
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

JEAN LUCA BEZ

Dynamic Tuning and Reconfiguration of the
I/O Forwarding Layer in HPC Platforms

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Philippe O. A. Navaux

External Coadvisor: Dr. Antonio Cortés Rosseló
Universitat Politècnica de Catalunya (UPC)
Barcelona Supercomputing Center (BSC)

Porto Alegre
April 2020

CIP — CATALOGING-IN-PUBLICATION

Bez, Jean Luca

Dynamic Tuning and Reconfiguration of the I/O Forward-
ing Layer in HPC Platforms / Jean Luca Bez. – Porto Alegre:
PPGC da UFRGS, 2020.

136 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2020. Advisor: Philippe O. A. Navaux; External Coadvisor:
Antonio Cortés Rosseló.

I. O. A. Navaux, Philippe. II. Cortés Rosseló, Antonio. III. Tí-
tulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. Claudio Rosito Jung
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“Agradeço todas as dificuldades que enfrentei.

Não fosse por elas, eu não teria saído do lugar.

As facilidades nos impedem de caminhar.

Mesmo as críticas nos auxiliam muito.”

— CHICO XAVIER

ACKNOWLEDGMENTS

I want to thank my advisor, Prof. Philippe Navaux, for the opportunities and

invaluable guidance during the past four years. Likewise, I want to thank my co-advisor,

Prof. Toni Cortes, for the valuable discussions regarding this thesis’s ideas, for receiving

me during my stay in Barcelona, and for the encouragement. I also want to express my

gratitude towards Dr. Francieli Boito for guiding my initial steps in this research topic,

for the reviews, and the brainstorming sessions that helped shaping this work. I also

want to thank Dr. Ramon Nou and Dr. Alberto Miranda from Barcelona Supercomputing

Center with whom I had the amazing oportunity to interact, learn, and grow personally

and professionally during my six month stay in their laboratory. Finally, I want to thank

Jay Lofstead, from Sandia Laboratory, for presenting new oportunities, welcoming to the

Supercomputing community, and motivating me in my next steps.

I am incredibly grateful for my parents Osvaldo and Cleusa, and my brother Re-

nan, who always encouraged, supported, and inspired me during this exciting new phase

of my life. Thank you for motivating and believing in me! My sincere thanks to all my

friends (near and far) and all those who played an important role in my life throughout

this journey. Thank you for being there for me!

I would also like to express my gratitude to the Federal University of Rio Grande

do Sul (UFRGS) and the Institute of Informatics (INF) for the opportunity of conducting

my research within its walls and interacting with this fantastic scientific community.

This research was financed by the Coordenação de Aperfeiçoamento de Pessoal de

Nível Superior – Brasil (CAPES) – Finance Code 001. It has also received funding from

the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Experiments presented in this thesis were carried out using the Grid’5000 testbed1,

supported by a scientific interest group hosted by Inria and including CNRS, RENATER

and several Universities as well as other organizations. We thankfully acknowledge the

computer resources, technical expertise and assistance provided by the Barcelona Super-

computing Center – Centro Nacional de Supercomputación. We thankfully acknowledge

the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing

HPC resources of the SDumont supercomputer2, which have contributed to the research

results reported within this document.

1<https://www.grid5000.fr>
2<http://sdumont.lncc.br>

https://www.grid5000.fr
http://sdumont.lncc.br

ABSTRACT

Input and output (I/O) operations are a bottleneck for an increasing number of applica-

tions in High-Performance Computing (HPC) platforms. Furthermore, it has the potential

of critically impacting performance on the next generation of supercomputers. I/O op-

timization techniques can provide improvements for specific system configurations and

application access patterns, but not for all of them. We call the access pattern the way an

application performs its I/O operations. These techniques frequently rely on the precise

tune of parameters, which commonly falls back to the users. In such large scale sys-

tems, we have an ever-changing application set running with distinct characteristics and

demands. Hence, to improve performance successfully, it is essential to adapt the system

to a changing workload dynamically. In this work, we seek to guide optimization and

tuning strategies by identifying the application’s I/O access pattern. We evaluate three

machine learning techniques to detect such patterns at runtime automatically: decision

trees, random forests, and neural networks. Using the detected pattern, we propose a

tuning strategy that uses a reinforcement learning technique (contextual bandits) to make

the system capable of learning the best parameter value to each observed access pattern

during its execution. That eliminates the need for a complicated and time-consuming pre-

vious training phase. Finally, we argue in favor of a dynamic on-demand allocation of

I/O nodes considering the application’s I/O characteristics. We show that the forwarding

layer’s global deployment combined with the existing static allocation policy based solely

on application size should instead be dynamic and consider the applications’ access pat-

terns to improve global performance. We presented a user-level I/O forwarding solution

named GekkoFWD that does not require application modifications and allows a dynamic

remapping of forwarding resources to compute nodes. We proposed a novel I/O forward-

ing allocation policy based on the Multiple-Choice Knapsack Problem. We demonstrate

our dynamic MCKP policy’s applicability to arbitrate I/O nodes through extensive evalu-

ation and experimentation. We show it could transparently improve global I/O bandwidth

by up to 23× compared to the existing static policy.

Keywords: High Performance I/O. Parallel I/O. I/O Forwarding. I/O Scheduling. Dy-

namic Tuning. Dynamic Reconfiguration.

Adaptação e Reconfiguração Dinâmicas da

Camada de Encaminhamento de E/S em Plataformas HPC

RESUMO

As operações de entrada e saída (E/S) são um gargalo para um número crescente de apli-

cativos em plataformas de Processamento de Alto Desempenho (PAD). Além disso, tem

o potencial de impactar criticamente o desempenho da próxima geração de supercompu-

tadores. As técnicas de otimização de E/S podem melhorar o desempenho para configura-

ções específicas do sistema e para alguns padrões de acesso das aplicações, mas não para

todos eles. Chamamos o padrão de acesso a maneira como uma aplicação executa suas

operações de E/S. Essas técnicas freqüentemente dependem do ajuste preciso dos parâme-

tros, que normalmente recai sobre os usuários. Em tais sistemas de grande escala, temos

um conjunto de aplicações em execução com características e demandas distintas. Por-

tanto, para melhorar o desempenho global, é essencial adaptar o sistema a uma carga de

trabalho que está sempre em constante mudança de forma dinâmica. Neste trabalho, bus-

camos guiar estratégias de otimização e reconfiguração identificando o padrão de acesso

de E/S da aplicação. Avaliamos três técnicas de aprendizado de máquina para automa-

ticamente detectar esses padrões em tempo de execução: árvores de decisão, florestas

aleatórias e redes neurais. Utilizando o padrão detectado, propomos uma estratégia de re-

configuração que utiliza uma técnica de aprendizado por reforço (bandidos contextuais)

para tornar o sistema capaz de aprender o melhor valor de parâmetro para cada padrão de

acesso observado durante sua execução. Isso elimina a necessidade de uma fase anterior

de treinamento complicada e demorada. Finalmente, argumentamos a favor de uma alo-

cação dinâmica e sob demanda de nós de E/S considerando as características de E/S da

aplicação. Mostramos que a aplicação global da camada de encaminhamento combinada

com a política de alocação estática existente baseada exclusivamente no tamanho do apli-

cativo deve ser dinâmica e considerar os padrões de acesso dos aplicativos para melhorar

o desempenho global. Apresentamos uma solução de encaminhamento de E/S em nível

de usuário chamada GekkoFWD que não requer modificações nas aplicações e permite

um remapeamento dinâmico de recursos de encaminhamento para nós de computação.

Propusemos uma nova política de alocação de encaminhamento baseada no problema da

mochila de múltipla escolha. Demonstramos a aplicabilidade de nossa política dinâmica

MCKP para arbitrar nós de E/S por meio de extensa avaliação e experimentação. Mos-

tramos que tal solução pode melhorar, de forma transparente, a largura de banda de E/S

global em até 23× em comparação com a política estática existente.

Palavras-chave: E/S de Alto Desempenho, E/S Paralela, Encaminhamento de E/S, Adap-

tação Dinâmica, Reconfiguração Dinâmcia.

LIST OF FIGURES

Figure 1.1 I/O bandwidth of distinct write access patterns with a varying number
of I/O nodes in the MareNostrum 4 supercomputer. The y-axis is not the same
in the plots...20

Figure 2.1 Standard parallel I/O stack of HPC platforms. ..23

Figure 2.2 Major components of a parallel file system...24

Figure 2.3 Most used parallel file systems in parallel I/O research.25

Figure 2.4 Forwarding layer in the HPC I/O stack. ..26

Figure 2.5 I/O forwarding scheme on a large-scale cluster or supercomputer................27

Figure 2.6 Different representative I/O access patterns for scientific HPC applications.31

Figure 2.7 Illustration of the two phases of a collective read I/O operation in MPI.......32

Figure 2.8 Interference on the access pattern of concurrently executing applications. ..33

Figure 3.1 I/O phases of two real-world executions of applications in HPC systems,
as inferred from Darshan logs. For each execution, we depict only the top four
access patterns (in accumulated duration). ...39

Figure 3.2 Spearman’s nonparametric correlation coefficient for the metrics. Pos-
itive correlations are displayed in blue and negative correlations in red. The
color intensity and the size of the ellipse are proportional to the coefficients.43

Figure 3.3 Decision Tree to classify access patterns into the tree classes: file per
process (FP); shared file, contiguous (SC); and shared file, 1D strided (SS).44

Figure 3.4 Confusion matrices for the training, testing, and validation datasets. The
x-axis shows the real class, and the y-axis shows what was detected by the
DT. The classes are: file per process (FPP); shared file, contiguous (SC); and
shared file, 1D strided (SS). ..45

Figure 3.5 Confusion matrices for the training, testing, and validation datasets. The
x-axis shows the real class, and the y-axis shows what was detected by the
DT. The classes are: contiguous (C) and 1D strided (S) accesses.46

Figure 3.6 Neural Network architecture employed to classify the metrics into the
three classes, regarding the file layout and the spatiality of access.48

Figure 3.7 Confusion matrices for training, testing, and validation. The x-axis
shows the real class, and the y-axis the class detected by the NN: file per
process (FPP); shared file, contiguous (SC); and shared file, 1D strided (SS).49

Figure 3.8 Impact of the window size on performance based on the execution time
as perceived by the user (makespan). A total of 128 processes access a 4GB
shared file in 32KB 1D-strided requests. Baseline algorithms are colored in
red and TWINS (distinct windows) are in blue. The y-axis is different in each
plot. ...51

Figure 3.9 The number of patterns where performance was increased considering
different policies to tune the I/O scheduler parameter. Results are grouped by
the number of I/O nodes. The y-axis is not the same in all the plots. O =
Oracle, S = Static, T = Decision tree, F = Random forest, and N = Neural
network..52

Figure 3.10 The number of patterns where performance was decreased considering
different policies to tune the I/O scheduler parameter. Results are grouped by
the number of I/O nodes. The y-axis is not the same in all the plots. O =
Oracle, S = Static, T = Decision tree, F = Random forest, and N = Neural
network..53

Figure 4.1 The agent-environment interaction in Reinforcement Learning (RL)...........57
Figure 4.2 The proposed architecture includes the Announcers, at the I/O nodes,

and the centralized Council (on a separated node) where detection and deci-
sion take place...59

Figure 4.3 Achieved precision, i.e., how often our approach chooses the correct
window size, depicted in bins of 10 observations for simulations with differ-
ent ε. Table 4.1 details the characteristics of the six patterns selected for this
analysis. The x-axis of each plot, limited by the number of measurements of
the experiments, is described in Section 4.2.1. ..63

Figure 4.4 Observed precision during the simulations of the six distinct concurrent
access patterns detailed in Table 4.1, depicted in bins of 50 observations, using
a ε-greedy policy with ε = 0.15. The x-axis indicates the learning iteration
of each concurrent pattern...65

Figure 4.5 Achieved precision, depicted in bins of 10 observations for simulations
of the UCB1 policy compared to the ε-greedy alternative......................................67

Figure 4.6 The selected window sizes during the online adaptation experiment with
ε-greedy. The gray lines separate the write (wide) and read (narrow) phases.
It is crucial to notice that there is a single choice at each second, i.e., there are
no overlapping decisions (points), despite what the scale of the plots might
suggest...68

Figure 4.7 Estimates for the actions (window sizes) at the end of the online exper-
iment. Each action is shown by its value. ...69

Figure 4.8 Bandwidth of the benchmark during the learning process. The red
dashed line shows the execution time of the first iteration, the green line indi-
cates the shortest execution time, and the blue one presents the trend obtained
through linear regression. The y-axis is different in each plot.70

Figure 4.9 The selected window sizes during the online adaptation experiment with
UCB1. The gray lines separate the write (wide) and read (narrow) phases. It
is crucial to notice that there is a single choice at each second, i.e., there are
no overlapping decisions (points), despite what the scale of the plots might
indicate..70

Figure 4.10 Execution time of the W, S, and C components of MADspec with dif-
ferent window duration. The y-axes are different and do not start at zero.
...72

Figure 4.11 Execution time for W, S, and C while adapting the TWINS window
size. The dashed lines indicate the previously measured times without adap-
tation. In red, the worst window size, and in green, the best one for each
scenario. The blue line represents the trend using a Local Polynomial Re-
gression Fitting function with 95% confidence...73

Figure 4.12 Time to decision when I/O nodes are asynchronously reporting metrics
every second to the centralized Council located on a remote node.74

Figure 5.1 Overview of the architecture used by FORGE to implement the I/O
forwarding technique at user-space. I/O nodes and computes nodes are dis-
tributed according to the hostfile configuration. ...79

Figure 5.2 I/O bandwidth of distinct write access patterns and I/O nodes in the
MareNostrum 4 supercomputer. The y-axis is not the same.83

Figure 5.3 (a) Number of choices each access pattern has which translates into sta-
tistically distinct I/O performance. (b) Access patterns grouped by the number
of I/O nodes that would translates to the best performance....................................84

Figure 5.4 I/O bandwidth of distinct write access patterns and I/O nodes in the
Santos Dumont supercomputer. The y-axis is not the same.85

Figure 5.5 Median global bandwidth observed in the 10, 000 sets of 16 randomly
selected applications from the 189 scenarios collected at MN4 supercomputer.....91

Figure 5.6 Improvement of MCKP compared to STATIC policy observed in the
10, 000 sets of 16 applications randomly selected from the 189 scenarios col-
lected at MN4, with different numbers of I/O nodes. ...91

Figure 5.7 GekkoFWD deployment uses an interception library at the client side
and a daemon on the nodes that will act as temporary I/O nodes...........................93

Figure 5.8 I/O bandwidth, measured at client-side, of five repetitions of each ap-
plication described in Table 5.2. The x-axis represents the number of I/O
forwarding nodes exclusively used by the job. The y-axis is not the same for
each plot. ...96

Figure 5.9 Global aggregated bandwidth computed by Equation 5.2 and I/O nodes
allocation for the six applications under different I/O policies. The x-axis of
both plots represents the number of available I/O nodes. Colors differentiate
applications. ..97

Figure 5.10 Bandwidth achieved by individual applications using the assigned num-
ber of I/O nodes by our MCKP policy, compared to each application running
alone under the same I/O node number constraint, i.e., the best result that
application could achieve. ..98

Figure 5.11 Bandwidth difference between applications running under STATIC and
MCKP. Positive (in purple) means MCKP was faster than STATIC. The y-axis
is not the same in all the plots...99

Figure 5.12 Aggregate bandwidth achieved by the arbitration policies while run-
ning the HACC, SIM, and S3D applications on the G5K platform using
GekkoFWD. ..101

Figure 5.13 Aggregate bandwidth achieved by the arbitration policies while run-
ning at least one job for each application on the G5K platform using GekkoFWD.101

LIST OF TABLES

Table 1.1 Some of the TOP 500 machines that implement I/O forwarding....................18
Table 1.2 Details of the access patterns shown in Figure 1.1..20

Table 3.1 Representativity of the access patterns in the dataset......................................41
Table 3.2 C5.0 algorithm statistics for each access pattern...45
Table 3.3 Random forests to detect the pattern class. ...47
Table 3.4 Random forests to detect the spatiality of the accesses...................................47
Table 3.5 Runtime to train and make predictions..49
Table 3.6 Number of patterns where performance was increased...................................54
Table 3.7 Number of patterns where performance was decreased.54

Table 4.1 Selected patterns concurrently simulated in Figure 4.464
Table 4.2 Achieved precision and performance for the six patterns with ε-greedy.64
Table 4.3 Achieved precision and performance for the six patterns.65
Table 4.4 Achieved precision and performance for the six patterns with UCB1............66
Table 4.5 I/O characteristics of the MADcode..71
Table 4.6 Overall overhead (%) of our approach for the 144 scenarios, excluding

the 79 ones where the overhead was zero. ...74

Table 5.1 Access patterns described with FORGE for the experiments executed on
the MareNostum (Figure 5.3(a)) and SDumont (5.4) supercomputers.82

Table 5.2 Setup and I/O characteristics of the applications. ...94
Table 5.3 Allocated forwarders and achieved bandwidth using the STATIC, SIZE,

and MCKP policies when 12 I/O nodes are available to be arbitrated.98

Table 6.1 Comparison of features in our proposal to related work.106
Table 6.2 Learning methods and targeted tuned locations used by each related work

when compared to our proposal. ..108
Table 6.3 Comparison of features in our proposal to related work.110

Table A.1 TOP 500 supercomputadores que utilizam encaminhamento de E/S...........130

LIST OF ABBREVIATIONS AND ACRONYMS

AGIOS Application-Guided I/O Scheduler

ADIOS Adaptable I/O System

API Application Programming Interface

BSC Barcelona Supercomputing Center

CIOD Console I/O Daemon

CMB Cosmic Microwave Background

CPU Central Processing Unit

DNN Deep Neural Network

DOE United States Department of Energy

DT Decision Tree

DVS Data Virtualization Service

FIFO First In, First Out

FORGE I/O Forwarding Emulator

FPP File-per-process access pattern

FUSE Filesystem in Userspace

G5K Grid’5000 Test Platform

GPFS General Parallel File System

HBRR Handle-Based Round-Robin

HDD Hard-disk Drive

HDF5 Hierarchical Data Format, Version 5

HPC High Performance Computing

I/O Input/Output

IBM International Business Machines

IOD I/O Daemon

IOFSL I/O Forwarding Scalability Layer

ION I/O Node

IOR Interleaved Or Random Benchmark

IP Internet Protocol

JSON JavaScript Object Notation

LDN Lustre Network Driver

LNCC Laboratório Nacional de Computação Científica

LNet Lustre Networking

MCKP Multiple-Choice Knapsack Problem

MIT Massachusetts Institute of Technology

ML Machine Learning

MN4 Mare Nostrum IV Supercomputer

MPI Message Passing Interface

MPI-IO Message Passing Interface – Input/Output

NASA National Aeronautics and Space Administration

NetCDF Network Common Data Form

NFS Network File System

NN Neural Network

NPB NASA Advanced Supercomputing Division Parallel Benchmarks

NRS Network Request Scheduler

OBRR Object-Based Round Robin

OLAM Ocean-Land-Atmosphere Model

PFS Parallel File System

POSIX Portable Operating System Interface

PVFS Parallel Virtual File System

RAID Redundant Array of Independent Disks

RAM Random Access Memory

RDMA Remote Direct Memory Access

RL Reinforcement Learning

RPC Remote Procedure Call

SC Shared-file contiguous access pattern

SCSI Small Computer System Interface

SS Shared-file 1D-strided access pattern

SSD Solid State Drive

TCP Transmission Control Protocol

TWINS Time WINdows Scheduler

UCB Upper Confidence Bound Algorithm

UFRGS Federal University of Rio Grande do Sul

UFS Unix File System

VFS Virtual File System

ZOID ZeptoOS I/O Daemon

CONTENTS

1 INTRODUCTION...17
1.1 Objectives and Contributions ..21
1.2 Document Organization ...22
2 BACKGROUND..23
2.1 Parallel I/O for High Performance Computing..23
2.1.1 Parallel File Systems..24
2.1.2 The Forwarding Layer ...26
2.2 I/O Optimizations ...29
2.2.1 Application’s Access Patterns..29
2.2.2 Request Aggregation and Reordering..31
2.2.3 Request Scheduling..33
2.3 I/O Tuning..35
2.4 Summary..37
3 ACCESS PATTERN DETECTION AT RUNTIME ..38
3.1 Workload and Metrics ..40
3.1.1 Experimental Methodology ...41
3.2 Access Pattern Detection ..42
3.2.1 Decision Trees Approach...43
3.2.2 Random Forests Approach...46
3.2.3 Neural Network Approach...47
3.3 Discussion ..49
3.4 Case Study: Tuning an I/O Scheduler Parameter ...50
3.5 Applying the I/O Access Pattern Detection ..52
3.6 Final Remarks ...54
4 DYNAMIC TUNING OF I/O FORWARDING SCHEDULER..............................56
4.1 Adaptive I/O Forwarding...56
4.1.1 Architecture of the proposed mechanism ..58
4.1.2 Required access pattern detection mechanism...60
4.2 Results and Discussion..61
4.2.1 Experimental Methodology ...61
4.2.2 Offline Evaluation ..62
4.2.3 Online Evaluation ..66
4.2.4 Results with MADspec ..71
4.2.5 Overhead and Time-to-decision...72
4.2.6 Discussion and Limitations..75
4.3 Final Remarks ...76
5 DYNAMIC RECONFIGURATION OF I/O FORWARDING LAYER.................78
5.1 Impact of I/O Node Allocation...78
5.1.1 I/O Forwarding on MareNostrum 4 ...82
5.1.2 I/O Forwarding on Santos Dumont..85
5.1.3 Discussion ..86
5.2 Problem Statement..87
5.3 The Multiple-Choice Knapsack Problem (MCKP) Allocation Policy................88
5.4 Evaluation of MCKP Applicability ...89
5.5 GekkoFWD: On-Demand I/O Forwarding ..92
5.6 Experimental Evaluation..93
5.6.1 Application...94
5.6.2 Allocation Decisions..96

5.6.3 Dynamic Allocation Policy..100
5.7 Discussions and Limitations...102
6 RELATED WORK ...104
6.1 On Access Pattern Detection..104
6.2 On Dynamic Tuning of Parameters...105
6.3 On I/O Forwarding Allocation ..109
7 CONCLUSION ...112
7.1 Future Work ..114
7.2 Publications ...115
REFERENCES...117
APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS128
A.1 Motivação..128
A.2 Contribuições..132
A.3 Conclusões...133

17

1 INTRODUCTION

Scientific applications impose ever-growing performance requirements on the High-

Performance Computing (HPC) field. Furthermore, increasingly heterogeneous work-

loads are entering HPC installations, from Big Data to Machine Learning applications,

making the systems more complex than ever. These requirements justify the continuous

upgrades and deployment of new large-scale platforms. As these systems’ complexity

tends to grow, so does the number of parameters and factors that may directly or indi-

rectly affect performance. “The Opportunities and Challenges of Exascale Computing”

report presented by the U.S Department of Energy (DOE) stated that the Exascale prob-

lem is more than just a matter of scale. Application behavior and performance will be

determined by a complex interplay of the program code, processor, memory, interconnec-

tion network, and input/output (I/O) operation (DOE, 2010). Therefore, achieving perfor-

mance at scale requires an optimized orchestration of those components and a complete

system view to understand the root causes of inefficiencies.

Regarding storage systems management, the DEO “Storage Systems and I/O: Or-

ganizing, Storing, and Accessing Data for Scientific Discovery” report (ROSS et al.,

2018) acknowledges the increasing popularity of machine learning as a tool within the

systems community, which introduces new possibilities in the application of statistical

models to storage systems management. They mention efforts that could contribute to

more effective use of current and emerging storage hardware. Among those, we high-

light storage systems capable of responding to cyclic workload demands, policy-driven

toolsets capable of managing resource sharing, and new capabilities for enabling rapid

data reorganization. The research presented here aligns with these emerging trends.

As I/O is a bottleneck for an increasing number of applications, it has the potential

of critically impacting application performance on the next generation of supercomput-

ers. While HPC clusters typically rely on a shared storage infrastructure powered by a

Parallel File System (PFS) such as Lustre (SUN, 2007), GPFS (SCHMUCK; HASKIN,

2002), or Panasas (WELCH et al., 2008), the increasing I/O demands of applications from

fundamentally distinct domains stress this shared infrastructure. As systems grow in the

number of compute nodes to accommodate larger applications and more concurrent jobs,

the PFS is not able to keep providing performance due to increasing contention and inter-

ference (XU et al., 2014; Kougkas et al., 2016; Yildiz et al., 2016; YU et al., 2018; YANG

et al., 2019a).

18

To mitigate this issue, the I/O forwarding technique (ALMÁSI et al., 2003) seeks

to reduce the number of nodes concurrently accessing the PFS servers by creating an

additional layer between the compute nodes and the data servers. Thus, rather than appli-

cations accessing the PFS directly, the I/O forwarding technique defines a set of I/O nodes

that are responsible for receiving I/O requests from applications and forwarding them to

the PFS in a controlled manner, allowing the application of optimization techniques such

as request scheduling, aggregation, and compression. Moreover, its presence on an HPC

system is transparent to applications and file system agnostic. Due to these benefits, the

forwarding technique is applied by Top 500 machines1 as detailed by Table 1.1.

Table 1.1: Some of the TOP 500 machines that implement I/O forwarding.

Rank Supercomputer Compute
Nodes

I/O
Nodes

3 Sunway TaihuLight (YANG et al., 2019b) 40, 960 240
4 Tianhe-2A (XU et al., 2014) 16, 000 256
6 Piz Daint (GORINI; CHESI; PONTI, 2017) 6, 751 54
7 Trinity (VIGIL, 2015) 19, 420 576
13 Sequoia (PRABHAT; KOZIOL, 2014) 98, 304 768

Source: TOP 500 November 2019, and Ji et al. (2019).

I/O optimization techniques (including but not limited to the I/O forwarding layer)

typically provide improvements for specific system configurations and application access

patterns, but not for all of them. We call the access pattern the way the application per-

form I/O operations: number of accessed files, spatiality (contiguous, 1D-strided, etc),

and request size. Moreover, such optimizations often rely on the correct choice of pa-

rameters (for example, the size of the buffer for MPI-IO collective operations). However,

the responsibility of making this choice often lies with the user. The techniques fail to

provide improvements for all patterns because they are designed to explore specific char-

acteristics of systems and workloads (MCLAY et al., 2014). Boito et al. (2016) and Bez

et al. (2017) demonstrate that for request scheduling at different levels of the I/O stack.

Therefore, considering that in such large scale systems we have an ever-changing appli-

cation set running, with distinct characteristics and demands, to improve performance

successfully, it is essential to dynamically adapt the system to a changing workload.

Thus, we remove the tuning responsibility from the users by making the system capable

of adapting itself to deliver the best possible performance.

We propose a novel approach to adapt the I/O forwarding layer to the current I/O

1November 2019 TOP500:<https://www.top500.org/lists/2019/06/>.

https://www.top500.org/lists/2019/06/

19

workload. In our proposal, we periodically observe access pattern metrics collected by the

I/O nodes. A reinforcement learning technique, contextual bandits (SUTTON; BARTO,

2017), is used so that the system can learn the best choice to each access pattern at run-

time. After observing a pattern enough times, the acquired knowledge will be used to

improve its performance during the whole life of the system, i.e., for years. Furthermore,

as the learning mechanism continues to update its knowledge, it can adapt to changes

in the system. The novelty of our proposal consists in using k-armed bandits and ac-

cess pattern detection to automatically and transparently tune parameters that impact I/O

performance at the forwarding layer during runtime.

By making the system capable of learning at runtime (using Reinforcement Learn-

ing), we eliminate the need for a previous training step (though that is required for the

access pattern detection step, it could be done asynchronously) without adding a high

overhead. That is essential as designing and executing a training set to represent the di-

verse set of applications that will run in a supercomputer, and the interactions between

concurrent applications (over the shared I/O infrastructure), is difficult, error-prone (as

we might not accurately cover all patterns and their interactions), and time-consuming.

Furthermore, on such machines, the forwarding layer is traditionally physically

deployed on special nodes, and the mapping between clients and I/O nodes is static. Con-

sequently, a subset of compute nodes will only forward requests to a single fixed I/O

node, which ends up forcing applications to use I/O forwarding with a statically pre-

defined number of I/O nodes, even if that decision might not be in the best interest for a

given workload. Though this setup seeks to distribute I/O nodes between compute nodes

evenly, it lacks the flexibility to adjust to applications’ I/O demands, and it can even cause

the misallocation of forwarding resources and an I/O load imbalance, as demonstrated by

Yu et al. (2017c) on the Sunway TaihuLight2 supercomputer and Bez et al. (2020) on the

MareNostrum 43 supercomputer.

To showcase this issue, Figure 1.1 depicts the achieved bandwidth computed from

the execution time (makespan), measured at client-side, when multiple clients issue their

requests following an access pattern (represented by the scenarios A to H) and taking

into account the number of available I/O nodes (0, 1, 2, 4, and 8) on the MareNostrum 4

supercomputer at Barcelona Supercomputing Center (BSC)4. Each experiment was re-

peated at least 5 times, in random order, and spanning different days and periods of the

2<https://www.top500.org/system/178764>
3<https://www.top500.org/system/179067>
4<https://www.bsc.es>

https://www.top500.org/system/178764
https://www.top500.org/system/179067
https://www.bsc.es

20

Table 1.2: Details of the access patterns shown in Figure 1.1.

Scenario Nodes Processes File
Layout

Request
Spatiality

Request
(KB)

A 32 1536 File-per-process Contiguous 1024
B 32 1536 File-per-process Contiguous 128
C 32 1536 Shared Contiguous 1024
D 16 192 Shared 1D-strided 128
E 8 192 Shared 1D-strided 1024
F 16 384 Shared Contiguous 128
G 32 384 Shared 1D-strided 512
H 8 384 Shared Contiguous 4096

Source: Author

day. Table 5.1 describes each depicted pattern. It is possible to notice there does not

seem to be a simple rule regarding the number of I/O nodes, which is to be expected

given the complexity of factors that can influence I/O performance. Furthermore, some

patterns seem to benefit the most from having access to more I/O nodes than others. For

instance, in scenario A, not using forwarding is the best choice. On the other hand, for

scenario B, eight I/O nodes are more suited. For the scenario C, only two would suffice.

Consequently, a static mapping of I/O nodes to compute nodes without considering an

application’s workload does not always result in the best performance (BEZ et al., 2020).

Hence, the need for appropriate allocation policies that take into account these issues to

maximize globally-perceived I/O performance.

We argue in favor of a dynamic, on-demand allocation of I/O nodes that considers

an application’s workload characteristics. Accordingly, given a set of applications ready

to run and a fixed number of forwarding resources, solving their allocation problem would

consist in determining how many I/O nodes each of them should receive to maximize

the aggregated global bandwidth. The allocation policy should be invoked before new

applications start to run, and when the set of running jobs has changed.

Figure 1.1: I/O bandwidth of distinct write access patterns with a varying number of I/O
nodes in the MareNostrum 4 supercomputer. The y-axis is not the same in the plots.

●
●

●

●

●

●

●

●

●

●

●

●

●

●

Scenario A Scenario B Scenario C Scenario D Scenario E Scenario F Scenario G Scenario H

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
0

50

100

150

0

10

20

30

40

0

100

200

300

0

20

40

60

80

0

50

100

150

200

250

0

20

40

60

80

0

1000

2000

3000

0

1000

2000

3000

4000

5000

I/O Forwarding nodes

B
an

dw
id

th
 (

M
B

/s
)

Source: Author

21

However, due to the static nature of traditional I/O forwarding infrastructures and

the inherent limitations involved in running a production supercomputer, it is not always

possible for system administrators to explore different I/O allocation strategies without

negatively impacting user jobs. Thus, a research/exploration solution is required that al-

lows both I/O researchers and system administrators to obtain an overview of the benefits

or drawbacks of the different access patterns under different I/O forwarding configura-

tions. For such a solution to be useful, it should be portable, allow existing applications

to run without modifications to their source-code and, if possible, run as a user-level ser-

vice to simplify deployment. As we advocate for dynamic allocation, such a solution

should also allow changing the number of I/O nodes assigned to an application during its

execution without disrupting it.

1.1 Objectives and Contributions

The main objective of our research is to dynamically tune the I/O forwarding

layer in HPC platforms to improve global performance. We explore two fronts that

use the application’s access patterns as guideline to make decisions: tuning scheduling

parameters at the forwarding layer and arbitrating I/O nodes between the set of running

applications. Considering these goals, our contributions are the following:

• We investigate and demonstrate how Machine Learning (ML) techniques (Decision

Tree, Random Forests, and Neural Network) can aid in automatically detecting the

most common I/O access patterns of HPC applications;

• We demonstrate the applicability of detection strategies at the I/O forwarding layer

when tuning an I/O scheduler’s parameter in which the accurate detection of the

access pattern is paramount to achieve performance;

• We propose a novel approach to adapt the I/O forwarding layer to the current I/O

workload by combining Reinforcement Learning (RL) and access pattern detection

to automatically and transparently tune I/O-related parameters at runtime;

• We propose a lightweight I/O forwarding explorer tool named FORGE to gather

performance metrics and aid in understanding the impact of I/O forwarding in a

system;

22

• We propose an I/O forwarding allocation policy based on the Multiple-Choice Knap-

sack Problem (MCKP) to optimally arbitrate I/O nodes between applications;

• We evaluate different I/O forwarding allocation policies and demonstrate that a dy-

namic allocation approach can improve overall global bandwidth and system usage,

while efficiently using the available I/O nodes;

• We present an I/O forwarding service called GekkoFWD that acts as an on-demand

forwarding layer and implements the MCKP allocation policy. GekkoFWD builds

on top of a user-level ad-hoc file system, enriching it to allow exploring different

forwarding deployments. It does not require application modifications and it is

simple to run in production.

1.2 Document Organization

The remaining chapters of this document are organized as follows:

• Chapter 2 presents the background on the topics of this thesis covering parallel file

systems, the I/O forwarding layer, access patterns detection, request scheduling and

resource allocation;

• Chapter 3 explores Machine Learning (ML) techniques to detect the most common

I/O access patterns of HPC applications and demonstrates the applicability of such

strategies at the I/O forwarding layer;

• Chapter 4 details our Reinforcement Learning (RL) approach to automatically tune

I/O parameters at runtime based on the application’s access pattern, and presents an

evaluation when applying the technique to optimize TWINS I/O scheduling algo-

rithm window size parameter;

• Chapter 5 focuses on the arbitration of available I/O forwarding resources between

running applications by considering their characteristics and exploring distinct al-

location policies (both static and dynamic);

• Chapter 6 discusses related work;

• Chapter 7 presents concluding remarks and discusses future research perspectives.

23

2 BACKGROUND

In this chapter, we introduce some concepts that serve as a foundation for this

work. An overview of the I/O stack for High-Performance Computing (HPC) is presented

alongside some I/O optimizations techniques. Furthermore, this chapter discusses the

concept of access patterns and resource allocation in HPC platforms.

2.1 Parallel I/O for High Performance Computing

HPC applications often span multiple compute nodes that have a simplified kernel

to avoid possible interference and usually do not have local storage devices. The latest

trend changes this paradigm, where some supercomputers have local SSD devices used as

a Burst Buffers (LIU et al., 2012). Nonetheless, even in these scenarios, applications rely

on a Parallel File System (PFS) to provide a globally shared storage infrastructure where

access to these remote files is transparent for the applications. Due to the increasing num-

ber of compute nodes required to access the shared storage, contention and interference

becomes a limiting factor for achieving performance.

Figure 2.1: Standard parallel I/O stack of HPC platforms.
Parallel / Serial Applications

High-Level I/O Libraries

MPI-IO
POSIX I/O

VFS, FUSE

Parallel File System / Object Storage

Storage Devices

HDF5, NetCDF, ADIOS

OpenMPI, MPICH2
(ROMIO)

PVFS2, Lustre, GPFS, Panasas,
Ceph, Amazon S3

HDD, SSD, RAID

Source: Author, inspired by Ohta et al. (2010)

In order to support I/O from serial or parallel applications, supercomputers provide

a multilayered software environment, as depicted by Figure 2.1. High-level I/O libraries

such as HDF5 (The HDF Group, 1997-2016), NetCDF (LEE; YANG; AYDT, 2008) and

ADIOS (LIU et al., 2014), provide storage abstraction and data portability for the appli-

cations. Those libraries execute on compute nodes, mapping application abstractions into

files or objects, and encoding data in portable formats. Interfaces such as MPI-IO (COR-

BETT et al., 1995) and POSIX are employed to interact with the parallel file systems

servers. These, in their turn, provide a logical file system abstraction over many stor-

24

age devices such as Hard Disk Drives (HDDs), Solid State Drives (SSDs), or Redundant

Array of Independent Drives (RAID).

2.1.1 Parallel File Systems

Large-scale systems, such as supercomputers, rely on Parallel File Systems (PFS)

to provide a persistent shared storage infrastructure. These systems are deployed over

a set of dedicated machines and offer a shared namespace, so applications can access

remote files as if they were stored on their local file system. Furthermore, to achieve

high-performance, they harness parallelism by breaking files and distributing data into

fixed-size chunks across multiple storage nodes through an operation called data striping

(STENDER et al., 2008).

The parallel file system’s servers are divided into two groups: the data servers

and the metadata servers. The former is responsible for storing data, while the latter is

responsible for the metadata. Metadata is information about the stored data such as its

size, permissions, and file distribution among the data servers. Figure 2.2 depicts a com-

mon PFS deployment, with a disjoint set of data and metadata servers. However, in some

systems, the data and metadata server roles can be played by the same node. Additionally,

parallel applications often span over several compute nodes, which generates concurrency

and interference when accessing the PFS’s servers.

Figure 2.2: Major components of a parallel file system.

Meta Server 1

Meta Server 2

Meta Server M

...

Data Server 1

Data Server 2

Data Server N

...

Meta Data Servers

Data Servers

Parallel File System

Client

Client

Client

...

Client

Client

Client

...

App. C

App. X

Processing Nodes

Client

Client

Client

...

Client

Client

Client

...

App. B

App. E

Client

Client

Client

...

Client

Client

Client

...

App. A

App. D

Source: Author

25

All basic file system operations involve metadata access. For instance, when a

client wants to read or write a file, it must first obtain the layout information and per-

missions from the metadata server. Hence the scalability of those accesses has a direct

impact on the overall system performance (REN et al., 2014). An alternative to improve

performance is to allow clients to cache metadata information. However, in this situation,

a cache coherence policy must be in place. Some parallel file systems such as PVFS2

(LATHAM et al., 2004) and OrangeFS (DELL, 2012) distribute metadata among multiple

servers, while others such as Lustre (SUN, 2007) maintain a single centralized metadata

storage. Centralizing metadata operations may become a bottleneck for applications that

work with a large number of small files.

The major parallel file systems in use are Lustre, IBM’s Spectrum Scale (former

General Parallel File System — GPFS) (SCHMUCK; HASKIN, 2002), Panasas (WELCH

et al., 2008), and the Parallel Virtual File System (PVFS) or its new branch, OrangeFS.

From the ten most powerful supercomputers in the world according to the November

2019 edition of the Top500 list1, four use Lustre, two are based on Lustre, and four uses

GPFS/IBM Spectrum Scale.

As an overview of the most used parallel file systems in scientific research, we

analyzed several papers in a pre-defined five-year window for a survey on parallel I/O

(BOITO et al., 2018). We have made a selection of widely known, leading quality con-

ferences and journals. This window covered publications between 2010 and 2014. We

went through all proceedings and issues inside the time window (5, 159 publications) to

identify relevant work by looking at title and abstract. During this process, 120 papers

were pre-selected for further analysis (2.3%). After reading the articles and answering a

set of questions to determine its relevance for the service, 86 articles remained (1.7%).

Figure 2.3: Most used parallel file systems in parallel I/O research.

36
33

6

18

12

0

10

20

30

40

PVFS Lustre GPFS Panasas Other

O
bs

er
va

tio
ns

(a) Parallel I/O research

29

23

28

0

10

20

30

40

PVFS Lustre Other

(b) I/O optimizations

28

22
24

0

10

20

30

40

PVFS Lustre Other

(c) Data optimizations

Source: Author

1<https://www.top500.org/lists/2019/11/>

https://www.top500.org/lists/2019/11/

26

We summarize the results in Figure 2.3 grouped by PFS and research purposes.

We can see that PVFS is one of the most used systems for parallel I/O research (Fig-

ure 2.3(a)). Furthermore, studies that focused on proposing I/O optimization techniques

(Figure 2.3(b)) were also carried out in PVFS. Accordingly, for this research, we have

used PVFS’ new branch named OrangeFS, Lustre, and GPFS depending on the machine.

Nonetheless, as we focus on the I/O nodes, the PFS choice does not restrict our solution

for other PFS.

2.1.2 The Forwarding Layer

The layered architecture presented by Figure 2.1 can potentially accelerate parallel

application I/O for smaller-scale systems (ALI et al., 2009). However, as the number of

compute nodes starts to increase, so does the existing bottleneck on the PFS servers. A

new layer was introduced in the I/O stack to alleviate the contention by grouping accesses,

and thus reducing the number of clients that directly interact with the data servers, as

depicted by Figure 2.4.

Figure 2.4: Forwarding layer in the HPC I/O stack.
Parallel / Serial Applications

High-Level I/O Libraries

MPI-IO
POSIX I/O

VFS, FUSE

I/O Forwarding

Parallel File System

Storage Devices

HDF5, NetCDF, ADIOS

OpenMPI, MPICH2
(ROMIO)

PVFS2, Lustre, GPFS, Panasas

HDD, SSD, RAID

IBM CIOD, Cray DVS, IOFSL

Source: Author, inspired by Ohta et al. (2010)

With the I/O forwarding layer, all requests are forwarded to dedicated nodes,

known as I/O nodes. Typically, the number of I/O nodes is larger than the number of file

system servers and smaller than the number of compute nodes. In this scenario, the latter

may be powered with only a very simplified local I/O stack to avoid its interference on

performance, also known as operating system noise (VISHWANATH et al., 2010). When

an I/O node (ION) receives requests, it redirects them to the back-end PFS, as depicted

by Figure 2.5. This strategy reduces the number of clients concurrently accessing the file

system and can potentially reduce the file system traffic by aggregating and reordering

I/O requests (OHTA et al., 2010).

27

Figure 2.5: I/O forwarding scheme on a large-scale cluster or supercomputer.

Meta Server 1

Meta Server 2

Meta Server M

...

Data Server 1

Data Server 2

Data Server N

...

Meta Data Servers

Data Servers

Parallel File System

Client

Client

Client

...

Client

Client

Client

...

App. C

App. X

Processing Nodes

Client

Client

Client

...

Client

Client

Client

...

App. B

App. E

Client

Client

Client

...

Client

Client

Client

...

App. A

App. D

ION 1

ION 2

ION 3...
ION K

Forwarding Layer

Source: Author

By interposing this layer above the file system but below the rest of the I/O soft-

ware stack, as depicted by Figure 2.4, the I/O forwarding framework provides a com-

pelling point for optimizations (ALI et al., 2009). The main reason for this is that this

layer is transparent to applications and high-level I/O libraries and all optimizations per-

formed at the forwarding level are generally not file system dependent. Existing forward-

ing alternatives include IBM CIOD (ALMÁSI et al., 2003), Cray DVS (SUGIYAMA;

WALLACE, 2008) and the open-source IOFSL (ALI et al., 2009).

• Cray Data Virtualization Service (DVS) is a distributed network service that

projects local file systems resident on I/O nodes or remote file servers to com-

pute and service nodes within the Cray system. Projecting is making a file system

available on nodes where it does not physically reside. DVS-specific configura-

tion settings enable clients (compute nodes) to access a file system projected by

DVS servers. Thus, Cray DVS, while not a file system, represents a software layer

that provides scalable transport for file system services. Cray DVS uses the Linux-

supplied virtual file system (VFS) interface to process file system access operations.

It allows DVS to project any POSIX-compliant file system. Cray has extensively

tested DVS with NFS and General Parallel File System (now Spectrum Scale). DVS

has two primary modes of use: serial and parallel. In serial mode, one DVS node

projects a file system to multiple compute node clients. In parallel mode, multi-

ple DVS nodes – in configurations that vary in purpose, layout, and performance –

28

project a file system to multiple compute node clients.

• Lustre Networking (LNet) is a custom networking API that provides the commu-

nication infrastructure to handle metadata and file I/O data for the Lustre file system

servers and clients. LNet has support for many commonly-used network types, such

as InfiniBand and IP networks, and allows simultaneous availability across multiple

network types with routing between them. Remote direct memory access (RDMA)

is allowed when supported by underlying networks (LND). It is possible to config-

ure LNet to act as a router, forwarding communications and I/O requests between

all local networks.

• The IOFSL framework (ALI et al., 2009) implements the I/O forwarding tech-

nique as an attempt to bridge the increasing performance scalability gap between

computing and I/O components (LIU et al., 2013). IOFSL ships I/O calls from

the applications, running on computing nodes, to dedicated I/O nodes. The lat-

ter will then transparently perform operations on behalf of the computing nodes.

This framework uses the stateless ZOIDFS I/O protocol and API from the ZOID

forwarding infrastructure (ISKRA et al., 2008), and the Buffered Message Inter-

face (BMI) network abstraction layer for high-performance parallel I/O. BMI pro-

vides request forwarding over multiple parallel file systems (PVFS, Lustre, UFS,

and PanFS) and interconnection networks (TCP/IP, InfiniBand, and Myrinet). The

framework’s software stack consists of two main components: a ZOIDFS client

library running on the computing nodes and I/O forwarding daemon (IOD) run-

ning on I/O nodes. The client library forwards I/O requests from the compute node

kernel to the IOD which performs I/O on behalf of the compute nodes.

Considerable research (VISHWANATH et al., 2010; OHTA et al., 2010; VISH-

WANATH et al., 2011; ISAILA et al., 2011; Yu et al., 2017a) has been focused on improv-

ing the I/O forwarding layer performance. Some of them (VISHWANATH et al., 2010;

VISHWANATH et al., 2011; ISAILA et al., 2011) studied the I/O subsystem of an IBM

Blue Gene/P supercomputer. In this architecture, the data staging mechanism initially

applied multiple threads per I/O node (one per processing node), without any coordina-

tion among them. Vishwanath et al. (2010) identified some contention-related bottlenecks

associated with this design. They improved performance by allowing asynchronous op-

erations in the I/O nodes and by including a simple FIFO scheduler to coordinate access

from multiple threads. This scheduler alone provides improvements of up to 38%. They

29

also optimized data movement between layers through a topology-aware approach. Isaila

et al. (2011) proposed a two-level pre-fetching scheme for this architecture.

Similarly, Ohta et al. (2010) improve IOFSL’s performance by using I/O schedul-

ing. They implement two algorithms: a simple FIFO and a quantum based algorithm

called Handle-Based Round-Robin (HBRR). The latter based on an algorithm success-

fully applied to parallel file systems’ data servers (LEBRE et al., 2006; QIAN et al.,

2009; BOITO et al., 2013; BOITO et al., 2016), that aims at reordering and aggregating

requests to improve the performance of the applications by modifying their access pattern.

In recent efforts, Yu et al. (2017b) proposes to employ file striping on the I/O for-

warding layer to handle heavy workloads. Their approach seeks to balance the workload

at this layer by recruiting multiple idle I/O nodes. Furthermore, they coordinate file strip-

ing on the forwarding layer and storage system layers to minimize contention (when I/O

nodes compete for file lock or data stripes) and exploit better aggregate bandwidth.

2.2 I/O Optimizations

Numerous factors may interfere with applications’ I/O performance, especially at

large scale. Performance degradation can occur because of network problems, software

bugs, slow disk, or contention when accessing the shared storage system (LARREA et

al., 2015). Hence, significant research effort is put into optimizing, at different layers of

the I/O stack, how the applications perform their I/O. Modifying the file system servers

or clients, the applications, or using libraries and APIs are distinct ways of achieving the

same goal: adjusting the way applications issue their I/O requests and avoiding situations

that are known to degrade performance.

The following sections detail concepts related to I/O optimizations. The appli-

cation’s access pattern is described in Section 2.2.1 and some optimizations techniques

applied on these patterns are described in Sections 2.2.2 and 2.2.3.

2.2.1 Application’s Access Patterns

Applications issue their I/O requests to the PFS servers in diverse ways, depending

on how they were designed and coded. Several characteristics, such as the number of

issued requests, the requests’ sizes, and their spatial location in the file, compose what

30

we call the application’s access pattern. The pattern has a direct impact on performance,

hence a lot of research effort is put into optimizing data access (LOFSTEAD et al., 2011;

HE et al., 2013; YIN et al., 2013; KUO et al., 2014).

The access pattern can be classified in local, global, or system-wide. The local

pattern describes an application’s behavior in the context of a process or task, whereas the

global pattern does it at the application level, considering all processes and tasks (YIN et

al., 2013). On the other hand, the system-wide one describes the patterns of the mixed

concurrent applications when using the shared storage infrastructure or the I/O nodes. The

local access pattern information is usually employed to identify and apply optimizations

on the client-side, while the global access pattern is more suitable in the context of the

forwarding layer or file system servers since it has an overview of the application’s data

accesses. The system-wide one can also be used in the data servers and forwarding layer

to coordinate accesses and optimize I/O performance system-wide.

Although there is no globally accepted convention to describe what elements de-

fine an access pattern, several researchers of the parallel I/O field examined some common

factors or parameters. In this research, we consider the following key aspects to describe

the application’s data access pattern: the number of files, the spatial locality within the

file, the size of accesses, and the type I/O operation.

Regarding the number of files, we consider two well-known scenarios that depict

how most of the HPC scientific applications perform I/O. In the first one, each process

of an application issues its operations in its individual file (file-per-process), as pictured

by Figure 2.6(a). In the second scenario, all the processes share a common file (shared

file). Furthermore, the spatial locality parameter specifies if the access to a shared file is

sequential, i.e. each process accesses contiguous chunks of the file (Figure 2.6(b)) or 1D-

strided, i.e. each process accesses portions with a fixed-size gap between them (Figure

2.6(c)). It is valid to notice that when each application accesses its own file, the presence

of a shared file system is not always required. Yet, even when this pattern is present,

the data is often accessed by other processes or different applications for post-processing

or visualization, requiring the existence of shared storage space. Additionally, when the

compute nodes do not have storage devices attached to them, the PFS is a commonly used

alternative, independently of the type of access.

The request size also has a profound impact on the I/O performance because of

the storage devices’ sensitivity to access sizes and network cost transmissions (BOITO

et al., 2015). For instance, small requests suffer more due to the overhead imposed by

31

Figure 2.6: Different representative I/O access patterns for scientific HPC applications.

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

File B Layout

Process 0 Process 1 Process N

File A Layout File N Layout

(a) File-per-process

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

File Layout

Process 0 Process 1 Process N

(b) Shared file with contiguous access

0 1 2 3 4 5 6 7 8

0 3 6 1 4 7 2 5 8

File Layout

Process 0 Process 1 Process N

(c) Shared file with 1D-strided access

Source: Author

the network latency, which dominates the cost of processing the request. Moreover, in

the case of PFS, they fail to perform well for small requests, especially random requests

(He; Wang; Sun, 2016). Besides leading to poor I/O parallelism among multiple servers,

the usage of HDD as storage media on data servers is notoriously slow for random data

access due to the mechanical nature of disk head movements.

It is valuable and feasible to use the application’s characteristics, such as its ac-

cess pattern, to apply I/O optimizations (YIN et al., 2013). The next section explains

why aggregating and reordering requests, thus modifying the access pattern, is needed to

improve the I/O performance.

2.2.2 Request Aggregation and Reordering

The performance of contiguous data access usually is higher than that of non-

contiguous ones (YIN et al., 2013) for both Hard Disk Drives (HDD) and Solid-State

Disks (SSD). The work by Zimmer, Gupta and Larrea (2016) points out that small and

32

random I/O request patterns negatively impact the file system performance. Consequently,

applications benefit from continguously accessing a file and issuing fewer requests to the

file system, reducing the high I/O latency.

A technique called data sieving (THAKUR; GROPP; LUSK, 2002) seeks to opti-

mize read requests by issuing larger requests than the ones described by the user. Thus,

instead of making several non-contiguous access, a single call could be made that en-

closed all the offsets required by the application. However, this is not helpful when the

gaps between the requests outweigh the cost of reading and transferring the extra data.

Collective I/O is an optimization strategy to improve read and write requests, and

it can be employed at the client, server, or disk-level (THAKUR; GROPP; LUSK, 2002).

The MPI-IO interface allows users to collectively specify the I/O requests of a group of

processes, providing additional access information and a more comprehensive scope for

optimization. Collective calls force all processes in an MPI communicator to issue their

I/O operation simultaneously and to wait for each other upon completion. Therefore,

requests from each process are combined and merged whenever possible to optimize data

access. This optimization in MPI allows the application to perform large, contiguous

accesses, even though the application’s requests may represent a non-contiguous one.

To implement collective operations, MPI-IO uses a technique called two-phase

I/O (ROSARIO; BORDAWEKAR; CHOUDHARY, 1993). In the first phase, processes

access data by making a single, large contiguous access. In the second phase, processes

distribute the data among themselves according to the desired offsets, as represented by

Figure 2.7 for a read request. For write requests the flow is reversed. The technique

translates to performance improvements because the I/O cost is significantly reduced by

issuing fewer, larger, and more contiguous requests, even though an additional communi-

cation is required.

Figure 2.7: Illustration of the two phases of a collective read I/O operation in MPI.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

File Layout

0 3 6 1 4 7 2 5 8

Process 1Process 0 Process N

Buffers

PHASE TWO
Communication

PHASE ONE
Read

Source: Author

The optimizations cited so far require the applications to modify its source code.

33

The next section describes additional efforts in transparently producing better access pat-

terns to the PFS without further changes to the applications.

2.2.3 Request Scheduling

HPC applications concurrently running on large scale clusters or supercomputers

often have to perform their I/O operations to a shared file system, as stated in Section

2.1.1. As one might expect, concurrency is most likely to impair performance. Appli-

cations may use high-level libraries as an effort to improve their local access pattern.

Nevertheless, interference caused by multiple applications accessing the shared storage

infrastructure might break or compromise the efficiency of the optimizations performed

on the client-side.

In these situations, the I/O scheduling technique can be applied to improve access

to the file systems data servers by organizing and reordering requests, taking into account

multiple competing applications. For instance, consider two applications that were locally

optimized by a library to issue their I/O requests contiguously. When those requests arrive

at the forwarding layer or the data servers, they may be interleaved, affecting each other

and possibly reducing the performance when compared to processing all the requests of

the application if it were to execute by itself. Furthermore, this may also happen in the

context of a single application. For example, if distinct processes were to access a shared

file in a contiguous fashion, the PFS’s data servers will observe a non-contiguous access

pattern. This phenomenon, illustrated in Figure 2.8, is called interference, and it is the

cause of many performance losses in these shared environments.

The I/O scheduler will then reorder, aggregate, and determine when to process

each request. These scheduling techniques, applied at some layer of the I/O stack (clients,

I/O nodes, or data servers), decide where and when requests must be served. Literature

covers different schedulers that range from a simple First-Come, First-Served (FIFO)

(OHTA et al., 2010) to more complex ones such as aIOLi (LEBRE et al., 2006), Object-

Figure 2.8: Interference on the access pattern of concurrently executing applications.

Incoming queue of requests

3 2 1
REQUESTS

Application A

3 2 1
REQUESTS

Application B

0

0

Data Server

3 3 2 2 1 1 0 0

Source: Author

34

Based Round Robin (OBRR) Network Request Scheduler (NRS) (QIAN et al., 2009), or

the ones available in the Application-Guided I/O Scheduling (AGIOS) (BOITO et al.,

2016) library. There have also been approaches that target coordination, such as the

IOrchestrator (ZHANG; DAVIS; JIANG, 2010). Others achieve coordination by using

time windows, for instance, the one proposed by Song et al. (2011b) or the Server Time

Windows (TWINS) (BEZ et al., 2017) scheduler. Finally, some seek to adapt to the ac-

cess pattern using pattern matching solutions such as the Fast Dynamic Time Warping

(FastDTW) (BOITO et al., 2019).

Parallel file systems stripe data across data servers to explore parallelism. Al-

though effective in serving asynchronous requests, this can break a program’s spatial lo-

cality, especially for synchronous requests of multiple concurrent applications. Based

on the principle that applications usually rely on a strong spatial locality to ensure high

I/O performance, Zhang, Davis and Jiang (2010) propose a scheme named IOrchestrator.

Their proposal coordinates request scheduling across data servers by using time slices,

based on the access patterns. Thus it can exploit spatial locality by dedicating the service

to one program at a time. Towards a similar goal Song et al. (2011b) proposed a schedul-

ing algorithm for PFS servers. A window-wide coordination concept was employed to

make all data servers focus on serving requests from only one application at a time.

The performance of collective I/O operations could be degraded in today’s HPC

systems due to the increasing shuffle cost caused by highly concurrent data accesses. To

address this issue Liu, Chen and Zhuang (2013a) propose a hierarchical I/O scheduling

algorithm. They argue that the non-contiguous access pattern of many scientific appli-

cations results in a large number of I/O requests, which can seriously impair the per-

formance. The usage of two-phase collective I/O operations is a commonly employed

alternative. Still, it also implies increasing shuffle cost (both inter and intra-node) as the

scale and concurrency increases. Hence, they implement a scheduler that considers an

acceptable delay time to minimize the shuffle cost.

Boito et al. (2016) analyzed different I/O scheduling algorithms at the PFS data

servers. These algorithms decide the order in which requests to each data server must be

processed. They do not focus on cross-application interference, but on adjusting access

patterns to obtain the best performance of the underlying I/O system. In many cases,

this involves generating offset ordered requests or aggregating a large number of small

requests into a smaller number of larger requests.

Although many schedulers were created for the data servers, only a few were

35

designed or tested in the forwarding layer. Applying such a technique in this layer of

the I/O stack allows working with the global access pattern of the applications and even

coordinate access between concurrent ones. Moreover, it is complementary to using them

in other levels, i.e., this technique could be simultaneously applied in the clients, in the

I/O nodes, and in the parallel file system data servers.

2.3 I/O Tuning

In recent years, some researchers (BEHZAD et al., 2013; MCLAY et al., 2014;

ISAILA; CARRETERO; ROSS, 2016; LI et al., 2017; Agarwal et al., 2019) are focus-

ing on automatically configuring the HPC I/O stack so that the applications could obtain

the desired performance with minimal setup effort as if they and the system were man-

ually tuned based on their characteristics. However, several factors and parameters may

affect the I/O performance: the application’s workload, access pattern, interference, and

even system deployment. Moreover, no single optimization and configuration is suited

for every possible scenario. Therefore, considerable research is being conducted to un-

derstand these factors and their interplay to propose techniques and mechanisms seeking

to improve I/O performance while keeping the simplicity for scientists who run those

applications on a daily basis.

Isaila et al. (2014) argue that the current uncoordinated development model of in-

dependently applying optimizations at each level of the I/O stack will not scale to the

new levels of concurrency, storage hierarchy, and capacity expected of from the exascale

systems. Furthermore, they also point out that only a limited number of work has focused

on topology awareness for improving the I/O stack’s performance and scalability. Build-

ing on those ideas, they propose CLARISSE, a middleware for data-staging coordination

and control on large-scale HPC platforms (ISAILA; CARRETERO; ROSS, 2016). This

framework decouples the policy, control, and data layers of the I/O stack to simplify the

global coordination of data staging. Despite bringing significant performance benefits for

collective operations, other common scenarios were not yet considered. For instance, the

forwarding layer or the usage of burst buffers on other layers were left out of the equa-

tion. Furthermore, the impact of different I/O request schedulers on performance and the

interference in the multi-application scenario is still an open issue.

Behzad et al. (2013) propose an auto-tuning system for optimizing the I/O per-

formance of HDF5 applications. By intercepting HDF5 calls at runtime, they evaluate

36

and tune a set of parameters located at different levels of the I/O stack using genetic al-

gorithms to evolve the parameters to the ones that present a better combination. Only a

subset of all the possible parameters for all the layers of the I/O stack was selected. The

stripe count and size (for Lustre), locking and large blocks (for GPFS), the number of col-

lective buffering nodes and collective buffer size (for MPI-IO), and alignment and chunk

size (for HDF5) were part of the equation.

McLay et al. (2014) propose a model for understanding collective parallel MPI

write operations on the Lustre file system and a library to optimize parallel write perfor-

mance. The authors point out that the default stripe count is rarely the right choice for

parallel I/O, and its performance depends on a balance between the number of stripes and

the actual number of collective writes. Authors argue that performance tuning is all about

the stripe count because parallel write performance depends heavily on an appropriate

choice of this parameter. Furthermore, if informed to the MPI stack, it can assign (col-

lective) writers to achieve near-optimal performance. They propose the T3PIO library to

manage this tuning automatically. However, additional scenarios covering collective read

operations, independent writes, and more complex access patterns were not studied. Fur-

thermore, resource contention and interference on the multi-application scenario are not

taken into account when adjusting the parameters.

Agarwal et al. (2019) propose two auto-tuning models, based on active learning,

to recommend a set of parameter values for MPI-IO hints and Lustre configuration for

an application on a given system. They employ Bayesian optimization to find the pa-

rameter values. Though their approach still requires training, due to their separation of

real-application execution and I/O prediction model, training time is reduced compared to

other methods. A model-less deep reinforcement learning-based unsupervised parameter

tuning system driven by a deep neural network (DNN) called CAPED was proposed by

Li et al. (2017). They seek to address the slow and costly current practice of numerous

tweak-benchmark cycles used to tune parameters. Their approach takes periodic mea-

surements of a target computer system’s state and trains a DNN that uses Q-learning to

suggest changes to its current parameter values. They demonstrate that CAPES can find

optimal values for the congestion window size and I/O rate limit of a distributed storage

system in a noisy environment.

37

2.4 Summary

Researchers are tackling the automatic tuning problem of the HPC I/O stack on

distinct fronts, some considering parameters from the client and library side, others on

the file system servers. However, not all representative scenarios and access patterns are

considered in the existing evaluations. Furthermore, the impact of the deployment and

configuration of the forwarding layer is not yet adequately addressed. We believe this

investigation is valid and necessary due to the widespread adoption of this layer and its

potential in affecting the I/O performance of HPC applications. Based on these observa-

tions, the next chapters will detail our proposal.

38

3 ACCESS PATTERN DETECTION AT RUNTIME

Optimization techniques that seek to improve I/O performance by modifying the

application I/O access patterns often cover aggregations, request reordering, collective op-

erations, and I/O request scheduling (KUMAR et al., 2013; WANG et al., 2014; CONGIU

et al., 2016; TESSIER; VISHWANATH; JEANNOT, 2017; BEZ et al., 2017; Bağbaba,

2020; Liu; Wu; Xu, 2020). In this work, an access pattern refers to how an application

performs its I/O operations, covering aspects such as the number of accessed files, spatial-

ity (contiguous, 1D-strided, etc), and request size. These optimization techniques can be

applied at different layers of the I/O stack, e.g., at the compute nodes, at the forwarding

level, or the PFS. In general, optimization techniques typically provide improvements for

particular system configurations and access patterns, but not for all of them. Furthermore,

they often rely on the right selection of parameters, as demonstrated for request scheduling

at different levels (BOITO et al., 2016; BEZ et al., 2017). Therefore, achieving the best

results proposed by an optimization technique often relies on correctly applying them to

the proper workload, and configuring it accordingly. The main issue in practice is that the

workload keeps changing as new applications start and finish their I/O phases. Therefore,

it becomes of paramount importance for systems that seek to auto-tune their parameters

to correctly detect the access patterns, at runtime, to make decisions.

To motivate the need and benefits for adaptation, Figure 3.1 illustrates the execu-

tions of two applications as reported by Darshan (CARNS et al., 2011) traces. The x-axis

represents the execution time, different colors represent different access patterns, and the

boxes identify I/O phases. We use the concept of I/O phases to identify intervals where

I/O operations are made using an access pattern. We infer this information from coarse-

grained aggregated logs. That means that I/O operations are not necessarily happening

throughout those entire periods, but we can be sure that those patterns characterize the

I/O operations that are occurring in those phases. The duration of each phase is defined

by the interval between the first and the last I/O operations from a sequence of operations

with the same access pattern.

Figure 3.1(a) illustrates the input and output behavior the Ocean-Land-Atmosphere

Model (OLAM) (WALKO; AVISSAR, 2008), executed in the Santos Dumont1 super-

computer, at the National Laboratory for Scientific Computation (LNCC), in Brazil. We

selected a job that used 240 processes and ran for 2433 seconds, of which 221 seconds

1<https://www.top500.org/system/178568>

https://www.top500.org/system/178568

39

Figure 3.1: I/O phases of two real-world executions of applications in HPC systems,
as inferred from Darshan logs. For each execution, we depict only the top four access
patterns (in accumulated duration).

0 500 1000 1500 2000 2500
Execution time (seconds)

I/O Phases

[MPI−IO, WRITE, SHARED FILE] + [STDIO, READ, INDIVIDUAL] + [STDIO, WRITE, INDIVIDUAL]

[POSIX, READ, SHARED FILE] + [STDIO, WRITE, INDIVIDUAL]

[STDIO, READ, INDIVIDUAL] + [STDIO, WRITE, INDIVIDUAL]

[STDIO, WRITE, INDIVIDUAL]

(a) The I/O phases of one execution of the OLAM application at the Santos Dumont Supercomputer (LNCC).

0 2000 4000 6000 8000 10000 12000 14000
Execution time (ms)

I/O Phases
[POSIX, READ, INDIVIDUAL, SEQUENTIAL]

[POSIX, READ, SHARED FILE]

[POSIX, WRITE, INDIVIDUAL, SEQUENTIAL]

[POSIX, WRITE, INDIVIDUAL]

(b) The anonymously identified application 2201660091 (job 15335183665324813784) running in
the Intrepid supercomputer at Argonne National Laboratory (ANL).

Source: Author

were spent on I/O operations. OLAM processes read time-dependent input files, write

per-process logs (purple), and periodically write to a shared-file with MPI-IO (yellow).

Though the intervals cover nearly the entire execution time of the application, it does not

means that the application is issuing I/O requests non-stop. It only demonstrates that for

a given (stable) period of time, we can be sure that if any I/O is happening, it will be

characterized as described.

The second application, depicted by Figure 3.1(b), is anonymously identified as

2201660091 (JOB 15335183665324813784) from the Argonne Leadership Com-

puting Facility I/O Data Repository (CARNS, 2013). This repository contains anonymized

traces from the Intrepid supercomputer. That particular execution was randomly chosen

from those who spent at least 30% of their time on I/O. We can see the application per-

forms sequential writes to individual files in roughly the first half of the execution, and

then it moves on to perform sequential reads from individual files.

The examples illustrate that HPC applications tend to present a consistent I/O be-

havior, with a few access patterns being repeated multiple times over an extensive period

(CARNS et al., 2009; DORIER et al., 2014; GAINARU et al., 2015; LIU et al., 2016;

HU et al., 2016). Therefore, one way of adapting the stateless I/O system would be to

observe the current access pattern over some time and combine it with a tuning strategy.

40

Nonetheless, runtime detection techniques should pose minimum overhead. They should

also be capable of performing its detection as fast as possible to allow tuning mechanisms

and optimizations methods to act on the information. That would enable the system to

benefit from good choices quickly and promptly adapt once the observed I/O behavior

changes. In this scenario, we could consider applying machine learning techniques. Al-

though training phases could be expensive, once the model has learned its parameters,

inferences on previously unseen data, at runtime, are fast.

In this chapter, we demonstrate how machine learning techniques can aid in au-

tomatically detecting the I/O access pattern of HPC applications at runtime. We have

selected three methods with distinct characteristics: (I) a decision support tool that uses

a tree-like model of decisions; (II) an ensemble learning method; and (III) a wide-spread

"black-box" approach. Thus, we investigate decision trees, random forests, and neural

networks to classify metrics collected at runtime into common access patterns often used

by the HPC I/O community to evaluate new I/O optimizations. Furthermore, to demon-

strate its applicability, we assessed these detection strategies in a case study in which the

accurate detection of the access pattern is paramount to tune an I/O scheduler’s parameter

at the I/O forwarding layer.

3.1 Workload and Metrics

Modifying the I/O forwarding layer or the file system configuration in production

machines to evaluate new mechanisms or optimization techniques is often not allowed.

Such actions could disrupt services or even harm an application’s performance at scale.

Furthermore, to detect the I/O access patterns of HPC workloads, we require an initial

dataset of metrics. Such datasets with all the necessary parameters to do so are not often

made available from production machines sites.

Therefore, we deployed an I/O stack with forwarding infrastructure in clusters

from the Grid’5000 (BOLZE et al., 2006) experimental testbed. That gives us the flexibil-

ity to evaluate our proposal and demonstrate its feasibility to be later applied to large-scale

machines. We collected metrics on each I/O node every second throughout the execution

of multiple benchmarks and configurations (details in Section 3.1.1). Since the patterns

have a fixed duration, the number of observations is not the same for each benchmark, as

it depends on the execution time. These metrics comprise a data set of over one million

observations.

41

3.1.1 Experimental Methodology

We used two clusters from the Nancy site: four PFS servers in Grimoire; 32 clients

and multiple (1, 2, 4, and 8) forwarding nodes in separated Grisou nodes. Nodes from

both clusters have similar characteristics. Each one has two 8-core Intel Xeon E5-2630

v3, 128GB of RAM, and a 558GB hard disks. A 10Gbps Ethernet network interconnect

the nodes and the two clusters. For our evaluation, both clusters were exclusively reserved

during the experiments to minimize interference.

PVFS version 2.8.2 was used with default 64KB stripe size and striping through

all four servers. Data servers perform writes directly to their disks, bypassing caches, to

ensure the scale of tests would be enough to see access pattern impact on performance.

Clients are equally distributed among the I/O nodes, that communicate directly with the

file system through the IOFSL dispatcher. The IOFSL daemon was executed with all its

default parameters.

To cover the most common I/O access pattern of HPC applications, we used the

MPI-IO Test benchmark tool (Los Alamos National Laboratory, 2008), to issue requests

using the MPI-IO library. We varied the number of processes (128, 256, or 512), operation

(read or write), file layout (shared-file or file-per-process), spatiality (contiguous or 1D-

strided), and request sizes (32 or 256KB — smaller than the stripe size or large enough so

that all servers are accessed). For each experiment, a total of 4GB of data was accessed.

We also deployed a different number of intermediate I/O nodes (1, 2, 4, or 8). In total,

144 different scenarios (we do not test the file-per-process 1D-strided combinations as this

access pattern is not usual) were considered. The full set was executed in random order to

minimize unforeseen impacts. The number of observations for each pattern representing

different benchmark parameters is detailed in Table 3.1.

Table 3.1: Representativity of the access patterns in the dataset.

Observations

Read 29, 929 vs. 100, 406 Write
Shared-file 72, 802 vs. 57, 533 File-per-process
Contiguous 94, 997 vs. 35, 338 1D-strided

Source: Author

42

3.2 Access Pattern Detection

In this section, we detail three approaches we consider to detect the I/O access

pattern of HPC applications at runtime. We explore different machine learning techniques

to identify the access pattern based on the system’s metrics collected at runtime. We

classify the access patterns by file layout and spatiality into three classes. File layout

relates to the number of files, i.e., if all processes use a single shared file or if each process

writes and reads to its file. Spatiality expresses if requests issued by the application are

contiguous or follow a strided pattern.

The three distinct classes cover I/O patterns common among scientific applications

and used by several benchmarks such as MPI-IO Test and IOR2 to test I/O optimizations.

Furthermore, they group situations that, in our experience, exhibit similar behavior. The

three classes are:

• file-per-process with contiguous accesses (FPP);

• shared-file with 1D-strided accesses (SS);

• shared-file with contiguous accesses (SC).

The access pattern detection mechanism receives input information collected at

each I/O node. This information consists of the number of file handles, the request size

(maximum, minimum, average), and the average offset distance between consecutive re-

quests to the same file handle. These parameters were selected from a set of 35 metrics

we have initially considered, by calculating the Spearman’s nonparametric correlation

(SPEARMAN, 1904). It aids in identifying the ones most related to the access pattern

class, as that correlation determines the strength and direction of the monotonic relation-

ship between two variables. Figure 3.2 shows the coefficients for the selected metrics. It

is possible to see a strong negative relationship between the number of file handles and

the pattern class. This metric should allow us to detect the file layout. The minimum

and average request size, and the average offset distance exhibit a direct correlation to

the pattern we want to classify. Intuitively these last metrics should allow us to detect if

requests are contiguous or 1D-strided.

To build our access pattern detection mechanism and eliminate potential noise

from start-up and tear-down phases, we extracted the observations from the center of each

test. We also made sure to take the same number of observations for each access pattern
2<https://github.com/hpc/ior>

https://github.com/hpc/ior

43

Figure 3.2: Spearman’s nonparametric correlation coefficient for the metrics. Positive
correlations are displayed in blue and negative correlations in red. The color intensity and
the size of the ellipse are proportional to the coefficients.

File Handles

Avg. Request size

Min. Request Size

Max. Request Size

Avg. Offset Distance

Pattern Class

F
ile

 H
an

dl
es

A
vg

. R
eq

ue
st

 s
iz

e

M
in

. R
eq

ue
st

 S
iz

e

M
ax

. R
eq

ue
st

 S
iz

e

A
vg

. O
ffs

et
 D

is
ta

nc
e

P
at

te
rn

 C
la

ss

−0.32−0.63−0.01 −0.8−0.84

0.72 0.74 0.3 0.26

0.48 0.57 0.55

0.07 0.01

0.45

Source: Author

and configuration, to avoid bias toward one of the classes. The final data set contains

40 observations, from each of the 1, 008 experiments (144 scenarios × 7 window sizes),

yielding a total of ≈ 40 thousand observations. We explore decision trees in Section

3.2.1, and random forests in Section 3.2.2. We investigate neural networks in Section

3.2.3. For all the approaches, we have split the 40, 240 observations into two: 70% for

training (28, 168 observations) and 30% for testing (12, 072 observations).

It is paramount for any detection mechanism to generalize when faced with pre-

viously unseen metrics. That is one of the main reasons we compare distinct learning

approaches to this problem. To evaluate their behavior in such a scenario, we collected

additional 54, 210 metrics with requests sizes of 64KB and 128KB covering read and write

operations, a different number of I/O nodes, processes, file layout, and spatiality. Differ-

ent request sizes not seen during training could potentially make it harder to identify the

spatiality of requests.

3.2.1 Decision Trees Approach

Decision trees are often an efficient approach to classification problems. Therefore

they might prove suitable for detecting the I/O access pattern at runtime. To build our

tree, we applied the C5.0 algorithm (KUHN; JOHNSON, 2013), a data mining tool for

discovering patterns that delineate categories, assembling them into classifiers, and using

44

them to make predictions. The classifiers are expressed as decision trees or sets of if-

then rules, that are generally easy to understand and implement. The C5.0 algorithm has

become the industry standard for producing decision trees because it does well for most

problems directly out of the box (BALI; SARKAR; LANTZ, 2017). Compared to more

advanced and sophisticated machine learning models, this solution generally performs

nearly as well but are much easier to understand and deploy.

Figure 3.3: Decision Tree to classify access patterns into the tree classes: file per process
(FP); shared file, contiguous (SC); and shared file, 1D strided (SS).

File Handles

FPAvg. Offset Distance

SCAvg. Offset Distance

SC Avg. Offset Distance

SS Avg. Request Size

SC SS

> 1≤ 1

> 767,399.4≤ 767,399.4

> 0≤ 0

> 511,872.0≤ 511,872.0

> 128≤ 128

Source: Author

Figure 3.3 depicts the generated tree with its decisions. It uses three attributes and

five predictors (features): the number of file handles, the average offset distance, and the

average received size. Figure 3.4 illustrates the confusion matrices for the training and

testing data sets. The overall accuracy was of 0.9976. Table 3.2 details the sensitivity

and specificity considering a one-vs-all scenario. As we have three classes, these results

are calculated by comparing each level to the remaining levels. Sensitivity measures the

proportion of actual positives that are correctly identified as such. On the other hand,

specificity measures the proportion of actual negatives that are correctly identified.

It is paramount for any detection mechanism to generalize when faced with pre-

viously unseen metrics. Therefore, we also evaluated the decision tree behavior with the

validation dataset composed of 54, 210 metrics. A validation dataset is different from the

test dataset. Both comprise data that was held back while training. However, it is instead

45

Figure 3.4: Confusion matrices for the training, testing, and validation datasets. The x-
axis shows the real class, and the y-axis shows what was detected by the DT. The classes
are: file per process (FPP); shared file, contiguous (SC); and shared file, 1D strided (SS).

9347 0 0

0 9403 26

0 22 9370

4013 0 0

0 4006 7

0 9 4037

TRAINING TESTING

FPP SC SS FPP SC SS

F
P

P
S

C
S

S

Access pattern class

D
et

ec
te

d
cl

as
s

(a) 40, 240 patterns for training and testing

24509 0 0

0 16631 37

0 20 13013

VALIDATION

FPP SC SS

F
P

P
S

C
S

S

Access pattern class

(b) 54, 210 patterns

Source: Author

Table 3.2: C5.0 algorithm statistics for each access pattern.

FPP SC SS

Sensitivity 1.0000 0.9972 0.9977
Specificity 1.0000 0.9988 0.9986

Source: Author

used to give an unbiased estimate of the skill of the final tuned model when comparing or

selecting between final models. As depicted by Figure 3.4(b), only 57 observations were

incorrectly classified, which represents approximately 0.1% of the total. The accuracy

was 0.9989 with Kappa of 0.9984. Kappa (COHEN, 1960) is a metric that compares an

observed accuracy with an expected accuracy. It can handle both multi-class and imbal-

anced class problems. It describes how much better a classifier performs over another

that makes random guesses based on the frequency of each class. It is always less than

or equal to one. Zero or negative values indicate that the classifier is useless. Landis

and Koch (1977) provide a way to characterize the output where a value < 0 indicates

no agreement, [0 − 0.20] slight, [0.21 − 0.40] fair, [0.41 − 0.60] moderate, [0.61 − 0.80]

substantial, and [0.81− 1] represents almost perfect agreement.

One could argue that identifying file layout, i.e., file-per-process or shared-file

could be simplistic or even yield better results if such parameter was not considered when

building the three, as on the shared-file scenario we expect a single file to be accessed. To

evaluate such a hypothesis, we have removed that parameter and repeated our analysis.

Differently from our previous approach, the decision tree uses only four predictor vari-

ables, and a tree of size five. Furthermore, only two attributes were used to build the tree:

the average offset distance, and the average received request size.

46

Figure 3.5: Confusion matrices for the training, testing, and validation datasets. The x-
axis shows the real class, and the y-axis shows what was detected by the DT. The classes
are: contiguous (C) and 1D strided (S) accesses.

18748 25

24 9371

8019 7

9 4037

TRAINING TESTING

C S C S

C
S

Access pattern class

D
et

ec
te

d
cl

as
s

(a) 40, 240 patterns

41140 37

20 13013

VALIDATION

C S

C
S

Access pattern class

(b) 54, 210 patterns

Source: Author

Figure 3.5 depicts the confusion matrix with the training and testing data sets.

During training, our model correctly classified 28, 119 of the 28, 168 inputs, an accuracy

of 0.9983. When compared to the decision tree using the three classes, the accuracy is

very similar. Therefore, we could select the simpler model using it only to identify the

spatiality of accesses. However, in practice, as a decision tree is implemented in a series of

if-else statements, we do not expect any changes in performance using the simple method.

3.2.2 Random Forests Approach

Random forests are an ensemble method that makes predictions by averaging over

the predictions of several independent decision trees (BREIMAN, 2001). Such an ap-

proach often demonstrates improvements in classification accuracy due to the ensemble

of trees and voting for the most popular class.

To train the random forest, we employed a re-sampling using cross-validation (25

fold). Resampling methods can generate different versions of our training set that can be

used to simulate how well models would perform on new data. The k-fold cross-validation

creates k different versions of the original training set with the same approximate size.

Each set contains 1/k of the training set, and each excludes different data points. The

analysis sets have the remainder (the “folds”) (KUHN; JOHNSON, 2019).

Cutler et al. (2007) reported that the classification rates and performance metrics

of their random forest model were stable with different values for mtry, which represents

the number of variables available for splitting at each tree node. Conversely, Strobl et al.

(2008) noticed a strong influence on predictor variable importance. Thus, we explored

different values for the mtry parameter. Kappa (COHEN, 1960) was used to select the

47

optimal model using the largest value, considering different values for the mtry parameter.

Table 3.3 summarizes the results.

Table 3.3: Random forests to detect the pattern class.

mtry = 2 mtry = 3 mtry = 5

Accuracy 0.99801 0.99818 0.99733
Kappa 0.99701 0.99728 0.99600

Source: Author

Using the best option, i.e., mtry = 3, with a forest of 500 trees, the accuracy for

training was of 0.9983 and 0.9986 for testing. Once more, the file-per-process (FP) class

is the one with perfect detection, as it only depends on the number of file handles detected

at the forwarding layer. For the other two categories, each one has only misclassified 47

and 17 metrics during training and testing.

Due to the perfect detection of the file-per-process class, we also investigated if

there are performance improvements by simplifying the model to detect only the spatial-

ity of the requests. We employ the same methodology, data set, and configuration of the

random forest as before. Table 3.4 details the results. It is possible to notice that accuracy

is also not impacted by simplifying the model. Nonetheless, when applied in practice, an

additional verification would be required to detect the file layout, i.e., if each process is

issuing an operation to its own file or a single shared-file is used. We do not depict the

confusion matrices for the random forest approach as they only presented minor differ-

ences from the decision tree.

Table 3.4: Random forests to detect the spatiality of the accesses.

mtry = 2 mtry = 3 mtry = 5

Accuracy 0.99827 0.99823 0.99765
Kappa 0.99614 0.99606 0.99478

Source: Author

3.2.3 Neural Network Approach

Our Neural Network (NN) classifier was built with Keras (CHOLLET et al., 2015),

a high-level Neural Network API, using TensorFlow (ABADI et al., 2015) as back-end.

The dataset was split into two: 70% for training and 30% for testing. Before feeding our

metrics to the NN, we applied Yeo-Johnson (YEO; JOHNSON, 2000), scale, and cen-

48

ter data transformations. The Yeo-Johnson transformation is similar to Box-Cox (BOX;

COX, 1964), but it does not requires the input to be strictly positive. Both can be used to

improve data normality. The scale transformation computes the standard deviation for a

feature and divides each value by it. Finally, the center calculates the mean of each feature

and subtracts it from each value. These transformations are applied to the input dataset so

that the data is better suited for the NN and to speed up training.

Figure 3.6: Neural Network architecture employed to classify the metrics into the three
classes, regarding the file layout and the spatiality of access.

Number of
File Handles

Average
Request Size

Minimum
Request Size

Maximum
Request Size

Average
Offset Distance

File per
Process

Shared-file
Contiguous

Shared-file
1D-Strided

Input Metrics Output ClasssNeural Network

Source: Author

We initially explored different network architectures (varying the number of hid-

den layers and neurons on each layer) and activation functions. The model that achieved

the highest precision is described in detail in this section. Our final model consists of three

layers, as illustrated by Figure 3.6: an input layer with the five features, a hidden layer

with the same number of neurons, and an output layer with three units, one to represent

each class. The first two layers use a Rectified Linear Unit (ReLU) (HAHNLOSER et al.,

2000) activation function with a normal kernel initialization function. The output layer

uses softmax to squash the outputs of each unit in the range [0, 1] and to ensure that the

total sum of the outputs is equal to one.

We used the RMSProp optimizer with learning rate of 0.001 and a momentum of

0.9. The loss function was the categorical cross-entropy. The output is an n-dimensional

vector that is all-zeros except for a 1 at the index corresponding to the class of the sample.

In our case, we have a 3-dimensional vector for each sample. We trained our model on

22, 534 samples and tested it on 5, 634 samples with a batch size of 32 and 50 epochs.

An epoch refers to one cycle through the full training dataset. The training accuracy was

99.76%, and the testing accuracy was 99.73%.

49

Figure 3.7: Confusion matrices for training, testing, and validation. The x-axis shows the
real class, and the y-axis the class detected by the NN: file per process (FPP); shared file,
contiguous (SC); and shared file, 1D strided (SS).

9357 0 0

0 9336 12

0 57 9406

4003 0 0

0 4029 2

0 18 4020

TRAINING TESTING

FPP SC SS FPP SC SS

F
P

P
S

C
S

S

Access pattern class

D
et

ec
te

d
cl

as
s

(a) 40, 240 patterns for training and testing

24509 0 0

0 16366 1

0 285 13049

VALIDATION

FPP SC SS

F
P

P
S

C
S

S

Access pattern class

(b) 54, 210 patterns

Source: Author

Figure 3.7 shows the confusion matrix of the generated NN with the training and

testing data sets. During training, our model correctly classified 28, 099 of the 28, 168

inputs, an accuracy of 99.76%. We also checked our model’s performance with our testing

data set (30% of the original data). During testing, our model incorrectly classified only

20 samples out of the 12, 072. It is also important to notice all three classes are correctly

identified with a reasonable probability. We applied the neural network with the validation

dataset. As depicted by Figure 3.7(b), 286 observations were incorrectly classified which

represents approximately 0.53% of the total.

3.3 Discussion

Our results have shown that all detection approaches covered in this work can

correctly detect the access pattern. The most straightforward approach, represented by

the decision tree, presented 0.99 accuracy for the training, testing, and validation datasets.

The random forest approach also yielded similar results. Despite the similar accuracy, the

neural network represents a black-box model if compared to the alternatives.

Table 3.5: Runtime to train and make predictions.

Train (s) Predict (ms)

Decision Tree 0.369 1.371
Random Forest 364.505 1.363
Neural Network 54.177 9.825

Source: Author

We evaluated the time taken by each approach to train and to make predictions.

50

The training phase is often done offline and can take longer to complete. Moreover, it

will only be required to update the model, which should not happen as frequently as the

predictions in runtime. Table 3.5 summarizes the median of 10 repetitions to train each

model and the median prediction time of all the metrics available in the dataset used to

train and validate. All the approaches take in the order of milliseconds to predict once the

model is trained. However, the neural network takes ≈ 7.2× more than the others.

3.4 Case Study: Tuning an I/O Scheduler Parameter

Server Time WINdowS (TWINS) (BEZ et al., 2017) is an I/O scheduler designed

for the I/O forwarding layer. It seeks to coordinate the I/O nodes’ accesses to the shared

PFS servers to mitigate contention and interference. To achieve coordination TWINS

assumes that, at any given moment two conditions hold true:

I. an I/O node is focusing its accesses to only one of the PFS data servers;

II. the different I/O nodes are focusing on different servers.

Algorithm 1 describes TWINS pseudo-code. Each I/O node keeps multiple request

queues, one per data server. During a configurable time window, requests are taken (in

arrival order) from only one of the queues to access only one of the servers. Different I/O

nodes target different servers in a given time window. When the time window ends, the

scheduler moves to the next queue following a round-robin scheme. To cause the desired

distribution effect, we add an extra server identifier translation step before adding requests

to the corresponding queues. This translation is done according to the I/O node identifier.

Details about TWINS’ implementation and performance evaluation in multiple scenarios

are available in our previous work (BEZ et al., 2017).

Algorithm 1 TWINS I/O request scheduler
Require: Q is the list of requests to be served
Require: R is the new incoming request

1: priority ← ((R.timestamp/windowSize) ∗max) +R.serverID
2: for each request in Q do
3: if request.priority > priority then
4: Q.insert_after(request.previous,R)
5: break
6: end if
7: end for

51

TWINS can increase (Figure 3.8(a)) but also decrease (Figure 3.8(b)) performance

over other schedulers available for the I/O forwarding layer. We depict two scenarios that

highlight such differences. We compared it to FIFO and HBRR provided by the IOFSL

framework (ALI et al., 2009). In both situations, the correct selection of the time win-

dow parameter, which depends on the access pattern, is of paramount importance.

Figure 3.8: Impact of the window size on performance based on the execution time as
perceived by the user (makespan). A total of 128 processes access a 4GB shared file in
32KB 1D-strided requests. Baseline algorithms are colored in red and TWINS (distinct
windows) are in blue. The y-axis is different in each plot.

● ●

●

● ●

●
●

●
●

69
.1

68
.1

44
.7

35
.6

36
.242

.7

39
.2

60
.9

57
.0

0

25

50

75

F
IF

O

H
B

R
R

0.
12

5m
s

0.
25

0m
s

0.
5m

s

1m
s

2m
s

4m
s

8m
s

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) READ, 8 forwarding nodes

● ●

●
●

●

●

●

●
●

29
3.

4

29
4.

1 35
7.

2

38
1.

2

39
5.

5

32
8.

2 39
6.

9

29
1.

1

30
2.

4

0

100

200

300

400

500

F
IF

O

H
B

R
R

0.
12

5m
s

0.
25

0m
s

0.
5m

s

1m
s

2m
s

4m
s

8m
s

(b) WRITE, 2 forwarding nodes

Source: Author

To demonstrate the applicability of the access pattern detection techniques de-

scribed in Sections 3.2.1 (decision trees), 3.2.2 (random forests), and 3.2.3 (neural net-

works), we evaluate those strategies in a case study in which the accurate detection of the

access pattern is fundamental: selecting the TWINS window size. For that, metrics are

collected at the I/O forwarding layer and are used by the detection mechanism to identify

the access pattern and tune the scheduler’s configuration.

Figure 3.8 illustrates the benefits of correctly picking a window based on the ac-

cess pattern, but also the overhead a wrong choice could introduce. In the situation pre-

sented in Figure 3.8(a), TWINS provides performance improvements between 10% and

48%, depending on the selected window duration. On the other hand, in Figure 3.8(b), the

performance decreases approximately 35% with windows of 8ms, which could be avoided

by using a smaller window. Therefore, to achieve the best performance with TWINS, we

need to tune its time window duration to the current situation.

52

3.5 Applying the I/O Access Pattern Detection

When applied to a real tuning mechanism, mispredictions could have a higher or

lower impact, depending on the class and on how optimizations applied to that given

class behave in such non-optimal scenarios. Therefore, we complete our investigation by

implementing the decision tree, random forest, and neural network methods to the case

study presented in Section 3.4, where we seek to tune the window size of the TWINS

scheduler. We applied the detection mechanism to each observation in the entire dataset

of over one million entries and used this detection to determine the best window at each

instant. In this section, we assume that if a pattern is correctly detected, the best window

is always selected. Since we have a comprehensive set of experiments with performance

metrics of multiple access patterns using distinct window sizes, we can evaluate it offline.

Figure 3.9: The number of patterns where performance was increased considering differ-
ent policies to tune the I/O scheduler parameter. Results are grouped by the number of I/O
nodes. The y-axis is not the same in all the plots. O = Oracle, S = Static, T = Decision
tree, F = Random forest, and N = Neural network.

71
.7

65
.3 71

.7
71

.7
71

.7

71
.7

67
.6

71
.7

71
.7

71
.7

READ WRITE

O S T F N O S T F N
0

25

50

75

100

P
at

te
rn

s
(x

1,
00

0)

(a) 1 forwarding node

10
0.

7
94

.4 10
0.

7
10

0.
7

10
0.

7

10
0.

7
84

.1 10
0.

6
10

0.
6

10
0.

6

READ WRITE

O S T F N O S T F N
0

50

100

150

P
at

te
rn

s
(x

1,
00

0)

(b) 2 forwarding nodes

17
0.

8
15

3.
8

17
0.

8
17

0.
8

17
0.

8

17
0.

8
13

0.
0 17

0.
7

17
0.

7
17

0.
7

READ WRITE

O S T F N O S T F N
0

50

100

150

200

P
at

te
rn

s
(x

1,
00

0)

(c) 4 forwarding nodes

31
1.

3
26

6.
1

31
1.

3
31

1.
3

31
1.

3

31
1.

3
25

4.
6

31
0.

8
31

0.
8

31
0.

8

READ WRITE

O S T F N O S T F N
0

100

200

300

400

P
at

te
rn

s
(x

1,
00

0)

(d) 8 forwarding nodes

Source: Author

By comparing the performance results with a baseline, we count the number of

decisions that resulted in performance improvements or decreases, as presented in Figure

3.9 and Figure 3.10. The baseline to compare performance was using a 1ms windows,

a conservative value that decreases (and increases) performance for the least number of

scenarios. This value would represent the best decision if we had to select a single fixed

window to accommodate all the tested workloads. We compare the results of the three

mechanisms with an oracle and a static solution. Because we have performance results

with all the seven TWINS window sizes considered in our experimental campaign, we

built the oracle by selecting the window size that yielded the highest bandwidth in each

scenario. For the static solution, a 125 µs window is always used. This value was chosen

as it increases performance for the highest number of scenarios (BEZ, 2016).

Results, where performance was increased, are presented in Figure 3.9 and are

53

grouped by the number of I/O forwarding nodes and operation. The y-axis of each plot is

on a different scale, and they all represent the number of patterns ×103. All approaches

to detect the access pattern at runtime were able to perform better than the static solution

for all scenarios. Table 3.6 summarizes the differences with higher precision.

For read operations, the decision tree was able to improve performance for all the

situations where the oracle did when 1, 2, and 4 I/O forwarding nodes are used, respec-

tively. However, for 8 I/O nodes, it improved performance for 99.9% of the cases. That

represents 9.7% (1 I/O node), 6.5% (2 I/O nodes), 11.0% (4 I/O nodes), and 16.9% (8 I/O

nodes) more than the static solution. The random forest approach increased performance

by the same amount as the decision tree. The neural network behaved similarly. For write

operations, all detection approaches are comparable to the oracle, with 1 and 2 I/O nodes.

With 4 and 8, the decision tree achieves 99.9% and 99.8% of the oracle, respectively. That

represent 6.0% (1 I/O node), 19.7% (2 I/O nodes), 31.2% (4 I/O nodes), and 22.0% (8 I/O

nodes) more than using a fixed 125 µs window size. In summary, using such detection

approaches, we can increase performance by 17% over using a statically defined window.

Figure 3.10 depicts all the scenarios with performance decrease. Results are also

grouped by the number of I/O forwarding nodes and operation. The y-axis of each plot

is on a different scale, and they all represent the number of patterns ×103. The three

detection approaches were able to outperform the static choice, for all scenarios, guiding

the scheduler to avoid using windows sizes that would be harmful to the I/O performance.

Table 3.7 compares the results with higher precision to detail the differences.

For read operations, the decision tree was able to avoid performance decrease for

all the situations where the oracle did when 1, 2, and 4 I/O forwarding nodes are used,

respectively. Minor impacts were seen using 8 I/O nodes. The random forest and the

Figure 3.10: The number of patterns where performance was decreased considering dif-
ferent policies to tune the I/O scheduler parameter. Results are grouped by the number
of I/O nodes. The y-axis is not the same in all the plots. O = Oracle, S = Static, T =
Decision tree, F = Random forest, and N = Neural network.

0.
0

6.
3

0.
0

0.
0

0.
0

0.
0

4.
1

0.
0

0.
0

0.
0

READ WRITE

O S T F N O S T F N
0

2

4

6

8

P
at

te
rn

s
(x

1,
00

0)

(a) 1 forwarding node

0.
0

6.
2

0.
0

0.
0

0.
0

0.
0

16
.6

0.
0

0.
0

0.
0

READ WRITE

O S T F N O S T F N
0

5

10

15

20

P
at

te
rn

s
(x

1,
00

0)

(b) 2 forwarding nodes

0.
0

17
.0

0.
0

0.
0

0.
0

0.
0

40
.8

0.
1

0.
1

0.
1

READ WRITE

O S T F N O S T F N
0

20

40

60

P
at

te
rn

s
(x

1,
00

0)

(c) 4 forwarding nodes

0.
0

45
.2

0.
0

0.
0

0.
0

0.
0

56
.8

0.
6

0.
6

0.
5

READ WRITE

O S T F N O S T F N
0

20

40

60

80

P
at

te
rn

s
(x

1,
00

0)

(d) 8 forwarding nodes

Source: Author

54

Table 3.6: Number of patterns where performance was increased.

Operation Approach 1 ION 2 IONs 4 IONs 8 IONs

READ

Oracle 71, 672 100, 653 170, 833 311, 322
Static 65, 326 94, 438 153, 824 266, 126
Tree 71, 672 100, 653 170, 833 311, 316
Forest 71, 672 100, 653 170, 833 311, 316
Network 71, 672 100, 653 170, 830 311, 310

WRITE

Oracle 71, 677 100, 653 170, 834 311, 314
Static 67, 575 84, 063 130, 038 254, 552
Tree 71, 676 100, 636 170, 687 310, 757
Forest 71, 676 100, 637 170, 691 310, 756
Network 71, 676 100, 644 170, 727 310, 782

Source: Author

Table 3.7: Number of patterns where performance was decreased.

Operation Approach 1 ION 2 IONs 4 IONs 8 IONs

READ

Oracle 0 0 0 0
Static 6, 346 6, 215 17, 009 45, 196
Tree 0 0 0 6
Forest 0 0 0 6
Network 0 0 3 12

WRITE

Oracle 0 0 0 0
Static 4, 102 16, 590 40, 796 56, 762
Tree 1 17 147 557
Forest 1 16 143 558
Network 1 9 107 532

Source: Author

neural network behaved similarly. For write operations, incorrect detections at runtime

causes loss of performance for some patterns. Table 3.7 summarizes these differences.

Nonetheless, all detection approaches were able to avoid most of those scenarios.

With 4 and 8, the decision tree decreased performance for 0.36% and 0.98% of the patterns

where the static solution did. When applying the random forest instead, similar behavior

is observed: 0.35% and 0.98%. Finally, with the neural network to make the detection,

identical behavior is observed with slight differences between 0.26% and 0.93%.

3.6 Final Remarks

Different optimization techniques have been proposed to improve I/O operations’

performance at many levels of the I/O stack. These techniques typically achieve their

goals in situations they were designed to improve performance, but not for all possible

55

scenarios. Furthermore, they often require fine-tuning of parameters to yield better results.

In this chapter, we demonstrated the applicability of machine learning techniques

to automatically detect the I/O access pattern of HPC applications at runtime. We investi-

gated decision trees, random forests, and neural networks to classify runtime metrics into

common access patterns. We demonstrated that all three approaches have an equivalent

accuracy but different training and usage overheads. Furthermore, to illustrate its appli-

cability, we evaluated these strategies by investigating the benefits of correctly selecting

the TWINS scheduler’s window size at the forwarding layer. We used some performance

measurements obtained with TWINS to make an offline adaptation depending on the de-

tected access pattern. However, that adaptation was simply an oracle as the only goal was

to evaluate how well the access pattern detection was working. We detail and evaluate a

practical solution for this adaptation problem, using TWINS and applying one detection

mechanism, in Chapter 4.

The proposed approaches to detecting the access pattern are not specific to tuning

the TWINS window size parameter. They can be applied in the context of other opti-

mization techniques that also require or benefit from runtime knowledge of the current

I/O access pattern such as request schedulers, MPI-IO collective operations, and HDF5

tuning.

56

4 DYNAMIC TUNING OF I/O FORWARDING SCHEDULER

In this chapter, we propose a practical approach to adapt the I/O system to a chang-

ing workload by selecting appropriate values for parameters, which depend on the current

access pattern. One way of adapting the stateless I/O system would be to observe the

current access pattern over some time, detected by the techniques described in Chapter

3, and combine it with a tuning strategy. A possible tuning strategy could be a super-

vised technique (a decision tree, for example), which would require a previous training

step. However, considering I/O performance is sensitive to many parameters, creating a

training set to represent all applications (and all interactions of concurrent requests) and

executing it would be both difficult and time-consuming. Therefore the best option is to

learn the best choice for each situation during the execution of applications.

Though we use TWINS in this work as a case study to demonstrate our adapta-

tion technique’s effectiveness, it is not restricted to it. The approach we propose in this

work could be adopted to tune any other parameter at runtime that depends on the ob-

served application’s access pattern, such as quantum-based request scheduling algorithms

(Handle-Based Round-Robin (OHTA et al., 2010) or aIOLi (LEBRE et al., 2006)) or mid-

dleware tunable parameters such as the ones available for MPI-IO collective operations.

4.1 Adaptive I/O Forwarding

We require a solution where the I/O forwarding layer learns the best choice for dif-

ferent situations while being observed, but without prior training due to its high cost and

complexity. Thus, we approach this as a Reinforcement Learning (RL) problem (SUT-

TON; BARTO, 2017) where we take actions in an environment and use the feedback from

these actions and experiences to maximize the notion of cumulative reward, as illustrated

by Figure 4.1. In it, the learner and decision maker is depicted as the agent. The thing it

interacts with, comprising everything outside the agent, is called the environment. These

two interact continually in a sequence of discrete time steps. At each time step t, the

agent receives some representation of the environment’s state St, and on that basis selects

an action At. In the following step, it receives a numerical reward Rt+1 for taking the

action and it finds itself in a new state St+1.

We approach our need for adaptation at the I/O forwarding layer as a k-armed

bandit problem (BERRY; FRISTEDT, 1985), where at each step, an agent takes one of

57

Figure 4.1: The agent-environment interaction in Reinforcement Learning (RL).

Agent

Environment

state
St

reward
Rt

action
AtRt+1

St+1

Source: Sutton and Barto (2017)

the k possible actions (for TWINS each action is a different time window duration) and

receives a reward (performance represented by the bandwidth). The expected reward

from one action is called its value. Since the value of an action a, denoted by q∗(a)
.
=

E[Rt|At = a], is not known beforehand, at the time step t, we only have an estimate of

it represented as Qt(a). Ideally Qt(a) would be close q∗(a). This estimate is based on

the rewards previously obtained by taking that action. The algorithm selects actions with

the highest estimated values (exploitation), but also occasionally chooses other actions to

attain better estimates of their values (exploration).

The values (performance with each parameter) change as the access pattern changes.

To avoid having to “reset” the learning process whenever that happens, we model our

problem as a contextual bandit (or associative search task) (SUTTON; BARTO, 2017):

we have multiple concurrent “instances” of the k-armed bandit, one for each different

access pattern. At each iteration, only one of these instances will be active. This choice

carries the assumption that an action does not have an impact on the following observa-

tion. Tuning the parameter will impact the current I/O phase’s performance and, therefore,

slightly anticipate or delay the next I/O phase. Still, we consider this effect as negligible

because the applications primarily dictate the access pattern.

We implemented each of the concurrent armed bandit instances as an ε-greedy

algorithm (WATKINS, 1989; SUTTON; BARTO, 2017), that at step t takes the action a

of the highest estimated valueQt(a), with probability (1−ε), or with probability ε takes a

randomly selected action. Value estimates use incrementally computed sample averages,

i.e., after obtaining this step’s reward R, the estimate for a is updated as Equation 4.1,

where N(a) is the number of times a has been taken:

Qt+1(a) = Qt(a) +
1

N(a)
[R−Qt(a)] (4.1)

The pseudo-code for a complete bandit algorithm using the incrementally com-

puted sample averages and the ε-greedy action selection is detailed by Algorithm 2. The

58

Algorithm 2 Simple bandit algorithm using ε-greedy by Sutton and Barto (2017)

1: for a← 1 to k do
2: Q(a)← 0
3: N(a)← 0
4: end for
5: while true do

6: A←

{
argmax

a
Q(a) with probability 1− ε (breaking ties randomly)

random action with probability ε
7: R← bandit(A)
8: N(A)← N(A) + 1
9: Q(A)← Q(A) + 1

N(A)
[R−Q(A)]

10: end while

bandit(A) function takes action A in the system and returns the corresponding observed

reward. Adapting it for the contextual bandit scenario would comprise identifying it

uniquely prior to activating the corresponding k-armed bandit instance.

Since the proposed mechanism will run in the I/O nodes, its lifetime will not

be constrained to the jobs’ execution. Consequently, after observing an access pattern

multiple times, it will be capable of consistently providing performance improvements by

making the best decision for that given pattern on any applications that use it.

4.1.1 Architecture of the proposed mechanism

Our case study (TWINS) described in Section 3.4 aims to achieve global coor-

dination. Thus although request scheduling happens independently on each I/O node,

decisions about the window size should not, as multiple I/O nodes should use the same

parameter value for it to make sense. Hence, we included a centralized agent, the Council,

depicted by Figure 4.2, located on a separate node. In each I/O node, the Announcer is

responsible for collecting and asynchronously sending metrics about the observed access

pattern to the Council and receiving the selected window size the node should use. The

Council’s workflow consists of two steps: the detection and decision phases. The de-

tection phase is responsible for classifying the observed access pattern from the metrics

collected on each I/O node using an access pattern detection technique such as the ones

proposed by Bez et al. (2019) and Boito et al. (2019). A new decision is only made if the

metrics allow for detection (i.e. if sufficient requests are flowing through this layer).

Algorithm 3 details the Council interactive decision and learning process depicted

in Figure 4.2. Once a set of metrics is received (line 4), the access pattern is detected for

59

Figure 4.2: The proposed architecture includes the Announcers, at the I/O nodes, and the
centralized Council (on a separated node) where detection and decision take place.

Source: Author
Algorithm 3 Council
Input:

ion_number is the number of connected I/O nodes
ε is the greedy exploration ratio

1: S ← ∅, window ← default_window
2: while true do
3: while S.size() < ion_number do
4: host,metrics← receiveMetrics()
5: reward← getBandwidth(metrics)
6: . Use any access pattern detection mechanism

7: pattern← detectAccessPattern(metrics)
8: . Update N and Q with the reward, i.e. bandwidth

9: increment(N [pattern][window])
10: update(Q,N, pattern,window, reward) . Eq. 4.1

11: . Select the recommended window based on the pattern

12: choices[host] = argmax
window

Q[pattern][window]

13: S.add(host)
14: end while
15: . Define the window size for all I/O nodes

16: if random(0, 1) 6 ε then
17: window ← randomWindow() . Explore

18: else
19: window ← mostOccurringInList(choices) . Exploit

20: end if
21: announceWindow(window)
22: S.reset()
23: end while

each I/O node separately (line 7), and the corresponding instance of the armed bandit is

selected. Then the value estimate of the previously taken action is updated according to

Equation 4.1 (line 10), using the observed performance as a reward. The estimates are

used to determine the window size suitable for that I/O node (line 12). Upon making

60

the centralized decision, the Council must decide between exploration or exploitation

(line 16). For the latter, a consensus is required (line 19) between the possible divergent

recommendations for the different I/O nodes. In this work, we make the best choice for

the majority of the I/O nodes.

TWINS requires the centralized Council. However, if the optimization tolerates

different decisions by the I/O nodes, the detection and decision steps would instead hap-

pen on each I/O node, and no centralized agent would be needed. In this case study, the

centralized approach has the additional benefit of accelerating the learning process, as

parallel experiences are combined in the value estimates. A compromise to decrease the

time required to reach a decision would be a hierarchical approach, where the ability to

reach global consensus is sacrificed for a reduced overhead.

It is important to notice that only the I/O nodes will interact with the Council, and

not all the compute nodes. For instance, if we consider the TaihuLight machine, only

the 240 I/O nodes interact with the Council. In our experimental environment, for such a

scale, that interaction would take < 250ms (Figure 4.12). Furthermore, since the interac-

tion with the centralized agent is completely asynchronous for the I/O nodes’ perspective,

the Council should not become a bottleneck. Further discussion on our solution’s over-

head and scalability is presented in Section 4.2.5.

4.1.2 Required access pattern detection mechanism

Our solution requires a server-side classification of observed access patterns to

identify an armed bandit instance. Hence, that classification needs to cover all aspects

that impact the behavior of the tuned optimization. Otherwise, each instance would not

be able to learn correctly. On the other hand, redundant classes slow down the learn-

ing, as multiple armed bandit instances cover the same behavior. Specifically to our case

study, we classified the access pattern regarding the operation (read or write), spatial-

ity (contiguous or 1D-strided), number of accessed files, and request size aspects, since

our extensive performance evaluation of TWINS showed these to identify the different

behaviors uniquely.

From the approaches presented in Chapter 3, we chose to use a neural network

for the detection of spatiality (Section 3.2.3). As new patterns could be added in the fu-

ture to represent the workload of different types of applications, we believe a NN would

be a more flexible solution. Moreover, choosing this approach, that presented the high-

61

est prediction time (~9ms), would serve as an upper bound time of the detection phase.

Nonetheless, any other detection strategy could be plugged into this step.

It is important to remember this is a server-side classification, where information

from user-side libraries is not available, and very little is known about the applications.

When applying our proposal to other optimization techniques, the server-side access pat-

tern detection must be adapted accordingly. If the set of relevant aspects is not known

(often the case), a generic classification is required. In a previous work (BOITO et al.,

2019), we proposed a classification strategy that covers all aspects. We represented ac-

cess patterns as time series and used pattern matching to compare them. Our results have

shown precision of up to 93% and recall of up to 99%. Mainly because of its high recall,

we consider that approach to be a good strategy given the long life of the system (years)

and taking into account that the alternative is not to adapt to the workload, which means

giving up on possible performance improvements.

4.2 Results and Discussion

In this section, we evaluate our proposal applied to the TWINS case study. Section

4.2.1 discusses the methodology used for all experiments. We conduct an offline evalu-

ation to show the learning ability in Section 4.2.2, and an online one to show how our

architecture works in practice and leads to performance improvements in Section 4.2.3.

We evaluate overhead and scalability in Section 4.2.5. Finally, we discuss some other

relevant aspects of our proposal in Section 4.2.6.

4.2.1 Experimental Methodology

All experiments in this section were carried out in two clusters from the Grid’5000

platform (BOLZE et al., 2006) located at the Nancy site: Grimoire and Grisou. For our

evaluation, we used the PVFS file system and the IOFSL forwarding framework. Regard-

ing the file-system choice, PVFS is one of the most used in parallel I/O research (BOITO

et al., 2018) as it is easy to deploy and modify for various purposes. Additionally, IOFSL

has an integration with PVFS for improved performance. Regardless, it is important to

notice that our approach does not rely on the file system nor a particular forwarding tool.

We deployed four PVFS2 servers in Grimoire nodes, 32 clients, and multiple

62

IOFSL (I/O forwarding) nodes in separated Grisou nodes. Each node of both clusters

is powered by an Intel Xeon E5-2630 v3 processor (Haswell, 2.40GHz, 2 CPUs per node,

8 cores per CPU) and 128GB of memory1. The parallel file system servers use a 600GB

HDD SCSI Seagate ST600MM0088. Nodes are connected by a 10Gbps Ethernet inter-

connection, and there are four 10Gbps links between the clusters. Both clusters were

entirely reserved during the experiments to minimize network interference.

PVFS version 2.8.2 was deployed with default 64KB stripe size and striping through

all data servers. They write directly to their disks, bypassing caches, to ensure the scale of

tests would be enough to see access pattern impact on performance. Clients are equally

distributed among the I/O nodes that communicate directly with the file system through

the IOFSL dispatcher. The IOFSL daemon was launched with all its default parameters,

aggregating up to 16 requests before dispatch, and using 4 to 16 threads to handle the I/O.

We executed the MPI-IO Test benchmarking tool and generated traces of all met-

rics collected by the I/O nodes during all executions. These traces are used for our offline

analysis. When using the benchmarking tool, we sought to cover the most common access

patterns of HPC applications. We varied the number of processes (128, 256, or 512), the

file layout (shared-file or file-per-process), spatiality (contiguous or 1D-strided access),

operation (reads or writes), and request sizes (32 or 256KB — smaller than the stripe size

or large enough so that all servers are accessed). Each experiment writes/reads a total of

4GB of data. To consider multiple deployment scenarios, we used a different number of

available I/O nodes (1, 2, 4, or 8). These 144 different situations (we excluded the un-

usual 1D-strided file-per-process) were executed with seven different values for the time

window parameter, for a total of 1, 008 experiments. Metrics were collected from all I/O

nodes every second composing a dataset of over one million observations.

4.2.2 Offline Evaluation

To evaluate our ability to learn the best parameter value without prior knowledge,

we conducted simulations of the ε-greedy approach described in Section 4.1, assuming a

perfect access pattern detection, separately for each of the 144 scenarios. The algorithm

has seven possible actions (window sizes) to choose from: 125 µs, 250 µs, 500 µs, 1ms,

2ms, 4ms, and 8ms. We have chosen these options based on our previous evaluation

(BEZ, 2016). For the learning process, all of the actions start with a value estimate of

1<https://www.grid5000.fr/w/Nancy:Hardware>

https://www.grid5000.fr/w/Nancy:Hardware

63

zero. After deciding on an action, to determine its reward (performance), we randomly

sample a dataset of previously collected real measurements with that window size in that

given scenario. Thus, the simulation duration is limited by the number of available mea-

surements. We repeat each simulation 100 times to account for the sampling variability.

Figure 4.3: Achieved precision, i.e., how often our approach chooses the correct window
size, depicted in bins of 10 observations for simulations with different ε. Table 4.1 details
the characteristics of the six patterns selected for this analysis. The x-axis of each plot,
limited by the number of measurements of the experiments, is described in Section 4.2.1.

●●
●●●●●

●●●●
●

●●●
●●●●●●●●●●●

●●●
●●●●

●●
●

●●●●●
●●●

●
●●●●●●●●●

●
●

●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●
●●●

●●●●●●●●●

●
●●

●
●

●

●●
●

●●
●

●
●●

●●●●
●

●●
●

●
●

●●

●●●

●
●●

●●●●●●
●●●

●●
●

●
●

●●●

●●●
●●

●●●●●
●

●●●●
●●●●

●●●●●●●
●●●

●●●●●●●●●●
●

●●●●●●●
●●

●

●
●

●
●

●
●

●
●

●

●●

●●
●●

●
●

●

●●
●●

●●
●

●●
●

●
●●●●●

●●●●●
●●●●

●
●

●
●

●
●

●
●

●●●●
●

●●●
●●

●

●

●●
●

●●●●●●
●

●
●

●●●●●●●
●

●●●
●

●
●●●

●●●●●●
●

●

●●

●

●●

●

●
●

●
●●

●

●
●●

●●●
●

●●

●
●

●

●

●

●
●●

●●●●
●

●●
●●●

●
●

●
●●●●

●●
●

●●●●
●

●●●●●●

●
●

●
●●

●
●●●●●●●●●●●●●●●

●●●●
●

●●●
●●●●●

●
●

●●

●
●

●

●

●

●

●

●
●

●●●●

●
●

●●

●
●

●
●

●●

●●

●●

●●●
●

●●●
●●●

●●●●
●●

●●●●
●

●
●●●

●●●
●

●●●●●●●
●●

●
●●

●
●●●●

●●
●

●●●

●●●●
●

●
●●

●●
●

●

●

●
●

●
●●

●●

●

●

●

●

●

●●

●
●

●●
●

●●

●
●

●●●

●●
●

●
●

●
●

●●
●●

●
●

●
●●

●●●●
●

●
●●

●
●●●

●●●●●

●●
●

●

●●
●

●

●
●

●
●

●
●

●
●●●●●●●

●

●●
●

●●

●
●●●●●

●

●●
●

●●●●●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●

●
●

●

●

●●
●●●

●
●●●●

●●
●

●●
●

●

●●●

●
●●

●●●●
●

●●●●
●●

●

●
●

●

●
●

●●

●●
●

●
●

●●●
●

●●●
●

●
●●

●
●

●●
●●

●
●●

●
●●●●

●
●●●

●●●

●●●●●
●●●●●●●●

●●
●
●●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●

●●
●●●●●●

●
●●●●

●●●●●
●●●●

●●●
●
●●●●●●●●●●●●●●●●

●
●●●●●

●●
●
●
●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●●●
●
●
●●●●●●●●●●

●●●●●●●●

●
●●

●●
●
●●●●●

●●●

●
●●

●
●
●
●●●

●●

●
●
●
●●●

●

●
●●●

●●●
●●

●
●●●●●

●
●
●●●●

●●●●●●●●●●
●●

●
●●●●

●●●●●●
●●●●●●●

●●●●
●●●

●●●
●●●

●●●●●●●●
●
●●●●●●●●

●●
●●●●●●●●●●●

●●
●
●●●●●●●●●●●●

●●●●
●●●●●●●

●●
●●

●●●●●●
●●●●●●●●●●

●●●●●●●
●●

●

●
●
●
●

●●

●

●
●●

●
●●●●

●
●
●
●
●●●●●

●
●●

●
●
●

●●●
●

●●●●●
●
●
●●

●
●●

●
●●●●●●●●

●
●
●●●

●●●
●●

●●●●
●●●

●
●●

●
●
●
●●●●●●●●

●●●●
●●●●●●●●●

●
●●

●●
●●

●●●
●
●●●●●

●●●●●●●
●
●●●●●

●
●●●●

●●●●
●●●●

●●●
●●

●●●
●●

●
●●

●●
●●

●
●
●
●●●●●●●●●

●●●●●●●
●●

●

●

●●●

●●

●
●

●●
●
●●

●●
●
●
●●●

●

●
●
●

●
●●●●●

●●●
●●●●

●
●
●
●●●

●
●●

●
●●●●

●●●●
●

●
●●

●
●
●
●●●●●

●
●●

●

●●●
●
●
●●

●
●
●●●●●●●

●
●●●●

●
●

●
●●●

●
●
●

●
●●●●●●

●●
●●

●●●●●●●
●
●
●●

●
●
●●●●●●

●●
●●●●●

●●●
●●●●●●●

●●●
●
●●●●

●●
●
●
●
●●●●●●

●
●
●●●●

●●●
●●

●●●

●

●

●

●

●

●●●
●

●●●

●

●
●
●●●

●●
●

●

●

●●
●●

●●

●
●
●●●

●●
●●

●

●
●●

●
●●●●●

●
●●●

●●
●
●●

●
●●●●

●

●●●
●

●●●●
●●●●

●

●
●
●●●

●
●●●

●●●
●●

●●
●
●●●

●●●●●
●●●●●●●

●
●●

●●
●●●

●●

●
●
●
●●●

●●●●●
●●●●

●
●●●●●

●●●●●
●●●

●●●
●●

●●
●
●
●
●
●●

●●
●
●●

●
●
●
●●

●●●
●●

●●●●●●

●●
●●●

●

●●●

●
●
●●●●

●
●
●
●
●

●●
●

●

●

●●●
●

●●●
●
●●

●
●

●
●●

●
●
●
●●

●
●
●●●

●●
●
●●●

●
●●

●●●

●
●
●
●●

●●
●●●

●●●

●
●●

●
●
●
●●●●●

●
●●

●
●●●

●
●
●

●
●●●●●●

●
●
●●●●

●
●

●
●
●●

●●
●●

●
●●●●

●
●
●
●
●●●

●
●
●●●

●
●
●
●●●●

●

●●●●
●

●
●●●●●

●●●

●

●
●●●●●●

●
●

●
●●

●
●●●●●●

●●●

●●
●

●●
●

●
●
●
●
●

●●
●●●

●●
●
●
●

●
●
●
●●●

●●
●●●

●●●

●●●●
●●

●●
●●●●

●●

●●●
●●

●
●

●
●
●

●
●●

●
●
●

●
●●

●●●
●
●

●
●
●
●●

●

●●●

●
●
●
●●●●●●

●

●
●●

●
●
●
●
●●

●

●
●●●

●●●

●

●●
●●●●●

●●●●
●●●

●
●●

●
●

●
●●●●●●●●●

●●
●
●
●●●●

●
●
●●

●●
●
●●

●

●●●●●
●
●
●●

●

●
●●●

●●
●●

●
●
●
●
●

●

●●●●●●●
●
●●

●●
●●●

●●
●●●

●●
●
●●●●

●●●
●
●
●●●

●●●●
●●

●●●
●●

●●
●
●●●●●●

●●
●●●

●
●●●●●●

●●
●●●●●●

●●●●●●●●●
●●●●●

●●●●●●●
●
●●●

●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●

●

●
●●

●
●●

●●●
●●●●●

●●
●●

●
●
●●●●

●●●
●
●
●●

●●●
●●●●

●●●
●●●●●

●
●
●
●●●

●●●
●●●●

●●●●●
●
●●●●●●●●●●●●

●●
●●

●●●
●●●●●

●●●●●●●●
●
●●●

●●
●●●●

●●●
●●

●●●●
●●

●●
●●●●

●●
●●●●

●
●●●●●

●●●●
●●

●
●●●●●●●●●

●●●●●
●●●●●●●●●●●

●●●●
●●●

●●●●
●●●

●●
●●●

●
●●●●●●

●●●●●
●
●●●●●●

●●●●●●

●

●

●
●

●

●

●
●●●

●●●●
●●

●

●
●

●
●
●●

●
●
●●●●

●

●

●
●
●●

●●
●

●
●●

●
●●●

●
●●●

●

●
●●

●
●
●●●

●●●●●
●●●

●●●●●●●●●
●
●
●
●●●●

●●
●●

●●●●●
●●●●●●

●●●
●●

●●●●●●
●●

●
●●

●●●●●●●
●
●
●●●●●●●●●●●●●

●
●
●●

●●
●●●●●●●

●
●●●●●●

●
●
●
●
●
●●

●
●●●●●●

●●●●●
●
●●●●●

●●●●●●●
●●●●●

●●●●●●●
●
●●●

●●●
●
●●●

●
●●●●

●

●

●

●
●

●
●
●
●
●
●

●
●●●

●
●
●●

●
●●●●

●
●●

●
●
●●

●
●●

●●
●
●
●●●●

●
●●●

●●●●
●●●

●●●●
●●

●●
●
●●●●●

●●
●
●●●●

●●
●
●

●

●

●●●●
●●●●●

●●
●●●●●

●●●●●
●
●●●●

●●●●
●
●●●

●

●

●●
●
●
●●

●●●
●●●●●●

●●●●
●●

●●
●●●●

●●
●
●
●
●
●
●
●●

●
●●●

●

●●●●
●●●●

●●●●●●
●
●●●

●●●●●●●●●●
●●

●●
●●●●●●●

●●
●
●●●

●●
●
●
●
●●

●
●●●●●●

●●

●
●

●

●●

●
●

●

●

●
●
●

●●
●
●●

●●
●●

●
●

●

●●●
●●

●
●
●●

●
●
●●

●●
●
●

●
●
●
●
●●

●
●●

●
●●

●
●●

●●●●
●●●

●

●
●

●
●
●●●●

●●●●●
●●

●●●
●●●●●●

●
●●●●●

●
●
●●●

●
●●●

●
●
●●●●

●
●●●●●●●

●●
●
●●

●●●
●●

●

●●●
●
●●●●

●
●

●
●●

●
●●

●●●
●
●●●

●
●
●●

●●●
●
●●●

●●
●●●●●●●●

●
●
●●●●

●●●
●
●
●●

●●●●
●●●

●
●●●

●●
●
●
●
●●●●●●●

●
●●●●●

●

●
●

●
●

●

●

●

●

●●●

●
●
●

●●
●
●
●●

●
●●●●

●
●
●●●

●
●●●●

●●
●●

●

●

●●●
●
●●●●●

●
●
●

●
●●

●
●
●
●●●

●
●
●●●●●

●
●
●●●●

●
●●●

●●●●●●

●

●●
●●

●
●●

●●

●●
●●●

●
●●

●
●
●●●

●●
●
●
●●●●

●●
●●

●●●●
●●

●
●●●

●
●
●
●
●

●
●●●●

●
●
●
●
●

●

●●
●●●

●
●
●●●●

●
●●

●
●
●
●
●
●●

●

●
●

●●
●
●●●●

●●

●●
●
●●●●

●●●
●
●
●●

●●●
●●●

●●●●
●
●●

●●
●
●
●
●
●●●

●

●●

●

●●

●

●

●
●

●
●●

●

●
●●

●
●

●●

●
●●●

●
●
●●●

●
●
●●

●●●
●

●●

●
●
●
●●●

●●●

●●

●●
●
●
●●

●
●
●

●●
●
●●●

●●
●●●●

●

●

●
●●●●

●
●●●●●●

●
●●

●

●
●
●●●

●
●
●●●●●●

●
●●

●●●
●

●●●●

●
●●●

●
●

●
●●

●●●●
●●

●

●
●●

●●

●

●●●●●

●

●
●●●●

●
●
●
●●●●●●

●●
●
●●

●
●
●
●●●

●
●●

●

●●●
●
●

●

●

●
●
●

●
●●

●
●
●●

●
●
●

●

●

●

●

●
●
●
●

●
●●●●●●●●●●

●
●
●●

●●

●●
●

●●●●●
●●

●
●

●●●●
●

●
●●●

●●●●●●
●

●●●●●●
●

●
●●●●●●●●●

●●●●
●

●●●●●●●
●●●

●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●

●●
●●●●

●●●●●●●●●●●
●●●●●●

●
●●

●
●

●
●

●●●

●

●●
●●●

●●●●
●

●

●
●●

●
●

●

●●

●●●
●●●

●
●●

●●
●●

●
●

●●●●●●●●
●●

●
●●

●
●●●●

●●

●●●
●●

●
●●●●

●
●●●●●●●●

●
●

●
●

●●●●
●●●●●●●●●

●●●
●

●
●●●●●●●●●●●●

●

●●

●

●

●●

●
●

●
●

●●
●

●●
●

●
●●

●●

●●●
●●

●●●
●

●●●●●
●●●●●

●
●●

●●
●

●
●●

●
●

●
●●●

●●●●●●●●●●●●
●

●●●●
●●●●●●

●●●●●●●
●●●●●●

●
●

●●●
●●●●●●

●●●●
●

●●●●●
●●●●●

●

●

●

●

●

●

●

●●

●●
●

●

●●●
●●●●

●

●
●

●●

●●●●
●●

●
●

●●
●

●
●●●●●

●
●●

●
●

●●
●●

●●
●●●●●●●●●●

●
●●●

●●●●●
●

●●●●●●

●
●●

●
●●

●
●●●

●●●
●

●●
●●

●
●●

●
●●

●●●●●●
●●

●
●

●
●●●●

●

●

●

●

●

●

●
●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●

●
●

●●●

●
●

●●
●

●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●●●
●●

●●

●
●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●●●

●●
●

●●●●
●●●●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●●

●●
●

●●
●●

●

●
●●

●●
●●●●●

●●●●●
●

●
●

●●●●●
●

●
●

●●
●

●

●
●●

●

●
●●●●●●

●●●
●

●
●

●
●

●●●
●

●
●

●●●
●

●●●●
●●●

●●●●

●
●

●

●
●

●

●
●

●●
●●

●
●●●

●
●

●
●●

●
●●●

●

●

●

●

●●
●

●
●●

●

●
●●●

●
●

●●
●

●
●

●
●

●
●●

●●●
●

●●●●
●

●

●

●
●●

●●
●

●

●●●●
●

●

●●

●

●●●●●

●●
●●

●●
●

●●
●

●
●●●

●
●

●●●
●

●
●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●●
●

●

●●●●●
●●

●●
●●●●

●●●
●

●

●
●

●
●

●
●

●
●

● ●
● ●

●
●

● ●
● ● ● ● ● ● ● ●

●
●

● ● ● ●
● ● ● ● ●

●
●

● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●
● ● ● ●

● ●
●

●
●

● ● ●
● ●

●
●

● ● ● ● ● ●
● ● ● ● ●

● ●
●

● ● ●
● ● ●

● ● ●
● ● ● ●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ● ●

●
●

● ●
●

● ●
●

●
● ●

●
● ● ● ●

● ●
● ●

● ●
●

● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
● ● ●

● ●

●
●

●
●

● ●
● ● ●

●
●

● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ●
●

● ●
● ●

● ● ● ● ● ● ● ●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

● ● ● ●
● ●

● ●
●

●
● ●

●
●

● ● ● ●

●
●

●
● ●

● ● ●
●

● ●
●

● ● ●
●

●
● ● ●

●
● ● ●

● ● ● ●
● ●

● ●

●

●

●

●

●

● ●

●
●

● ●

●

● ●

● ● ● ●
● ● ● ● ● ● ●

●

●

●

●
● ●

● ● ●
●

●
●

●
●

●
● ●

● ●

●
● ● ● ● ●

● ●
● ● ● ●

●

●

●
●

● ● ●
● ●

●

●

●

●

●

●

●

●

● ●

● ●

●
● ● ●

● ● ● ●

●
●

● ● ● ●

●
●

● ● ● ●

●

●

●
●

●
●

●
●

●
●

●
● ●

●

● ● ● ● ● ●
●

●

●
● ● ●

●

● ● ●
●

●

●

●
●

●

●
● ● ●

● ● ● ●
● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

●
● ●

● ●
●

● ●
●

● ● ● ● ● ● ● ●
●

● ● ● ● ●

●

●

● ●
●

● ●
●

●
●

● ●

● ●
● ●

●
●

●
●

●
● ● ●

●
●

● ● ●
● ●

●
●

●
● ●

●
● ●

● ● ●
● ● ●

● ● ● ● ● ●
● ●

● ●

●

●

●

●

●

●
●

●

●
●

●
● ●

●
●

●
●

● ●
●

● ●
● ● ● ●

● ●
● ●

● ● ●
●

● ●
● ● ●

●
●

● ●
● ●

●
●

●
●

● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

● ●

●

● ●
●

●
● ●

●

●

●
● ●

● ● ●
● ● ● ●

● ● ●
● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●
●

●
● ● ●

●
● ●

●
●

● ●
●

●
●

●
● ●

●
● ● ●

●
● ●

● ● ● ● ● ●
● ● ● ●

● ●

●
●

●
●

●
● ●

●

●

●

●

●

●

● ●
●

●

●
●

● ● ●
● ● ●

●

●
●

● ●
●

●
● ● ● ●

●
● ●

●
●

●

●
●

●

●
● ●

●

● ●
●

● ●

●
● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

● ●

● ● ● ●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●

●

●

●
● ●

● ●

●

● ●
●

●
●

●

● ●
●

PATTERN E PATTERN F

PATTERN C PATTERN D

PATTERN A PATTERN B

0 500 1000 1500 2000 0 200 400

0 500 1000 1500 0 200 400 600

0 250 500 750 1000 0 300 600 900 1200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iteration

P
re

ci
si

on

ε ● ● ● ● ● ● ●0.01 0.03 0.05 0.07 0.1 0.15 0.2

Source: Author

To calculate the precision, we grouped iterations into fixed-size bins. That way, it

is possible to count how often we chose the window duration previously observed to be

64

the best for that given pattern. We then summarize the 100 simulations by their average

to account for the random sampling of the dataset. We have chosen a bin size of 10 to aid

in the visualization of the trends.

From the 144 scenarios, we have selected six to illustrate the learning process.

They are detailed in Table 4.1. Figure 4.3 depicts the precision, i.e., how often the correct

value is selected, during simulations with different ε.

Table 4.1: Selected patterns concurrently simulated in Figure 4.4

I/O
Nodes Processes File

Layout
Request

Spatiality
Request

Size Operation

A 8 128 Shared 1D-strided 32KB read
B 2 128 Shared contiguous 32KB write
C 8 512 Shared contiguous 32KB read
D 1 128 Shared 1D-strided 32KB write
E 1 128 Individual contiguous 32KB write
F 4 128 Shared 1D-strided 32KB read

Source: Author

Table 4.2: Achieved precision and performance for the six patterns with ε-greedy.

Pattern A B C D E F

ε 0.10 0.07 0.20 0.10 0.10 0.10
Precision 0.89 0.87 0.60 0.91 0.86 0.87
Performance 0.98 0.96 0.97 0.98 0.99 0.98

Source: Author

As the algorithm reaches better estimates for performance with different windows,

it selects the best value for the parameter more frequently, thus increasing precision. The

smaller the ε (probability of exploration), the slower the convergence. In the long-term, an

ε of 0.15, for instance, will choose the best action only at 85% of the time. An alternative

would be to start with a high value for ε and decrease it over time. Table 4.3 compiles

the precision and performance achieved in the last bin (10 last iterations). Performance is

normalized by what would be obtained if statically using the best possible window.

We can see our approach achieves better precision for some patterns (A, B, and

D) than others (C, E, and F). That can be explained by the fact that it is easier to learn

in situations where there is a distinct better choice for the parameter, with a large perfor-

mance difference to other possible values. On the other hand, if multiple parameter values

yield similar performance (e.g., pattern C), the algorithm might not converge to the cor-

rect window. It is important to notice that though precision might be low for pattern C

65

Figure 4.4: Observed precision during the simulations of the six distinct concurrent access
patterns detailed in Table 4.1, depicted in bins of 50 observations, using a ε-greedy policy
with ε = 0.15. The x-axis indicates the learning iteration of each concurrent pattern.

●

●
●

●
●

●

●
●●

●●●●●
●●

●●●●

●
●

●●●
●●●

●●●●
●●●

●●●●●●●●●●●
●●●

●●●●●
●●●●●

●
●●●●●●●

●
●

●

●

●
●

●

●
●●

●●●
●●

●●●●●●●●●●●
●●●●●●●

●●●●●●
●

●●●●●●
●●

●●
●●●●●●●

●●●●●●●
●●●●●●●

●

●
●

●●●●●●●
●●

●
●

●
●●●

●●
●●●●●●●

●●●
●●

●●
●●

●●●●●●●
●●●●

●●
●●●●●●●

●
●

●
●

●●●●●
●●●●

●

●

●

●●
●

●

●
●●

●●●
●●●●●

●●●●●●●●
●●

●
●●●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●●

●●●●
●●●

●
●●●

●●
●●

●●●●●●●

●●●
●●

●●●●●
●

●●●
●

●●●
●●●●●●●●●●●●

●●
●●●●

●●●
●●●●●●●●

●●
●●●●●

●

●

●●
●

●

●
●●

●
●

●
●●

●●
●●●

●●●●●●●●●●●
●

●●●●●●●●●●●
●●

●●●●
●●●

●●●●●
●●●●●●●●●

●
●

●●

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500 3000 3500

Iteration

P
re

ci
si

on

Pattern ● ● ● ● ● ●A B C D E F

Source: Author

(0.60), due to the presented reasons, selecting a value somewhat identical to the best (at

least for the TWINS case study) will still lead to improvements in performance. This is

demonstrated by the 0.97 precision achieved in this scenario.

In practice, the different armed bandit instances will learn as the system observes

different access patterns over time. To illustrate, we executed the simulation with ε =

0.15, but this time, at each iteration, we randomly chose one of the six patterns. Figure

4.4 presents the precision results, further detailed by Table 4.3, and confirms that the

bandit can indeed learn and reach similar precision when seeing each pattern separately.

Table 4.3: Achieved precision and performance for the six patterns.

Pattern A B C D E F

Precision 0.88 0.88 0.49 0.87 0.59 0.59
Performance 0.99 0.96 0.96 0.97 0.98 0.92

Source: Author

Exploration plays a vital role in reducing the uncertainty about the accuracy of

the action-value estimate. The ε-greedy action selection forces the non-greedy actions

to be tried indiscriminately. An alternative approach would be to select among the non-

greedy actions according to their potential to be optimal, considering the accuracy and

the uncertainty of those estimates. In such an approach, we could employ another non-

parametric algorithm named Upper Confidence Bound (UCB1), proposed by Auer, Cesa-

66

Bianchi and Fischer (2002), where actions are selected according to:

At
.
= argmax

a

[
Qt(a) +

√
2 ln t

Nt(a)

]
(4.2)

In Equation 4.2, ln t denotes the natural logarithm of t (the current timestep),

Nt(a) is the number of times that action a has been taken before time t. Upon starting,

each action is considered to be a maximizing action, so it is explored at least once. The

square-root term in the formula seeks to measure the uncertainty or variance in estimating

an action’s value. The maximization serves as an upper bound on the possible true value

of a. The use of natural logarithm translates into smaller increases over time. Though

UCB1 will eventually select all actions, those with lower value estimates or that have

been frequently selected will be less favored over time.

Table 4.4: Achieved precision and performance for the six patterns with UCB1.

Pattern A B C D E F

Precision 0.92 0.97 0.73 0.97 0.68 0.89
Performance 0.99 1.00 0.98 1.00 0.99 0.98

Source: Author

The achieved precision and performance when using UCB1 for the six access

patterns are depicted in Figure 4.5 that also compares to the previous ε-greedy results.

Table 4.4 compiles the best precision achieved in the simulation’s last iteration, alongside

the corresponding performance value. For four of the six patterns, a precision ≥ 0.89 can

be observed, which translates into performance results that are very close to the best in

those scenarios. For pattern C, with 0.73 precision, and pattern E, with 0.68 precision,

we still get near to the full performance. These two cases indicate that there is not just a

single best window that could be used to optimize for this pattern, but rather a subset.

4.2.3 Online Evaluation

To test our proposal in practice, we performed an evaluation in the environment

described in Section 4.2.1, using four I/O nodes. We executed a benchmark using 128

processes to write and then read a 4GB shared file with 32KB 1D-strided requests us-

ing MPI-IO. This scenario (the read portion is represented by scenario F in the previous

section) was chosen because the best window size for write requests under that pattern

is the worst for read requests, and vice-versa. Thus, this particular scenario allows us to

67

Figure 4.5: Achieved precision, depicted in bins of 10 observations for simulations of the
UCB1 policy compared to the ε-greedy alternative.

●●
●●●●●

●●●●
●

●●●
●●●●●●●●●●●

●●●
●●●●

●●
●

●●●●●
●●●

●
●●●●●●●●●

●
●

●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●

●●
●●●

●●●●●●●●●

●
●●

●
●

●

●●
●

●●
●

●
●●

●●●●
●

●●
●

●
●

●●

●●●

●
●●

●●●●●●
●●●

●●
●

●
●

●●●

●●●
●●

●●●●●
●

●●●●
●●●●

●●●●●●●
●●●

●●●●●●●●●●
●

●●●●●●●
●●

●

●
●

●
●

●
●

●
●

●

●●

●●
●●

●
●

●

●●
●●

●●
●

●●
●

●
●●●●●

●●●●●
●●●●

●
●

●
●

●
●

●
●

●●●●
●

●●●
●●

●

●

●●
●

●●●●●●
●

●
●

●●●●●●●
●

●●●
●

●
●●●

●●●●●●
●

●

●●

●

●●

●

●
●

●
●●

●

●
●●

●●●
●

●●

●
●

●

●

●

●
●●

●●●●
●

●●
●●●

●
●

●
●●●●

●●
●

●●●●
●

●●●●●●

●
●

●
●●

●
●●●●●●●●●●●●●●●

●●●●
●

●●●
●●●●●

●
●

●●

●
●

●

●

●

●

●

●
●

●●●●

●
●

●●

●
●

●
●

●●

●●

●●

●●●
●

●●●
●●●

●●●●
●●

●●●●
●

●
●●●

●●●
●

●●●●●●●
●●

●
●●

●
●●●●

●●
●

●●●

●●●●
●

●
●●

●●
●

●

●

●
●

●
●●

●●

●

●

●

●

●

●●

●
●

●●
●

●●

●
●

●●●

●●
●

●
●

●
●

●●
●●

●
●

●
●●

●●●●
●

●
●●

●
●●●

●●●●●

●●
●

●

●●
●

●

●
●

●
●

●
●

●
●●●●●●●

●

●●
●

●●

●
●●●●●

●

●●
●

●●●●●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●

●
●

●

●

●●
●●●

●
●●●●

●●
●

●●
●

●

●●●

●
●●

●●●●
●

●●●●
●●

●

●
●

●

●
●

●●

●●
●

●
●

●●●
●

●●●
●

●
●●

●
●

●●
●●

●
●●

●
●●●●

●
●●●

●●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●●
●●

●●●●●
●●●●●●●●

●●
●
●●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●●

●●
●●●●●●

●
●●●●

●●●●●
●●●●

●●●
●
●●●●●●●●●●●●●●●●

●
●●●●●

●●
●
●
●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●

●●●●●●
●
●
●●●●●●●●●●

●●●●●●●●

●
●●

●●
●
●●●●●

●●●

●
●●

●
●
●
●●●

●●

●
●
●
●●●

●

●
●●●

●●●
●●

●
●●●●●

●
●
●●●●

●●●●●●●●●●
●●

●
●●●●

●●●●●●
●●●●●●●

●●●●
●●●

●●●
●●●

●●●●●●●●
●
●●●●●●●●

●●
●●●●●●●●●●●

●●
●
●●●●●●●●●●●●

●●●●
●●●●●●●

●●
●●

●●●●●●
●●●●●●●●●●

●●●●●●●
●●

●

●
●
●
●

●●

●

●
●●

●
●●●●

●
●
●
●
●●●●●

●
●●

●
●
●

●●●
●

●●●●●
●
●
●●

●
●●

●
●●●●●●●●

●
●
●●●

●●●
●●

●●●●
●●●

●
●●

●
●
●
●●●●●●●●

●●●●
●●●●●●●●●

●
●●

●●
●●

●●●
●
●●●●●

●●●●●●●
●
●●●●●

●
●●●●

●●●●
●●●●

●●●
●●

●●●
●●

●
●●

●●
●●

●
●
●
●●●●●●●●●

●●●●●●●
●●

●

●

●●●

●●

●
●

●●
●
●●

●●
●
●
●●●

●

●
●
●

●
●●●●●

●●●
●●●●

●
●
●
●●●

●
●●

●
●●●●

●●●●
●

●
●●

●
●
●
●●●●●

●
●●

●

●●●
●
●
●●

●
●
●●●●●●●

●
●●●●

●
●

●
●●●

●
●
●

●
●●●●●●

●●
●●

●●●●●●●
●
●
●●

●
●
●●●●●●

●●
●●●●●

●●●
●●●●●●●

●●●
●
●●●●

●●
●
●
●
●●●●●●

●
●
●●●●

●●●
●●

●●●

●

●

●

●

●

●●●
●

●●●

●

●
●
●●●

●●
●

●

●

●●
●●

●●

●
●
●●●

●●
●●

●

●
●●

●
●●●●●

●
●●●

●●
●
●●

●
●●●●

●

●●●
●

●●●●
●●●●

●

●
●
●●●

●
●●●

●●●
●●

●●
●
●●●

●●●●●
●●●●●●●

●
●●

●●
●●●

●●

●
●
●
●●●

●●●●●
●●●●

●
●●●●●

●●●●●
●●●

●●●
●●

●●
●
●
●
●
●●

●●
●
●●

●
●
●
●●

●●●
●●

●●●●●●

●●
●●●

●

●●●

●
●
●●●●

●
●
●
●
●

●●
●

●

●

●●●
●

●●●
●
●●

●
●

●
●●

●
●
●
●●

●
●
●●●

●●
●
●●●

●
●●

●●●

●
●
●
●●

●●
●●●

●●●

●
●●

●
●
●
●●●●●

●
●●

●
●●●

●
●
●

●
●●●●●●

●
●
●●●●

●
●

●
●
●●

●●
●●

●
●●●●

●
●
●
●
●●●

●
●
●●●

●
●
●
●●●●

●

●●●●
●

●
●●●●●

●●●

●

●
●●●●●●

●
●

●
●●

●
●●●●●●

●●●

●●
●

●●
●

●
●
●
●
●

●●
●●●

●●
●
●
●

●
●
●
●●●

●●
●●●

●●●

●●●●
●●

●●
●●●●

●●

●●●
●●

●
●

●
●
●

●
●●

●
●
●

●
●●

●●●
●
●

●
●
●
●●

●

●●●

●
●
●
●●●●●●

●

●
●●

●
●
●
●
●●

●

●
●●●

●●●

●

●●
●●●●●

●●●●
●●●

●
●●

●
●

●
●●●●●●●●●

●●
●
●
●●●●

●
●
●●

●●
●
●●

●

●●●●●
●
●
●●

●

●
●●●

●●
●●

●
●
●
●
●

●

●

●
●
●●

●●●●●●
●●

●
●●●●●●

●●
●
●●●

●●
●●

●●●●●●●●●●●●●

●●●
●
●●●

●
●●●●●●

●

●●●●●
●
●●

●●●●●●●●
●●●●

●
●●●

●●
●●●●

●●
●
●
●
●●●●

●●●
●●●●

●●●●●●●●●●●●●
●
●●

●●●●●●●●●●
●
●
●●●●

●●●●●●●
●●

●
●●●●●●●●

●●●
●●

●●●●●●●●●●●●
●●●●●●●

●●
●

●●●●●●●
●
●●

●●
●●●

●●
●●●

●●
●
●●●●

●●●
●
●
●●●

●●●●
●●

●●●
●●

●●
●
●●●●●●

●●
●●●

●
●●●●●●

●●
●●●●●●

●●●●●●●●●
●●●●●

●●●●●●●
●
●●●

●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●

●

●
●●

●
●●

●●●
●●●●●

●●
●●

●
●
●●●●

●●●
●
●
●●

●●●
●●●●

●●●
●●●●●

●
●
●
●●●

●●●
●●●●

●●●●●
●
●●●●●●●●●●●●

●●
●●

●●●
●●●●●

●●●●●●●●
●
●●●

●●
●●●●

●●●
●●

●●●●
●●

●●
●●●●

●●
●●●●

●
●●●●●

●●●●
●●

●
●●●●●●●●●

●●●●●
●●●●●●●●●●●

●●●●
●●●

●●●●
●●●

●●
●●●

●
●●●●●●

●●●●●
●
●●●●●●

●●●●●●

●

●

●
●

●

●

●
●●●

●●●●
●●

●

●
●

●
●
●●

●
●
●●●●

●

●

●
●
●●

●●
●

●
●●

●
●●●

●
●●●

●

●
●●

●
●
●●●

●●●●●
●●●

●●●●●●●●●
●
●
●
●●●●

●●
●●

●●●●●
●●●●●●

●●●
●●

●●●●●●
●●

●
●●

●●●●●●●
●
●
●●●●●●●●●●●●●

●
●
●●

●●
●●●●●●●

●
●●●●●●

●
●
●
●
●
●●

●
●●●●●●

●●●●●
●
●●●●●

●●●●●●●
●●●●●

●●●●●●●
●
●●●

●●●
●
●●●

●
●●●●

●

●

●

●
●

●
●
●
●
●
●

●
●●●

●
●
●●

●
●●●●

●
●●

●
●
●●

●
●●

●●
●
●
●●●●

●
●●●

●●●●
●●●

●●●●
●●

●●
●
●●●●●

●●
●
●●●●

●●
●
●

●

●

●●●●
●●●●●

●●
●●●●●

●●●●●
●
●●●●

●●●●
●
●●●

●

●

●●
●
●
●●

●●●
●●●●●●

●●●●
●●

●●
●●●●

●●
●
●
●
●
●
●
●●

●
●●●

●

●●●●
●●●●

●●●●●●
●
●●●

●●●●●●●●●●
●●

●●
●●●●●●●

●●
●
●●●

●●
●
●
●
●●

●
●●●●●●

●●

●
●

●

●●

●
●

●

●

●
●
●

●●
●
●●

●●
●●

●
●

●

●●●
●●

●
●
●●

●
●
●●

●●
●
●

●
●
●
●
●●

●
●●

●
●●

●
●●

●●●●
●●●

●

●
●

●
●
●●●●

●●●●●
●●

●●●
●●●●●●

●
●●●●●

●
●
●●●

●
●●●

●
●
●●●●

●
●●●●●●●

●●
●
●●

●●●
●●

●

●●●
●
●●●●

●
●

●
●●

●
●●

●●●
●
●●●

●
●
●●

●●●
●
●●●

●●
●●●●●●●●

●
●
●●●●

●●●
●
●
●●

●●●●
●●●

●
●●●

●●
●
●
●
●●●●●●●

●
●●●●●

●

●
●

●
●

●

●

●

●

●●●

●
●
●

●●
●
●
●●

●
●●●●

●
●
●●●

●
●●●●

●●
●●

●

●

●●●
●
●●●●●

●
●
●

●
●●

●
●
●
●●●

●
●
●●●●●

●
●
●●●●

●
●●●

●●●●●●

●

●●
●●

●
●●

●●

●●
●●●

●
●●

●
●
●●●

●●
●
●
●●●●

●●
●●

●●●●
●●

●
●●●

●
●
●
●
●

●
●●●●

●
●
●
●
●

●

●●
●●●

●
●
●●●●

●
●●

●
●
●
●
●
●●

●

●
●

●●
●
●●●●

●●

●●
●
●●●●

●●●
●
●
●●

●●●
●●●

●●●●
●
●●

●●
●
●
●
●
●●●

●

●●

●

●●

●

●

●
●

●
●●

●

●
●●

●
●

●●

●
●●●

●
●
●●●

●
●
●●

●●●
●

●●

●
●
●
●●●

●●●

●●

●●
●
●
●●

●
●
●

●●
●
●●●

●●
●●●●

●

●

●
●●●●

●
●●●●●●

●
●●

●

●
●
●●●

●
●
●●●●●●

●
●●

●●●
●

●●●●

●
●●●

●
●

●
●●

●●●●
●●

●

●
●●

●●

●

●●●●●

●

●
●●●●

●
●
●
●●●●●●

●●
●
●●

●
●
●
●●●

●
●●

●

●●●
●
●

●

●

●
●
●

●
●●

●
●
●●

●
●
●

●

●

●

●

●
●
●
●

●
●●●●●●●●●●

●
●
●●

●●

●●
●
●●●

●●●●
●●●●

●●●●
●
●●●●●

●●
●●●●●

●

●

●
●●●●

●●
●●

●●●●●●
●
●●●●

●
●●●

●
●●

●●
●●

●●
●●●

●●
●●

●●●
●
●
●

●●
●
●●●●

●
●●

●
●
●●

●●
●●

●
●●

●●●
●●

●●
●●

●●●
●●

●●●
●

●●●●●
●
●●●●

●
●●

●
●●

●
●●●

●●
●●●●●

●●●●●
●
●
●●

●

●●●●●●
●
●●●

●●
●
●
●
●
●
●●●

●
●
●
●●

●
●●●●

●●
●●

●●●●
●●●●

●●●●
●
●●●●

●●●●●●
●
●
●
●

●●
●

●●●●●
●●

●
●

●●●●
●

●
●●●

●●●●●●
●

●●●●●●
●

●
●●●●●●●●●

●●●●
●

●●●●●●●
●●●

●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●

●●
●●●●

●●●●●●●●●●●
●●●●●●

●
●●

●
●

●
●

●●●

●

●●
●●●

●●●●
●

●

●
●●

●
●

●

●●

●●●
●●●

●
●●

●●
●●

●
●

●●●●●●●●
●●

●
●●

●
●●●●

●●

●●●
●●

●
●●●●

●
●●●●●●●●

●
●

●
●

●●●●
●●●●●●●●●

●●●
●

●
●●●●●●●●●●●●

●

●●

●

●

●●

●
●

●
●

●●
●

●●
●

●
●●

●●

●●●
●●

●●●
●

●●●●●
●●●●●

●
●●

●●
●

●
●●

●
●

●
●●●

●●●●●●●●●●●●
●

●●●●
●●●●●●

●●●●●●●
●●●●●●

●
●

●●●
●●●●●●

●●●●
●

●●●●●
●●●●●

●

●

●

●

●

●

●

●●

●●
●

●

●●●
●●●●

●

●
●

●●

●●●●
●●

●
●

●●
●

●
●●●●●

●
●●

●
●

●●
●●

●●
●●●●●●●●●●

●
●●●

●●●●●
●

●●●●●●

●
●●

●
●●

●
●●●

●●●
●

●●
●●

●
●●

●
●●

●●●●●●
●●

●
●

●
●●●●

●

●

●

●

●

●

●
●

●●

●
●●●

●
●

●●
●

●●●
●●

●●
●

●
●

●●●

●
●

●●
●

●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●

●●●●●●●
●●

●●

●
●●●●

●●●●●
●●

●●●
●

●

●●
●

●

●●●
●●●

●●
●

●●●●
●●●●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●●

●●
●

●●
●●

●

●
●●

●●
●●●●●

●●●●●
●

●
●

●●●●●
●

●
●

●●
●

●

●
●●

●

●
●●●●●●

●●●
●

●
●

●
●

●●●
●

●
●

●●●
●

●●●●
●●●

●●●●

●
●

●

●
●

●

●
●

●●
●●

●
●●●

●
●

●
●●

●
●●●

●

●

●

●

●●
●

●
●●

●

●
●●●

●
●

●●
●

●
●

●
●

●
●●

●●●
●

●●●●
●

●

●

●
●●

●●
●

●

●●●●
●

●

●●

●

●●●●●

●●
●●

●●
●

●●
●

●
●●●

●
●

●●●
●

●
●

●

●
●

●●
●

●

●
●

●
●

●

●

●
●

●●
●

●

●●●●●
●●

●●
●●●●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

●●●
●●

●●●●●
●●

●●

●
●

●
●

●
●

●
●

● ●
● ●

●
●

● ●
● ● ● ● ● ● ● ●

●
●

● ● ● ●
● ● ● ● ●

●
●

● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

● ●
● ● ● ●

● ●
●

●
●

● ● ●
● ●

●
●

● ● ● ● ● ●
● ● ● ● ●

● ●
●

● ● ●
● ● ●

● ● ●
● ● ● ●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ● ●

●
●

● ●
●

● ●
●

●
● ●

●
● ● ● ●

● ●
● ●

● ●
●

● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

● ●

●

●

●

●
●

●
●

●
● ● ●

● ●

●
●

●
●

● ●
● ● ●

●
●

● ●
● ● ●

● ● ● ● ●
● ● ● ●

● ●
●

● ●
● ●

● ● ● ● ● ● ● ●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

● ● ● ●
● ●

● ●
●

●
● ●

●
●

● ● ● ●

●
●

●
● ●

● ● ●
●

● ●
●

● ● ●
●

●
● ● ●

●
● ● ●

● ● ● ●
● ●

● ●

●

●

●

●

●

● ●

●
●

● ●

●

● ●

● ● ● ●
● ● ● ● ● ● ●

●

●

●

●
● ●

● ● ●
●

●
●

●
●

●
● ●

● ●

●
● ● ● ● ●

● ●
● ● ● ●

●

●

●
●

● ● ●
● ●

●

●

●

●

●

●

●

●

● ●

● ●

●
● ● ●

● ● ● ●

●
●

● ● ● ●

●
●

● ● ● ●

●

●

●
●

●
●

●
●

●
●

●
● ●

●

● ● ● ● ● ●
●

●

●
● ● ●

●

● ● ●
●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●
● ● ●

● ● ● ●
● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

●
● ●

● ●
●

● ●
●

● ● ● ● ● ● ● ●
●

● ● ● ● ●

●

●

● ●
●

● ●
●

●
●

● ●

● ●
● ●

●
●

●
●

●
● ● ●

●
●

● ● ●
● ●

●
●

●
● ●

●
● ●

● ● ●
● ● ●

● ● ● ● ● ●
● ●

● ●

●

●

●

●

●

●
●

●

●
●

●
● ●

●
●

●
●

● ●
●

● ●
● ● ● ●

● ●
● ●

● ● ●
●

● ●
● ● ●

●
●

● ●
● ●

●
●

●
●

● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●

● ●

●

● ●
●

●
● ●

●

●

●
● ●

● ● ●
● ● ● ●

● ● ●
● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ●

●

●

●

●

●

● ●

●

●

●

●
●

●
● ● ●

●
● ●

●
●

● ●
●

●
●

●
● ●

●
● ● ●

●
● ●

● ● ● ● ● ●
● ● ● ●

● ●

●
●

●
●

●
● ●

●

●

●

●

●

●

● ●
●

●

●
●

● ● ●
● ● ●

●

●
●

● ●
●

●
● ● ● ●

●
● ●

●
●

●

●
●

●

●
● ●

●

● ●
●

● ●

●
● ●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

● ●

● ● ● ●
●

●
●

●
● ● ●

●
●

●
●

●
●

●
●

●

●

●
● ●

● ●

●

● ●
●

●
●

●

● ●
●

●

●

●

●

●

●
● ●

● ●

PATTERN E PATTERN F

PATTERN C PATTERN D

PATTERN A PATTERN B

0 500 1000 1500 2000 0 200 400

0 500 1000 1500 0 200 400 600

0 250 500 750 1000 0 300 600 900 1200

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Iteration

P
re

ci
si

on

ε ● ● ● ● ● ● ● ●0.01 0.03 0.05 0.07 0.1 0.15 0.2 UCB1

Source: Author

visualize the impact of learning.

We executed the benchmark (interleaving write and read phases) while keeping

track of the achieved bandwidth, council metrics, and the selected windows. Figure 4.6

illustrates this exploration/exploitation process using the ε-greedy policy, by depicting

the decisions took during the first and the last 60 minutes of the whole experiment. The

vertical gray lines denote a change in the detected access pattern (in this scenario, between

read and write phases). We can see the algorithm stabilizes at the choice of 125 µs as the

68

Figure 4.6: The selected window sizes during the online adaptation experiment with ε-
greedy. The gray lines separate the write (wide) and read (narrow) phases. It is crucial to
notice that there is a single choice at each second, i.e., there are no overlapping decisions
(points), despite what the scale of the plots might suggest.

●●●●●●●●

●●

●●

●

●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●●

●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●

●●

●●●

●●

●●

●●

●●●●

●●

●●●●

●●

●●●●●

●

●●

●

●●●●●

●●

●●●●●

●

●

●

●

●●

●●

●

●●●●●

●

●●●●

●

●

●●●

●

●●●●●●

●

●●

●

●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●●

●

●●

●●

●

●

●●●

●●

●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●

●

●●●

●●●●●●●●●●●●●●●●●

●●●●●●

●●●

●●●

●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●

●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●●●●

●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●

●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●

●

●●●●●●●●●●●

●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●

●

●●●

●

●●●●●●●●●●●●●

●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●●●

●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●125

250

500

1000

2000

4000

8000

0 5 10 15 20 25 30 35 40 45 50 55
Timestamp (minutes)

T
W

IN
S

 w
in

do
w

 s
iz

e

● ●EXPLOIT EXPLORE

(a) First 60 minutes of execution

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●

●●●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●

●

●●●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●

●

●

●

●

●

●●

●

●●●●

●

●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●

●

●

●●●●●●

●

●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●●

●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●●●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●●●

●

●●●●●

●

●

●●●●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●

●

●●●●●

●

●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●

125

250

500

1000

2000

4000

8000

105 110 115 120 125 130 135 140 145 150 155 160
Timestamp (minutes)

T
W

IN
S

 w
in

do
w

 s
iz

e

(b) Last 60 minutes of execution

Source: Author

best TWINS window duration for write phases (the wide ones) from the first execution

onward. In contrast, the choice of 8ms for read phases (the narrow ones) does not happen

in the first nine executions. Figure 4.7 depicts the value estimates for the possible actions

(window duration) towards the end of the experiment for write (Figure 4.7(a)) and read

(Figure 4.7(b)) access patterns.

Nonetheless, we still keep exploring at the same rate as we do not decrease ε over

time. It is important to remember that at the beginning of these experiments, the system

has value estimates of zero for all actions. The depicted learning process only has to

happen once. The system will then be able to improve performance not only for the same

application but for all applications that share the same access pattern.

Figure 4.8 presents the performance observed by the client (the bandwidth) during

repeated executions. The red dashed line represents the first run, the green line indicates

the highest achieved bandwidth (best result), and the blue line presents the trend obtained

with linear regression. Our approach was able to reach a choice for the write access

pattern (Figure 4.8(a)) already on the first execution of the benchmark (in the first 260 s)

and yielded good results for the next ones. This learning process was slower for the

69

Figure 4.7: Estimates for the actions (window sizes) at the end of the online experiment.
Each action is shown by its value.

125

250

500

1000

2000

4000

8000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

4.00

4.25

4.50

4.75

5.00

9550 9600 9650
Execution (seconds)

E
st

im
at

ed
 Q

 v
al

ue

(a) WRITE

125

250

500

1000

2000

4000

8000

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10.8

11.2

11.6

9550 9600 9650
Execution (seconds)

E
st

im
at

ed
 Q

 v
al

ue
(b) READ

Source: Author

read phases (Figure 4.8(b)) for many reasons. First, read phases are ≈ 60% shorter and

consequently comprised of fewer learning iterations. Secondly, it is important to notice

that consecutive write/read phases are separated by read/write ones. There is a delay of

at least one second (due to the interval in which metrics are reported) before detecting

the new access pattern and acting accordingly. Until then, we keep using the previous

window size, that might not be optimal, which is the case here. Third, the execution

time of the read phase of the benchmark usually presents a higher variability, and that is

reflected in the metrics observed by the Council, which adds noise to the learning. Finally,

the performance impact of bad decisions (mainly due to exploration phases) is higher for

these read phases than for the write phases. For this scenario, the best window size for

write operations is the worst for reads, and the inverse is also true, as depicted by Figure

4.7. Despite these adversities, we can see an increasing trend for the read bandwidth as

the system learns to adapt to that I/O workload.

Moreover, as discussed in the previous section, performance improvements are

somewhat limited by the exploration phases. In these experiments, with ε = 0.07, the

best value will be chosen 93% of the times. Decreasing ε over time would allow for better

performance improvements. On the other hand, exploration can be important to adapt

to changes in the system (if the best value for the parameter changes over time due to

system performance degradation or system updates and upgrades). The choice depends

on the situation at hand.

If we were to apply the UCB1 policy instead of the ε-greedy for the same live

experiment, we would discover the best window size much faster. However, we would

70

not explore as much in future actions, as depicted by the selected windows during the ex-

periment in Figure 4.9. Unlike the previous policy, the exploration or exploitation action

is now given by Equation 4.2. Once more, for the write portion of the benchmark, we find

the best window size in the application’s first execution. For the read phases, we need

more observations for the reasons previously described. Nevertheless, we learn it much

faster (in the second run of the application) than when using the ε-greedy policy by giving

Figure 4.8: Bandwidth of the benchmark during the learning process. The red dashed
line shows the execution time of the first iteration, the green line indicates the shortest
execution time, and the blue one presents the trend obtained through linear regression.
The y-axis is different in each plot.

●

●
●

●
● ●

● ● ●
●

●
●

● ●
● ●

● ●

●
●

●
● ● ● ●

●
●

●

● ●

16

18

20

0 5 10 15 20 25 30
Execution

B
an

dw
id

th
 (

M
B

/s
)

(a) WRITE phases

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

40

44

48

52

0 5 10 15 20 25 30
Execution

B
an

dw
id

th
 (

M
B

/s
)

(b) READ phases

Source: Author

Figure 4.9: The selected window sizes during the online adaptation experiment with
UCB1. The gray lines separate the write (wide) and read (narrow) phases. It is cru-
cial to notice that there is a single choice at each second, i.e., there are no overlapping
decisions (points), despite what the scale of the plots might indicate.

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●●

●●

●●●

●

●●

●●

●●●

●●

●

●●

●●

●

●●

●

●●●

●●

●●

●●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●125

250

500

1000

2000

4000

8000

0 5 10 15 20 25 30 35 40 45 50 55
Timestamp (minutes)

T
W

IN
S

 w
in

do
w

 s
iz

e

● ●EXPLORE EXPLOIT

(a) First 60 minutes of execution

●● ●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●●

●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

125

250

500

1000

2000

4000

8000

120 125 130 135 140 145 150 155 160 165 170 175
Timestamp (minutes)

T
W

IN
S

 w
in

do
w

 s
iz

e

(b) Last 60 minutes of execution

Source: Author

71

up exploration opportunities as the use of the natural logarithm in UCB1 means that the

increases get smaller over time, but are unbounded. UCB1 will eventually select all ac-

tions, but actions with lower value estimates or that have already been selected frequently

for exploration purposes will receive a decreasing priority over time. In the next section,

we choose to restrict our evaluation to the ε-greedy policy as it will better reflect changes

due to its frequent exploration.

4.2.4 Results with MADspec

We also evaluated our approach using the MADbench2 (Borrill et al., 2007) I/O

kernel extracted from the MADspec application. MADbench2 allows testing the inte-

grated performance of the I/O, communication, and calculation subsystems of massively

parallel architectures under the stresses of a real scientific application. It is derived di-

rectly from a large-scale Cosmic Microwave Background (CMB) data analysis package.

It calculates the maximum likelihood angular power spectrum of the CMB radiation from

a noisy pixelized map of the sky and its pixel-pixel noise correlation matrix.

The application has three component functions, each with different access pat-

terns, named S, W, and C. Table 4.5 describes them. In our evaluation we used Np = 256,

Npix = 1280, Nbin = 80, and Ngang = 1. Np defines the number of processes. Npix sets

the size of the pseudo-data, where all the component matrices have Npix×Npix elements.

Nbin sets the size of the pseudo-dataset composed on Nbin component matrices. Finally,

Ngang sets the level of gang-parallelism allowing the MADbench2 to run as a single or

multi-gang. In former all the matrix operations are carried out distributed over all of the

processors. The application uses the MPI-IO interface to issue its I/O operations to a

single shared file synchronously.

Table 4.5: I/O characteristics of the MADcode.

Input / Output

S Nbin writes each of Npix
2 bytes on Np processors.

W
Nbin reads each of Npix

2 bytes on Np processors.
Nbin writes each of Npix

2 bytes on Np/Ngang processors.

C Nbin
2/Ngang reads each of Npix

2 bytes on Np/Ngang processors.

Source: Author

To find the evaluation baselines, we had to measure the impact of the parameter

72

value for this application. Hence we conducted an exploratory investigation measuring

the execution time when using a fixed TWINS window size during the execution. Figure

4.10 presents the mean of five repetitions for each component using different window

sizes. The distance from the average to the extremities of the error bars was calculated

using a 95% confidence interval, i.e., 2·σ√
N

(where σ represents the standard deviation, and

N the number of measurements). For the W and S phases, a small window size yields

better results. On the other hand, for C, a larger window is better. For the latter, results

are less conclusive due to higher variability.

Figure 4.10: Execution time of the W, S, and C components of MADspec with different
window duration. The y-axes are different and do not start at zero.

●

●

●

●

●

●

●

88
.9

92
.9 95

.5 98
.3 99

.9 10
1.

9
10

3.
3

85

90

95

100

105

110

0.
12

5m
s

0.
25

0m
s

0.
5m

s
1m

s
2m

s
4m

s
8m

s

E
xe

cu
tio

n
T

im
e

(s
ec

on
ds

)

(a) W phase

●

●

●

●

●

●

●

94
.2

97
.1

10
0.

2 10
3.

5
10

3.
3

10
4.

3
10

3.
1

95

100

105

110

0.
12

5m
s

0.
25

0m
s

0.
5m

s
1m

s
2m

s
4m

s
8m

s

(b) S phase

●

●

●

●

●●

●18
.0

17
.5

16
.7

16
.2

17
.0

16
.7

18
.2

16

17

18

19

0.
12

5m
s

0.
25

0m
s

0.
5m

s
1m

s
2m

s
4m

s
8m

s

(c) C phase

Source: Author

Figure 4.11 presents the three phases’ execution time when executed repeatedly

while our approach works to adapt the window size. The red and the green dashed lines

come from Figure 4.10 and show, for each case, the result previously obtained with the

worst and with the best values for the parameter, respectively. For the W component, the

window choice gets closer to the best (though in some executions, due to the continuous

exploration, we get higher times). For S, all times are below the previous best because S is

a mixture of different shorter access patterns. The adaptation mechanism can tune the pa-

rameter to them separately, which is better than using a static window for the whole phase.

Finally, for C, the learning mechanism would require more iterations before successfully

adapting due to the read pattern being shorter and more variable.

4.2.5 Overhead and Time-to-decision

In our proposal, an Announcer thread in each I/O node interacts with the Council

located on a remote node. As previously discussed, this configuration is not a requirement

73

Figure 4.11: Execution time for W, S, and C while adapting the TWINS window size.
The dashed lines indicate the previously measured times without adaptation. In red, the
worst window size, and in green, the best one for each scenario. The blue line represents
the trend using a Local Polynomial Regression Fitting function with 95% confidence.

●

●

●

●●●

●
●●

●
●●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●
●●●

●
●

●

●●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●●

●
●

●
●●

●

●
●

●●

●

●

●
●

●
●

●

●●●

●

●●●●

●●●●●

●

●
●●

●●●●
●

●

●
●

●

●●

●

●

●

●●
●

●
●

●
●

●

●

●●
●

●

●

●

●
●●●

●

●

●●●

●

●
●●

●●●

●

●
●

●●●
●●

●
●●

●

●●

●

●
●

●

●●●●
●●●●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

W

S

C

0 25 50 75 100

90

95

100

80

85

90

95

100

105

16

17

18

19

20

Execution

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Source: Author

of our proposal but for our case study. Still, in this section, we analyze its performance.

Our architecture allows for client requests to continue to be received and processed

by the I/O nodes. Simultaneously, metrics are asynchronously sent from the Announcers

to the Council. That means the I/O nodes do not stop and wait for new decisions. There-

fore, our proposal’s overhead is related to the cost of collecting and keeping metrics about

the current access pattern and changing the parameter value. To quantify this overhead,

we repeated all 144 experiments described in Section 4.2.1 using the proposed architec-

ture but ignoring the decisions. New values for the window parameter are chosen and

announced, but TWINS continues to use the same window as before. Therefore we can

compare the execution time to a static solution without accounting for performance im-

provements the adaptation could cause.

Out of the 144 scenarios, we only observed overhead for 65 of them. Table 4.6

summarizes the results for these 65 scenarios. The minimum observed overhead was

74

0.02%, the median, 1.8%, and the maximum of 32%. The latter, when a single I/O node

was used by 512 processes to read contiguously from a shared file using with small re-

quests (32KB). Furthermore, 91.6% of the 144 scenarios have an overhead of less than

5%. We conclude that, in general, our proposal imposes a low overhead (median < 2%).

Table 4.6: Overall overhead (%) of our approach for the 144 scenarios, excluding the 79
ones where the overhead was zero.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0199 0.8378 1.7780 3.8354 4.1218 32.2950

Source: Author

We also evaluate the Council’s ability to handle a large number of I/O nodes re-

porting metrics. To do that, we estimate the total time to decision, which is measured

by taking the time before the Announcer starts to send its metrics up to right after it re-

ceives the new parameter value from the Council. We executed an increasing number of

Announcer processes (up to the largest number of I/O nodes in Table 1.1) to report to the

centralized Council every second. Results (60 measurements of each scenario) are pre-

sented in Figure 4.12. Once more, if we consider the TaihuLight, only the 240 I/O nodes

would interact with the Council. In our experimental environment, for such a scale, the

interaction would take < 250ms.

Figure 4.12: Time to decision when I/O nodes are asynchronously reporting metrics every
second to the centralized Council located on a remote node.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●
●●
●●

●●●

●●●

●●●

●●

●●●

●●●

●●●

●●●●●●●●●●●●●

●●●

●●●
●●●

●●

●●●

●●●

●●●
●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●

●●

●●●

●●●

●●●

●●●●●
●●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●
●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●
●●
●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●●●●●●●●●
●●●●●
●●●
●●
●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●●
●
●
●●●●●●●

●●●
●●●

0

250

500

750

1000

32 64 96 128 192 256 384 512 640 768

I/O Forwarding Nodes (Clients)

T
im

e
to

 d
ec

is
io

n
(m

s)

Source: Author

The centralized decision-making agent can work under a heavier workload, with

an expected degradation of the time to decision. In this work, we used a somewhat naive

communication strategy and a single-threaded prototype of the Council, so there is room

for improvement. This time does not directly impose overhead because, as previously dis-

cussed, the adaptation mechanism happens asynchronously, while the I/O node continues

to work as expected.

75

The time to decision is important, however, when selecting the adaptation fre-

quency. It is essential to give the system enough time after adapting to observe an impact

on performance. On the other hand, we want to make it as often as possible, so shorter I/O

phases can still benefit. In the experiments, the Announcer sent metrics one second after

the previous decision, and the median time to decision was measured to be of ≈ 130ms.

A degraded time to solution would mean a lower adaptation frequency. An alternative, in

this case, would be to separate the I/O nodes in groups, and assign one Council per group.

That would be a compromise where we sacrifice some ability to make global decisions. It

is crucial to notice that this discussion only concerns optimization techniques that require

global decisions; otherwise, a centralized Council is not needed.

4.2.6 Discussion and Limitations

As with every approach, our proposed adaptation for the I/O forwarding layer

method has its limitations. We should take the frequency in which we collect metrics and

act upon our observations into account. Higher frequency of metrics reports and adap-

tation decisions might not provide enough data to observe the impact of changes. On

the other hand, lower frequencies might miss shorter I/O behaviors in the system and fail

to adapt. In our experimental evaluation with TWINS, a one-second observation win-

dow proved to be meet the requirements. Furthermore, for the particular case of TWINS,

the use of a centralized Council could be considered a single point of failure. Adding

a standby node and periodically checkpoint what we have learned so far with newly col-

lected observations could mitigate the impact of failures. In other cases that do not require

a consensus on decisions, the learning process is not required to happen in a centralized

fashion.

Moreover, for the case of TWINS, we represented the continuous numerical pa-

rameter “window size” as a set of discrete values to apply the bandit strategy to our case

study. We believe this to be an appropriate strategy because when optimization techniques

are proposed, they are evaluated with a set of values for their parameters that developers

believe would be reasonable. For instance, for TWINS, it is evident that a window of

several milliseconds or a few seconds would cause requests to starve. The real optimal

values may lie between classes, but reaching the performance of the best among the ob-

served classes is already an improvement over having no adaptation at all.

Still, if the tuned optimization allows, it could help to provide fewer options to the

76

armed bandit. That would accelerate learning and could be combined with a smaller value

of ε without losing the ability to find the best option quickly. Further, in Section 4.2.2, we

attested that having similar values options slows down learning.

Regarding the choice of using the bandwidth as a reward, the caveat is that a

low demand can result in a low bandwidth not related to the optimization technique’s

success. Consequently, that could add noise to the learning process. This strategy was

not a problem in our experiments because measurements had the same “intensity” of

access. Furthermore, we ignored rewards when no I/O was done, i.e., when the observed

bandwidth was zero. To mitigate this problem in practice, we must either take into account

load metrics (like the number of bytes requested) or apply some bandwidth normalization.

The server-side access pattern classification approach proposed by Boito et al. (2019)

solves the issue by accounting for the load.

Another issue might arise if the learning mechanism were to observe too many

different access patterns at a given time or have numerous tuning options to choose from,

as it would take considerably more time to explore the space and learn the best choice

for each pattern and system. Nevertheless, once it learns the best choice for a given I/O

pattern, the knowledge we acquired for a given pattern will be used by other applications

that share the same pattern.

Finally, for the access pattern detection phase, we could re-train or upgrade the

model asynchronously, and once complete, update the model used by the learning mecha-

nism while it keeps learning what the best choice for a given pattern is. That would allow

us to promptly expand the number of classes without further modifications in the learning

process.

4.3 Final Remarks

Different I/O optimization techniques (including but not limited to the I/O for-

warding layer) typically provide improvements for specific system configurations and ap-

plication access patterns, but not for all of them. Moreover, they often require fine-tuning

of parameters. This chapter proposed a novel approach to adapt the I/O forwarding layer

to the current I/O workload. By periodically observing access pattern metrics collected by

the I/O nodes and applying a reinforcement learning technique – contextual bandits – we

demonstrate that the system can learn the best choice for each access pattern at runtime,

removing the tuning responsibility from the users.

77

Our case study was TWINS, a request scheduler that provides improvements over

other algorithms, but that depends on selecting the proper window size parameter. Our

approach collects metrics on the observed access pattern and periodically use these met-

rics to detect it. Based on the detected access pattern, a contextual bandit is used to learn

the best window to each pattern during execution. This mechanism learns while making

decisions and does not require previous training, which is a challenging, error-prone, and

time-consuming task because it involves observing all possible patterns and their interac-

tions. Finally, the approach we proposed is not specific to tuning the TWINS window size

parameter, and it can be applied to other optimization strategies.

78

5 DYNAMIC RECONFIGURATION OF I/O FORWARDING LAYER

As briefly discussed in Chapter 1, the forwarding layer is traditionally physically

deployed on special nodes, and the mapping between clients and I/O nodes is static. Con-

sequently, a subset of compute nodes will only forward requests to a single fixed I/O

node, which ends up forcing applications to use forwarding with a statically pre-defined

configuration, even if that decision might not be in the best interest of a given workload.

Though this setup seeks to distribute I/O nodes between compute nodes evenly, it lacks

the flexibility to adjust to applications’ I/O demands, and it can even cause the misallo-

cation of forwarding resources and an I/O load imbalance, as demonstrated by Yu et al.

(2017c) on the Sunway TaihuLight and Bez et al. (2020) on MareNostrum 4. In this chap-

ter, we argue in favor of a dynamic allocation of I/O nodes considering the application’s

workload characteristics and the number of available forwarding nodes.

5.1 Impact of I/O Node Allocation

We first seek to investigate the impact of I/O forwarding on performance, taking

into account the application’s I/O demands (i.e., their access patterns) and the overall

system characteristics. We seek to explore when forwarding is the best choice (and how

many I/O nodes an application would benefit from), and when not using it is the most

suitable alternative. We hope that the design of the forwarding layer in future machines

will build upon this knowledge, leading towards a more re-configurable I/O forwarding

layer. The Sunway TaihuLight (YANG et al., 2019b) and Tianhe-2A (XU et al., 2014)

already provide an initial support towards this plasticity.

Due to the physically static deployment of current I/O forwarding infrastructures,

it is usually not possible to run experiments with varying numbers of I/O nodes. Further-

more, any reconfiguration of the forwarding layer typically requires acquiring, installing,

and configuring new hardware. Thus, most machines are not easily re-configurable, and,

in fact, end-users are not allowed to make modifications to this layer to prevent impact-

ing a production system. We argue that a research/exploration alternative is required to

enable obtaining an overview of the impact that different I/O access patterns might have

under different forwarding configurations. We seek a portable, simple-to-deploy solution,

capable of covering different deployments and access patterns.

Existing I/O forwarding solutions in production today, such as IBM’s CIOD (ALMÁSI

79

Figure 5.1: Overview of the architecture used by FORGE to implement the I/O forwarding
technique at user-space. I/O nodes and computes nodes are distributed according to the
hostfile configuration.

Compute Node

FORGE CN

Compute Node

FORGE
ION

Compute Node

FORGE
ION

Compute Node

Parallel File System

0 1

2 6

10 14

FORGE CN

3 7

11 15

FORGE CN

4 8

12 16

FORGE CN

5 9

13 16

Compute
Node

Compute
Node

MPI Rank

Source: Author

et al., 2003) or Cray DVS (SUGIYAMA; WALLACE, 2008) require dedicated hardware

for I/O nodes and/or a restrictive software stack. They are, hence, not a straightforward

solution to explore and evaluate I/O forwarding in machines that do not yet have this layer

deployed or that may seek to modify existing deployments. Furthermore, modifications

on deployment or tuning of these solutions would have a system-wide impact, even if just

for exploration/testing purposes. Since many supercomputers such as the MareNostrum

4 and the Santos Dumont still do not have an I/O forwarding layer, we implemented such

layer in user-space to allow sysadmins to evaluate the benefits and impact of using dif-

ferent number of I/O nodes under different workloads, without the need for production

downtime or new hardware.

We implement a lightweight I/O forwarding layer that can be deployed as a user-

level job to gather performance metrics and aid in understanding the impact of forwarding

in an HPC system. The goal of the I/O Forwarding Explorer (FORGE) is to evalu-

ate new I/O optimizations (such as new request schedulers) as well as modifications on

I/O forwarding deployment and configuration on large-scale clusters and supercomputers.

Our solution is designed to be flexible enough to represent multiple I/O access patterns

(number of processes, file layout, request spatiality, and request size) derived from Dar-

shan (CARNS et al., 2011). As mentioned, it can be submitted to HPC queues as a nor-

mal user-space job to provide insights regarding the I/O node’s behavior on the platform.

FORGE is open-source and can be downloaded from <https://github.com/jeanbez/forge>.

We designed FORGE based on the general concepts applied in I/O forwarding

tools such as IOFSL, IBM CIOD, and Cray DVS. The common underlying idea present in

these solutions is that clients emit I/O requests which are then intercepted and forwarded

https://github.com/jeanbez/forge

80

to one I/O node in the forwarding layer. This I/O node will receive requests from multiple

processes of a given application (or even many applications), schedule those requests,

and reshape the I/O flow by reordering and aggregating the requests to better suit the

underlying PFS. The requests are then dispatched to the back-end PFS, which executes

them and replies to the I/O node. Only then, the I/O node responds to the client (with

the requested data, if that is the case) whether the operation was successful. I/O nodes

typically have a pool of threads to handle multiple incoming requests and dispatch them

to the PFS concurrently.

FORGE was built as an MPI application where M ranks are split into two subsets:

compute nodes and I/O nodes. The first N processes act as I/O forwarding servers, and

each should be placed exclusively on a compute node. The remaining M −N processes

act as an application, and are evenly distributed between the nodes, allocating more than

one process per node if necessary, as depicted by Figure 5.1. The compute nodes issue I/O

requests according to a user-defined input file describing the I/O phases of an application.

The input file is in the JSON1 (JavaScript Object Notation) format, a lightweight data-

interchange format that is easy for humans to read and write, and easy for machines to

parse and generate. All I/O requests of a given compute node are sent by MPI messages to

the defined I/O node. The operations are synchronous from the client’s perspective, i.e.,

FORGE waits until the I/O operation to the PFS is complete to reply back to the client.

Each I/O node has a thread that listens to incoming requests and a pool of threads

to dispatch these requests to the PFS and reply to the clients. Note that any metadata-

related requests, such as those in open() and close() operations, are immediately

executed. For write() and read() operations, the requests are placed on a queue of

incoming requests that are scheduled using the AGIOS (BOITO et al., 2013) scheduling

library, aggregated, and dispatched. AGIOS was chosen as it can be plugged into other

forwarding solutions, and it contains several available schedulers. Regarding aggregation,

in FORGE, requests to the same file and operation are handled in succession. Existing

solutions, such as IOFSL, have an interface to issue list operations if the PFS supports it.

We opted for a more general approach without relying on such feature being available.

Our experiments were conducted on MareNostrum 42 at Barcelona Supercomput-

ing Center (BSC), Spain, and on Santos Dumont3 supercomputer at the National Labora-

tory for Scientific Computation (LNCC), Brazil:

1https://www.json.org
2https://www.bsc.es/marenostrum/marenostrum
3https://sdumont.lncc.br

81

• MareNostrum 4 supercomputer uses 3, 456 Lenovo ThinkSystem SD530 compute

nodes on 48 racks. Each node uses two Intel Xeon Platinum 8160 24C chips with

24 processors each at 2.1 GHz which totals to 165, 888 processes and 390TB of

main memory. Each node provides an Intel SSD DC S3520 Series with 240 GiB

of available storage, usable within a job. A 100 Gb Intel Omni-Path Full-Fat Tree

is used for the interconnection network and a total of 14 PB of storage capacity is

offered by IBM’s GPFS. There are 7 data servers and 2 metadata servers.

• Santos Dumont has a total of 36, 472 CPU cores. The base system has 756 thin

compute nodes with two Intel Xeon E5-2695v2 Ivy Bridge 2.40GHz 12-core pro-

cessors, 64GB DDR3 RAM, and one 128GB SSD. There are three types of thin

nodes (BullX B700 family), one fat node (BullX MESCA family), and one AI/ML/DL

dedicated node (BullSequana X family). Its latest upgrade added 376 X1120 nodes

with two Intel Xeon Cascade Lake Gold 6252 2.10GHz 24-core processors, and one

1TB SSD. 36 of these nodes have a 764GB DDR3 RAM, whereas the remainder

have a 384GB DDR3 RAM. Compute nodes are connected to the LustreFS directly

through a fat-tree non-blocking Infiniband FDR network. Each OSS has one OST

made of 40 6TB HDD disks in a RAID6 (same for the MDS–MDT).

We explore FORGE with multiple access patterns and forwarding deployments

in MareNostrum in Section 5.1.1. We expand our analysis using a subset of patterns in

Santos Dumont in Section 5.1.2. We covered 189 scenarios, with at least 5 repetitions of

each, considering the following factors:

• 8, 16, and 32 compute nodes;

• 12, 24, and 48 client processes per compute node;

• 96, 192, 384, 768, and 1536 processes depending on the scenario;

• File layout: file-per-process or shared-file;

• Spatiality: contiguous or 1D-strided;

• Operation: writes with O_DIRECT enabled to account for caching effects;

• Request sizes of 32KB, 128KB, 512KB, 1MB, 4MB, 6MB, and 8MB synchronously

issued until a given total size is transferred or a stonewall is reached.

82

As the compute nodes of both supercomputers’ have 48 cores per node, we evalu-

ate a scenario where an application uses all, half, or a quarter of its cores. Regarding file

layout and spatiality, we opted for configurations commonly tested with benchmarks such

as IOR and MPI-IO Test.

Table 5.1: Access patterns described with FORGE for the experiments executed on the
MareNostum (Figure 5.3(a)) and SDumont (5.4) supercomputers.

Nodes Processes File
Layout

Request
Spatiality

Request
(KB)

A 32 1536 File-per-process Contiguous 1024
B 32 1536 File-per-process Contiguous 128
C 32 1536 Shared Contiguous 1024
D 32 1536 Shared Contiguous 4096
E 32 1536 Shared 1D-strided 512
F 16 192 Shared Contiguous 32
G 16 192 Shared 1D-strided 128
H 8 192 File-per-process Contiguous 8192
I 8 192 Shared 1D-strided 8192
J 16 384 Shared Contiguous 128
K 16 384 Shared Contiguous 8192
L 32 384 Shared 1D-strided 4096
M 32 384 Shared 1D-strided 512
N 8 384 Shared Contiguous 4096
O 16 768 Shared Contiguous 1024
P 32 768 Shared Contiguous 1024
Q 16 768 Shared 1D-strided 1024
R 8 96 File-per-process Contiguous 8192
S 8 96 Shared 1D-strided 6144
T 8 96 Shared Contiguous 512

Source: Author

5.1.1 I/O Forwarding on MareNostrum 4

Figure 1.1 depicts the bandwidth measured at client-side (makespan), when mul-

tiple clients issue their requests following each access pattern and taking into account the

number of available I/O nodes (0, 1, 2, 4, and 8). Each experiment was repeated at least 5

times, in random order, and spanning different days and periods of the day. Table 5.1 de-

scribes each depicted pattern. In Figure 1.1, only for scenario A directly accessing the PFS

translates into higher I/O bandwidth. For L and M, the right choice would be to allocate

one I/O node each. Patterns J and O would achieve higher bandwidth when four I/O nodes

83

are given to the application. On the other hand, eight are required by scenarios B, G, H,

and R. For the remaining scenarios, two I/O nodes is the ideal choice. The complete eval-

uation of the 189 experiments is available at <https://doi.org/10.5281/zenodo.4016899>.

Figure 5.2: I/O bandwidth of distinct write access patterns and I/O nodes in the MareNos-
trum 4 supercomputer. The y-axis is not the same.

Scenario Q Scenario R Scenario S Scenario T

Scenario M Scenario N Scenario O Scenario P

Scenario I Scenario J Scenario K Scenario L

Scenario E Scenario F Scenario G Scenario H

Scenario A Scenario B Scenario C Scenario D

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
0

50
100
150

0
2500
5000
7500

10000

0
50

100
150

0
30
60
90

0

50

100

0
20
40
60
80

0
50

100
150
200
250

0
100
200
300

0
25
50
75

100

0

50

100

0

1000

2000

3000

0
50

100
150
200
250

0
100
200
300

0
50

100
150

0
2000
4000
6000

0
1000
2000
3000
4000
5000

0
20
40
60
80

0
50

100
150

0
10
20
30
40

0
25
50
75

100

I/O Forwarding nodes

Ba
nd

w
id

th
 (M

B/
s)

Source: Author

For each one of 189 scenarios, it is possible to determine the different options

an application (or access pattern) has to choose regarding how many I/O nodes it could

use. For options that translate into similar achieved bandwidth, the smallest number

of I/O nodes is the most reasonable choice. To verify how many choices we have for

each pattern, we compute Dunn’s test (DUNN; DUNN, 1961) for stochastic dominance,

which reports the results among multiple pairwise comparisons after a Kruskal-Wallis

https://doi.org/10.5281/zenodo.4016899

84

Figure 5.3: (a) Number of choices each access pattern has which translates into statisti-
cally distinct I/O performance. (b) Access patterns grouped by the number of I/O nodes
that would translates to the best performance.

4
18

3940

88

0

25

50

75

1 2 3 4 5
Number of choices

N
um

be
r o

f p
at

te
rn

s

(a)

62

12

83

15 17

0

25

50

75

0 1 2 4 8
Number of I/O nodes

N
um

be
r o

f p
at

te
rn

s

(b)

Source: Author

(KRUSKAL; WALLIS, 1952) test for stochastic dominance among groups. Dunn is a

non-parametric test that can be used to identify which specific means are significant from

the others. The null hypothesis (H0) for the test is that there is no difference between

groups. The alternate hypothesis is that there is a difference. We used a level of signifi-

cance of α = 0.05, thus we reject H0 if p ≤ alpha/2.

Not using forwarding is always an option to be considered as it yields different

bandwidth than when using forwarding, though it might not be the best choice for many

cases. Figure 5.3(a) illustrates how many options an allocation policy would have to con-

sider. For 88 (≈ 46%) of the patterns, three possible choices would impact performance.

The optimal number of I/O nodes for each of the 189 scenarios, considering the

available choices of I/O nodes, is different, as depicted by Figure 5.3(b). For 12 (6%), 83

(44%), 15 (8%), and 17 (9%) scenarios, the largest bandwidth is achieved by using 1, 2,

4, and 8 I/O nodes respectively. Whereas, for 62 scenarios (33%), not using forwarding is

instead the best alternative. There does not seem to be a simple rule to fit all applications

and system configurations, which is to be expected given the complexity of factors that

can influence I/O performance. For instance, consider patterns A and B in MareNostrum.

The size of requests makes not using forwarding the best for pattern A, whereas for B,

using 8 I/O nodes translates more bandwidth. For patterns A and C, where the only

difference is the file layout, C should use 2 I/O nodes. In Santos Dumont, 8 I/O nodes

should be chosen for C instead of 0 as in A.

Considering the static physical setup of platforms where forwarding is present,

applications often are not allowed to have direct access to the PFS other than by an I/O

node. We can compare the maximum attained bandwidth one could achieve by forcibly

85

Figure 5.4: I/O bandwidth of distinct write access patterns and I/O nodes in the Santos
Dumont supercomputer. The y-axis is not the same.

Scenario Q Scenario R Scenario S Scenario T

Scenario M Scenario N Scenario O Scenario P

Scenario I Scenario J Scenario K Scenario L

Scenario E Scenario F Scenario G Scenario H

Scenario A Scenario B Scenario C Scenario D

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
0

500
1000
1500
2000

0
500

1000
1500
2000

0
500

1000
1500
2000
2500

0
500

1000
1500
2000

0
100
200
300
400
500

0
500

1000
1500
2000

0
30
60
90

0
500

1000
1500
2000

0
500

1000
1500
2000
2500

0
500

1000
1500

0

500

1000

0
25
50
75

0

100

200

0

1000

2000

0
500

1000
1500
2000

0
2000
4000
6000

0
250
500
750

0
500

1000
1500
2000

0
200
400
600

0
500

1000
1500
2000

I/O Forwarding nodes

Ba
nd

w
id

th
 (M

B/
s)

Source: Author

using forwarding in all the cases (and the optimal number of I/O nodes) to not using this

technique. For 90.5% (171 scenarios) using forwarding, for 9.5% (18 scenarios), directly

accessing the PFS would instead increase performance. Hence, both options should be

available to applications to optimize I/O performance properly.

5.1.2 I/O Forwarding on Santos Dumont

We conducted a smaller evaluation on Santos Dumont (due to allocation restric-

tions) comprised of 20 patterns described in Table 5.1. Figure 5.4 depicts the I/O band-

86

width of distinct write access patterns with a varying number of I/O nodes. One can notice

that the forwarding layer setup’s impact is not the same on MareNostrum and SDumont.

A common behavior observed in Santos Dumont is that using more I/O nodes

yields better performance. Regardless, the choice of using forwarding or not in this ma-

chine is still relevant. For instance, for the scenarios A, B, and H, direct access to the

Lustre PFS translates into higher I/O bandwidth. Whereas, for some other scenarios, the

benefits of using forwarding are perceived by the application after more than one I/O node

is available. It is possible to notice that using a single I/O node is not the best choice for

none of the tested patterns. If two were available, scenarios C, E, N, Q, and S would

already see benefits. For D, G, I, J, K, L, M, O, P, and T, only when four I/O nodes

are given to the application, in this machine, performance would increase. Other patterns,

such as F and R, require eight I/O nodes instead to achieve the best performance. In

practice, there will be an upper bound on how many of these resources are available to

applications. This information could guide allocation policies to arbitrate the I/O nodes

by allocating the resources to those that would achieve the highest bandwidth.

5.1.3 Discussion

As HPC systems tend to get more complex to accommodate new performance re-

quirements and different applications, the forwarding layer might be re-purposed from

a must-use to an on-demand approach. This layer has the potential to not only coordi-

nate the access to the back-end PFS or avoid contention but also to transparently reshape

the flow of I/O requests to be more suited to the characteristics and setup of the storage

system. Our results demonstrate the intuitive notion that access patterns are impacted dif-

ferently by using forwarding and that the choice in the number of I/O nodes also plays

an important role. Consequently, taking into account this information, novel forwarding

mechanisms could benefit from this knowledge to allocate I/O nodes based on the de-

mand. Our initial experiments with FORGE demonstrate that an idle compute node (or

even a set of compute nodes) could be temporarily allocated to act as a forwarder and

improve application and system performance.

Furthermore, as I/O nodes could be given only to applications that would benefit

the most from them, interference on sharing these resources would be reduced or even

eliminated. Instead, in today’s setups, I/O nodes have to handle all requests from a subset

of compute nodes, where concurrent applications (with very distinct characteristics) could

87

be running. Yildiz et al. (2016) demonstrate the impact of interference in the PFS, and Bez

et al. (2017) attested this when forwarding is also present. Moreover, Yu et al. (2017c)

investigated the load imbalance on the forwarding nodes, where recruiting idle I/O nodes

would be the solution. Instead, we argue that a shift of focus from this layer’s physical

global deployment to the I/O demands of applications should instead guide this layer’s

future usage and distribution. Hence, I/O forwarding could be seen as an on-demand ser-

vice for applications that would benefit from it, possibly recruiting temporary I/O nodes

to avoid interference present when sharing these resources.

5.2 Problem Statement

As demonstrated in previous sections, there does not seem to be a simple rule

regarding the number of I/O nodes to fit all applications and system configurations, which

is to be expected given the complexity of factors that can influence I/O performance.

Furthermore, some patterns seem to benefit the most from having access to more I/O

nodes than others. Consequently, a static mapping of I/O nodes to compute nodes without

considering an application’s workload does not always result in the best performance.

Hence, the need for appropriate allocation policies that take into account these issues to

maximize globally-perceived I/O performance.

Since no simple rules allow to allocate I/O forwarding resources to best suit all

applications, I/O node arbitration needs to be considered as an optimization problem.

As an optimization problem, the I/O node allocation may informally be thought of as

the following: given a set of jobs to run and a fixed number of I/O nodes, determine

how many forwarding nodes each of them should receive to maximize the aggregated

global bandwidth. Thus, every time the set of running applications changes, the decisions

have to be reevaluated. Based on these requirements, this section describes our proposed

solution to the allocation problem. To prove that we are on the right track, we evaluate

its pre-implementation by measuring the achieved I/O performance through simulation,

comparing it to different baselines.

88

5.3 The Multiple-Choice Knapsack Problem (MCKP) Allocation Policy

The Multiple-Choice Knapsack Problem (MCKP) is an optimization problem, de-

rived from the 0-1 Knapsack, where the items are subdivided into k classes, each having

Ni items. The binary choice of taking an item in the 0-1 problem is replaced by selecting

exactly one item from each class. Formally, the problem is described by (5.1). Where

the variables xij take on value 1 if and only if item j is chosen in class Ni. While the

problem is NP-hard, the time complexity of its Dynamic Programming solution, which

is pseudo-polynomial, is O(W
∑k

i=1Ni).

maximize
k∑
i=1

∑
j∈Ni

pijxij

subject to
k∑
i=1

∑
j∈Ni

wijxij ≤ W,

∑
j∈Ni

xij = 1,∀i ∈ {1, ..., k}

xij ∈ {0, 1},∀i ∈ {1, ..., k},∀j ∈ Ni.

(5.1)

We chose to model our problem after the MCKP as a global goal (i.e., the aggre-

gated bandwidth) needs to be maximized based on a set of options available to choose

from (i.e., the number of I/O nodes an application could use). We focus on optimizing

how many forwarding nodes an application should use rather than where it should run.

For the I/O node allocation policy, each class represents an application, and the

items of a class denote the number of I/O nodes that the application could use. These

items can be different for each class, as long as the number of compute nodes used by

the application is divisible by the number of I/O nodes. This constraint is to improve load

balancing. Furthermore, it should be limited by the total number of I/O nodes. The weight

wi of each item represents the number of I/O nodes, and the value pi the bandwidth. We

must pick one choice for each application, seeking to maximize the global bandwidth,

taking into account a pool of available forwarders, represented by the capacity W .

We assume that we have information about an application’s I/O performance using

different numbers of forwarding nodes. One can obtain this data from exploratory exe-

cutions, though more detailed information can also be extracted from Darshan (CARNS

et al., 2011) traces, which are already transparently collected at many supercomputers.

89

These traces can be used to identify the base access patterns (e.g., file approach, spatiality,

and request sizes), the number of processes making I/O requests, and the total transferred

data volume. Combined with performance metrics of short benchmark runs using those

base I/O patterns with different number of I/O nodes allows us to estimate the complete

application’s I/O performance. Details of such approach are described by Boito (2020),

as we focus on the allocation policy and not on application profiling. Thus, it would not

be required for each application to be run using different forwarding setups in order to

attain the necessary information. When no such application data is available, i.e., on its

first execution, MCKP is provided with the default number of I/O nodes the application

would receive for that particular system setup, hence avoiding a negative impact.

In our experiments, we allow applications to not use forwarding, which implies

no need for sharing I/O nodes as the number of available forwarding resources is always

enough. An additional option could be given to the applications to accommodate a sce-

nario where sharing is inevitable: using a shared I/O node. Nevertheless, we seek to avoid

that whenever possible as it brings performance interference. When considering sharing,

we use a naive estimation based on the bandwidth of using a single node (for that appli-

cation) divided by the total number of running applications. There are two caveats to this

approach. The first is that estimating the impact of interference is not simple. The second

is that the number of applications sharing the I/O node will be smaller than the number

of running applications. Nonetheless, such an estimate does not present an issue as it will

be a low-bandwidth option that the policy will take only for less performant applications.

The remaining (N − 1) forwarding nodes could then be given to MCKP to arbitrate, as

one I/O node is reserved for shared allocations.

5.4 Evaluation of MCKP Applicability

From the 189 patterns executed at the MN4 machine, as described in Section 5.1,

we randomly sampled sets of 16 to simulate each policy considering N available I/O

nodes. For this experiment, each pattern is an application that is ready to run. We gen-

erated 10, 000 sets, to cover multiple combinations of those patterns running at the same

time, having up to 128 forwarding nodes to allocate among the 16 applications – eight per

application, the maximum I/O node number for which we have results. In those sets, the

median number of compute nodes used by all applications was 256, with a minimum of

88 and a maximum of 512 nodes. Results are then obtained by Equation 5.2, taking the

90

sum of the 16 applications’ bandwidth. The W and R in the equation represent the total

transferred size by write and read operations for each application a.

aggregate BW =
16∑
a=1

(
Wa +Ra

runtimea

)
(5.2)

We compare our MCKP solution to alternative policies:

• ZERO and ONE Policies: each application is assigned zero or one I/O nodes.

These policies demonstrate the initial impact of using I/O forwarding.

• STATIC Policy: the total number of I/O nodes is divided between the applications

based on the number of compute nodes (CN) each one requires. The number of I/O

nodes is given by ceil(C
R
), where C is the number of compute nodes required by the

application and R = CN
F

. F is the number of I/O nodes in the system. This is the

policy used by some supercomputers that have forwarding.

• SIZE and PROCESS Policies: the total number of I/O nodes is proportionally

divided between the running applications based on their sizes (number of compute

nodes or processes). The number of I/O nodes is equal to round
(
F × ca∑A

a=0 ca

)
,

where F is the number of forwarding nodes, A the number applications, and ca the

size of application a.

• ORACLE Policy: each application is assigned the number of I/O nodes that achieved

the highest bandwidth, obtained from our performance evaluation. This is a ficti-

tious policy that disregards the limited number of I/O nodes in the system. It is

intended to provide an upper bound of the gains.

If we consider the ONE policy, where we allocate a single non-shared I/O node

to each application and compare it to not using forwarding at all (ZERO policy), in our

simulations, we observed a median slowdown of 82.11%. As the majority of the tested

workloads benefit from using more than a single I/O node, or not using I/O forwarding

at all, this policy is not well suited. On the other hand, if we compare the ZERO to

the ORACLE policy, it is possible to better grasp the potential improvements of using

forwarding. In this comparison, we observed a minimum performance boost of 0.83% and

a maximum of 121.68%. The median was of 25.63% just by using forwarding correctly.

Figure 5.5 compares the median aggregated bandwidth, computed by Equation

5.2, of the 10, 000 experiments for each number of I/O forwarding nodes using the ar-

bitration policies. The MCKP policy achieves the same aggregated bandwidth as the

91

Figure 5.5: Median global bandwidth observed in the 10, 000 sets of 16 randomly selected
applications from the 189 scenarios collected at MN4 supercomputer.

● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ●

●

●

●

●

●
●

●
●

●
●

● ●

● ● ● ●
●

●

●
●

●

●

●

● ● ● ● ● ● ●
●

● ●

● ● ● ●
●

●

●
●

●

●

●

●
● ● ●

● ● ●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

ZERO

ONE

ORACLE

0

5000

10000

15000

20000

25000

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Available I/O forwarding nodes

G
lo

ba
l b

an
dw

id
th

 (
M

B
/s

)

● ● ● ●MCKP PROCESS SIZE STATIC

Source: Author

ORACLE policy when 56 forwarding nodes are allocated between the 16 random running

applications. However, the ORACLE is not limited by the number of available I/O nodes.

Moreover, it demonstrates that allocating I/O nodes solely based on application size (i.e.,

number of required compute nodes or processes) is not the best solution. Compared to

the STATIC policy, when the optimal number of 56 I/O nodes is available, the MCKP

policy achieved a minimum performance boost of 4.08% and a maximum of 739.22%.

The median was 211.38%.

Figure 5.6: Improvement of MCKP compared to STATIC policy observed in the 10, 000
sets of 16 applications randomly selected from the 189 scenarios collected at MN4, with
different numbers of I/O nodes.

● ●● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
●

●
● ●

● ● ●
●

●

●

● ● ●

● ● ● ●

●

● ● ● ● ●

●

● ● ● ● ● ●
● ● ● ● ● ● ●

● ●

● ● ● ●
● ● ● ●

● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ●

1

5

10

15

20

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
Available I/O forwarding nodes

M
C

K
P

 o
ve

r
S

TA
T

IC
 (

ra
tio

)

● ● ●Minimum Median Maximum

Source: Author

92

5.5 GekkoFWD: On-Demand I/O Forwarding

Though FORGE allows replaying I/O profiles from applications to rapidly explore

different I/O forwarding deployments, it lacks the support to actually run applications

themselves. Besides, once an I/O node mapping selected, it is impossible to dynamically

change the number of allocated I/O nodes at runtime. Therefore, we propose a full-fledged

user-level I/O forwarding solution that is adequate and easy to run in production machines.

To achieve this goal, we enriched an existing ad-hoc file system called GekkoFS (VEF et

al., 2018; VEF et al., 2020) by implementing a forwarding mode for it. GekkoFS creates

a temporary file system on compute nodes using their local storage capacity as a burst-

buffer to alleviate I/O peaks. It ranked 4th in the overall 10-node challenge of IO5004 in

November 2019, as well 2nd concerning metadata performance in the same challenge.

GekkoFS uses the local storage available on compute nodes to provide a global

namespace accessible to all participating nodes. The GekkoFWD extension mode mod-

ifies it to use the shared PFS (e.g., Lustre, GPFS) for storage instead. Moreover, data

operations in GekkoFS are typically distributed across all nodes using the Mercury HPC

RPC framework (SOUMAGNE et al., 2013). Once an I/O operation is intercepted, the

client forwards that request to the responsible server, determined by hashing the file’s

path. To achieve a balanced data distribution, each file is split into equally sized chunks by

the client and distributed among the servers. Conversely, GekkoFWD enables GekkoFS

servers to act as intermediate I/O nodes between the compute nodes and the PFS data

servers. To achieve this, we leverage the system call interception infrastructure in each

GekkoFS client to transparently capture all application I/O requests in each compute node.

Then GekkoFWD forwards those requests to a single server, which will now act as an I/O

node as determined by a pre-defined allocation policy. To conform to such a policy, we

included a thread in the GekkoFS client that checks for mapping updates and respond to

any modification.

Since forwarding layers are transparent to applications, they usually are a per-

fect target to implement I/O optimizations such as file-level request scheduling (VISH-

WANATH et al., 2010; OHTA et al., 2010; BEZ et al., 2017). For that reason, we inte-

grated the AGIOS scheduling library into GekkoFWD. AGIOS provides several sched-

ulers, giving GekkoFWD the flexibility to prototype new scheduling solutions. Once a

request is received by a GekkoFWD I/O node, it is sent to AGIOS to determine when

4<https://www.vi4io.org/io500/list/19-11/10node>

https://www.vi4io.org/io500/list/19-11/10node

93

Figure 5.7: GekkoFWD deployment uses an interception library at the client side and a
daemon on the nodes that will act as temporary I/O nodes.

Compute Node

GekkoFWD Client

Compute Node

GekkoFWD
Daemon

Compute Node

GekkoFWD
Daemon

Compute Node

Parallel File System

AGIOS AGIOS

A A

A A

GekkoFWD Client

A A

A A

GekkoFWD Client

B B

B B

GekkoFWD Client

C C

C C

Temporary
I/O Nodes

Application

Source: Author

it should be processed. Once scheduled, it is then dispatched to the PFS and executed

following the normal flow of requests in GekkoFS. Figure 5.7 depicts a deployment of

GekkoFWD, where some applications use forwarding and others do not, depending on the

pre-selected policy. GekkoFWD is open source and is available in the official GekkoFS5

under an MIT license.

5.6 Experimental Evaluation

Since we needed fine control on allocation decisions, our evaluation was con-

ducted on the Grid 5000 (G5K) (BALOUEK et al., 2013) platform, a large-scale testbed

for experiment-driven research. Our experiments used two clusters from the Nancy site:

Grimoire (8 nodes) and Gros (124 nodes). Grimoire nodes are powered by an Intel Xeon

E5-2630 v3 processor (Haswell, 2.40 GHz, 2 CPUs per node, 8 cores per CPU) and 128

GB of memory. The Lustre parallel file system servers deployed in Grimoire nodes use a

600 GB HDD SCSI Seagate ST600MM0088. Gros nodes are powered by an Intel Xeon

Gold 5220 processor (Cascade Lake-SP, 2.20 GHz, 1 CPU/node, 18 cores/CPU) and 96

GB of memory. Each node of Gros is connected to two switches with 2×10Gbps Ethernet

links. The two switches are connected to another one with 2 × 40Gbps links each. The

latter is connected to Grimoire’s nodes with 4× 10Gbps Ethernet to each node.

5<https://storage.bsc.es/gitlab/hpc/gekkofs/-/releases>

https://storage.bsc.es/gitlab/hpc/gekkofs/-/releases

94

5.6.1 Application

To demonstrate the applicability of MCKP under mixed I/O workloads, we ran

five different application kernels and the IOR6 micro-benchmark on top of GekkoFWD.

We briefly describe them in the following items, and highlight their access patterns.

Table 5.2: Setup and I/O characteristics of the applications.

Label Application Operation File Approach Write
(GB)

Read
(GB)

Total
(GB) Nodes Processes

BT-C NAS BT-IO (Class C) write / read Single shared file 6.3 6.3 12.6 32 128
BT-D NAS BT-IO (Class D) write / read Single shared file 126.5 126.5 253.0 64 512
HACC HACC-IO write File-per-process 1.8 0 1.8 8 64
IOR-MPI IOR (MPI-IO) write / read Single shared file 16.0 16.0 32.0 16 128
POSIX-S IOR (POSIX) write / read Single shared file 16.0 16.0 32.0 16 128
POSIX-L IOR (POSIX) write / read File-per-process 32.0 32.0 64.0 64 512
MAD MADBench2 write / read Single shared file 16.2 16.2 32.4 32 64
SIM S3DSIM write Single shared file 19.6 0 19.6 16 16
S3D S3D-IO write Multiple shared files 33.7 0 33.7 64 512

Source: Author

• The S3D I/O Kernel (CHEN et al., 2009b) is a continuum scale first principles

direct numerical simulation code which solves the compressible governing equa-

tions of mass continuity, momenta, energy and mass fractions of chemical species

including chemical reactions. It performs N checkpoints at regular intervals, where

it writes three and four-dimensional arrays of doubles into a newly created file. We

configured N = 5, thus S3D generates five files. All three-dimensional arrays are

partitioned among the MPI processes, whereas the fourth dimension (the most sig-

nificant one) is not partitioned. We configured it to use PnetCDF (LATHAM et al.,

2003) nonblocking APIs, where each checkpoint has four nonblocking write calls,

followed by a wait and flush the requests (LIAO; CHOUDHARY, 2008).

• MADBench2 (Borrill et al., 2007) is based on the MADspec code, which calculates

the maximum likelihood angular power spectrum of the Cosmic Microwave Back-

ground radiation from a noisy pixelized map of the sky and its pixel-pixel noise

correlation matrix. It has three I/O component functions, each with different access

patterns, named S, W, and C. The S component consists of writes by a subset of

the processes. In W, that data is read back, and a smaller subset writes new data.

Finally, in component C, that data is read back. MADBench2 uses the MPI-IO

interface to issue its I/O operations synchronously to a single shared file.

6<https://github.com/hpc/ior>

https://github.com/hpc/ior

95

• HACC-IO7 is an I/O kernel of the Hardware/Hybrid Accelerated Cosmology Code

(HACC) application (Gordon Bell Award Finalist 2012, 2013) used to simulate

collision-less fluids in space using N-Body. In our tests, we used N = 100K par-

ticles. Each process writes N × 38 bytes and a 24 MB header using POSIX and a

file-per-process.

• S3aSim (Ching et al., 2006) is a sequence similarity search framework. It uses a

parallel programming model with database segmentation, which mimics the mpi-

BLAST access pattern. Given input query sequences, it divides up the database

sequences into fragments. Workers request a query and fragment information from

the master and search the query against the database fragment assigned. The results

are sent to the master to be sorted and then written to a single shared file. We con-

figured S3aSim to issue 100 queries varying from 1 to 10 to a database sequence

of sizes ranging from 6 to 45, 088, 768, both using a simple uniform random dis-

tribution and 128 fragments. Each query writes from ≈ 4MB to 328MB of data,

≈ 100MB on average. This application uses individual I/O operations, without

synchronizing after writing every query.

• NAS BT-IO (NASA Advanced Supercomputing Division, 2003) is based on the

Block-Tridiagonal (BT) problem of the NAS Parallel Benchmarks (NPB). After ev-

ery five time steps, the entire solution, consisting of five double-precision words per

mesh point, must be written to file. In the end, all data belonging to a single time

step must be stored in the same file and must be sorted by vector component, x, y,

and z-coordinate. We used the BT-IO MPI version with collective buffering, where

data scattered among the processors is collected on a subset of the participating pro-

cessors and rearranged before written to file in order of increasing granularity. The

C class with 128 processes issues MPI-IO requests of 1.34MB and POSIX requests

of 5.23MB, according to Darshan logs. The D class with 512 processes issues larger

requests of 5.35MB and 12.31MB, for MPI-IO and POSIX, respectively.

Table 5.2 labels each application based on its configuration. We detail the parame-

ters used to run each one of them in our companion repository. We compute the bandwidth

for each application by measuring the application’s execution time at the client-side (i.e.,

the makespan). Figure 5.8 confirms FORGE’s results in Figure 1.1, where in neither case

there is a single allocation solution that best fits all applications.

7<https://github.com/glennklockwood/hacc-io/>

https://github.com/glennklockwood/hacc-io/

96

Figure 5.8: I/O bandwidth, measured at client-side, of five repetitions of each applica-
tion described in Table 5.2. The x-axis represents the number of I/O forwarding nodes
exclusively used by the job. The y-axis is not the same for each plot.

●●

●● ●

●

●

●

●

●

BT−C BT−D HACC IOR−MPI

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
0

2000

4000

0

2000

4000

0

200

400

600

0

100

200

300

400

B
an

dw
id

th
 (

M
B

/s
)

●

●

●●
●●

●

●●

●
●

● ●

●

POSIX−S POSIX−L MAD SIM S3D

0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
0

50

100

150

200

250

0

100

200

300

0

100

200

300

0

1000

2000

0

2000

4000

6000

Number of I/O Forwarding nodes

B
an

dw
id

th
 (

M
B

/s
)

Source: Author

As we executed all applications using C compute nodes and P processes, where

both C and P are a power of two, we also considered the number of available I/O nodes

each application can use as powers of two. For our evaluation, the policies can choose

between 0, 1, 2, 4, and 8 I/O nodes for each application. In practice, these options would

comprise numbers divisible by the number of compute nodes used by each application to

improve load balancing.

5.6.2 Allocation Decisions

In this section, we investigate the allocation of I/O nodes with a subset of the

applications described in Section 5.6.1. The aggregated bandwidth is computed as the

sum of the bandwidth achieved by each application when using the number of I/O nodes

allocated to it by the arbitration policy. We focus on a set of jobs composed of BT-C, BT-

D, IOR-MPI, POSIX-L, MAD, and S3D. In total, these applications require 72 compute

nodes. A complete experiment with all applications, dynamically changing the allocated

I/O nodes, is presented in Section 5.6.3.

Figure 5.9(a) details the results. The x-axis represents the number of available I/O

nodes to arbitrate, and each box groups a policy. The first group represents direct access

to Lustre, whereas the second is the ONE policy. The last box represents the ORACLE

97

Figure 5.9: Global aggregated bandwidth computed by Equation 5.2 and I/O nodes al-
location for the six applications under different I/O policies. The x-axis of both plots
represents the number of available I/O nodes. Colors differentiate applications.

0 1 STATIC SIZE MCKP OPTIMAL

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 36

0.0

2.5

5.0

7.5

Available I/O forwarding nodes

A
gg

re
ga

te
d

B
an

dw
id

th
 (

G
B

/s
)

Application BT−C BT−D IOR−MPI POSIX−L MAD S3D

(a) Bandwidth achieved by each application using the allocated I/O forwarding nodes of Figure 5.9(b).

0 1 STATIC SIZE MCKP OPTIMAL

4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 36

0

4

8

12

16

20

24

28

32

Available I/O forwarding nodes

A
llo

ca
te

d
I/O

 fo
rw

ar
di

ng
 n

od
es

(b) Number of allocated I/O forwarding nodes when the applications are running concurrently in the offline
simulation. Each bar’s height depicts the amount of I/O nodes given to that application.

Source: Author

policy, as detailed in Section 5.4. As demonstrated by the results with FORGE at MN4,

the ONE policy represents a global slowdown (39.17%) compared to directly accessing

the PFS servers, even though some applications such as S3D would benefit from this

choice. The STATIC, SIZE, and PROCESS (the latter not depicted) cannot achieve the

same aggregated bandwidth as the MCKP policy that is 4.59×, 4.59×, and 4.1× better

than the alternatives. MCKP achieves the same performance of the ORACLE (the upper

bound) when 36 nodes are available to be arbitrated among the 6 running applications

(Figure 5.9(a)).

Regarding the number of allocated I/O nodes, the STATIC and SIZE policies dis-

98

Figure 5.10: Bandwidth achieved by individual applications using the assigned number
of I/O nodes by our MCKP policy, compared to each application running alone under the
same I/O node number constraint, i.e., the best result that application could achieve.

10 I/O nodes 12 I/O nodes 16 I/O nodes 18 I/O nodes 22 I/O nodes 36 I/O nodes

1 I/O nodes 2 I/O nodes 4 I/O nodes 5 I/O nodes 7 I/O nodes 8 I/O nodes

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D

S
3D

0

25

50

75

100

0

25

50

75

100B
an

dw
id

th
 (

%
)

Source: Author

tribute the I/O nodes in a non-optimal way. Under the constraint of 12 available I/O nodes,

for instance, applications BT-C, MAD, and S3D should not use forwarding, as detailed

by Table 5.3. Instead, IOR-MPI should receive more I/O nodes as it can achieve a band-

width that is 18.96× higher when using eight forwarders instead of one. The MCKP

policy does not give any I/O nodes for S3D as having a direct access to the PFS is the best

option instead.

Table 5.3: Allocated forwarders and achieved bandwidth using the STATIC, SIZE, and
MCKP policies when 12 I/O nodes are available to be arbitrated.

STATIC SIZE MCKP
I/O

Nodes
BW

(MB/s)
I/O

Nodes
BW

(MB/s)
I/O

Nodes
BW

(MB/s)

BT-C 1 77.6 1 77.6 0 195.7
BT-D 2 594.2 2 594.2 1 597.2
IOR-MPI 1 268.4 1 268.4 8 5089.9
POSIX-L 2 411.9 2 411.9 2 411.9
MAD 1 77.8 1 77.8 0 255.9
S3D 2 48.1 2 48.1 0 241.3

Source: Author

We analyzed the penalty to the performance of individual applications caused by

our MCKP policy, which aims at maximizing the global bandwidth, in Figure 5.10. For

each total number of available I/O nodes (the boxes), we show the performance of each

99

application (x-axis) with the assigned number of I/O nodes, compared to the best possible

result for that application running alone under the same number of I/O nodes. With four

I/O nodes, applications IOR-MPI and S3D manage to achieve the same performance they

would attain when running alone under this constraint. For both, choosing between 1, 2, or

4 I/O nodes, the latter is always the best choice. However, for the remaining applications,

such as BT-C or BT-D, where 4 is also the best choice, they reach only 50% and 33% of

the bandwidth they could achieve if running alone under that constraint. When running

with other applications, e.g., IOR-MPI and S3D, they are not prioritized by the policy

because they do not gain performance as the first two when using more I/O nodes.

Figure 5.11: Bandwidth difference between applications running under STATIC and
MCKP. Positive (in purple) means MCKP was faster than STATIC. The y-axis is not
the same in all the plots.

10 I/O nodes 12 I/O nodes 16 /O nodes 18 I/O nodes 22 I/O nodes 36 I/O nodes

1 I/O nodes 2 I/O nodes 4 I/O nodes 5 I/O nodes 7 I/O nodes 8 I/O nodes

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

B
T

−
C

B
T

−
D

IO
R

−
M

P
I

P
O

S
IX

−
L

M
A

D
S

3D

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

300

600

900

0

1000

2000

3000

4000

5000

0

300

600

900

0

1000

2000

3000

4000

5000

−400

0

400

800

0

1000

2000

3000

4000

5000

0

100

200

300

0

1000

2000

3000

4000

5000

0

100

200

300

0

1000

2000

3000

4000

5000

B
an

dw
id

th
 d

iff
er

en
ce

 (
M

B
/s

)

Source: Author

In Figure 5.11, we depict the bandwidth differences between the STATIC and

MCKP policies for each application. Positive values mean that the MCKP was able to

yield improvements, whereas negatives indicate that the STATIC policy was a better al-

ternative for that particular application. Improving global bandwidth might often come

from impairing specific applications. For instance, the MCKP policy sacrifices BT-D by

giving fewer I/O nodes than what the STATIC policy would allocate to it. The reason

is that BT-D has a lower bandwidth, and the increase in performance for the remaining

applications is higher than what is lost by BT-D, if observed individually.

100

5.6.3 Dynamic Allocation Policy

In this section, we use GekkoFWD with MCKP to dynamically arbitrate the I/O

nodes between the changing set of running applications in the G5K platform. We split the

Gros cluster nodes into two groups: 96 compute nodes and 12 I/O nodes. We deployed

Lustre in the Grimoire cluster with one MGS/MDS node and two OSS with one OST

of 500GB each. Lustre was configured with a stripe size of 1MB and striping over the

available OSTs. We do not consider directly accessing the PFS, i.e., not using forwarding

for this test to mimic platforms with this restriction.

In this experiment, we have a predefined queue of jobs to be executed following

a strict FIFO order. Once one or more applications are scheduled, MCKP is invoked to

choose the number of I/O nodes each should use. The decision considers all running

jobs and may change the number of I/O nodes used by some of them. The policy is

also invoked when jobs finish but new ones cannot be scheduled as there are not enough

compute nodes yet. The only exception is the STATIC policy, that is invoked but will not

reallocate resources for already running applications.

Figure 5.12 depicts the aggregated bandwidth comparison between a queue com-

prised of jobs from applications HACC, SIM, and S3D. The global aggregated per-

formance is improved by 1.85× by using MCKP rather than the STATIC policy, from

4.95GB/s to 9.18GB/s. Taking a close look at the bandwidth achieved by HACC in its

four instances in the job queue, we observed improvements of 1.2× (from 1.25GB/s to

1.51GB/s), 1.32× (from 1.25GB/s to 1.66GB/s), 3.93× (from 883.37MB/s to 3.47GB/s),

and 2.17× (from 898.7MB/s to 1.9GB/s) depending on the set of concurrently running ap-

plications. On the other hand, SIM and S3D applications observed a slight slowdown on

their first executions, as the priority when using more I/O nodes was given to HACC that

could benefit the most from the additional allocated resources. SIM attained 0.94× (from

139.1MB/s to 132.0MB/s), 0.97× (from 123.1MB/s to 120.6MB/s), and 1.18× (from

176.2MB/s to 208.1MB/s) of the bandwidth achieved under the STATIC allocation. S3D

attained 0.98× (from 123.3MB/s to 121.7MB/s), 0.94× (from 110.0MB/s to 103.5MB/s),

and 1.00× (from 108.3MB/s to 108.9MB/s) of the bandwidth using MCKP.

We generated random queues of jobs using the applications described in Section

5.6.1. We selected one queue whose metrics indicate a high number of concurrently

running jobs to observe the arbitration of forwarding resources and the decisions’ impact.

101

Figure 5.12: Aggregate bandwidth achieved by the arbitration policies while running the
HACC, SIM, and S3D applications on the G5K platform using GekkoFWD.

ONE

STATIC

SIZE

MCKP

0 1024 2048 3072 4096 5120 6144 7168 8192 9216
Aggregated Bandwidth (MB/s)

A
llo

ca
tio

n
P

ol
ic

y

Application HACC SIM S3D

Source: Author

The source code of the queue generator is open-source8.

Figure 5.13: Aggregate bandwidth achieved by the arbitration policies while running at
least one job for each application on the G5K platform using GekkoFWD.

ONE

STATIC

SIZE

MCKP

0 1024 2048 3072 4096 5120 6144 7168 8192 9216 10240 11264 12288 13312 14336 15360 16384
Aggregated Bandwidth (MB/s)

A
llo

ca
tio

n
P

ol
ic

y

Application BT−C BT−D HACC IOR−MPI MAD POSIX−L POSIX−S S3D SIM

Source: Author

The selected queue has at least one job of each application, in the following order:

HACC, IOR-MPI, SIM, IOR-MPI, IOR-MPI, POSIX-S, POSIX-L, BT-C, MAD,

MAD, S3D, HACC, HACC, and BT-D. Figure 5.13 illustrates the bandwidth achieved by

each application (and the aggregated bandwidth given by Equation~5.2) under the ONE,

STATIC, SIZE, and MCKP policies. Despite invoking the arbitration policy before appli-

cations start or after they finish, the STATIC will not change the number of I/O nodes (nor

the mapping) that were first assigned to an application.

The first job of the HACC application is given 1 I/O node by the STATIC policy

due to its size. In contrast, MCKP initially allocates 8 I/O nodes and then reduces to 4

as new jobs from IOR-MPI and SIM applications begin to execute. From the applica-

tion’s perspective, increasing the number of I/O nodes here translates into a bandwidth

that is 3.9× higher than on the STATIC allocation (from 987.3MB/s to 3850.7MB/s).

For POSIX-L, the STATIC policy allocated 8 I/O nodes reaching 1, 963.9MB/s, whereas

MCKP only allows the application to use 8 I/O nodes during 9.7% of the time, and 2 I/O

nodes for 90.3% of the time, which limits the bandwidth to 391.7MB/s. For the POSIX-L

application, using 4 I/O nodes (MCKP) instead of 2 (SIZE), bandwidth is improved by

5.8×, from 180.5MB/s to 1, 049.9MB/s with MCKP. It is possible to see that the latter
8<https://doi.org/10.5281/zenodo.3875176>

https://doi.org/10.5281/zenodo.3875176

102

prioritizes applications that can reach high bandwidth by giving them more I/O nodes.

Moreover, if we compare the STATIC solution to our dynamic MCKP arbitration pol-

icy, the latter improves global performance by 1.9× in this scenario — from 8.41GB/s to

16.02GB/s.

The dynamic remapping of I/O nodes to the compute nodes does not require any

synchronization between the nodes of the forwarding layer, which could impact perfor-

mance. Instead, the GekkoFWD clients check whether the mapping changed periodically

(every 10 seconds by default). Thus, there might be a brief period where I/O nodes are

shared by more than one application, especially if compute node clocks are not synchro-

nized. We believe this should not pose an issue as jobs run in higher orders of magnitude.

5.7 Discussions and Limitations

In this chapter, we argued in favor of a dynamic on-demand allocation of I/O

nodes considering the application’s I/O characteristics. We demonstrate that the forward-

ing layer’s global deployment combined with the existing static allocation policy based

solely on application size (i.e., on the number of compute nodes it requires) is not suitable

to accommodate the increasingly heterogeneous workloads entering HPC installations.

Instead, an application’s I/O characteristics should be considered when arbitrating these

resources among concurrently running applications to improve global performance.

To understand the impact of I/O node allocation under different access patterns, we

proposed FORGE, a lightweight I/O forwarding explorer. FORGE collects performance

metrics to aid in understanding the effect of forwarding in an HPC system. Additionally,

we presented a user-level I/O forwarding solution named GekkoFWD that does not re-

quire application modifications and allows a dynamic remapping of forwarding resources

to compute nodes. GekkoFWD is simple to run in production machines, where this layer

is not present, targeting applications that would benefit from it.

We proposed a novel I/O forwarding allocation policy based on the Multiple-

Choice Knapsack Problem. We demonstrate our dynamic MCKP allocation policy’s ap-

plicability to arbitrate the available I/O forwarding resources through extensive evaluation

and experimentation. We show it could transparently improve global I/O bandwidth by up

to 23× compared to the existing static policy, though improving global bandwidth might

often come from impairing some applications. We also observed improvements of up to

85% in a live experiment using GekkoFWD and a queue of nine distinct applications.

103

Finally, to wrap up our discussion, our proposed dynamic allocation strategy has

a caveat: the frequency to which we should react to changes. If we respond too fast, we

might unnecessarily re-configure the system based on short-lived behaviors. On the other

hand, if we react too slowly, we might not adapt to all the I/O workloads. In our evalua-

tion, re-evaluating allocation decisions when the set of running applications change (i.e., a

new job starts to execute or a running stop finishes) has proven sufficient to attain consid-

erable gains over a static policy. We could change that frequency to accommodate systems

with a high number of short or small jobs, or those could be considered ineligible to re-

ceiving forwarding resources as they would probably not benefit from them. Nonetheless,

our approach gives system administrators the means to enforce different dynamic policies

than the static solution available in those systems.

104

6 RELATED WORK

The I/O forwarding layer has been the focus of multiple research efforts to im-

prove its performance and transparently benefit applications. Vishwanath et al. (2010)

improved the I/O performance of an IBM Blue Gene/P supercomputer by up to 38% by

updating this layer. Their modifications allowed for asynchronous operations in the I/O

nodes and included a simple FIFO request scheduler to coordinate accesses from the mul-

tiple threads. The same authors later optimized data movement between layers through a

topology-aware approach (VISHWANATH et al., 2011), whereas Isaila et al. (2011) pro-

posed a two-level prefetching scheme. Ohta et al. (2010) implemented a FIFO, and the

quantum-based HBRR request schedulers for the IOFSL framework. The latter aims at

reordering and aggregating requests. TWINS (BEZ et al., 2017), a novel scheduler pro-

posed for the forwarding layer, aims at coordinating accesses to the data servers to avoid

contention. It was able to improve performance and alleviate interference when compared

to FIFO and HBRR.

We explore related work on access pattern detection in Section 6.1. Current ap-

proaches to the dynamic tuning of HPC I/O are discussed in Section 6.2. Finally, in

Section 6.3, we comment on resource allocation policies, more specifically those related

to I/O nodes.

6.1 On Access Pattern Detection

Detecting access patterns is an essential topic as it allows adapting the I/O system

to the workload. For that, both postmortem and runtime approaches are popular. In the

case of postmortem, after the execution, information is often obtained from traces and

applied to future executions of the same applications (LIU et al., 2014; BOITO et al.,

2016), targeting repeated patterns with similar characteristics. For instance, Behzad et al.

(2019) define high-level I/O patterns to characterize write operations by collecting high-

level I/O calls, such as the HDF5 data model definition and write calls, using the Recorder

(Luu et al., 2013) tracer library. They then use H5Analyze to execute an analysis on the

trace files to come up with the patterns to guide parameter tuning for HDF5 applications.

In this work, we favor a runtime technique to avoid imposing the profiling effort

and also to benefit from similarities between different applications. Furthermore, runtime

detection allows the applications to start profiting from tuning optimizations more quickly,

105

differently from postmortem analysis.

At runtime, techniques can typically only use information from operations already

performed. To predict future accesses, the technique proposed by Dorier et al. (2014)

named Omnisc’IO, intercepts I/O operations and builds a grammar. The approach em-

ployed by Tang et al. (2014) periodically analyzes previous accesses and applies a rule

library to predict future accesses (for prefetching). They collect metrics regarding spatial-

ity of read requests from the MPI-IO library.

Other techniques benefit from information obtained from I/O libraries. Ge, Feng

and Sun (2012) collect data from MPI-IO covering the type of operation, data size, spatial-

ity, and whether or not operations are collective and synchronous. Liu, Chen and Zhuang

(2013b) collect the number of processes, the number of aggregators, and binding between

nodes and processes. Lu et al. (2014) use the offsets accessed by each process during

collective operations. The access spatiality of the application’s processes is used in the

approach proposed by Song et al. (2011a).

These are client-side techniques. Consequently, they would not work at the for-

warding layer or at the server-side, where less information is available, and the observed

pattern is the interaction of multiple concurrent patterns. Conversely, in this work, we fo-

cus our efforts on detecting the access pattern at the I/O forwarding layer as it is a perfect

place to apply optimization since this layer is transparent to applications.

6.2 On Dynamic Tuning of Parameters

Numerous parameters – in different levels of the HPC I/O stack – can affect I/O

performance, thus tuning the system normally requires a large number of experiments to

properly understand the interplay of factors and their impact on the performance. Table

6.1 compares our approach to related work that has been directed to aid in the config-

uration of the I/O stack. We classify each research based on: whether or not previous

training is required; if any access pattern detection technique is used; if the tuning ap-

proach is application and file system agnostic; and if real-time metrics are used for the

learning and tuning process. The dash on the work of Chen et al. (2009a) and Zhang et

al. (2011) for application and file system agnostic is used as their research does not target

HPC applications, but rather on distributed systems such as the web.

Chen et al. (2009a) use the Markov Decision Process theory and a reinforcement

learning strategy to discover a relationship between the system workload and the optimal

106

Table 6.1: Comparison of features in our proposal to related work.

Related Work Pr
ev

io
us

Tr
ai

ni
ng

A
cc

es
sP

at
te

rn
D

et
ec

tio
n

A
pp

lic
at

io
n

A
gn

os
tic

Fi
le

Sy
st

em
A

gn
os

tic

R
ea

l-t
im

e
M

et
ri

cs

Chen et al. (2009a) Ë é - - Ë
Zhang et al. (2011) Ë é - - Ë
Agarwal et al. (2019) Ë é Ë é1 é
Behzad et al. (2013), Behzad et al. (2019) Ë Ë Ë Ë é
Boito et al. (2016) Ë Ë Ë Ë2 é
Li et al. (2017) é é Ë é3 Ë

Our approach é Ë Ë Ë Ë

1 Works on Lustre and requires the number of OSTs and stripe count.
2 Requires AGIOS integration on the data server.
4 Requires modification on the file system client.

Source: Author

configuration. Their solution uses an actor and a critic. The first follows the stochas-

tic policy that maps system states to configuration settings, and the latter uses a value

function to provide feedback to the actor. Both are implemented by multiple-layer neural

networks. Zhang et al. (2011) propose an ordinal optimization-based strategy combined

with a back-propagation neural network for the auto-tuning of configuration parameters in

distributed systems. They demonstrate that their approach reduces the number of required

measurements in a real system compared to the use of traditional evolutionary optimiza-

tion strategies in the search for the optimal policy. Their method searches for a balance

between performance and simulation time. Both approaches require a previous training

phase and do not use any access pattern detection mechanism. Chen et al. focus their ap-

proach tuning a web server where a change in the workload is represented by the volume

of accesses (maximum clients and time a connection should remain open). Zhang et al.

share the same focus, but considering more parameters that were relevant to represent a

web system’s performance.

In the context of HPC, Agarwal et al. (2019) propose two auto-tuning models,

based on active learning, to recommend a set of parameter values for MPI-IO hints and

Lustre configuration for an application on a given system. They employ Bayesian op-

timization to find the parameter values. Though their approach still requires training,

due to their separation of real-application execution and I/O prediction model, training

time is reduced compared to other methods. Nevertheless, as they seek to minimize loss

for the overall execution, mixed workloads of read and write requests might not achieve

107

the optimal performance without a fine-grain tuning. Moreover, their approach requires

re-training the model with additional data to be able to target new applications’ access

patterns. Our runtime proposal, on the other hand, monitor metrics in a finer-grain to

adapt to the application access pattern, learning with new decisions during its lifetime.

Behzad et al. (2013), Behzad et al. (2019) proposed an auto-tuning framework

to set the parameters of the HDF5, MPI-IO, and parallel file systems. It extracts the I/O

kernel of an application using tracing tools and runs the kernel with a pre-selected training

set of tunable parameters. The authors employ adaptive heuristic search approaches –

genetic evolution algorithms and simulated annealing – to transverse the search space in

a reasonable amount of time. Furthermore, they use a regression model to predict the top

20 tunable parameter values that would improve I/O performance and run the kernel once

more to select the best parameters under those conditions. Their approach decreases the

number of experiments to be executed to tune the parameters, but it does not eliminate

the profiling phase. Instead, our method can continuously receive metrics at runtime

and adapt to the changing workload. Behzad et al. (2019) also have a key-value store

to associate patterns with their I/O performance model, and a modeling component, for

when no previously trained model is available. Nonetheless, they might require more than

10 hours to come up with a nonlinear regression model for the patterns the framework is

not able to find a match. In contrast, our approach can demonstrate improvements a few

minutes after a new access pattern is first observed by dynamically exploring the space

using the armed-bandit RL technique. Another approach that requires previous training

but uses access pattern detection is proposed by Boito et al. (2016). Their approach is

application and file system agnostic and rely on decision trees.

CAPES, the tuning system proposed by Li et al. (2017), takes periodic measure-

ments of a machine and train (online) a deep neural network that uses Q-learning to

change parameters. They applied it to tune the congestion window size and the I/O rate

limit on a Lustre PFS, improving write performance by up to 45%. Their approach re-

quires previous training that can take over 24 hours for the synthetic workloads considered

in the paper, generated with the Filebench benchmark. Conversely, as our system does

not require an initial training phase, it can start to learn and benefit from it a few min-

utes after a new access pattern is first seen. Table 6.2 summarizes the learning methods

adopted by each approach, and the target location employed by each one to demonstrate

its applicability.

Building models to represent the impact of parameters is a usual strategy, as done

108

Table 6.2: Learning methods and targeted tuned locations used by each related work when
compared to our proposal.

Related Work Location Learning Methods

Chen et al. (2009a) Web Servers
Markov Decision Process
Multiple-Layer Neural Networks
Reinforcement Learning

Zhang et al. (2011) Web Servers Ordinal Optimization
Back-propagation Neural Network

Agarwal et al. (2019) Lustre
MPI-IO

Active Learning
Bayesian Optimization
Extreme Gradient Boosting

Behzad et al. (2013), Behzad et al. (2019)
HDF5
MPI-IO
Lustre Servers

Genetic Algorithms
Simulated Anneling

Boito et al. (2016) Data Servers Decision Trees

Li et al. (2017) Lustre Clients
DNN
Q-learning

Our approach I/O Nodes Armed Bandits,
Reinforcement Learning

Source: Author

by McLay et al. (2014) to optimize MPI-IO collective writes to Lustre. They propose a

set of heuristics based on exploratory experiments on three machines to explain the im-

pact of the choice of the tuned parameters. Focusing on block-level local storage, in the

context of a single data server, Nou, Giralt and Cortes (2012) used pattern matching to

record known patterns and their performance with different disk schedulers, using this

information to adapt. Both approaches require previous experiments to explore the out-

comes when using different parameters and to build models that can be used to guide

tuning decisions. Conversely, we targeted a dynamic and transparent approach that would

allow our tuning mechanism to learn the best choice for each parameter, by observing

system metrics and reacting accordingly to changes in the access pattern and system.

Regarding the access pattern detection used in this work, Bez et al. (2019) com-

pare techniques to classify (at the forwarding level) the spatiality of accesses. Those tech-

niques were used in the experiments presented in Chapter 4 , but other solutions could

be plugged-in to make this detection. Furthermore, Boito et al. (2019) proposes a more

generic server-side access pattern classification approach that would be suitable when

adapting any optimization mechanism, not only TWINS. In that approach, we employed

some performance measurements obtained with TWINS to make an offline adaptation

depending on the detected access pattern. However, that adaptation represented an oracle

as the only goal was to evaluate the accuracy of the proposed pattern detection technique.

109

6.3 On I/O Forwarding Allocation

Yu et al. (2017c) address the load imbalance problem of the I/O forwarding layer.

They argue that the bursty I/O traffic of HPC applications and the commonly rank 0 I/O

pattern make the I/O nodes highly unbalanced. As some I/O nodes become hot spots, they

hinder performance. Thus, they propose to recruit idle I/O nodes to alleviate this problem

by giving additional nodes to the applications. In their approach, they strip files across a

number of I/O nodes. Hence each I/O node is responsible for different portions of the file,

and each storage server only servers one I/O node in the group (Yu et al., 2017a). The

mapping of additional I/O nodes and primary I/O nodes are exclusive for an application.

Thus, different applications can have different mappings, which adds some flexibility to

the default static solution. However, the I/O nodes temporarily allocated to aid others

might be required by their subset of compute nodes. In that case, global performance

would be impacted. Furthermore, once the mapping is done for an application, it can-

not be changed to accommodate new jobs that would benefit from more from additional

nodes. Differently, we propose a dynamic approach to the problem, reviewing I/O node

allocations as new jobs start or end their executions. Moreover, we employ a resource pool

of available I/O nodes that we need to arbitrate among the running applications, instead

of recruiting idle resources from this layer.

The Tianhe-2 (Milkyway-2) supercomputer has a hybrid hierarchy storage system

named H2FS, that merges the local storage of I/O nodes and the disks in the object storage

servers (XU et al., 2014). This supercomputer can be configured with as few as one I/O

per 64 compute nodes, or as many as one I/O node per eight compute nodes. The H2FS

has an I/O path manager that maps compute nodes to a group of I/O nodes. Two mapping

modes are supported: static and dynamic. The first is determined by network topology

(system deployment) when the system is initialized, or the applications specify it. The

latter selects the I/O path based on the real-time overhead of the DPUs, seeking to reduce

congestion. If the overhead difference of the DPUs is within a pre-defined range, a round-

robin policy is taken to allocate the I/O nodes. Otherwise, the dynamic mapping adjusts

the I/O path and allocates DPUs for every file dynamically. Conversely, our approach does

not focus on such a small granularity, i.e., file level, but rather on the whole application

behavior. Moreover, our policy is not fixed for a given application, but instead, it takes

into account concurrent jobs, adapting based on the workload.

Ji et al. (2019) propose a Dynamic Forwarding Resource Allocation (DRFA),

110

which estimates the number of forwarding nodes needed by a certain job based on its

I/O history records. Their approach leverages automatic and online I/O subsystem moni-

toring and performance data analysis to make such decisions. DFRA works by remapping

a group of compute nodes (scheduled to start executing an application) to other than their

default I/O node assignments. They either grant more forwarding nodes (for capacity)

or unused forwarding nodes (for isolation). Only dedicated nodes from an idle pool are

used, where they expect no further interference. Nonetheless, their allocation remains

fixed once the job starts and do not adapt or allow a remapping when new applications

start or finish to run. Conversely, we argue for a dynamic policy that can evaluate the

set of running jobs to arbitrate the available I/O nodes. Moreover, their strategy relies

on an over-provisioning of I/O nodes and assumes that there are enough idle resources

to satisfy all allocation upgrades. On the other hand, our approach does not rely on that

assumption but seeks to arbitrate among the already existing forwarding resources. Table

6.3 summarizes and compares the features in our proposal to previous related works.

Table 6.3: Comparison of features in our proposal to related work.

Related Work Focus Policy St
at

ic
M

ap
pi

ng

D
yn

am
ic

M
ap

pi
ng

M
ap

pi
ng

R
ee

va
lu

at
io

n

So
ur

ce
-c

od
e

M
od

ifi
ca

tio
n

Xu et al. (2014)
Network Topology
Application

Network Topolgy Ë é é Ë1

Xu et al. (2014) File
Static (Round-Robin)
Overhead

é Ë é é

Yu et al. (2017c) Application Stripping Ë é é é

Ji et al. (2019) Application
Capacity Upgrade
Isolation Upgrade

é Ë é é

Our approach Application
One, Static,
Size, Process, MCKP

é Ë Ë é

1 For a mapping focused on the application, source-code modification is required.
Source: Author

In light of recent trends in storage system design using compute node local storage,

we believe our approach is complementary. Local storage on the compute nodes is often

temporary and eventually needs to be flushed to the PFS, flowing through the forwarding

layer (if present). Furthermore, local storage is often limited and might not be enough

to hold the applications’ data. If used solely as a cache for reads or writes (similar to a

burst buffer), it would still need to eventually reach the PFS, once more flowing through

the forwarding layer. In those scenarios where an application does not issue I/O requests

111

directly to the PFS, MCKP would not allocate nodes for it. In contrast, the default SIZE

policy would misallocate those resources that could be more useful to other applications.

Mingming et al. (2020) present an initial work towards an application forwarding

layer. They seek to use dedicated compute nodes from a Tianhe 2 supercomputer cluster to

process the requests of different applications and optimize I/O performance. By manually

forwarding requests from the IOR framework to the AGIOS library, located on a remote

node, which instead issues the request to the file system, they mimic a forwarding layer’s

behavior. However, their approach strongly relies on modifying the application’s source

code to interface with this logical layer. Furthermore, their initial evaluation does not

consider allocation aspects. We believe the solutions we have proposed in this work with

GeekkoFWD and the reallocation policies provide a more suitable and feasible alternative.

Finally, using the I/O information to make job allocation decisions is not com-

prised by this work. Different related works (ZHOU et al., 2015; HERBEIN et al., 2016;

AUPY; GAINARU; FèVRE, 2019; Miranda et al., 2019) cover this topic. They are con-

sidered complementary to our proposal.

112

7 CONCLUSION

Different I/O optimization techniques (including but not limited to the I/O for-

warding layer) provide improvements for specific system configurations and application

access patterns, but not for all of them. Furthermore, they often require fine-tuning of pa-

rameters. In this research, we sought to dynamically tune the I/O forwarding layer in HPC

platforms to improve global performance. We explored two approaches that use the ap-

plication’s access patterns as guidelines to make decisions: tuning scheduling parameters

at the forwarding layer and arbitrating the available I/O nodes between the ever-changing

set of running applications.

We demonstrated the applicability of different machine learning techniques to au-

tomatically detect the I/O access pattern of HPC applications at runtime. We investi-

gated decision trees, random forests, and neural networks to classify runtime metrics into

common access patterns. To illustrate its applicability, we evaluated these strategies by

estimating the impact of correctly detecting the application’s access pattern to tune the

TWINS scheduler’s window size at the forwarding layer. Our results have shown that all

detection approaches covered in this work can correctly detect the access pattern. The

detection mechanisms achieved up to 99% of an Oracle solution’s performance. We also

demonstrated improvements of approximately 17%, on average, over a statically defined

window. Lastly, by correctly identifying the access pattern at runtime, we were able to

avoid performance slowdowns caused by bad parameter choices.

We proposed a novel approach to adapt the forwarding layer to the current I/O

workload. We periodically observe access pattern metrics collected by the I/O nodes to

detect the access pattern and apply a reinforcement learning technique named contextual

bandits. We showed that the system could learn the best choice for each access pattern at

runtime, removing the tuning responsibility from the users. For our case study (TWINS),

the results for the offline evaluation of 144 scenarios showed that our approach is ca-

pable of reaching a precision of ≈ 88% (while providing ≈ 99% of the best option’s

performance) in the first hundreds of observations of a given access pattern. Our online

evaluation showed in practice that our approach is capable of discovering the correct win-

dow sizes and of showing runtime improvements of up to 19.3% by avoiding window

sizes that could harm performance.

Additional experiments with an application, the MADspec I/O workload, demon-

strated our learning mechanism’s applicability by reducing the impact of a wrong window

113

choice by up to 17%. Finally, the median overhead imposed by our proposal was inferior

to 2%, and the time required to announce metrics and reach a decision was short enough

to make adaptation viable. It is vital to notice that the approach we proposed in this the-

sis is not particular to tuning the TWINS window size parameter. It can be applied to

other situations where the current access pattern information is relevant to adjust a given

configuration parameter in the I/O stack.

Though I/O forwarding is an established and widely-adopted HPC technique to

reduce contention and improve I/O performance in the access to shared storage infras-

tructure, it is not always possible to explore its advantages under different setups without

impacting or disrupting production systems. In this work, we have also investigated I/O

forwarding by considering particular applications I/O access patterns and system config-

uration, rather than trying to guess a one-size-fits-all configuration for all applications.

By determining when forwarding is the best choice for an application and how many I/O

nodes it would benefit from, we can guide allocation policies to reach better decisions.

To understand the impact of forwarding I/O requests of different access patterns,

we implemented FORGE, a lightweight forwarding layer in user-space. We explored 189

scenarios covering distinct access patterns and demonstrated that, as expected, the opti-

mal number of I/O nodes varies depending on the application. While for 90.5% patterns

forwarding would be the correct course of action, allocating two I/O nodes would only

bring performance improvements for 44% of the scenarios. Our results on the MareNos-

trum and Santos Dumont supercomputers demonstrate that shifting the focus from a static

system-wide deployment to an on-demand reconfigurable I/O forwarding layer dictated

by application demands can improve I/O performance on future machines.

Regarding I/O node resource arbitration, we argued in favor of a dynamic on-

demand allocation of I/O nodes considering the application’s I/O characteristics. We

demonstrate that the forwarding layer’s global deployment combined with the existing

static allocation policy based solely on application size is not suitable to accommodate

the increasingly heterogeneous workloads entering HPC installations. Instead, an applica-

tion’s I/O characteristics should also be considered when arbitrating forwarding resources

among concurrently running applications to improve global performance.

We presented a user-level I/O forwarding solution named GekkoFWD that does

not require application modifications and allows a dynamic remapping of forwarding re-

sources to compute nodes. GekkoFWD is simple to run in production machines, where

this layer is not yet present, targeting applications that would benefit from it. We pro-

114

posed a novel I/O forwarding allocation policy based on the Multiple-Choice Knapsack

Problem. In this context, we have multiple classes representing each running application,

and the items on each class represent the number of I/O nodes we could choose. We must

elect one item for each application, seeking to maximize the global bandwidth.

We demonstrate our dynamic MCKP allocation policy’s applicability to arbitrate

on the available I/O forwarding resources through extensive evaluation and experimenta-

tion. We show it could transparently improve global I/O bandwidth by up to 23× com-

pared to the existing static policy, though improving global bandwidth might often come

from impairing specific applications. Furthermore, we observe improvements of up to

85% in a live experiment using GekkoFWD and a queue of nine different applications.

7.1 Future Work

The tuning approach we proposed in this work is not particular for the test case

of TWINS that we used to demonstrate its applicability. We could also employ it in

other situations that require knowledge about the application’s access pattern to make

better decisions. A couple of examples would be parameters at the MPI-IO layer to tune

collective buffering or data sieving (by setting the number of collective buffering nodes,

or the size of an intermediate buffer on an aggregator), or even on the HDF5 library (to

tune the chunk and cache sizes). Future work will focus on extending our approach to

other tunable parameters of the HPC I/O stack.

A demonstration of our tuning solution in a large scale machine is also in our plans,

although made difficult by having to update the I/O forwarding software – as we required

changes to enable communication of metrics and mechanism to apply and enforce the new

decisions. Nonetheless, this does not invalidate prototyping efforts, and initial results in

smaller platforms serve as a proof-of-concept.

The new forwarding features included in GekkoFS are definitely a step toward

allowing such tunable techniques to be applied in a system. Furthermore, as it adds flexi-

bility on the allocation and reallocation of forwarding resources, it opens up new research

perspectives to further consider the increase in depth of the I/O stack (e.g., using local

SDD devices, NVRAM, I/O nodes, the file system servers to store the data). Integration

with existing job schedulers could also consider the allocation of forwarding resources

among the application in a more pro-active fashion.

Finally, as we have presented two approaches to optimizing I/O performance based

115

on the access pattern detection, using that information to make tuning (finer-grain) and

allocation (coarse-grain) decisions, we plan to investigate merging these two techniques.

That would require sharing knowledge between the two methods to prioritize optimiza-

tions according to system policies and applications’ needs.

7.2 Publications

The research presented in this document resulted in the following contributions:

• J. L. Bez, A. Miranda, R. Nou, F. Z. Boito, T. Cortes, P. O. A. Navaux, Arbitration Poli-

cies for On-Demand User-Level I/O Forwarding on HPC Platforms, 35th IEEE Inter-

national Parallel & Distributed Processing Symposium (IPDPS), 2021. (Accepted).

• J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes, P. O. A. Navaux, Towards On-

Demand IO Forwarding in HPC Platforms, 2020 IEEE/ACM Fifth International Parallel

Data Systems Workshop (PDSW), 2020.

• J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes, P. O. A. Navaux, Adaptive Request

Scheduling for the I/O Forwarding Layer, Future Generation Computer Systems, 2020.

• J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes and P. O. A. Navaux, Detecting I/O

Access Patterns of HPC Workloads at Runtime, 2019 31st International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD), Campo Grande,

Brazil, 2019, pp. 80-87.

• P. J. Pavan, J. L. Bez, M. S. Serpa, F. Z. Boito and P. O. A. Navaux, An Unsupervised

Learning Approach for I/O Behavior Characterization, 2019 31st International Sympo-

sium on Computer Architecture and High Performance Computing (SBAC-PAD), Campo

Grande, Brazil, 2019, pp. 33-40.

• F. Z. Boito, R. Nou, L. L. Pilla, J. L. Bez, J. F. Meháut, T. Cortes, and P. O. A. Navaux, On

server-side file access pattern matching, HPCS 2019 - 17th International Conference on

High Performance Computing & Simulation.

• A. R. Carneiro, J. L. Bez, F. Z. Boito, B. A. Fagundes, C. Osthoff and P. O. A. Navaux, Col-

lective I/O Performance on the Santos Dumont Supercomputer, 2018 26th Euromicro

International Conference on Parallel, Distributed and Network-based Processing (PDP),

Cambridge, 2018, pp. 45-52.

116

• J. L. Bez, A. R. Carneiro, F. Z. Boito, B. A. Fagundes, C. Osthoff and P. O. A. Navaux,

I/O Performance of the Santos Dumont Supercomputer, International Journal of High

Performance Computing Applications (IJHPCA).

• F. Z. Boito, E. C. Inacio, J. L. Bez, P. O. A. Navaux, M. A. R. Dantas, and Y. Denneulin,

2018, A Checkpoint of Research on Parallel I/O for High-Performance Computing,

ACM Computing Surveys 51, 2, Article 23 (March 2018), 35 pages.

• P. J. Pavan, R. K. Lorenzoni, V. R. Machado, J. L. Bez, E. L. Padoin, F. Z. Boito, P. O. A.

Navaux, J. Méhaut, Energy efficiency and I/O performance of low-power architectures,

Concurrency and Computation: Practice and Experience, 2019, 31:e4948.

We presented a poster with the initial concepts of I/O node arbitration:

• J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes, P. O. A. Navaux, Towards the Recon-

figuration of the I/O Forwarding Layer, 33rd IEEE International Parallel & Distributed

Processing Symposium, Rio de Janeiro, Brazil, 2019.

Finally, we presented research perspectives and progress in workshops:

• J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes, P. O. A. Navaux, Dynamic I/O For-

warding Reconfiguration, JLESC Workshop – Joint Laboratory on Extreme Scale Com-

puting, Barcelona, Spain, 2018.

• J. L. Bez, F. Z. Boito, R. Nou, A. Miranda, T. Cortes, P. O. A. Navaux, A Reinforcement

Learning Strategy to Tune Request Scheduling at the I/O Forwarding Layer, HPC-

IODC: HPC I/O in the Data Center Workshop, ISC High Performance, 2020.

117

REFERENCES

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. 2015. Available from Internet: <https://tensorflow.org>.

Agarwal, M. et al. Active Learning-based Automatic Tuning and Prediction of Parallel
I/O Performance. In: 2019 IEEE/ACM Fourth International Parallel Data Systems
Workshop (PDSW). [S.l.: s.n.], 2019. p. 20–29.

ALI, N. et al. Scalable I/O Forwarding Framework for High-Performance Computing
Systems. In: IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING
AND WORKSHOPS, 2009, Berkeley, USA. 2009 IEEE International Conference on
Cluster Computing and Workshops. [S.l.]: IEEE, 2009. p. 1–10.

ALMÁSI, G. et al. An overview of the Blue Gene/L system software organization. In:
EURO-PAR 2003 CONFERENCE, LECTURE NOTES IN COMPUTER SCIENCE,
2003. Euro-Par 2003 Parallel Processing. [S.l.]: Springer-Verlag, 2003. p. 543–555.

AUER, P.; CESA-BIANCHI, N.; FISCHER, P. Finite-time analysis of the
multiarmed bandit problem. Mach. Learn., Kluwer Academic Publishers, USA,
v. 47, n. 2–3, p. 235–256, may 2002. ISSN 0885-6125. Available from Internet:
<https://doi.org/10.1023/A:1013689704352>.

AUPY, G.; GAINARU, A.; FèVRE, V. L. I/o scheduling strategy for periodic
applications. ACM Transactions on Parallel Computing, Association for Computing
Machinery, New York, NY, USA, v. 6, n. 2, jul. 2019. ISSN 2329-4949. Available from
Internet: <https://doi.org/10.1145/3338510>.

BALI, R.; SARKAR, D.; LANTZ, B. R: Unleash Machine Learning Techniques.
Packt Publishing, 2017. (Learning path). ISBN 9781787127340. Available from Internet:
<https://books.google.com.br/books?id=7dMvswEACAAJ>.

BALOUEK, D. et al. Adding virtualization capabilities to the Grid’5000 testbed.
In: IVANOV, I. ET AL. Cloud Computing and Services Science. [S.l.]: Springer
International Publishing, 2013. (Communications in Computer and Information Science),
p. 3–20. ISBN 978-3-319-04518-4.

Bağbaba, A. Improving collective i/o performance with machine learning supported
auto-tuning. In: 2020 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). [S.l.: s.n.], 2020. p. 814–821.

BEHZAD, B. et al. Optimizing I/O Performance of HPC Applications with Autotuning.
Association for Computing Machinery, New York, NY, USA, v. 5, n. 4, 2019.

BEHZAD, B. et al. Taming parallel i/o complexity with auto-tuning. In: Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis. New York, NY, USA: Association for Computing Machinery,
2013. (SC ’13). ISBN 9781450323789. Available from Internet: <https://doi.org/10.
1145/2503210.2503278>.

https://tensorflow.org
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1145/3338510
https://books.google.com.br/books?id=7dMvswEACAAJ
https://doi.org/10.1145/2503210.2503278
https://doi.org/10.1145/2503210.2503278

118

BERRY, D. A.; FRISTEDT, B. Bandit problems: sequential allocation of experiments
(monographs on statistics and applied probability). London: Chapman and Hall,
Springer, v. 5, p. 71–87, 1985.

BEZ, J. L. Evaluating I/O Scheduling Techniques at the Forwarding Layer and
Coordinating Data Server Accesses. Dissertation (Master) — PPGC - Federal
University of Rio Grande do Sul, 2016.

BEZ, J. L. et al. Towards On-Demand I/O Forwarding in HPC Platforms. In: Int.
Parallel Data Systems Workshop. [S.l.]: IEEE, 2020.

BEZ, J. L. et al. Detecting I/O Access Patterns of HPC Workloads at Runtime. In:
International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD). Brazil: [s.n.], 2019. p. 1–8.

BEZ, J. L. et al. TWINS: Server Access Coordination in the I/O Forwarding Layer.
In: 2017 25th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP). [S.l.: s.n.], 2017. p. 116–123.

BOITO, F. Z. Estimation of the impact of I/O forwarding on application
performance. [S.l.], 2020. 20 p. Available from Internet: <https://hal.inria.fr/
hal-02969780>.

BOITO, F. Z. et al. A Checkpoint of Research on Parallel I/O for High-Performance
Computing. ACM Comput. Surv., ACM, v. 51, n. 2, p. 23:1–23:35, 2018.

BOITO, F. Z. et al. Towards fast profiling of storage devices regarding access
sequentiality. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing. New York, NY, USA: Association for Computing Machinery,
2015. (SAC ’15), p. 2015–2020. ISBN 9781450331968. Available from Internet:
<https://doi.org/10.1145/2695664.2695701>.

BOITO, F. Z. et al. AGIOS: Application-guided I/O scheduling for parallel file systems.
In: INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED
SYSTEMS (ICPADS). 2013 International Conference on Parallel and Distributed
Systems. Seoul, South Korea: IEEE, 2013. p. 43–50. ISSN 1521-9097.

BOITO, F. Z. et al. Automatic I/O scheduling algorithm selection for parallel file
systems. Concurrency and Computation: Practice and Experience, 2016.

BOITO, F. Z. et al. On server-side file access pattern matching. In: 2019 International
Conference on High Performance Computing Simulation (HPCS). [S.l.: s.n.], 2019.
p. 217–224.

BOLZE, R. et al. Grid5000: A large scale and highly reconfigurable experimental grid
testbed. International Journal of High Performance Computing Applications, v. 20,
n. 4, p. 481–494, 2006.

Borrill, J. et al. Investigation of leading HPC I/O performance using a scientific-
application derived benchmark. In: SC ’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing. [S.l.: s.n.], 2007. p. 1–12.

https://hal.inria.fr/hal-02969780
https://hal.inria.fr/hal-02969780
https://doi.org/10.1145/2695664.2695701

119

BOX, G. E. P.; COX, D. R. An analysis of transformations. Journal of the Royal
Statistical Society: Series B (Methodological), v. 26, n. 2, p. 211–243, 1964. Available
from Internet: <https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.
tb00553.x>.

BREIMAN, L. Random Forests. Machine Learning, v. 45, n. 1, p. 5–32, Oct 2001.

CARNS, P. et al. Understanding and Improving Computational Science Storage Access
Through Continuous Characterization. Trans. Storage, ACM, New York, NY, USA, v. 7,
n. 3, p. 8:1–8:26, oct. 2011. ISSN 1553-3077.

CARNS, P. et al. 24/7 characterization of petascale i/o workloads. In: IEEE. 2009 IEEE
International Conference on Cluster Computing and Workshops. [S.l.], 2009. p.
1–10.

CARNS, P. H. ALCF I/O Data Repository. 2013. <http://ftp.mcs.anl.gov/pub/darshan/
data/>.

CHEN, H. et al. Boosting the Performance of Computing Systems through Adaptive
Configuration Tuning. In: . [S.l.: s.n.], 2009.

CHEN, J. H. et al. Terascale direct numerical simulations of turbulent combustion using
s3d. Computational Science & Discovery, IOP Publishing, v. 2, n. 1, p. 015001, jan
2009.

Ching, A. et al. Exploring I/O Strategies for Parallel Sequence-Search Tools with
S3aSim. In: 2006 15th IEEE International Conference on High Performance
Distributed Computing. Paris, France: IEEE, 2006. p. 229–240. ISSN 1082-8907.

CHOLLET, F. et al. Keras. 2015. <https://keras.io>.

COHEN, J. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, v. 20, n. 1, p. 37–46, 1960.

CONGIU, G. et al. Improving Collective I/O Performance Using Non-volatile
Memory Devices. In: 2016 IEEE International Conference on Cluster Computing
(CLUSTER). [S.l.]: IEEE, 2016. p. 120–129.

CORBETT, P. et al. Overview Of The MPI-IO Parallel I/O Interface. 1995.

CUTLER, D. R. et al. Random forests for classification in ecology. Ecology, v. 88, n. 11,
p. 2783–2792, 2007.

DELL. OrangeFS Reference Architecture. [S.l.], 2012. Available from Internet:
<http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/
orange-fs-reference-architecture.pdf>.

DOE. The Opportunities and Challenges of Exascale Computing. [S.l.], 2010.

DORIER, M. et al. Omnisc’IO: a grammar-based approach to spatial and temporal I/O
patterns prediction. In: Proceedings of the Int. Conference for High Performance
Computing, Networking, Storage and Analysis. [S.l.: s.n.], 2014. p. 623–634.

https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1964.tb00553.x
http://ftp.mcs.anl.gov/pub/darshan/data/
http://ftp.mcs.anl.gov/pub/darshan/data/
https://keras.io
http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/orange-fs-reference-architecture.pdf
http://i.dell.com/sites/doccontent/business/solutions/engineering-docs/en/Documents/orange-fs-reference-architecture.pdf

120

DUNN, J.; DUNN, O. J. Multiple comparisons among means. American Statistical
Association, p. 52–64, 1961.

GAINARU, A. et al. Scheduling the i/o of hpc applications under congestion. In: 2015
IEEE International Parallel and Distributed Processing Symposium. [S.l.: s.n.],
2015. p. 1013–1022.

GE, R.; FENG, X.; SUN, X. H. SERA-IO: Integrating energy consciousness into
parallel I/O middleware. In: CCGRID ’12 Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. [S.l.]: IEEE,
2012. p. 204–211. ISBN 9780769546919.

GORINI, S.; CHESI, M.; PONTI, C. CSCS Site Update. 2017. <http://opensfs.org/
wp-content/uploads/2017/06/Wed11-GoriniStefano-LUG2017_20170601.pdf>. [Online;
Accessed 7-January-2020].

HAHNLOSER, R. et al. Digital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature, v. 405, p. 947–51, 07 2000.

HE, J. et al. I/o acceleration with pattern detection. In: Proceedings of the 22nd
International Symposium on High-Performance Parallel and Distributed
Computing. New York, NY, USA: Association for Computing Machinery,
2013. (HPDC ’13), p. 25–36. ISBN 9781450319102. Available from Internet:
<https://doi.org/10.1145/2493123.2462909>.

He, S.; Wang, Y.; Sun, X. Improving Performance of Parallel I/O Systems through
Selective and Layout-Aware SSD Cache. IEEE Transactions on Parallel and
Distributed Systems, v. 27, n. 10, p. 2940–2952, 2016.

HERBEIN, S. et al. Scalable I/O-Aware Job Scheduling for Burst Buffer Enabled HPC
Clusters. In: Proceedings of the 25th ACM International Symposium on High-
Performance Parallel and Distributed Computing. New York, NY, USA: Association
for Computing Machinery, 2016. (HPDC ’16), p. 69–80. ISBN 9781450343145.
Available from Internet: <https://doi.org/10.1145/2907294.2907316>.

HU, W. et al. Storage wall for exascale supercomputing. Frontiers of Information
Technology & Electronic Engineering, v. 17, n. 11, p. 1154–1175, Nov 2016. ISSN
2095-9230. Available from Internet: <https://doi.org/10.1631/FITEE.1601336>.

ISAILA, F. et al. Design and evaluation of multiple-level data staging for blue gene
systems. Parallel and Distributed Systems, IEEE Transactions on, IEEE Computer
Society, v. 22, n. 6, p. 946–959, 2011.

ISAILA, F.; CARRETERO, J.; ROSS, R. CLARISSE: A middleware for data-staging
coordination and control on large-scale HPC platforms. In: 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid). [S.l.:
s.n.], 2016. p. 346–355.

ISAILA, F. et al. Making the case for reforming the i/o software stack of extreme-scale
systems. Preprint ANL/MCS-P5103-0314, Argonne National Laboratory, 2014.

http://opensfs.org/wp-content/uploads/2017/06/Wed11-GoriniStefano-LUG2017_20170601.pdf
http://opensfs.org/wp-content/uploads/2017/06/Wed11-GoriniStefano-LUG2017_20170601.pdf
https://doi.org/10.1145/2493123.2462909
https://doi.org/10.1145/2907294.2907316
https://doi.org/10.1631/FITEE.1601336

121

ISKRA, K. et al. ZOID: I/O forwarding infrastructure for petascale architectures. In: in
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. [S.l.: s.n.], 2008. p. 153–162.

JI, X. et al. Automatic, Application-Aware I/O Forwarding Resource Allocation. In:
Proceedings of the 17th USENIX Conference on File and Storage Technologies.
USA: USENIX Association, 2019. (FAST’19), p. 265–279. ISBN 9781931971485.

Kougkas, A. et al. Leveraging burst buffer coordination to prevent i/o interference. In:
2016 IEEE 12th International Conference on e-Science (e-Science). [S.l.: s.n.], 2016.
p. 371–380.

KRUSKAL, W. H.; WALLIS, W. A. Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association, [American Statistical Association,
Taylor & Francis, Ltd.], v. 47, n. 260, p. 583–621, 1952.

KUHN, M.; JOHNSON, K. Applied Predictive Modeling. [S.l.]: Springer New York,
2013. (SpringerLink : Bücher). ISBN 9781461468493.

KUHN, M.; JOHNSON, K. Feature Engineering and Selection: A Practical
Approach for Predictive Models. CRC Press, 2019. (Chapman & Hall/CRC
Data Science Series). ISBN 9781351609463. Available from Internet: <https:
//books.google.com.br/books?id=q5alDwAAQBAJ>.

KUMAR, S. et al. Characterization and modeling of PIDX parallel I/O for performance
optimization. In: SC ’13 Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. [S.l.]: ACM Press,
2013. p. 1–12.

KUO, C.-S. et al. How file access patterns influence interference among cluster
applications. In: 2014 IEEE International Conference on Cluster Computing
(CLUSTER). [S.l.]: IEEE, 2014. p. 185–193. ISSN 1552-5244.

LANDIS, J. R.; KOCH, G. G. The measurement of observer agreement for categorical
data. Biometrics, [Wiley, International Biometric Society], v. 33, n. 1, p. 159–174, 1977.

LARREA, V. G. V. et al. A more realistic way of stressing the end-to-end I/O system. In:
CRAY USER GROUP MEETING, 2015, Chicago, IL. Proceedings. [S.l.], 2015.

LATHAM, R. et al. A next-generation parallel file system for linux clusters. LinuxWorld
Magazine, v. 2, n. 1, January 2004.

LATHAM, R. et al. Parallel netCDF: A High-Performance Scientific I/O Interface.
In: SC Conference. Los Alamitos, CA, USA: IEEE Computer Society, 2003. p. 39.
Available from Internet: <https://doi.ieeecomputersociety.org/10.1109/SC.2003.10053>.

LEBRE, A. et al. I/O scheduling service for multi-application clusters. In: 2006 IEEE
International Conference on Cluster Computing. [S.l.: s.n.], 2006. p. 1–10.

LEE, C.; YANG, M.; AYDT, R. Netcdf-4 performance report. 2008. Available from
Internet: <https://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf>.

https://books.google.com.br/books?id=q5alDwAAQBAJ
https://books.google.com.br/books?id=q5alDwAAQBAJ
https://doi.ieeecomputersociety.org/10.1109/SC.2003.10053
https://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf

122

LI, Y. et al. Capes: Unsupervised storage performance tuning using neural network-based
deep reinforcement learning. In: Supercomputing ’17. [S.l.: s.n.], 2017.

LIAO, W.-k.; CHOUDHARY, A. Dynamically Adapting File Domain Partitioning
Methods for Collective I/O Based on Underlying Parallel File System Locking Protocols.
In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Austin,
Texas: IEEE Press, 2008. (SC ’08). ISBN 9781424428359.

LIU, J.; CHEN, Y.; ZHUANG, Y. Hierarchical i/o scheduling for collective i/o.
In: Proceedings of the 13th IEEE/ACM International Symposium on Cluster,
Cloud, and Grid Computing. IEEE Press, 2013. (CCGRID ’13), p. 211–218. ISBN
9780768549965. Available from Internet: <https://doi.org/10.1109/CCGrid.2013.30>.

LIU, J.; CHEN, Y.; ZHUANG, Y. Hierarchical I/O scheduling for collective I/O. In:
Proceedings of the 13th International Symposium on Cluster, Cloud and Grid
Computing. [S.l.]: IEEE, 2013. p. 211–218. ISBN 978-0-7695-4996-5.

LIU, N. et al. On the role of burst buffers in leadership-class storage systems. In: 2012
IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST). [S.l.:
s.n.], 2012. p. 1–11.

LIU, Q. et al. Hello ADIOS: the challenges and lessons of developing leadership class I/O
frameworks. Concurrency and Computation: Practice and Experience, v. 26, n. 7, p.
1453–1473, 2014. Available from Internet: <http://dx.doi.org/10.1002/cpe.3125>.

Liu, W.; Wu, L.; Xu, X. Topology aware algorithm for two-phase i/o in clusters with
tapered hierarchical networks. IEEE Access, v. 8, p. 66917–66930, 2020.

LIU, Y. et al. Automatic Identification of Application I/O Signatures from Noisy
Server-Side Traces. In: FAST’14 Proceedings of USENIX conference on File and
Storage Technologies. [S.l.: s.n.], 2014. p. 213–228. ISBN ISBN 978-1-931971-08-9.

LIU, Y. et al. Server-side log data analytics for I/O workload characterization and
coordination on large shared storage systems. In: IEEE. High Performance Computing,
Networking, Storage and Analysis, SC16: International Conference for. [S.l.], 2016.
p. 819–829.

LIU, Z. et al. Profiling and Improving I/O Performance of a Large-Scale Climate
Scientific Application. In: 2013 22nd International Conference on Computer
Communication and Networks (ICCCN). [S.l.: s.n.], 2013. p. 1–7.

LOFSTEAD, J. et al. Six degrees of scientific data: Reading patterns for extreme
scale science io. In: Proceedings of the 20th International Symposium on High
Performance Distributed Computing. New York, NY, USA: Association for
Computing Machinery, 2011. (HPDC ’11), p. 49–60. ISBN 9781450305525. Available
from Internet: <https://doi.org/10.1145/1996130.1996139>.

Los Alamos National Laboratory. MPI-IO Test Bechmark. 2008. <bitbucket.org/
jeanbez/mpi-io-test>.

LU, Y. et al. Revealing applications’ access pattern in collective I/O for cache
management. In: Proceedings of the 28th ACM International Conference

https://doi.org/10.1109/CCGrid.2013.30
http://dx.doi.org/10.1002/cpe.3125
https://doi.org/10.1145/1996130.1996139
bitbucket.org/jeanbez/mpi-io-test
bitbucket.org/jeanbez/mpi-io-test

123

on Supercomputing. [S.l.]: ACM Press, 2014. (ICS ’14), p. 181–190. ISBN
9781450326421.

Luu, H. et al. A multi-level approach for understanding I/O activity in HPC applications.
In: 2013 IEEE International Conference on Cluster Computing (CLUSTER). [S.l.:
s.n.], 2013. p. 1–5.

MCLAY, R. et al. A User-friendly Approach for Tuning Parallel File Operations. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2014. (SC ’14), p. 229–236. Available
from Internet: <https://doi.org/10.1109/SC.2014.24>.

MINGMING, H. et al. Improving I/O Performance for High Performance Computing
with Application Forwarding Layer. In: . New York, NY, USA: Association for
Computing Machinery, 2020. p. 1–5. ISBN 9781450375603. Available from Internet:
<https://doi.org/10.1145/3409501.3409511>.

Miranda, A. et al. NORNS: Extending Slurm to Support Data-Driven Workflows
through Asynchronous Data Staging. In: 2019 IEEE International Conference on
Cluster Computing (CLUSTER). Albuquerque, NM, USA: IEEE, 2019. p. 1–12. ISSN
2168-9253.

NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. 2003.
Available from Internet: <https://www.nas.nasa.gov/publications/npb.html>.

NOU, R.; GIRALT, J.; CORTES, T. Automatic I/O scheduler selection through online
workload analysis. In: IEEE. 9th International Conference on Autonomic and
Trusted Computing. [S.l.], 2012. p. 431–438.

OHTA, K. et al. Optimization Techniques at the I/O Forwarding Layer. In:
INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2009, Heraklion,
Crete. 2010 IEEE International Conference on Cluster Computing. [S.l.]: IEEE,
2010. p. 312–321.

PRABHAT; KOZIOL, Q. High Performance Parallel I/O. 1st. ed. [S.l.]: Chapman &
Hall/CRC, 2014. ISBN 1466582340, 9781466582347.

QIAN, Y. et al. A novel network request scheduler for a large scale storage
system. Computer Science - Research and Development, Springer-Verlag,
v. 23, n. 3–4, p. 143–148, 2009. ISSN 1865-2034. Available from Internet:
<http://dx.doi.org/10.1007/s00450-009-0073-9>.

REN, K. et al. Indexfs: Scaling file system metadata performance with stateless caching
and bulk insertion. In: SC ’14: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. [S.l.: s.n.], 2014. p.
237–248.

ROSARIO, J. M. del; BORDAWEKAR, R.; CHOUDHARY, A. Improved parallel i/o via
a two-phase run-time access strategy. ACM SIGARCH Computer Architecture News,
ACM, New York, NY, USA, v. 21, n. 5, p. 31–38, dec. 1993. ISSN 0163-5964. Available
from Internet: <http://doi.acm.org/10.1145/165660.165667>.

https://doi.org/10.1109/SC.2014.24
https://doi.org/10.1145/3409501.3409511
https://www.nas.nasa.gov/publications/npb.html
http://dx.doi.org/10.1007/s00450-009-0073-9
http://doi.acm.org/10.1145/165660.165667

124

ROSS, R. et al. Storage systems and input/output: Organizing, storing, and
accessing data for scientific discovery. report for the doe ascr workshop on
storage systems and i/o. [full workshop report]. 9 2018. Available from Internet:
<https://www.osti.gov/biblio/1491994>.

SCHMUCK, F.; HASKIN, R. Gpfs: A shared-disk file system for large computing
clusters. In: Proceedings of the 1st USENIX Conference on File and Storage
Technologies. USA: USENIX Association, 2002. (FAST ’02), p. 19–es.

SONG, H. et al. A cost-intelligent application-specific data layout scheme for parallel file
systems. In: Proceedings of the 20th International Symposium on High Performance
Distributed Computing. [S.l.]: ACM, 2011. (HPDC ’11), p. 37–48. ISSN 1386-7857.

SONG, H. et al. Server-Side I/O Coordination for Parallel File Systems. In:
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis. New York, NY, USA: Association for Computing
Machinery, 2011. (SC ’11). ISBN 9781450307710. Available from Internet:
<https://doi.org/10.1145/2063384.2063407>.

SOUMAGNE, J. et al. Mercury: Enabling remote procedure call for high-performance
computing. In: 2013 IEEE International Conference on Cluster Computing
(CLUSTER). [S.l.: s.n.], 2013. p. 1–8. ISSN 1552-5244.

SPEARMAN, C. The Proof and Measurement of Association between Two Things. The
American Journal of Psychology, University of Illinois Press, v. 15, n. 1, p. 72–101,
1904. Available from Internet: <http://www.jstor.org/stable/1412159>.

STENDER, J. et al. Striping without sacrifices: Maintaining posix semantics in a parallel
file system. In: First USENIX Workshop on Large-Scale Computing. USA: USENIX
Association, 2008. (LASCO’08).

STROBL, C. et al. Conditional variable importance for random forests. BMC
Bioinformatics, v. 9, n. 1, p. 307, Jul 2008.

SUGIYAMA, S.; WALLACE, D. Cray DVS: Data Virtualization Service. 2008.

SUN. High-Performance Storage Architecture and Scalable Cluster File System.
[S.l.], 2007. Available from Internet: <http://www.csee.ogi.edu/~zak/cs506-pslc/
lustrefilesystem.pdf>.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction. 2017.
<http://incompleteideas.net/book/the-book-2nd.html>. Accessed: August 2018.

TANG, H. et al. Improving Read Performance with Online Access Pattern Analysis and
Prefetching. In: Euro-Par 2014. [S.l.]: Springer, 2014. p. 246–257.

TESSIER, F.; VISHWANATH, V.; JEANNOT, E. TAPIOCA: An I/O Library for
Optimized Topology-Aware Data Aggregation on Large-Scale Supercomputers. In: 2017
IEEE International Conference on Cluster Computing (CLUSTER). [S.l.]: IEEE,
2017. p. 70–80.

https://www.osti.gov/biblio/1491994
https://doi.org/10.1145/2063384.2063407
http://www.jstor.org/stable/1412159
http://www.csee.ogi.edu/~zak/cs506-pslc/lustrefilesystem.pdf
http://www.csee.ogi.edu/~zak/cs506-pslc/lustrefilesystem.pdf
http://incompleteideas.net/book/the-book-2nd.html

125

THAKUR, R.; GROPP, W.; LUSK, E. Optimizing noncontiguous accesses in mpi-io.
Parallel Computing, Elsevier Science Publishers B. V., Amsterdam, The Netherlands,
The Netherlands, v. 28, n. 1, p. 83–105, jan. 2002. ISSN 0167-8191. Available from
Internet: <http://dx.doi.org/10.1016/S0167-8191(01)00129-6>.

The HDF Group. Hierarchical Data Format, version 5. 1997–2016. /HDF5/.

VEF, M.-A. et al. GekkoFS - a temporary distributed file system for HPC applications.
In: IEEE. 2018 IEEE International Conference on Cluster Computing (CLUSTER).
Belfast, UK: IEEE, 2018. p. 319–324. ISSN 2168-9253.

VEF, M.-A. et al. GekkoFS—A temporary burst buffer file system for HPC applications.
Journal of Computer Science and Technology, Springer, v. 35, n. 1, p. 72–91, 2020.

VIGIL, M. Trinity Platform Introductioon and Usage Model. 2015. <https:
//www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf>.
[Online; Accessed 7-January-2020].

VISHWANATH, V. et al. Accelerating i/o forwarding in ibm blue gene/p systems.
In: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. USA: IEEE Computer
Society, 2010. (SC ’10), p. 1–10. ISBN 9781424475599. Available from Internet:
<https://doi.org/10.1109/SC.2010.8>.

VISHWANATH, V. et al. Topology-aware data movement and staging for i/o acceleration
on blue gene/p supercomputing systems. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and Analysis.
New York, NY, USA: Association for Computing Machinery, 2011. (SC ’11). ISBN
9781450307710. Available from Internet: <https://doi.org/10.1145/2063384.2063409>.

WALKO, R. L.; AVISSAR, R. The Ocean–Land–Atmosphere Model (OLAM). Part I:
Shallow-Water Tests. Monthly Weather Review, v. 136, n. 11, p. 4033–4044, 2008.

WANG, Z. et al. Iteration based collective I/O strategy for Parallel I/O systems. In:
CCGRID ’14 Proceedings of the 14th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. [S.l.]: IEEE, 2014. p. 287–294. ISBN
9781479927838.

WATKINS, C. J. C. H. Learning from Delayed Rewards. Thesis (PhD) —
King’s College, Cambridge, UK, May 1989. Available from Internet: <http:
//www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf>.

WELCH, B. et al. Scalable performance of the panasas parallel file system. In:
Proceedings of the 6th USENIX Conference on File and Storage Technologies. USA:
USENIX Association, 2008. (FAST’08).

XU, W. et al. Hybrid hierarchy storage system in MilkyWay-2 supercomputer. Frontiers
of Computer Science, Higher Education Press, v. 8, n. 3, p. 367–377, 2014. ISSN
2095-2228.

YANG, B. et al. End-to-End I/O Monitoring on a Leading Supercomputer. In:
Proceedings of the 16th USENIX Conference on Networked Systems Design and

http://dx.doi.org/10.1016/S0167-8191(01)00129-6
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
https://www.lanl.gov/projects/trinity/_assets/docs/trinity-usage-model-presentation.pdf
https://doi.org/10.1109/SC.2010.8
https://doi.org/10.1145/2063384.2063409
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf
http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf

126

Implementation. USA: USENIX Association, 2019. (NSDI’19), p. 379–394. ISBN
9781931971492.

YANG, B. et al. End-to-end I/O Monitoring on a Leading Supercomputer. In: 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
19). Boston, MA: USENIX Association, 2019. p. 379–394. ISBN 978-1-931971-49-2.
Available from Internet: <https://www.usenix.org/conference/nsdi19/presentation/yang>.

YEO, I.-K.; JOHNSON, R. A. A New Family of Power Transformations to Improve
Normality or Symmetry. Biometrika, [Oxford University Press, Biometrika Trust], v. 87,
n. 4, p. 954–959, 2000. Available from Internet: <http://www.jstor.org/stable/2673623>.

Yildiz, O. et al. On the Root Causes of Cross-Application I/O Interference in HPC
Storage Systems. In: 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). Chicago, IL, USA: IEEE, 2016. p. 750–759.

YIN, Y. et al. Pattern-direct and layout-aware replication scheme for parallel i/o
systems. In: Proceedings of the 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing. USA: IEEE Computer Society, 2013.
(IPDPS ’13), p. 345–356. ISBN 9780769549712. Available from Internet:
<https://doi.org/10.1109/IPDPS.2013.114>.

Yu, J. et al. Further exploit the potential of i/o forwarding by employing file striping. In:
2017 IEEE International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC). Guangzhou, China: IEEE, 2017. p. 322–330.

Yu, J. et al. Further exploit the potential of I/O forwarding by employing file striping. In:
2017 IEEE International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous Computing
and Communications (ISPA/IUCC). Guangzhou, China: IEEE, 2017. p. 322–330.

Yu, J. et al. On the load imbalance problem of I/O forwarding layer in HPC systems.
In: 2017 3rd IEEE International Conference on Computer and Communications
(ICCC). Chengdu, China: IEEE, 2017. p. 2424–2428.

YU, J. et al. Cross-layer coordination in the I/O software stack of extreme-scale systems.
Concurrency and Computation: Practice and Experience, v. 30, n. 10, 2018.
Available from Internet: <https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4396>.

ZHANG, F. et al. Performance Improvement of Distributed Systems by Autotuning of
the Configuration Parameters. Tsinghua Science & Technology, v. 16, n. 4, p. 440 –
448, 2011. ISSN 1007-0214.

ZHANG, X.; DAVIS, K.; JIANG, S. Iorchestrator: Improving the performance of multi-
node i/o systems via inter-server coordination. In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis. USA: IEEE Computer Society, 2010. (SC ’10), p. 1–11. ISBN
9781424475599. Available from Internet: <https://doi.org/10.1109/SC.2010.30>.

https://www.usenix.org/conference/nsdi19/presentation/yang
http://www.jstor.org/stable/2673623
https://doi.org/10.1109/IPDPS.2013.114
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4396
https://doi.org/10.1109/SC.2010.30

127

ZHOU, Z. et al. I/O-Aware Batch Scheduling for Petascale Computing Systems.
In: Proceedings of the 2015 IEEE International Conference on Cluster
Computing. USA: IEEE Computer Society, 2015. (CLUSTER ’15), p. 254–263. ISBN
9781467365987. Available from Internet: <https://doi.org/10.1109/CLUSTER.2015.45>.

ZIMMER, C.; GUPTA, S.; LARREA, V. G. V. Finally, A Way to Measure Frontend I/O
Performance. In: CRAY USER GROUP MEETING, 2016, London, UK. Cray User
Group Proceedings. [S.l.], 2016. p. 1–8.

https://doi.org/10.1109/CLUSTER.2015.45

128

APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS

In this appendix, we present a summary of this Ph.D. Thesis, in Portuguese, as

required by the PPGC Graduate Program in Computing at UFRGS.

Neste apêndice, apresentamos um resumo desta Tese de Doutorado, em Português,

conforme determinado pelo Programa de Pós-Graduação em Computação da UFRGS.

A.1 Motivação

Aplicações científicas demandam cada vez mais desempenho dos sistemas de Pro-

cessamento de Alto Desempenho (PAD). Além disso, cargas de trabalho cada vez mais

heterogêneas estão presentes em plataformas PAD, de aplicações de Big Data até apli-

cações que utilizam aprendizado de máquina, tornando os sistemas mais complexos do

que nunca. Esses novos requisitos justificam as atualizações contínuas e a instalação de

novas plataformas de grande escala. No entanto, na medida que a complexidade desses

sistemas tende a crescer, também aumenta o número de parâmetros e fatores que podem

afetar direta ou indiretamente o desempenho das aplicações e do sistema. O relatório

“Oportunidades e Desafios da Computação Exascale”1 (tradução nossa) apresentado pelo

Departamento de Energia dos EUA (DOE) afirmou que o problema Exascale (criar sis-

temas de computação capazes de calcular pelo menos 1018 operações de ponto flutuante

por segundo) é mais do que apenas uma questão de escala. O comportamento e o de-

sempenho das aplicações serão determinados por uma interação complexa do código,

processador, memória, rede de interconexão e operações de entrada e saída (E/S) (DOE,

2010). Portanto, obter desempenho em escala requer a capacidade de orquestar estes

componentes de forma otimizada, além de possuir uma visão completa do sistema para

entender as causas de possíveis perdas de desempenho.

Com relação ao gerenciamento de sistemas de armazenamento, o relatório “Sis-

temas de Armazenamento e E/S: Organização, Armazenamento e Acesso a Dados para

Descoberta Científica”2 (tradução nossa) (ROSS et al., 2018) reconhece a crescente pop-

ularidade do aprendizado de máquina como uma ferramenta dentro da comunidade de

sistemas, que introduz novas possibilidades na aplicação de modelos estatísticos para

1“The Opportunities and Challenges of Exascale Computing”
2“Storage Systems and I/O: Organizing, Storing, and Accessing Data for Scientific Discovery”

129

gerenciamento de sistemas de armazenamento. O relatório menciona esforços que podem

contribuir para o uso mais eficaz do hardware de armazenamento atual e futuro. Entre

eles, destacamos os sistemas de armazenamento capazes de responder às demandas de

carga de trabalho cíclicas, conjuntos de ferramentas orientados por políticas capazes de

gerenciar o compartilhamento de recursos e novos recursos para permitir a rápida reor-

ganização de dados. A pesquisa apresentada neste documento está alinhada com essas

tendências emergentes.

Como as operações de E/S são um gargalo para um número cada vez maior de

aplicações científicas, elas têm o potencial de impactar criticamente o desempenho das

aplicações na próxima geração de supercomputadores. Enquanto os clusters de larga

escala normalmente dependem de uma infraestrutura de armazenamento compartilhada

gerenciada por um Sitema de Arquivos Paralelos (SAP), como o Lustre (SUN, 2007),

GPFS (SCHMUCK; HASKIN, 2002) ou Panasas (WELCH et al., 2008), as crescentes

demandas de E/S das aplicações provenientes de áreas do conhecimento fundamental-

mente distintas exigem muito desta infraestrutura compartilhada. Conforme os sistemas

aumentam em número de nós de computação para acomodar aplicações maiores e mais

execuções simultâneas, os sistemas de arquivos não são capazes de continuar fornecendo

desempenho devido ao aumento da contenção e interferência (XU et al., 2014; Kougkas

et al., 2016; Yildiz et al., 2016; YU et al., 2018; YANG et al., 2019a).

Para mitigar esse problema, a técnica de encaminhamento de E/S (também con-

hecida como I/O forwarding) (ALMÁSI et al., 2003) busca reduzir o número de nós que

acessam simultaneamente os servidores de dados do sistema de arquivos, criando uma ca-

mada adicional entre os nós de computação e os servidores de dados. Assim, ao invés das

aplicações acessarem o SAP diretamente, a técnica de encaminhamento de E/S define um

conjunto de nós de I/O que são responsáveis por receber requisições de E/S das aplicações

e encaminhá-los para o sistema de arquivos paralelo de maneira controlada. Isso permite

a aplicação de técnicas de otimização, como escalonamento de requisições, agregação e

compactação. Além disso, sua presença em um sistema de larga escala é transparente para

as aplicações e independente do sistemas de arquivos existentes na plataforma. Devido a

esses benefícios, a técnica de encaminhamento é aplicada por vários supercomputadores

do Top 5003 conforme detalhado na Tabela A.1.

As técnicas de otimização de E/S (incluindo, mas não se limitando à camada de

encaminhamento de E/S) geralmente fornecem melhorias de desempenho para sistemas

3Novembro 2019 TOP500: <https://www.top500.org/lists/2019/06/>.

https://www.top500.org/lists/2019/06/

130

Table A.1: TOP 500 supercomputadores que utilizam encaminhamento de E/S.

Rank Supercomputador Nodos de
Computação

Nodos de
E/S

3 Sunway TaihuLight (YANG et al., 2019b) 40, 960 240
4 Tianhe-2A (XU et al., 2014) 16, 000 256
6 Piz Daint (GORINI; CHESI; PONTI, 2017) 6, 751 54
7 Trinity (VIGIL, 2015) 19, 420 576
13 Sequoia (PRABHAT; KOZIOL, 2014) 98, 304 768

Fonte: TOP 500 Novembro 2019, e Ji et al. (2019).

com determinadas configurações ou para aplicações que usam determinados padrões de

acesso, mas não para todos eles. Chamamos de padrão de acesso a forma como uma apli-

cação faz suas operações de E/S: número de arquivos acessados, espacialidade dos aces-

sos (contíguo, 1D-strided, etc) e o tamanho das requisições. Além disso, tais otimizações

frequentemente dependem da escolha correta de parâmetros (por exemplo, o tamanho

do buffer para operações coletivas utilizando MPI-IO). No entanto, a responsabilidade

de fazer essa escolha geralmente é do usuário final. As técnicas não fornecem melho-

rias para todos os padrões porque são projetadas para explorar características específicas

de sistemas e cargas de trabalho (MCLAY et al., 2014). Boito et al. (2016) e Bez et

al. (2017) demonstram isso para o escalonamneto de requisições em diferentes níveis da

pilha de E/S. Portanto, considerando que em tais sistemas de grande escala temos um

conjunto variável de aplições executando em um dado momento (com características e

demandas distintas) para melhorar o desempenho com sucesso, é essencial que o sis-

tema seja capaz de se adaptar dinamicamente a uma carga de trabalho que também

muda. Assim, retiramos a responsabilidade da configuração de parâmetros (também con-

hecida por tuning) dos usuários, tornando o sistema capaz de se adaptar para entregar o

melhor desempenho possível.

Propomos uma nova abordagem para adaptar a camada de encaminhamento de E/S

à carga de trabalho de E/S que está sendo observada em um dado momento. Em nossa

proposta, analisamos periodicamente as métricas de padrão de acesso coletadas pelos nós

de E/S. Aplicamos uma técnica de aprendizado por reforço, chamada de Bandidos Con-

textuais (Armed Bandits) (SUTTON; BARTO, 2017), para que o sistema possa aprender

a melhor escolha para cada padrão de acesso, em tempo de execução. Depois de observar

um padrão por um número suficiente de vezes, o conhecimento adquirido será usado para

melhorar o desempenho durante toda a vida do sistema, ou seja, por anos. Além disso, na

medida que o mecanismo de aprendizagem continua atualizando seu conhecimento, ele

131

pode se adaptar às mudanças no sistema. A nossa proposta inova ao utilizar uma vari-

ante desta técnica denominada k-armed bandit juntamente com a detecção do padrão de

acesso das aplicações para ajustar de forma automática e transparente os parâmetros que

impactam o desempenho de E/S, na camada de encaminhamento, durante a execução das

aplicações.

Ao tornar o sistema capaz de aprender em tempo de execução, eliminamos a ne-

cessidade de uma etapa de treinamento anterior. Isso é essencial, pois projetar e executar

um conjunto de treinamento para representar um conjunto diversificado de aplicações que

serão executados em um supercomputador, e as interações entre eles (considerando a in-

fraestrutura de E/S compartilhada), é difícil, sujeito a erros (como poderíamos não cobrir

com precisão todos os padrões e suas interações) e muito demorado.

Além disso, nessas máquinas, a camada de encaminhamento é tradicionalmente

instalada em nós especiais e o mapeamento entre os nós de computação e esses nós de

E/S é estático. Consequentemente, um subconjunto de nós de computação encaminhará

suas requisições de E/S apenas para um único nó de E/S fixo, o que acaba forçando as

aplicações a utilizarem o encaminhamento de E/S com um número predefinido de nós

de E/S, mesmo que essa decisão não represente a melhor escolha para uma determinada

carga de trabalho. Embora essa configuração tenha como objetivo distribuir os nós de

E/S entre nós de computação de maneira uniforme, ela carece de flexibilidade para se

ajustar às demandas de E/S das aplicações, podendo até mesmo causar a má alocação de

recursos de encaminhamento e um desequilíbrio de carga de E/S, conforme demonstrado

por Yu et al. (2017c) no supercomputador Sunway TaihuLight4 e Bez et al. (2020) no

supercomputador MareNostrum 45.

Argumentamos a favor de uma alocação dinâmica e sob demanda de nós de E/S

que considere as características de carga de trabalho das aplicações (seu padrão de acesso).

Consequentemente, dado um conjunto de aplicações prontos para executar e um número

fixo de recursos de encaminhamento, resolver o problema de alocação consistiria em de-

terminar quantos nós de E/S cada um deles deveria receber para maximizar a largura

de banda global agregada. A política de alocação deve ser chamada antes que novas

aplicações comecem a ser executados e quando o conjunto de aplições em execução for

alterado.

No entanto, devido à natureza estática das infraestruturas de encaminhamento de

E/S tradicionais e às limitações inerentes envolvidas em executar aplicações em um su-

4<https://www.top500.org/system/178764>
5<https://www.top500.org/system/179067>

https://www.top500.org/system/178764
https://www.top500.org/system/179067

132

percomputador de produção, nem sempre é possível para os administradores do sistema

explorar diferentes estratégias de alocação de E/S sem impactar negativamente as exe-

cuções dos usuários. Assim, é necessária uma solução de pesquisa/exploração que per-

mita aos pesquisadores de E/S e administradores de sistema obter uma visão geral das

vantagens ou desvantagens dos diferentes padrões de acesso em diferentes configurações

de encaminhamento de E/S. Para que tal solução seja útil, ela deve ser portátil, permitir

que os aplicativos existentes sejam executados sem modificações em seu código-fonte e,

se possível, ser executado como um serviço em nível de usuário para simplificar a sua im-

plantação. Como defendemos a alocação dinâmica, essa solução também deve permitir a

alteração do número de nós de E/S atribuídos à uma aplicação durante sua execução, sem

interrompê-la.

A.2 Contribuições

O principal objetivo de nossa pesquisa é ajustar dinamicamente a camada de

encaminhamento de E/S em plataformas de larga escala para melhorar o desem-

penho global. Exploramos duas frentes que usam os padrões de acesso das aplicações

como guia para tomar decisões: ajustar os parâmetros de escalonamento na camada de

encaminhamento e arbitrar os nós de E/S entre o conjunto de aplicações em execução.

Considerando esses objetivos, nossas contribuições são as seguintes:

• Investigamos e demonstramos como as técnicas de aprendizado de máquina (ML)

(árvore de decisão, florestas aleatórias e redes neurais) podem ajudar na detecção

automática dos padrões de acesso de E/S mais comuns em aplicações PAD;

• Demonstramos a aplicabilidade das estratégias de detecção na camada de encami-

nhamento de E/S ao ajustar um parâmetro do escalonador de E/S em que a detecção

precisa do padrão de acesso é fundamental para atingir alto desempenho;

• Propomos uma nova abordagem para adaptar a camada de encaminhamento de E/S

à carga de trabalho de atual, combinando Aprendizado por Reforço (Reinforcement

Learning) e detecção de padrão de acesso para ajustar de forma automática e trans-

parente os parâmetros relacionados a E/S em tempo de execução;

• Propomos uma ferramenta leve capaz de explorar a técnica de encaminhamento de

E/S chamada FORGE para coletar métricas de desempenho e auxiliar na compreen-

133

são do impacto do encaminhamento de E/S em um sistema;

• Propomos uma política de alocação de encaminhamento de E/S baseada em uma

variante do problema da mochila, o Multiple-Choice Knapsack Problem (MCKP),

para arbitrar de forma otimizada os nós de E/S entre as aplicações;

• Avaliamos diferentes políticas de alocação de encaminhamento de E/S e demon-

stramos que uma abordagem de alocação dinâmica pode melhorar a largura de

banda global e o uso do sistema, ao mesmo tempo que usa de forma eficiente os

nós de E/S disponíveis;

• Apresentamos um serviço de encaminhamento de E/S denominado GekkoFWD que

atua como uma camada de encaminhamento sob demanda e implementa a política

de alocação MCKP. GekkoFWD é construído em cima de um sistema de arquivos

ad-hoc em nível do usuário, enriquecendo-o para permitir a exploração de difer-

entes configurações de encaminhamento. Esta solução não requer modificações nas

aplicações, além de ser simples de executar em produção.

A.3 Conclusões

Diferentes técnicas de otimização de E/S (incluindo, mas não se limitando à ca-

mada de encaminhamento de E/ S fornecem melhorias para algumas configurações de

sistema e padrões de acesso, mas não para todos eles. Além disso, eles geralmente

requerem um ajuste mais detalhado dos parâmetros. Nesta pesquisa, procuramos ajus-

tar dinamicamente a camada de encaminhamento de E/S em plataformas de larga escala

para melhorar o desempenho global. Exploramos duas abordagens que usam o padrão de

acesso das aplicações como diretrizes para a tomada de decisões: ajustar os parâmetros

de um escalonador de requisições na camada de encaminhamento e arbitrar os nós de E/S

disponíveis entre o conjunto de aplicações que estão executando em um dado momento.

Demonstramos a aplicabilidade de diferentes técnicas de aprendizado de máquina

para detectar automaticamente o padrão de acesso de E/S de aplicações PAD, em tempo

de execução. Investigamos árvores de decisão, florestas aleatórias e redes neurais para

classificar métricas coletadas em tempo de execução nos padrões de acesso mais co-

muns. Para ilustrar a aplicabilidade das técnicas, avaliamos essas estratégias estimando

o impacto da detecção correta do padrão de acesso para ajustar o tamanho da janela do

134

escalonador TWINS na camada de encaminhamento. Nossos resultados mostraram que

todas as abordagens de detecção avaliadas neste trabalho podem detectar corretamente o

padrão de acesso. Os mecanismos de detecção alcançaram até 99% do desempenho de

uma solução oráculo. Também demonstramos melhorias de aproximadamente 17%, em

média, ao comparar com o uso de uma janela definida estaticamente. Por último, ao iden-

tificar corretamente o padrão de acesso em tempo de execução, fomos capazes de evitar

quedas no desempenho causada por escolhas erradas de parâmetros.

Também propusemos uma nova abordagem para adaptar a camada de encaminha-

mento à carga de trabalho de E/S observada em um dado momento. Periodicamente, cole-

tamoos métricas nos nós de E/S para detectar o padrão de acesso e aplicar uma técnica de

aprendizado por reforço chamada bandidos contextuais. Mostramos que o sistema pode

aprender a melhor escolha para cada padrão de acesso em tempo de execução, retirando

a responsabilidade de configuração dos usuários. Para nosso estudo de caso (TWINS), os

resultados da avaliação offline de 144 cenários mostraram que nossa abordagem é capaz

de alcançar uma precisão de ≈ 88% (atingindo ≈ 99% do desempenho da melhor opção)

nas primeiras centenas de observações de um determinado padrão de acesso. Nossa avali-

ação online mostrou na prática que nossa abordagem é capaz de descobrir os tamanhos

de janela corretos e mostrar melhorias de tempo de execução de até 19, 3%, evitando

tamanhos de janela que podem prejudicar o desempenho.

Experimentos adicionais com a carga de E/S da aplicação MADspec, demonstra-

ram a aplicabilidade de nosso mecanismo de aprendizagem reduzindo o impacto de uma

escolha de janela errada em até 17%. Finalmente, a sobrecarga média imposta por nossa

proposta foi inferior a 2%, e o tempo necessário para anunciar as métricas e chegar a

uma decisão foi curto o suficiente para viabilizar a adaptação. É vital notar que a abor-

dagem proposta nesta tese não é específica para ajustar o parâmetro de tamanho da janela

TWINS. Ele pode ser aplicado a outras situações em que as informações do padrão de

acesso atual são relevantes para ajustar um determinado parâmetro de configuração na

pilha de E/S.

Embora o encaminhamento de I/O seja uma técnica estabelecida e amplamente

adotada para reduzir a contenção e melhorar o desempenho das operações de E/S no

acesso à infraestrutura de armazenamento compartilhado, nem sempre é possível explorar

suas vantagens em configurações diferentes sem impactar ou interromper os sistemas de

produção. Neste trabalho, também investigamos o encaminhamento de E/S considerando

os padrões de acesso de aplicações e a configuração do sistema, em vez de tentar adivinhar

135

ou propor uma configuração única para todos as cargas de trabalho. Ao determinar quando

o encaminhamento é a melhor escolha para uma dada aplicação e de quantos nós de E/S

ela se beneficiaria, podemos orientar as políticas de alocação para chegar a melhores

decisões.

Para entender o impacto do encaminhamento de requisições de E/S em diferentes

padrões de acesso, implementamos FORGE, uma camada de encaminhamento leve em

espaço do usuário. Exploramos 189 cenários diferentes, cobrindo padrões de acesso dis-

tintos e demonstramos que, o número ideal de nós de E/S varia dependendo da carga da

aplicação. Enquanto para 90, 5% o uso encaminhamento seria a melhor opção, a alocação

de apenas dois nós de E/S só traria melhorias de desempenho para 44% dos cenários.

Nossos resultados nos supercomputadores MareNostrum e Santos Dumont demonstram

que mudar o foco de uma implantação estática considerando todo o sistema para uma ca-

mada de encaminhamento de E/S reconfigurável e sob demanda guiada pelas demandas

das aplicações pode melhorar o desempenho de E/S em máquinas futuras.

Com relação à arbitragem de recursos dos nós de E/S, argumentamos a favor de

uma alocação dinâmica e sob demanda considerando as características de E/S da apli-

cação. Demonstramos que a implantação global da camada de encaminhamento combi-

nada com a política de alocação estática existente baseada exclusivamente no tamanho

das aplicações não é adequada para acomodar as cargas de trabalho cada vez mais hete-

rogêneas que entram nas plataformas de larga escala. Em vez disso, as características de

E/S de uma aplicação também devem ser consideradas ao arbitrar recursos de encaminha-

mento entre aplicações em execução para melhorar o desempenho global.

Apresentamos uma solução de encaminhamento em nível de usuário chamada

GekkoFWD que não requer modificações nas aplicações, além de permitir um remapea-

mento dinâmico de recursos de encaminhamento para nós de computação. O GekkoFWD

é simples de executar em máquinas de produção, onde essa camada ainda não está pre-

sente, visando aplicações que se beneficiariam dela. Propusemos uma nova política de

alocação de encaminhamento de E/S baseada no problema da mochila de múltipla escolha

(Multiple-Choice Knapsack Problem) (MCKP). Nesse contexto, temos várias classes que

representam cada aplicação em execução e os itens em cada classe representam o número

de nós de E/S que poderíamos escolher. Devemos eleger um item para cada aplicação,

visando maximizar a largura de banda global.

Demonstramos a aplicabilidade de nossa política de alocação dinâmica MCKP

para arbitrar os recursos de encaminhamento de E/S disponíveis por meio de extensa avali-

136

ação e experimentação. Mostramos que nossa solução pode melhorar de forma transpa-

rente a largura de banda de E/S global em até 23× em comparação com a política estática

existente, embora a melhoria da largura de banda global muitas vezes possa resultar do

comprometimento do desempenho de determinadas aplicações. Além disso, observamos

melhorias de até 85% em um experimento completo usando GekkoFWD e uma fila de

nove aplicações científicas diferentes.

	Acknowledgments
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Objectives and Contributions
	1.2 Document Organization

	2 Background
	2.1 Parallel I/O for High Performance Computing
	2.1.1 Parallel File Systems
	2.1.2 The Forwarding Layer

	2.2 I/O Optimizations
	2.2.1 Application's Access Patterns
	2.2.2 Request Aggregation and Reordering
	2.2.3 Request Scheduling

	2.3 I/O Tuning
	2.4 Summary

	3 Access Pattern Detection at Runtime
	3.1 Workload and Metrics
	3.1.1 Experimental Methodology

	3.2 Access Pattern Detection
	3.2.1 Decision Trees Approach
	3.2.2 Random Forests Approach
	3.2.3 Neural Network Approach

	3.3 Discussion
	3.4 Case Study: Tuning an I/O Scheduler Parameter
	3.5 Applying the I/O Access Pattern Detection
	3.6 Final Remarks

	4 Dynamic Tuning of I/O Forwarding Scheduler
	4.1 Adaptive I/O Forwarding
	4.1.1 Architecture of the proposed mechanism
	4.1.2 Required access pattern detection mechanism

	4.2 Results and Discussion
	4.2.1 Experimental Methodology
	4.2.2 Offline Evaluation
	4.2.3 Online Evaluation
	4.2.4 Results with MADspec
	4.2.5 Overhead and Time-to-decision
	4.2.6 Discussion and Limitations

	4.3 Final Remarks

	5 Dynamic Reconfiguration of I/O Forwarding Layer
	5.1 Impact of I/O Node Allocation
	5.1.1 I/O Forwarding on MareNostrum 4
	5.1.2 I/O Forwarding on Santos Dumont
	5.1.3 Discussion

	5.2 Problem Statement
	5.3 The Multiple-Choice Knapsack Problem (MCKP) Allocation Policy
	5.4 Evaluation of MCKP Applicability
	5.5 GekkoFWD: On-Demand I/O Forwarding
	5.6 Experimental Evaluation
	5.6.1 Application
	5.6.2 Allocation Decisions
	5.6.3 Dynamic Allocation Policy

	5.7 Discussions and Limitations

	6 Related Work
	6.1 On Access Pattern Detection
	6.2 On Dynamic Tuning of Parameters
	6.3 On I/O Forwarding Allocation

	7 Conclusion
	7.1 Future Work
	7.2 Publications

	References
	Appendix A — Resumo Expandido em Português
	A.1 Motivação
	A.2 Contribuições
	A.3 Conclusões

