 2010

Source: author
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3.1 Dr. Garbage Tools

Dr. Garbage Tools is "a suite of Eclipse Plugins released under Apache Open

Source license". It consists of a plugin with three main tools: the byte code visualizer;

the source code visualizer; and the CFG factory. Each one of these tools generate a flow

graph for the selected method(s) of the application. The first one generates a byte code1

graph, along with the byte code instructions in a sequential format. The second generates

a graph for the method’s source code, line by line, similar to what we need for this work.

Finally, the third generates a flow graph where similar instructions (such as a sequential

block of assignments) are grouped in one entire node. All of these features are interesting

to us since we need to get the prime path requirements for the MUT. However, there are

some problems which we will list below.

3.1.1 Compatibility

The first problem we have with Dr. Garbage Tools is that it is only supported by

Eclipse versions lower than Mars2, which is as old as 2015. The tools themselves were

last updated in 2014. These issues are problematic because most of the libraries we are

analyzing are not supported by older versions of Eclipse.

3.1.2 Dense code base

Since the project is not supported by newer versions of Eclipse, we analyze the

possibility of extracting the parts of the tool’s logic that we need, i.e. the logic necessary

to take a source code and generate its flow graph in a textual format. However, upon

inspecting the source of the project, it shows that it is very complex, consisting of many

folders and files, making this extraction difficult. Most of this complexity is probably due

to the nature of the tool - it is an Eclipse plug-in, which adds buttons to context menus

with different actions.

1See https://techterms.com/definition/bytecode.
2See https://www.eclipse.org/mars/.
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3.1.3 Lack of non-visual output

Lastly, another problem we have with these tools is that they do not provide the

CFG output in a text format, which is what we need in order to generate PPCs. In order

to get this version of the graph, we would have to modify parts of the tool’s logic, which

is complicated due to the dense code base as mentioned before.

3.2 TR Generation

This is a tool developed in Java by Seung Hun Lee and Evan Platt which reads

from a source code and provides its CFG, as well as a desired coverage criteria, which is

specified by the user. It is quite simple and objective, consisting of two main modules:

the graph generator, which parses the source code while performing some clean up and

adaption, and produces a graph that represents it; and the test requirement generator,

which generates a coverage criteria based on the graph built in the previous module. The

criteria may be at node, edge, edge-pair or prime path levels. Although the tool is very

direct and suitable to us at first glance, mainly because it not only generates the CFG but

also computes the PPC of the MUT, it contains some issues.

3.2.1 Logic limitation

There are a couple of structures that the application does not support, such as try-

catch blocks, ternary operators, for-each loops, annotations, multi-line comments, loop

break instructions and do-while loops. This deficiency causes a huge limitation since

most of the libraries we want to analyze contain at least a small part of these structures.

However, most of these can be fixed by working on the tool’s logic.

3.2.2 Multiple parsing issues

Some instructions are supported by the tool but may occasionally fail to work,

such as an if-else when it is contained into some specific blocks. See Figure 3.1.

Another problem is that the logic of the tool will look for specific characters in

order to take an action, such as semicolons, double slashes and brackets, however it does
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Figure 3.1 – Source code with if-else statement fails with "Else without if".

Source: author

not check if they are indeed part of the source code logic or if they are just part of a

variable (such as a string), and the tool will break in such cases. See Figure 3.2.

3.2.3 Loss of source code line information

Another problem is that the test requirements that the tool generates are based

directly on the graph generated in the first module of the application, and thus will contain

the index of the nodes, and not the source code lines. This is a problem because we cannot

directly compare the graph with the original source code.

Basically what the tool does is, it generates the graph where each node represents

a block of similar instructions (such as three sequential assignments, for instance), and

the test requirement tool will provide the PPC describing each path as a sequence of

nodes in that graph. For example, Figure 3.4 represents a graph that was generated for

the code shown in Figure 3.3. The node 0 represents everything that comes before the if

instruction in one entire node.

3.2.4 No support of entire classes

Lastly, the application will parse a source code as one entire method, i.e. it does

not fully support full classes with multiple methods. In order to execute it this way the
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Figure 3.2 – String containing special characters causes buggy behavior.

Source: author

Figure 3.3 – Source code used to generate a CFG.

Source: author
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Figure 3.4 – CFG generated for the source code in Figure 3.3.

Source: author

user would have to split all methods into different files and run the tool once for each file.

3.3 Soot

Soot is a Java optimization framework, containing many features and among them,

one for generating CFGs for a source code. This one is interesting because it is more

updated, still having changes pushed in the last few months. It works in a similar way to

Dr. Garbage Tools, since it may be used as an Eclipse plug-in, however it may also be

used as a terminal application.

The difficulty here is that, since the application is very complex, it is also hard

to understand it and obtain the desired data. The documentation is not clear on how to

produce a CFG from a source code, and there are not many guides in the internet, so this

was scratched from the list in favor of the other two tools described before. It should still

be noted that it is a powerful tool for many other uses.
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3.4 Other analyzed tools

There are a few other tools that were found but were not analyzed in depth due to

more suitable tools having been found earlier or their complexity being too high. Never-

theless, they will be briefly mentioned here.

Atlas3 is a powerful tool for source code analysis, also available for C, which can

be used to generate CFGs. However, it only exports the CFGs as images, and also requires

a license in order to be used.

There is also a tool titled Control Flow Graph4, which generates the CFG of a

source code. However, it contains few documentation and was found to be hard to use.

Lastly, Binnavi5 is a binary analysis IDE copyrighted by Google. It allows for

generation and manipulation of CFGs from disassembled code. It was skipped since the

project seems a little bit ahead of what we need and is not under active development

anymore.

3.5 Concluding remarks and selected tool

After the research on CFG and PPC generation tools is over, the tool we pick to

work with is the Structural Test Requirement Generator by Platt and Lee, described in

Section 3.2. It contains many limitations, but they are easier to fix than the other projects

because the code is considerably more readable, and it contains just what we need, and

nothing else.

In the next chapter we will describe the modifications made to the tool and the

main difficulties encountered in the process.

3See http://www.ensoftcorp.com/atlas/.
4See https://github.com/masters-info-nantes/control-flow-graph.
5See https://github.com/google/binnavi.
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4 ADAPTATION OF TEST REQUIREMENT GENERATION TOOL

Throughout this chapter we will dig into each of the main modifications that were

necessary for the chosen tool, TRGeneration, to work. Some more specific, small and

complex modifications will be just briefly mentioned for simplicity reasons. At the end

of the chapter we present a summary of what has been changed.

4.1 Changes to the project structure

The first main change to the project was in its structure. To recapitulate, the project

was initially composed of two main modules: the graph generator and the test require-

ment generator. A screenshot of the project’s original structure can be viewed in Figure

4.1 where green underlined classes represent the logic responsible for the graph genera-

tion, and red underlined classes represent the logic responsible for the test requirement

generation. Other non-marked classes are not relevant for now.

Upon inspection of the project, it is possible to see that the building of the graph,

shown in Figure 4.2, consists of six steps: a cleanup of the source code, which removes

and adapts parts of the source code being analyzed; an insertion of blank dummy nodes,

used as mid-way points in junctions of nodes; an identification of the nodes based on

the clean source code; a method to number these nodes; a method to combine nodes that

represent a sequential set of instructions; and a method to fix the node numbers after the

combination has been made.

These methods can be mainly split into two groups: one that performs a cleanup

(pre-processing) of the project, consisted of the two first steps of the build process, and

one that builds the graph nodes and edges, consisted of the four latter steps. Taking

this into consideration, the first modification we perform is to split the pre-processing of

the source code of the MUT into its own class, called CodeCleaner, and we move all

methods related to the source code manipulation into it. This makes the adaptation of the

tool easier since all modifications we must do regarding the pre-processing are contained

in only one file, and it also makes it easier to test the application. The initial version of

the CodeCleaner class is shown in Figure 4.3.

Another modification we make relates to the lack of support for entire classes - the

tool will not run correctly if provided a Java file with multiple methods or classes. In order

to solve this, we must create a piece of logic that will parse an entire file and identify the
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Figure 4.1 – Current project structure.

Source: author

Figure 4.2 – Method responsible for graph building.

Source: author

Figure 4.3 – Initial version of the class responsible for cleaning the source code.

Source: author
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Figure 4.4 – CodeProcessor is the class responsible for general class and method parsing. The
cleanup method that is called will execute both cleanup and addDummyNodes methods

present in Figure 4.3

Source: author

blocks of code that represent a class and a method. We also must store the names of each

one, in order to label them when saving the files with the outputs. This piece of logic will

be placed in a class we will call CodeProcessor and can be viewed in Figure 4.4. Besides

method identification, it also contains some methods used to instantiate and manipulate

the test requirement generator.

Finally, we create a helper class to contain simple methods that are reused through-

out the application, and later a regex class to contain all regular expressions that are used

in the pre-processing of the MUT’s code to identify patterns and make decisions. We will

talk more about these classes in Section 4.2.4.

The final project file structure can be viewed in Figure 4.5.

4.2 Changes to the cleanup process

The cleanup process originally consists of one entire method that performs many

changes to the source code (called cleanup) and a second one that adds dummy nodes

to specific parts of it (called addDummyNodes). Since the first method is the one that
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Figure 4.5 – Updated project structure.

Source: author

contains the most of the cleanup logic, we will focus mainly on it.

If we take a look into the cleanup method, shown in Figure 4.6, we can see

it consists of many instruction blocks that perform independent adaptations to the code

(such as removal of comments, re-positioning of brackets, etc). This is evidenced by the

comments in the code. So taking this into consideration, it is easy to see we can split the

method into different sub-methods, each responsible for a different modification in the

MUT’s source code. We can also add some debugging logs for future problem handling.

See Figure 4.7.

After splitting the clean up process into different methods, we can now bring sup-

port to some things that were not supported by the tool initially (such as try-catch

blocks, one liner if blocks and loops, for-each loops, etc) and fix some of the struc-

tures that were having problems (annotations, specific constructions of if-then-else

statements, etc). Let us take a look into each one carefully.

4.2.1 For-each support

Before modifying the application to support the for-each structure, we must

first take a look into how it handles the for structure, since they are very similar. Under-

standing this requires looking at two of the cleanup steps: the first one inserts a line break
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Figure 4.6 – Current state of cleanup method.

Source: author

Figure 4.7 – Refactored version of cleanup method.

Source: author
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Figure 4.8 – Method that splits any lines with semicolons, which breaks down the for declaration
into three lines (initialization, condition and step).

Source: author

after any semicolon, and the second one extracts the for loop properties (initialization,

step and exit condition) in order to convert it to a while loop. They are shown in Figures

4.8 and 4.9 respectively.

Taking this into consideration, we can conclude that, if we convert our for-each

loop into a for loop, it can be later converted into a while loop and correctly processed

by the application, so that is all we have to do - create a new method in the cleanup process

that executes before the ones that process the for loop.

Since the difference between a for loop and a for-each loop is basically just

the initialization line, we can focus on just that: we memorize the type of the item variable

(let us call it T), its name and the object being iterated. We then create an iterator of type

T1 and initialize it over the object being iterated. This is the initialization step of the

resulting for loop. The end condition will test for the hasNext() property of the

iterator, and the step will be left blank. A visual representation can be seen in Figure 4.10.

Besides that, we must place an instruction after the for declaration line, which

will declare the item variable and assign it to the iterator current value, moving it to the

next item in the object being iterated - which is why we can leave the step blank. This can

be done using the instruction next() of the iterator structure. The resulting logic can be

seen in Figure 4.11.2

1For primitive types, such as int and char, it may be necessary to convert them to non-primitive types.
However, since semantic errors do not really affect the test requirement generation, we can ignore this.

2This is one of the places we use a helper method to look for reserved characters while parsing the code.
This is more well-detailed in Section 4.2.4.
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Figure 4.9 – Method that converts any for instruction into while.

Source: author

Figure 4.10 – Procedure to convert for-each loops into for loops.

Source: author

Figure 4.11 – Logic written to perform the for-each conversion.

Source: author
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Figure 4.12 – Removal of comments in the source code: main method.

Source: author

Figure 4.13 – Removal of comments in the source code: processing of multi-line comments.

Source: author

4.2.2 Comment processing improvement

Since the libraries’ source codes contain lots of comments of both single-line and

multi-line types, you just have to run the tool in one of the files to see that multi-line

comments are not supported.

The current method for eliminating comments will only check for a double slash

in the line and remove everything after it. So we have to add an extra check that looks

for a multi-line comment start token, and if it is found we set a Boolean variable that will

tell the logic it is looking for a multi-line comment closing token. It is important to note

that the comment may end in the same line it has started, so we need to take that into

consideration.

While the token has not been found, we store the data we need to remove, and

once it is, we remove everything. The final logic is presented in Figures 4.12 and 4.13.

There is another problem that arises from the way the application gets the index
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of the symbols (for both single and multi-line comment), which was already described in

Section 3.2.2. We will present a generic solution for it in Section 4.2.4.

4.2.3 Tracking of source code original lines

One of the major changes in the cleanup process is related to the output of the tool.

The PPC generated by TRGeneration is done at node level, as described in Section 3.2.3.

Besides this, the Node class already contains a field for storing the first line index that

makes it, and another that stores the source code present in it. However, the line relates to

the clean source code, and not the original, unmodified one. This implies in two changes

we must perform: one to map the original source code line indexes to the ones in the clean

source code, and another to make the nodes store which lines they represent (instead of

only the first line). The first change is made in the cleanup process.

What we do is, whenever a method that transforms the source code is executed,

we store a map from the index of the lines before the transformation to the indexes after

the transformation. This implies in one map for each modification we have the source

code go through. Since we have many transformations (for each loops into for loops, for

loops into while loop, removal of comments, etc) we modify the class to initialize a list of

maps at its construction, and we append a new map to it every time we transform the code.

When all transformations are done, we call a helper method to build the final map, which

contains the original line indexes mapped to the clean line indexes. See Figure 4.14.

This change is not very simple since some transformations move many things

around. For instance, to convert a for loop into a while loop the line containing the

declaration of the instruction is split into three other lines. Moreover, there are some small

tweaks that must be made to ensure that it works correctly. An example of the logic to

store the mapping can be seen in Figure 4.15.

The other change that composes this feature is done in the NODE class, which is

basically storing all lines that make the instruction, and looking for the original source

code line through the map and replacing the stored line reference with that value.
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Figure 4.14 – Declaration and initialization of map structure containing the mapping from
original line indexes to target line indexes.

Source: author

Figure 4.15 – Example of mapping manipulation in the method that moves sole opening brackets
to the line before them, along with its instruction.

.
Source: author
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4.2.4 Other fixed issues

There are some other small changes that were made. Support for codes with an-

notation is provided (they should be treated as comments and removed as they do not

characterize an executable instruction). Another set of small changes are performed in

order to support switch-case statements where multiple conditions produce the same

execution. Also, when dealing with for loops, the step is cloned to the line before any

continue instructions, in order to provide support for it.

There is a group of methods that format the source code based on the brackets -

the pattern has any open bracket stay in the line of the instruction that initializes its block,

and the closing bracket stay in the line below the last instruction of that block. Since we

will need to perform this patterning more than once (due to other transformations3 we

make in the project), we refactor this group of methods into a single method, which will

be called any time a reformat is needed.

Support for single instruction if/for/while blocks is also provided, since they

do not require brackets in this case. The line is rewritten with newly added brackets in the

correct positions, and afterwards the logic re-formats the code by calling the method we

created earlier, that re-positions the brackets.

There is also a couple of modifications that are made to the queries the code does

to find specific characters and take a decision - such as slashes for comments, brackets

and reserved instructions. The tool will initially fail if these tokens are present inside a

string, as shown in Figure 3.2, because it does not test for quotes or other syntax elements.

To prevent this, we use some detailed regex queries that will match the tokens only if they

are valid (for instance, URLs in a string will not be interpreted as a comment due to the

slashes after the protocol). See Figure 4.16.

Finally, we call some of the cleanup steps more than once due to specific modifica-

tions we made throughout the logic (for instance, after adding brackets to one-liner ifs or

whiles, we must reformat the brackets again). This ends up causing some code repetition,

but it does the job we want it to do.

The final logic of the cleanup method is shown in Figure 4.17.

3one-liner if and loop blocks
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Figure 4.16 – Use of helper methods to test for reserved words and tokens.

Source: author

Figure 4.17 – Final state of the cleanup method.

Source: author
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4.3 Changes to the graph generation process

The graph generation is one of the most complex parts of the logic since it deals

with edge manipulation based on the instructions of the clean source code. Here we will

avoid digging too much into the logic since it can become confusing, but we will focus

more on the theory of the solutions.

The main changes are in the method that adds the edges themselves, and not in the

ones that simplify the graph.

4.3.1 Try-catch support

Among the changes made to the graph generation process, a notable one is the

added support for try-catch and finally blocks. Before processing the code, it

is necessary to add some tokens in the clean up process that prevents the logic from

grouping try blocks with finally blocks or outer blocks. This is one of the cases

where three sequential instructions may not be in sequential line indexes (an assumption

that the original tool makes).

The try-catch case is a bit difficult to deal with since the program can jump

from the try block to the catch block at any moment if a instruction fail, and it is hard

to determine every possible path. So our target here will be to support the try and

finally blocks, which can be treated almost as default sequential blocks, and support

the catch blocks as best as we can.

The proposed solution is to add an edge from the try starting line to any catch

starting lines, and then adding an edge from each of the catch blocks endings to the

finally block (or to the first line outside of the system if there is no finally block). This

will generate at least one PP for each catch block, making the code pass through them.

Of course this might not be the best way to handle the try-catch system, but it is the

definition we use for it. See Figure 4.18.

4.3.2 Switch-case support improvement

The way the tool deals with switch structures is slightly different from what we

would expect. It adds edges from the switch declaration line to each of the case lines,
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Figure 4.18 – Solution provided for the try-catch problem.

Source: author

Figure 4.19 – The way the application currently designs the graph of a switch structure.

Source: author

while we would expect it to add edges throughout the clause lines in a more sequential

form, almost as if it were a block of if-else statements. A visual representation can be

viewed in Figure 4.19. Besides this, it does not really support fall through, causing some

mistaken outputs when it occurs.

In order to fix these issues we will rewrite the logic that deals with switch struc-

tures, since it is not a complicated one. We must take care to keep track of each conditional

block and add the edges from the previous accordingly.

The new algorithm for adding switch-case edges can be seen in Figure 4.20.
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Figure 4.20 – New proposed way of dealing with switch blocks.

Source: author

4.3.3 Other fixed issues

Some other small changes are added. Support for continue and break state-

ments inside loops is provided, since it is not present in the original logic. This requires

us to look for the latest declared loop and can be a bit complex since the statement may

be deep inside the loop structure.

There is also two new methods worth pointing out: one that is implemented to

generate the line version of the graph, after it has been generated at node level; and another

that iterates through the nodes of the graph and updates the source code line indexes that

they reference, summing it to a value that is informed. This latter method is used because,

as mentioned in 4.1, the tool does not support multiple methods initially, so we generate

one graph for each method. The problem is that the graph will always start at line zero,

because it is analysing the method separately, so we need to update the indexes after the

computation has been finished.
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Figure 4.21 – Partial version of the input processing.

Source: author

4.4 Changes to the application input and output

Besides logic changes to the application, there is also a set of changes that were

made in the way the application receives and outputs information, which is done in the

class called TRGeneration. Currently, the tool will receive a file to be processed and

output two things: a file containing a visual representation of the CFG, and some text

in the terminal containing the test requirements. This is fine for short source codes and

methods, but when dealing with a big set of files (in the libraries we want to analyze, for

instance), this will cause a lot of confusion since everything will be sent to the terminal

together.

The tool currently accepts three inputs: the source code being analyzed, a flag -o

that specified the file name for the outputted PNG file, and a debug flag -d. Since we are

going to modify the tool to accept many classes and methods across multiple folders and

sub-folders, the output name flag does not matter anymore, so we can remove it.

In chapter 4.1 we already explained how we made the application support multiple

classes and methods in one Java file. However, we also need to make it iterate through the

files of a directory, since libraries usually contain many files across many sub-directories.

The logic we implement to solve this can be viewed in Figure 4.21.

Also, in order to prevent all output from going to the console together in a giant

block of data, we make the application store each output in a file solely created for the

method it is analysing. For large projects, the output basically follows the project’s tree.

This makes the analysis much easier, and only errors and debug information (if specified)

are printed to the console.

Since the application deals with multiple types of TRs, we add some input flags
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Figure 4.22 – Newly added inputs.

Source: author

Figure 4.23 – Final version of the input processing.

Source: author

for the user to decide which of them they want to obtain. The flag -T, when specified,

will print a file for each processed method containing the original application output, with

node, edge and prime-path requirements. The flag -t makes the application output only

edge and prime-path requirements, each in different files. The flag -l prints the edge

coverage with a more well-formatted output.

For debugging purposes and analysis of the graphs, a -g flag is added that, when

set, will make the application output one file for each processed method containing the

detailed structure of the graph, with information on its nodes and edges and the source

code they represent.

Another optional flag was added, -c, that when set makes the tool generate the test

requirements based on the clean source code (i.e. it will not try to look into the original

source code line indexes when outputting the requirements).

The newly added inputs and the final state of the file processing can be seen in

Figures 4.22 and 4.23.



40

Figure 4.24 – Array initialization is one of the things that the tool does not yet support.

Source: author

4.5 Final state of the tool

After all the changes and fixes we have implemented, although the tool is now able

to process most Java projects out there, it still contains some more specific limitations,

which should not be a big deal in a general case. We will list them here in order for a

future developer to work on it should they want to.

The main limitation is that ternary operators are not processed as if-else in-

structions, but as single-line instructions. They do not cause errors and do not prevent the

application from finishing, but the test requirements listed may not be completely correct

since it will not derive two flows for the instructions - i.e. it will not treat the instruction

as an if-else statement.

Complex objects and object initialization is also not fully supported. Some library

classes have objects being invoked through return instructions. This sometimes causes the

application to get lost, providing wrong information on the output, or even failing with an

error.

Array and matrix initialization, as shown in 4.24, is also not fully supported due

to the bracket syntax. The clean up script does not understand it pretty well and it may

lead to failures.

try-catch blocks are supported, but one may argue if the way the application

deals with them is correct or not, since the flow is more abstract in their cases.
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Table 4.1 – Adaptations made to the tool
Description Effort

Refactor of clean up procedure 3
Code processing improvement 7
for-each support 6
try-catch support 5
Improvement to comments support 6
Tracking of source code line ids 10
Support for code with annotations 1
switch-case structure improvement 6
Support for continue and break statements 5
One-liner if and loops support 6
Character query system improvement 8
Generation of line version of CFG 9
Support for multiple files and directories 6
Input & output modifications 5

Source: author

Table 4.2 – Current limitations of the tool
Description Effort

Ternary operator support 10
Lambda expression support 10
Array initialization support 9
Matrix & object initialization support 10

Source: author

Lastly, Java 8 allows for the use of lambda expressions4, and these are also not

supported, with great chance of causing the tool to fail.

These listed limitations have a small impact in the reliability of our results, since

roughly most of the projects we are addressing make few to no use of the instructions that

cause them. Furthermore, the methods we are selecting for analysis in Chapter 5 do not

use any of the the aforementioned instructions.

Table 4.1 and Table 4.2 display, respectively, a summary of all modifications that

were made and limitations that were left unchanged, correlated with the effort to work on

them, where 0 represents no effort at all, and 10 represents very high effort.

4See https://www.w3schools.com/java/java_lambda.asp.
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5 ANALYSIS OF TEST SUITES

We should recall the problems listed in Chapter 1: there is an apparent redundancy

in the test suites of the analyzed Java projects, and we want to know why they happen,

if they are related to an automatically generated test suite, and what is the impact of

this redundancy. Now that we have the PPC generation tool, we can proceed with our

methodology and analyse the test suites.

In order to solve the aforementioned questions, we should select a set of methods

from the projects to work with. We want to consider methods mainly with different na-

tures, sizes and complexities, so that we can have a consistent analysis. We also want to

give a special attention to methods with loops, since they are more interesting to analyze

due to the complex paths derived from the loops.

Previous research on the TPs from the projects show that the apparent redun-

dancy shows up mainly in methods of lang3 and math4 libraries (two libraries from

org.apache.commons). The former contains many functions related to language and string

manipulation, while the latter deals with mathematical problems. Thus, this pair works

well for the research as both libraries come from issues of different natures (language ver-

sus math). Moreover, when taking a look into the methods where a problem of redundant

TPs was identified, it is possible to see many different complexities and structures.

The methods observed and their cyclomatic complexities (CC) are shown in Tables

5.1 and 5.2.

From these tables, we select fifteen methods to study, since we want to focus more

on a depth approach rather than a breadth approach. Again, we look for small groups of

2-3 methods, each with different characteristics or natures. We also want to look for

methods with loops, since they tend to be more complex and interesting to study.

The selected methods for this work can be seen in Table 5.3. Now, let us take a

Table 5.1 – Methods with identified TP redundancy - math4
Method CC

math4.dfp.Dfp.divide(Dfp) 33
math4.dfp.Dfp.divide(int) 9
math4.dfp.Dfp.intLog10() 4
math4.dfp.Dfp.isZero() 1
math4.dfp.DfpMath.pow(Dfp,Dfp) 28
math4.genetics.ListPopulation.getFittestChromosome() 3
math4.geometry.euclidean.threed.SphericalCoordinatesTest.testHessian() 8
math4.stat.regression.RegressionResults.getCovarianceOfParameters(int,int) 4

Source: Silva, Keslley
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Table 5.2 – Methods with identified TP redundancy - lang3
Method CC

lang3.Conversion.binaryBeMsb0ToHexDigit(boolean[],int) 17
lang3.Conversion.binaryToHexDigit(boolean[],int) 17
lang3.StringUtils.getLevenshteinDistance(CharSequence,CharSequence,int) 17
lang3.time.DurationFormatUtils.formatPeriod(long,long,String,boolean,TimeZone) 20
lang3.Conversion.longToIntArray(long,int,int[],int,int) 4
lang3.StringUtils.compare(String,String,boolean) 6
lang3.StringUtils.compareIgnoreCase(String,String,boolean) 6
lang3.StringUtils.containsOnly(CharSequence,char...) 4
lang3.StringUtils.indexOfAnyBut(CharSequence,CharSequence) 6
lang3.StringUtils.isAllUpperCase(CharSequence) 4
lang3.StringUtils.isAsciiPrintable(CharSequence) 4
lang3.StringUtils.lastIndexOfIgnoreCase(CharSequence,CharSequence,int) 7
lang3.StringUtils.startsWithAny(CharSequence,CharSequence...) 4
lang3.StringUtils.stripStart(String,String) 6
lang3.LocaleUtils.toLocale(String) 11
lang3.StringUtils.containsAny(CharSequence,char...) 8
lang3.StringUtils.indexOfDifference(CharSequence...) 11
lang3.text.WordUtils.wrap(String,int,String,boolean,String) 14
lang3.time.DurationFormatUtils.formatDurationWords(long,boolean,boolean) 10
lang3.StringUtils.uncapitalize(String) 4
lang3.AnnotationUtils.isValidAnnotationMemberType(Class<?>) 3
lang3.StringUtils.center(String,int,char) 3
lang3.Conversion.byteArrayToUuid(byte[],int) 2
lang3.Conversion.hexDigitToInt(char) 2
lang3.Conversion.intToHexDigit(int) 2
lang3.StringUtils.stripAccents(String) 2

Source: Silva, Keslley
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Table 5.3 – Methods selected for the analysis
Method CC

lang3.StringUtils.getLevenshteinDistance(CharSequence,CharSequence,int) 17
lang3.time.DurationFormatUtils.formatPeriod(long,long,String,boolean,TimeZone) 20
lang3.Conversion.longToIntArray(long,int,int[],int,int) 4
lang3.StringUtils.isAllUpperCase(CharSequence) 4
lang3.StringUtils.startsWithAny(CharSequence,CharSequence...) 4
lang3.StringUtils.containsAny(CharSequence,char...) 8
lang3.StringUtils.indexOfDifference(CharSequence...) 11
lang3.text.WordUtils.wrap(String,int,String,boolean,String) 14
lang3.StringUtils.uncapitalize(String) 4
math4.dfp.Dfp.divide(Dfp) 33
math4.dfp.Dfp.divide(int) 9
math4.dfp.Dfp.intLog10() 4
math4.dfp.Dfp.isZero() 1
math4.dfp.DfpMath.pow(Dfp,Dfp) 28
math4.genetics.ListPopulation.getFittestChromosome() 3

Source: Silva, Keslley and author

look at the process of obtaining the required data for the analysis.

5.1 Obtaining data

To recap, we need to compare the project’s test suite properties with two other

test suites: one that is created based only in the method’s signatures and descriptions,

and another that is generated through an automatic test generation tool. Doing so will let

us know whether the project’s test suite was generated automatically or if it is manually

developed by a person. We also need to understand if this is related to the redundant TPs

and, if not, why they occur.

More specifically, we will perform the following steps for each of the selected

methods: a. manually create a test suite; b. generate test suites using a selected test

generation tool; c. compute the TPs of each suite; d. compute the TRs of each MUT. We

will now describe in detail each step and the difficulties that showed up in each one of

them.

5.1.1 Blind creation of new test suites

In order to create a new suite, we must analyze the signatures of the MUTs and,

eventually, their description (in case the name is not self-explanatory). We want to avoid
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Figure 5.1 – Signature of method containsAny.

Source: author

Figure 5.2 – Signature of method isAllUpperCase.

Source: author

looking into the method’s logic and the project’s suites, so as not to build biased test cases,

although this will be necessary for some of the MUTs as we will see in a moment.

For a couple of methods, developing test cases is easy, because they are very clear

on what they do, which inputs they receive an which outputs they return. Such is the case

of containsAny and isAllUpperCase, whose signatures are displayed in Figures

5.1 and 5.2. It is clear to see that the first will check if the first parameter, a string, contains

any of the subsequent characters, and the second will check if the string passed contains

only uppercase characters.

For another set of methods, understanding them in order to write test cases is a bit

harder. For instance, longToIntArray and formatPeriod seem easy to understand

at first glance, but the amount of parameters that are passed may cause a bit of confusion,

making us check at least their descriptions (displayed in Figures 5.3 and 5.4). In the case

of formatPeriod, it is also needed to analyze the test cases to see how to use the

format parameter.

Moreover, all methods from the Dfp class are difficult to understand by looking at

Figure 5.3 – Signature and description of method longToIntArray.

Source: author
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Figure 5.4 – Signature and description of method formatPeriod.

Source: author

the signatures alone. It is a complex class with attributes, representing a decimal floating

point1. This makes us have to study at least the project’s test suite before creating a new

one from scratch, since it requires specific uses of the constructor and test values. See

Figure 5.5. The same applies to ListPopulation.

After the MUT has been significantly understood, we create a number of test cases,

trying to cover all the situations we believe the method should cover. We make an effort

to always include guard clauses in our process (for example, if the parameter is a string

we should always test for null and empty strings). This is the case for most of the methods

(although some have exceptions2).

After the manually developed suite has been created, we can look into the project’s

test suite for a comparison. For methods with many parameters and/or more specific uses

(such as longToIntArray and formatPeriod), we may take a look in the project’s

suite before finishing ours, but we try as best as we can not to study the test cases and

their individual purposes with the method.

Some examples of suites developed based on the methods signatures can be seen

in Figures 5.6, 5.7 and 5.83.

1See https://en.wikipedia.org/wiki/Decimal_floating_point.
2longToIntArray expects the passed array to be non-null.
3Since the TP generation tool only computes the TP of the test case, we do not need to necessarily use

an assertion, like the project’s suite does.
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Figure 5.5 – The tests for Dfp class require some setup before being run.

Source: author

Figure 5.6 – Suite created for method containsAny.

Source: author

Figure 5.7 – Suite created for method getLevenshteinDistance.

Source: author
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Figure 5.8 – Suite created for method isZero.

Source: author

5.1.2 Generation of test suites using EvoSuite

In parallel with the creation of the test suite, we will use EvoSuite to generate

another set of test suites. EvoSuite is an open-source test generation tool that is widely

used by the Java community. It is also easy to use, containing a command line integration

which we can use to generate the tests we want. A guide to the tool can be found in their

GitHub (2020).

The generation of the test suites may take a while since they run at class level, and

some classes are quite large (StringUtils, for instance) and will have the tool run for about

1 hour before finishing.

The output of the tool is quite messy, as it does not create one test method for

each MUT, but rather creates many methods, each executing a group of MUTs. In order

to later generate the TPs of the suite we must find and extract the parts of the suite that

test the desired MUT, and afterwards merge them in one entire method that we will use

to generate the TPs. One example can be seen in Figure 5.9. This is probably the part

of the generation that takes the most time since the generated suite is sometimes very big

and the calls to test the methods may use multiple variables, so we cannot just copy them

separately. This can be seen in Figure 5.10.

For more complex classes (mainly the ones belonging to math4), the generated

suite is very poor, probably due to the lack of understanding of the classes by the tool.

For instance, the suite generated for ListPopulation contains only 25 methods and 343

lines, and the only calls to getFittestChromosome test an exception, so the MUT’s

purpose is never really tested. Figure 5.11 displays part of the suite generated for List-

Population. Besides this, the suite generated for Dfp class contains only one call to one
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Figure 5.9 – Suite generated for method isAllUpperCase.

Source: author

Figure 5.10 – Test cases generated for method startsWithAny. Before executing the test
cases, a variable is created and manipulated in order to use it as parameter.

Source: author
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Figure 5.11 – Test case generated for the method getFittestChromosome

Source: author

Figure 5.12 – Part of project’s test suite for method containsAny, which tests for high
surrogate characters.

Source: author

of the class’ methods, the rest testing only the class initialization.

5.1.3 Generation of TPs

After all suites have been gathered, we should generate their TPs. For this, we use

a tool called Execution Flow, as mentioned in Chapter 3.

In this process it was observed that in the project’s suite, for some methods, their

test cases were divided into more than one test method. For instance, containsAny has

test cases split over three methods (shown in Figures 5.12, 5.13 and 5.14) - one for high

surrogate characters, one for bad high surrogate characters, and one for normal characters.

Furthermore, wrap has multiple overloads due to optional parameters, having the

simpler overloads call the more complex ones, as shown in Figure 5.15. This makes any

call to the simpler overloads go through all the method’s logic. However, our tool to

generate the TPs will only generate the TP for the overload being called, so if we are to

obtain the TPs of all the test cases for the wrap method, we need to change the suite so
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Figure 5.13 – Part of project’s test suite for method containsAny, which tests for bad high
surrogate characters.

Source: author

Figure 5.14 – Part of project’s test suite for method containsAny, which tests for normal
characters.

Source: author
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Figure 5.15 – The wrap method contains three overloads due to optional parameters.

Source: author

Figure 5.16 – Project’s suite for method wrap using one of the simpler overloads.

Source: author

that it will always call the overload to be tested. See Figures 5.16 and 5.17. The same

thing happens to formatPeriod.

After we fix these issues in the project’s suite, we are good to go. We may create a

temporary test class in which we will run the TP generation tool, and place the test cases

there each time we change the MUT.

5.1.4 Generation of PPCs

Finally, for each of the selected methods we must use the tool adapted in Chapter

4 to generate the prime path TRs. This allows us to check which TPs cover which PPs,

and completes the set of data we need for our analysis.
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Figure 5.17 – Project’s suite for method wrap after changing the suite to call the overload with
five parameters.

Source: author

5.2 Data comparison

Table 5.4 displays the number of TRs to satisfy PPC on the selected methods,

and Tables 5.5, 5.6 and 5.7 display coverage properties for the project’s suites, the cre-

ated suites and the automatically generated suites respectively. These coverage properties

consist of:

(a) number of test cases (number of times the MUT is called in the suite).

(b) percentage of the PPC that was not covered, i.e. uncovered prime paths (UPPs).

(c) number of redundant TPs (RTPs) - not necessarily redundant test cases because the

redundant TP might come from multiple test cases that test different classes of input

values, which we will explain in a moment.

Property (a) is obtained by counting the number of TPs found for each suite (since

the number of TPs is the number of test cases that were executed), while properties (b)

and (c) were obtained using two simple Python scripts, also developed in this work, that

operate over the PPC and TP data.

With these data, it is possible to draw some conclusions. First, we can see that

the properties of the project’s suite are closer to the properties of the manually created

suite than to the generated one. The generated suite contains a lot of redundant TPs, and

considerably more test cases than the other ones. It is also observed that the generated

suite does not cover the PPC criteria efficiently. Actually, if we manually take a look at

the test cases generated by EvoSuite, we can see that the inputs are quite random (see

Figure 5.9), very different from the inputs in the project’s suite. Moreover, as mentioned



54

Table 5.4 – Number of PPCs for each analyzed method
Method # PPCs

getLevenshteinDistance(CharSequence,CharSequence,int) 95
formatPeriod(long,long,String,boolean,TimeZone) 108
longToIntArray(long,int,int[],int,int) 9
isAllUpperCase(CharSequence) 9
startsWithAny(CharSequence,CharSequence...) 7
containsAny(CharSequence,char...) 35
indexOfDifference(CharSequence...) 87
wrap(String,int,String,boolean,String) 457
uncapitalize(String) 9
divide(Dfp) 7999
divide(int) 26
intLog10() 4
isZero() 2
pow(Dfp,Dfp) 47
getFittestChromosome() 9

Source: author

Table 5.5 – Properties of project’s suite for selected methods
Method No Tests % UPPCs No RTPs

getLevenshteinDistance(CharSequence,CharSequence,int) 38 62,1 14
formatPeriod(long,long,String,boolean,TimeZone) 35 95,4 25
longToIntArray(long,int,int[],int,int) 14 22,2 11
isAllUpperCase(CharSequence) 10 11,1 5
startsWithAny(CharSequence,CharSequence...) 12 14,3 6
containsAny(CharSequence,char...) 25 51,4 12
indexOfDifference(CharSequence...) 17 65,5 4
wrap(String,int,String,boolean,String) 46 81,8 20
uncapitalize(String) 10 0 4
divide(Dfp) 29 99,3 13
divide(int) 16 42,3 8
intLog10() 16 0 12
isZero() 11 0 9
pow(Dfp,Dfp) 90 36,2 60
getFittestChromosome() 1 27,3 0

Source: author
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Table 5.6 – Properties of created suite for selected methods
Method No Tests % UPPCs No RTPs

getLevenshteinDistance(CharSequence,CharSequence,int) 14 75,8 1
formatPeriod(long,long,String,boolean,TimeZone) 17 95,4 6
longToIntArray(long,int,int[],int,int) 8 22,2 4
isAllUpperCase(CharSequence) 6 11,1 2
startsWithAny(CharSequence,CharSequence...) 11 14,3 7
containsAny(CharSequence,char...) 8 68,6 2
indexOfDifference(CharSequence...) 8 69 1
wrap(String,int,String,boolean,String) 18 87,1 5
uncapitalize(String) 6 11,1 2
divide(Dfp) 34 99,3 17
divide(int) 10 46,2 3
intLog10() 10 50 8
isZero() 4 0 2
pow(Dfp,Dfp) 8 89,4 3
getFittestChromosome() 3 18,2 1

Source: author

Table 5.7 – Properties of automatically generated suite for selected methods
Method No Tests % UPPCs No RTPs

getLevenshteinDistance(CharSequence,CharSequence,int) 38 62,1 21
formatPeriod(long,long,String,boolean,TimeZone) 9 88,9 2
longToIntArray(long,int,int[],int,int) 3 77,7 1
isAllUpperCase(CharSequence) 23 22,2 19
startsWithAny(CharSequence,CharSequence...) 47 14,3 37
containsAny(CharSequence,char...) 21 71,4 14
indexOfDifference(CharSequence...) 30 69 18
wrap(String,int,String,boolean,String) 13 87,7 3
uncapitalize(String) 71 11,1 60
divide(Dfp) 0 100 0
divide(int) 0 100 0
intLog10() 0 100 0
isZero() 0 100 0
pow(Dfp,Dfp) 0 100 0
getFittestChromosome() 0 100 0

Source: author
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Table 5.8 – Properties of project’s suite for selected methods: updated
Method No Tests % UPPs No RTPs RTPG

getLevenshteinDistance(CharSequence,...,int) 38 62,1 14 10
formatPeriod(long,...,TimeZone) 35 95,4 25 9
longToIntArray(long,...,int) 14 22,2 11 3
isAllUpperCase(CharSequence) 10 11,1 5 4
startsWithAny(CharSequence,CharSequence...) 12 14,3 6 4
containsAny(CharSequence,char...) 25 51,4 12 5
indexOfDifference(CharSequence...) 17 65,5 4 3
wrap(String,int,String,boolean,String) 46 81,8 20 9
uncapitalize(String) 10 0 4 4
divide(Dfp) 29 99,3 13 6
divide(int) 16 42,3 8 4
intLog10() 16 0 12 4
isZero() 11 0 9 2
pow(Dfp,Dfp) 90 36,2 60 24
getFittestChromosome() 1 27,3 0 0

Source: author

before and as seen in Table 5.7, for some of the methods the generated suite contains no

tests whatsoever.

Another thing we can observe is that the project’s suite contains slightly more

tests than the manually created suite, and also slight more redundant TPs. However, the

project’s suite covers slightly more PPs than the manually created suite. In order to study

whether this increased TP redundancy improves the efficiency of the suite or not, we must

manually analyze the test cases to see if the inputs provided come from different, non-

equivalent partitions. The definition of equivalent value partition is provided in Section

2.6.

5.3 Manual comparison

To make this analysis more objective, we will add one extra column to Table 5.5

and Table 5.6 to track the number of "redundant TP groups" (RTPG), i.e. the number of

sets that contain more than one test case producing the same TP. For each group, we study

what causes the TP redundancy. See Table 5.8 and Table 5.9.

For the project’s suite, in at least 4 methods (containsAny, getLevenshte

inDistance, startsWithAny and formatPeriod) a considerable part of the re-

dundant TPs come from testing guard clauses, such as empty array, null string, empty

string, interval of length zero, etc. These compose non-equivalent classes of inputs and

may not be considered redundant.
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Table 5.9 – Properties of created suite for selected methods: updated
Method No Tests % UPPs No RTPs RTPG

getLevenshteinDistance(CharSequence,...,int) 14 75,8 1 1
formatPeriod(long,...,TimeZone) 17 95,4 6 4
longToIntArray(long,...,int) 8 22,2 4 3
isAllUpperCase(CharSequence) 6 11,1 2 2
startsWithAny(CharSequence,CharSequence...) 11 14,3 7 2
containsAny(CharSequence,char...) 8 68,6 2 1
indexOfDifference(CharSequence...) 8 69 1 1
wrap(String,int,String,boolean,String) 18 87,1 5 2
uncapitalize(String) 6 11,1 2 2
divide(Dfp) 34 99,3 17 9
divide(int) 10 46,2 3 4
intLog10() 10 50 8 1
isZero() 4 0 2 1
pow(Dfp,Dfp) 8 89,4 3 3
getFittestChromosome() 3 18,2 1 1

Source: author

getLevenshteinDistance and indexOfDifference contain some re-

dundant TPs also due to parameter swap - there is one test case to call the method with

parameters a and b, in that order, and another that calls it with parameters b and a. When

this is done once, it may not be considered redundant since it tests a functionality (is the

order of the parameters relevant to the method?), however when it is tested more than

once it may indeed define a redundant test case.

getLevenshteinDistance and startsWithAny also contain sets of test

cases that test different classes of equivalence in strings, i.e. uppercase x lowercase letters,

alphabetic characters x numeric characters, and others. This also defines non-redundant

test cases.

Some methods such as formatPeriod, longToIntArray and wrap contain

redundant TPs also due to changing of parameters that do not affect the execution. In

method wrap this happens because it contains one Boolean parameter that, when set to

true, will allow the application to break long words (such as URLs). However, the suite

contains many pairs of test cases testing both values of this parameter, while no long

words are present, which makes the Boolean have no impact whatsoever. For method

formatPeriod, the previously mentioned issue happens because the format parameter

is actually used by another method that it returns, and not by the formatPeriod itself.

All these cases define redundant test cases, and could be removed or improved by studying

them carefully.

For most of Dfp-related test cases, many class-related special values (such as pos-
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itive infinite, negative infinite, NaN, etc) are used, which makes it hard to determine

whether they are indeed redundant test cases or not, but we interpret them as not redun-

dant (with exception of some test cases from intLog10 and pow. The former contains

some sets of test cases with multiple numeric values producing the same TP, and the latter

contains some identical, duplicated, test cases).

For the created suite, roughly most of the redundancy comes from guard clauses,

and occasionally values of same types but different classes of equivalence, so very few are

really redundant. getFittestChromosome has one redundant test that comes from

two tests with very similar setups.

Overall, in the project’s suite, the redundant TPs tend to compose different kinds of

inputs, and indeed improving the suite’s effectiveness. However, performing this estimate

as to whether the tests test different kinds of inputs or not is hard and, sometimes, even

though the combination of parameters that are passed to the function compose an equal

equivalence class, there might be a reason as to why those tests are being executed. For

some of the methods, such as wrap, there are multiple comments sustaining the purpose

of the test cases. However there are cases that the comments do not specify a reason to

the redundancy (also in wrap, all the methods that test both Boolean values contain no

clarification whatsoever).

We may try to study the source of the test cases, i.e. check the context of the

project by the time that they were developed. These projects are all maintained in GitHub,

so we can check commit messages, timestamps and pull requests for information. How-

ever, the only information we get by analyzing the projects’ repositories is that most tests

were created 11-18 years ago. Besides that, no other information is given nor as pull

request descriptions, nor as commit messages.

Another observation we have to make is that the percentage of uncovered PPs is

considerably high for some methods, which might induce one to believe that the suite’s are

not effective. However, a detailed analysis in these cases show that there are many prime

paths that are invalid, i.e. represent execution paths that will never happen. For example,

Figure 5.19, that shows the PPC criteria of method containsAny, defines a prime path

that makes line 1070 jump to line 1089 without entering the first line of the loop (selected

in the figure). However, if we check the source code of the method in Figure 5.18, it is

easy to see that this will never happen due to the guard clause in line 1062, which makes

the logic return if the length of cs is zero (condition necessary in order for the loop to be

skipped in its first step). This issue happens to many of the studied methods, which is the
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Figure 5.18 – Source code of method containsAny.

Source: author

main reason for the high amount of UPPs.

Another item that draws attention is the extremely high amount of UPPs in the

method formatPeriod. Upon inspection of the method’s source code and the TPs of

both suites, we can see that there is a big piece of source code that neither suite reaches due

to the conditions established in the logic. This is another issue whose source is unknown.

Overall, in spite of these observations, we can see that a slight increase in the TP

redundancy in the project’s suite does indeed increase the suite’s effectiveness in fault

prevention and test coverage, mainly because most of TP redundancies come from guard

clause testing. There are only two cases where a higher amount of real redundancy is

identified (textttwrap and pow methods), and even in these, the number is still not very

significant.

With these observations we end our analysis of the project’s suites, the conclu-

sions being as follows: the redundancy that was previously identified comes not from an

automatically generated suite, but from a suite that was manually developed. Further-

more, it comes mostly from tests cases that test different types of inputs - i.e. parameters

of different equivalence partitions.
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Figure 5.19 – PPC criteria for method containsAny.

Source: author
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6 CONCLUSION

This work has analyzed and discussed a possible redundancy present in the test

suites of Java projects, originated from test cases with duplicate execution flows. Hereby,

the question we aim to answer is as follows: why do these tests with duplicate flows exist

and what is their source?

We have defined two hypothesis: one that the suite was automatically generated,

and thus containing redundant tests; and also one that the test cases with equal execution

flow cover different types of parameters (for instance, empty string and null string). We

validated these hypothesis by comparing the properties of three test suites: one created

using a black-box technique, one generated using an automatic test generation tool, and

the project suite’s itself. Among the properties that were analyzed are the prime-path

coverage of the suite and the number of redundant tests in it. To obtain the prime-path

coverage of the test suite, we have researched for a CFG and PPC generation tool, and

later adapted it in order to expand its support of Java code.

After the tool was adapted, we took 15 Java methods and, for each method, we

compared the three test suites, looking for their prime-path coverage and the number of

redundant tests. This allowed us to conclude that the project’s test suite is closer to a

developer-made test suite, rather than a generated one, as is shown in Tables 5.5, 5.6 and

5.7. This refutes our first hypothesis.

A deeper, manual analysis was made to see which test cases cause the redundancy

and what exactly are they doing. In this step, it was found that most of the redundancy

comes from test cases that test parameters of different equivalence partitions, these being

mainly edge cases. There is, however, a portion of test cases that test values of same

equivalence partitions, and even some tests that are duplicated. However, no apparent

reason is given to these.

Given these conclusions, we have enough information to continue the broader

work we have mentioned in Chapter 1, made by Silva and Cota (2020), which aims to

help developers in creating and maintaining an effective test suite. That work uses a

knowledge discovery in database (KDD) framework and a data set built from 12 Java

projects to create predictive models for prime-path prediction. Now that we know the

redundancy identified in the Java methods comes mainly from tests with different kinds

of inputs and do not consist of a real redundancy, we can safely use the present data set to

generate the predictive models.
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One question that still remains open is as to what is the impact of this redundancy

in the test suite’s effectiveness? Does it improve it, or just causes the suite to be larger?

This, along with the modifications that were not made to the PPC generation tool (shown

in Table 4.2), remains as ideas for future work.
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