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Abstract—Memristors are a promising building block to the 

next generation of computing systems. Since 2008, when the 

physical implementation of a memristor was first postulated, 

the scientific community has shown a growing interest in this 

emerging technology. Thus, many other memristive devices 

have been studied, exploring a large variety of materials and 

properties. Furthermore, in order to support the design of prac-

tical applications, models in different abstract levels have been 

developed. In fact, a substantial effort has been devoted to the 

development of memristive based applications, which includes 

high-density nonvolatile memories, digital and analog circuits, 

as well as bio-inspired computing. In this context, this paper 

presents a survey, in hopes of summarizing the highlights of the 

literature in the last decade. 

 

Index Terms—memristors, devices, models, applications. 

I. INTRODUCTION 

In 1971, Leon Chua postulated the existence of the fourth 

fundamental electrical circuit element [1]. This element es-

tablishes a relationship between the electric charge and the 

magnetic flux. It demonstrates the hysteresis property of a 

memory and the dissipative characteristics of a resistor. For 

this reason, this hypothetical nonlinear device was named 

memristor (memory + resistor). A few years later, this con-

cept has been generalized to a broader class of nonlinear, dy-

namical systems called memristive devices [2]. In 2008, a 

research group at HP announced the fabrication of a na-

noscale device, which they claimed to be the first practical 

implementation of the memristor predicted by Chua [3].  

Since then, extensive literature related to memristors have 

been produced. Other devices, which also have the memris-

tive behavior, have been developed [4-6]. They explore dif-

ferent materials and different physical properties. Although 

there is some disagreement in the literature regarding the no-

menclature of these devices [7, 8], in this paper, as a matter 

of simplicity, the terms "memristor" and "memristive de-

vice" are used interchangeably. 

Furthermore, memristors may be explored in several areas 

of integrated circuit design and computing. In terms of appli-

cations, the non-volatile memories are the most intuitive due 

to the small physical area consumed and the nonvolatile 

characteristic [9]. Recently, its scalability potential was 

demonstrated through a crossbar array with 2 nm feature size 

and a single layer density up to 4.5 terabits per square inch 

[10]. In addition, memristors have also been used to perform 

analog and digital logic [11, 12]. Finally, new possibilities, 

as bioinspired systems [13, 14], are one of the most promis-

ing aspects to the future of semiconductor industry. 

In this context, in order to explore practical applications 

and validate them, computational models are needed. Hence, 

there is a large effort to provide these solutions in several 

abstract levels [15-17].  

This paper presents a constructive discussion in three im-

portant aspects: device engineering, memristor models, and 

main applications. Each of these topics is presented in a spe-

cific section. Materials and devices are introduced in Section 

II. Section III discusses the models proposed in the literature. 

The applications are presented in Section IV, while Section 

V contains the final considerations. 

II. MATERIALS AND DEVICES 

After the announcement of the manufacture of the TiO2 

memristive device by HP Labs in [3], the research interest in 

this promising area was intensified, including the search for 

novel chemical compounds with memristive behavior.  

Since then, several materials with these properties have 

been studied, such as binary transition metal oxides, perov-

skites, chalcogenides, polymers, carbon nanotubes, manga-

nites, graphene and organic materials. Different resistance 

switching phenomena have also been observed in emerging 

devices developed from these materials. In this context, 

memristors have been classified into different technologies, 

which differ in the switching mechanisms, switching time, 

resistance variation range, energy consumption, retention 

time, endurance, among others. A broad review of the litera-

ture on the different resistance switching mechanisms, their 

peculiar properties and potential applications was presented 

by Wang et al. [18]. Next, we will briefly address each of 

these technologies. 

A. Filament-Type Devices 

These devices consist of an insulating layer sandwiched 

between two metal electrodes, in a structure also known as 

MIM (Metal – Insulator - Metal), as shown Fig. 1. The re-

sistance switching mechanism in these devices is based on 

the formation and rupture of a conductive filament (CF) 

within the insulating layer. The existence of filaments con-

necting the electrodes leads the device to a low resistance 

state (LRS), while the absence or rupture of these conductive 

paths characterizes a high resistance state (HRS). The transi-

tion from HRS to LRS is often called SET operation whereas 

the transition from LRS to HRS is called RESET operation. 

In general, these resistance changes can occur either abruptly 

or gradually [19]. In addition, resistive switching can be clas-

sified as a bipolar or unipolar (also called nonpolar). In 
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bipolar switching, SET and RESET operations occur with 

voltages of different polarities, while in unipolar switching 

these operations are triggered by voltages of the same polar-

ity, but with different magnitudes [20]. However, before 

switching can be achieved, the insulating layer must go 

through a soft breakdown, where initially conductive chan-

nels are created. This is also known as forming process and 

can be performed through electrical operations [21] or fabri-

cation processes [22].  

 
Fig. 1. Filament-type memristor in (a) LRS and (b) HRS. 

According to the insulator and electrodes materials, fila-

ment-type memristors are categorized as valence change 

memories (VCM) and electrochemical metallization memo-

ries (ECM). In VCM devices, electric field and thermal ef-

fects resulting from the application of an appropriate voltage 

will cause movement of the anions. This migration of anions 

will result in the formation and rupture of the conductive fil-

ament. The insulating material in VCM devices includes a 

wide range of binary metal oxides such as TiOx [23], HfOx 

[4] and AgOx [24], perovskites, such as SrTiO3 [25] and 

BiFeO3 [26], some complex metal oxides, e.g. InGaZnO, 

some non-metal oxides such as SiOx [27] and GO [28] , metal 

nitrides such as ZrN [29], among others. 

In ECM devices, the switching mechanism is very similar 

to that observed in VCM. A fingerprint of ECM memristors 

is that an electrochemically active (EA) material, such as Cu 

and Ag [18], constitutes one electrode and the other electrode 

is usually made from an inert material, such as Pt and Au. 

Thus, the conductive filament usually forms via the move-

ment of dissolved metal cations from the EA electrode to-

wards to the inert electrode. In bipolar devices, a polarity re-

versal will cause the dissolution of the filament.  

The insulator material in ECM includes oxides such as 

AlOx [30] and ZnO [31], chalcogenides such as GeSx [32], 

halides such as AlN [33] and organics such as [34]. 

B. Interface-type Devices 

The interface-type (or barrier-type) memristor is usually 

built in a capacitor-like structure, which is often composed 

by insulating and/or semiconducting oxides sandwiched be-

tween metal electrodes. Usually, an ohmic contact is formed 

at one interface between metal and oxide, and a Schottky bar-

rier is formed at the other interface. In this group of memris-

tive devices, modulating the height or width of the Schottky 

barrier causes resistance changes in the device. As the barrier 

can be shifted gradually between a maximum and minimum 

position, an analog resistance switching can be achieved ac-

cording to an applied voltage or current. This important fea-

ture makes this type of device an interesting alternative for 

applications such as neuromorphic computing and multi-

level storage. 

One of the possible mechanisms for adjusting the barrier 

is related to the electrochemical migration of oxygen vacan-

cies [35]. To illustrate this phenomenon, Fig. 2 shows the 

behavior of a device made up of a n-type oxide in two distinct 

moments. In Fig. 2a, a negative voltage is applied to the top 

electrode, forcing vacancies to drift towards that terminal. 

 
Fig. 2. Redistribution of oxygen vacancies according to the voltage polarity 
in n-type material. (a) A negative voltage applied to the top electrode nar-
rows the depletion region to a width 𝑊1 and reduces the resistance. (b) A 
positive voltage causes the opposite effect, widening the depletion region to 
a width 𝑊2 and increasing the resistance. 

The accumulation of ions at the interface will increase the 

density of donors, narrowing the depletion region and, con-

sequently, causing a decrease in resistance. If the polarity is 

reversed (Fig. 2b), vacancies will move away from the top 

electrode, which causes the widening of the depletion region 

and the increasing of the resistance.  

Regarding the materials used in the middle layer, there are 

implementations based on numerous compounds that include 

binary oxides such as TiOx [36], some complex perovskite 

oxides such as Pr0.7Ca0.3MnO3 (PCMO) and CaMnO3 [37] 

selenides such as CdSe [38] and others. 

C. Phase-Change Devices 

This technology explores the properties of chalcogenide 

phase-change materials, such as Ge2Sb2Te5 (GST) or GeTe 

[39], which are able to switch between the amorphous and 

crystalline solid phases [6]. Typically, a PCM device is built 

as the structure shown in Fig. 3. 

 
Fig. 3. Schematic of a PCM device in (a) low resistance state, characterized 
by the fully crystalline active layer and (b) high resistance state, with an 
amorphous volume blocking the heater pillar. 

 In Fig. 3a, the phase change material on the active layer 

is entirely crystalline (low resistance). For a binary operating 

mode, the switching between the crystalline and amorphous 

phases is performed with single pulses. For this case, if a rel-

atively high amplitude and short duration current pulse is ap-

plied to the device, Joule heating causes a portion of material 

to melt in the active layer. The short pulse duration causes 

fast cooling of the molten material, leading it to the amor-

phous phase (high resistance) [6]. The pillar-like heater 
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results in a mushroom shape of the molten volume shown in 

Fig. 3b. This area needs to completely cover the heater inter-

face so that the current path is fully blocked and the reset is 

achieved. A lower amplitude and longer duration current 

pulse is applied to switch it back to the crystalline, low resis-

tive state. Alternatively, the pulses applied to these devices 

can be tuned in amplitude and/or duration so that the amor-

phous region can be progressively crystallized from a prede-

termined number of pulses, taking advantage of the charac-

teristic accumulation property of this technology.  

D. Spintronic Devices 

Magnetic Tunnel Junction (MTJ) is a promising 

spintronic memristive device, whose electrical resistance is 

dependent on their state of magnetization. This component is 

composed of a thin insulating layer disposed between two 

ferromagnetic (FM) layers. Fig. 4a shows the schematic of 

the MTJ presented by [5], where the insulating layer is con-

stituted by MgO and the ferromagnetic layers are formed by 

CoFeB.  

These devices are built using a pinned ferromagnetic 

layer, whose magnetization cannot be easily reversed and a 

free layer whose magnetization can be reversed by an exter-

nal input. The operation of this device is based on the Tunnel 

Magnetoresistance effect (TMR), so that its resistance de-

pends on the relative orientation of the magnetization in the 

two ferromagnetic layers [40]. If the magnetization direc-

tions of the two layers are parallel, the resistance of the MTJ 

will be minimal (RP). On the other hand, if they are antipar-

allel, the MTJ resistance will be maximum (RAP). The rela-

tive change of resistance, also called magnetoresistance ra-

tio, typically ranges between 250 - 600% at room tempera-

ture, depending on the manufacturing technology [18]. The 

resistance switching in MTJs can be performed through 

mechanisms such as spin-transfer torque (STT), voltage-con-

trolled magnetic anisotropy (VCMA) and spin-orbit torque 

(SOT). Among these, the most technically mature is the STT. 

In this mechanism, the resistance variation is triggered when 

an electric current I with a magnitude higher than a critical 

current (IC0) flows through the MTJ. In Fig. 4b, the orienta-

tion of the electronic spins of the ferromagnetic layers are 

parallel, which keeps the MTJ in a state of low electrical re-

sistance. To change the resistance, an electric current di-

rected downwards is applied to the device, changing the ori-

entation of the free layer electronic spins. Thus, the magnet-

ization directions of the ferromagnetic layers become anti-

parallel, leading the MTJ to a state of high resistance. To re-

verse this situation and return the device to the low resistance 

state, a current with the opposite direction of the one previ-

ously applied must run through the memristive element, as 

can be seen in Fig. 4c.  

Among the important advances in this technology, are re-

ports of devices with switching times ~ 200ps [41], minimum 

switching  energy < 10fJ [42] and high endurance above 1014 

cycles [43]. 

 
Fig. 4 (a) Schematic of the MTJ presented by Ikeda et al. in [5]. (b) Switch-
ing from RP to RAP. (c) Switching from RAP to RP. 

E. Ferroelectric Devices 

In the last years, memristive properties have been inten-

sively investigated in ferroelectric materials. In this research 

field, there are several efforts focused on the study and the 

enhancement of a device called Ferroelectric Tunnel Junc-

tion (FTJ). This device consists of an ultra-thin ferroelectric 

barrier disposed between two electrodes. 

In these devices, electric-field-induced polarization rever-

sal in the ferroelectric material can modulate height and/or 

width of the barrier, causing non-volatile resistance switch-

ing of the device between high and low resistance states. This 

resistance variation in the ferroelectric barrier is a phenome-

non known as Tunneling Electroresistance (TER) effect [44]. 

Fig. 5 illustrates the simplified schematic of a FTJ built on a 

conventional Metal/Ferroelectric/Metal structure, where the 

direction of polarization in the ferroelectric layer determines 

a HRS or a LRS in the device. 

In the literature, there is a wide variety of structures and 

materials used in the manufacturing of FTJs, such as  

Cr/BaTiO3/Pt [45], Pt/Co/BiFeO3/Ca0.96Ce0.04MnO3 [46] and 

Cu/Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 [47]. In recent years, 

Metal/Ferroelectric/Semiconductor (MFS) FTJs have at-

tracted more attention due to reports of promising results 

achieved in experiments conducted with these devices. For 

instance, a Ag/BaTiO3/Nb:SrTiO3 FTJ implemented in [48] 

can reach giant TER values in the order of 106. In addition, 

further studies with this family of memristors reveal other 

promising features. Recently, the development of a FTJ with 

subnanosecond (600 ps) operating speed was presented [49]. 

This device has also writing current density as low as 4 x 103 

A cm-2 and is capable to store 32 distinct resistive states (or 

5 bits). 

 
Fig. 5 Schematic of a conventional FTJ built in a Metal/Ferroelectric/Metal 
stack. Ferroelectric polarization orientation is linked to the switching be-
tween (a) high and (b) low resistance states. 
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III. MEMRISTOR MODELS 

Several memristor models have been proposed in the lit-

erature. In this section, we present a review of the most com-

mon ones. We start with the linear ion drift model, passing 

through an extensive list of propositions, which explore dif-

ferent devices and abstract levels, and finally conclude high-

lighting other relevant approaches.  

A. Linear ion drift model 

The first claim for the practical design of a memristor oc-

curred in 2008, by researchers of HP Labs [3]. The physical 

structure of this device consists of a thin semiconductor film 

of thickness D, sandwiched between two platinum contacts. 

This semiconductor layer is divided into two regions: one, 

with width w, has a high concentration of dopants and, there-

fore, has a low resistance value, called 𝑅𝑂𝑁; the other has a 

low concentration of dopants and a much higher resistance 

value, called 𝑅𝑂𝐹𝐹 . Fig. 6a shows this structure. 

 
Fig. 6. (a) Physical structure of the memristive device built in the HP Labs, 

with a thin semiconductor layer sandwiched between two platinum elec-

trodes. The semiconductor film is composed by a doped region with low 

resistance (𝑅𝑂𝑁) and a undoped region with high resistance (𝑅𝑂𝐹𝐹). (b) 

Equivalent circuit of the linear ion drift model. 

In this device, the non-doped layer consists of insulating 

TiO2, while the doped layer is formed by oxygen-poor  

TiO2-x. In this structure, the oxygen vacancies in the active 

layer drift in response to the applied electric field, shifting 

the dividing line between the layers. To represent this behav-

ior, the equivalent circuit shown in Fig. 6b was used, where 

the resistance of the doped region and the undoped region are 

connected in series. Considering ohmic electronic conduc-

tion and linear ionic drift in a uniform field with average ion 

mobility µ𝑉, the mathematical modeling is accomplished ac-

cording to the expressions (1)-(3): 

𝑑𝑤

𝑑𝑡
=  𝜇𝑉

𝑅𝑂𝑁

𝐷
𝑖(𝑡), (1) 

𝑣(𝑡) = (𝑅𝑂𝑁𝑥 + 𝑅𝑂𝐹𝐹  (1 −  𝑥)) 𝑖(𝑡), (2) 

𝑥 =
𝑤

𝐷
∈ [0,1], (3) 

where x is the normalized state variable. In nanoscale de-

vices, small voltages can yield enormous electric fields, 

which in turn can produce significant nonlinearities in ionic 

transport. These nonlinearities manifest themselves particu-

larly at the thin film edges, where the speed of the boundary 

between the doped and undoped regions gradually decreases 

to zero [50]. This phenomenon can be modeled, in terms of 

the normalized variable x, as 

𝑑𝑥

𝑑𝑡
=  𝜇𝑉

𝑅𝑂𝑁
𝐷2

𝑖(𝑡)𝑓(𝑥), 
(4) 

where the function f(x) adopted is 

𝑓(𝑥) =  𝑥 − 𝑥2. (5) 

B. Nonlinear ion drift model 

After the memristive behavior has been correlated to a 

practical device in [3], different window functions were pro-

posed in the literature aiming to better describe its nonlinear 

dopant drift. Joglekar and Wolf [51] have proposed the fol-

lowing window function: 
 𝑓(𝑥) = 1 − (2𝑥 − 1)2𝑝, (6) 

where p is a positive integer. As the values of p are increased, 

the window function shape approximates to a rectangular 

window function, and the nonlinear ion drift phenomenon 

decreases. 

However, if w reaches one of the bounds, the internal state 

of the device will not be able to change, since the derivative 

of w will be forced to zero. This issue is referred in the liter-

ature as boundary lock. To avoid this problem, a different 

window was proposed by [50], 

 𝑓(𝑥) = 1 − (𝑥 − 𝑠𝑡𝑝(−𝑖))
2𝑝
, (7) 

where p is an integer number, i is the memristive device cur-

rent and stp(i) is a step function, described as 

 𝑠𝑡𝑝(𝑖) =  {
 1, 𝑖 ≥ 0
 0, 𝑖 < 0.

 
(8) 

The window functions proposed by [51] and [50] do not 

have a scale factor. Therefore, the maximum value of f(x) 

cannot be greater than one. Motivated by this limitation, a 

new function was proposed in [52]. It was described as 
 𝑓(𝑥) = 𝑗[1 − ((𝑥 − 0,5)2 + 0,75)𝑝], (9) 

where p ∈ ℝ+ and j is a control parameter that defines the 

maximum value of f(x). However, this approach cannot han-

dle the boundary lock problem. A few years later, an im-

proved window function was presented, in order to simulta-

neously provide a boundary lock solution, full scalability and 

nonlinear ionic effects [53]. This novel formulation was de-

signed as 
 𝑓(𝑥) = 𝑗[1 − (0.25(𝑥 − 𝑠𝑡𝑝(−𝑖))2 + 0.75)𝑝], (10) 

where p ∈ ℝ+. In [54] a general window function is pro-

posed, assuming the form 
 𝑓(𝑤) = 𝛼(1 − 𝛽((2𝑥 − 1)2 + 𝛾𝑠𝑡𝑝(−𝑖))𝑝), (11) 

where 𝛾 decides the degree of f(x) affected by i, and 𝛽 deter-

mines the degree of nonlinear drift. The parameter 𝛼 controls 

the magnitude of the window function and p determines the 

rate of decrease of the window function when x approaches 

its bounds. In the same work, the authors also provide a set 

of constraining conditions to facilitate the parameters fitting. 

All of these models with nonlinearity introduced by win-

dow functions can be computationally implemented using 

the SPICE macromodel proposed by Biolek et al. [50], 

whose equivalent circuit is shown in Fig. 7. The operation of 

the circuit can be summarized as follows. In the second loop, 

a 1F capacitor integrates the current from the dependent cur-

rent source Gx, which is given by the expression on the right 

side of (4). The resulting voltage Vx is numerically equiva-

lent to the normalized width x of the doped region. This volt-

age is used at the dependent voltage source GMEM on the first 

mesh to ensure that the equivalent resistance between points 

a and b is consistent with (2). 
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Fig. 7. Equivalent circuit of the model proposed by Biolek et al. [50].  

Despite contributions from the models based on window 

functions presented so far, these works do not fully model 

nonlinear ion drift behavior since they do not consider the 

dependence of the state variable derivative on the current. 

C. Lehtonen and Laiho Model 

An improved version of the model described in [36] was 

proposed in [55]. As in [36], the I-V relationship is given by 
 𝐼 =  𝑤𝑛𝛽𝑠𝑖𝑛ℎ(𝛼𝑉)⏟        

𝑇1

+ 𝜒[𝑒𝑥𝑝(𝛾𝑉) − 1]⏟          
𝑇2

,  (12) 

where 𝛼, 𝛽, 𝛾 and 𝜒 are fitting constants. Here, the state var-

iable w is normalized to have values between 0 (OFF) and 1 

(ON). The exponent n of the state variable is used as a free 

parameter in the model and it affects the switching between 

ON and OFF states.  

In (12), the term T1 is the approximation adopted for the 

current when the device is in the ON state, which represents 

essentially the electron tunneling through a thin residual bar-

rier. When the memristive device is on the OFF state, the 

current will be dominated by the second term T2, which is 

similar to the ideal diode equation. 

The state variable w depends nonlinearly on the voltage 

over the memristor, i.e., 
 𝑑𝑤

𝑑𝑡
= 𝑎 𝑓(𝑤)𝑣(𝑡)𝑞 , 

(13) 

where a is constant and q is an odd integer. As effect of this 

nonlinear relationship, a programming threshold is inserted 

into the behavior of the model. A similar model, more com-

plex state drift derivative, is proposed in [56]. 

D. Pickett’s Model 

A nonlinear memristive model of bipolar switching was 

proposed in [16], based on experimental results from a 

Pt – TiO2/TiO2-x – Pt device. Unlike the structure shown in 

Fig. 6b, the device schematic uses a resistor in series with an 

electron tunnel barrier, as shown in Fig. 8. 

In this model, there is a highly nonlinear and asymmetric 

dynamical response for off and on transitions, as a conse-

quence of an exponential dependence of the drift velocity of 

ionized dopants on the applied current or voltage and the 

competing or cooperative behavior of ionic drift and diffu-

sion, depending on the switching voltage polarity. 

 
Fig. 8. Schematic of the memristive device described in [16].  

The state variable w corresponds to the Simmons Barrier 

tunnel width. The derivative of the state variable w is inter-

preted as the speed of the oxygen vacancy, and is represented 

by the following analytical expressions: 
𝑑𝑤

𝑑𝑡
= 𝑓𝑂𝐹𝐹𝑠𝑖𝑛ℎ (

|𝑖|

𝑖𝑂𝐹𝐹
) 

× 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (
𝑤 − 𝑎𝑂𝐹𝐹
𝑤𝑐

 −  
|𝑖|

𝑏
) −

𝑤

𝑤𝑐
], 

 

 
(14) 

for i > 0 (off switching) and 

 
𝑑𝑤

𝑑𝑡
= −𝑓𝑂𝑁𝑠𝑖𝑛ℎ (

|𝑖|

𝑖𝑂𝑁
) 

× 𝑒𝑥𝑝 [−𝑒𝑥𝑝 (
𝑎𝑂𝑁 − 𝑤

𝑤𝑐
 −  

|𝑖|

𝑏
) −

𝑤

𝑤𝑐
], 

 
 
(15) 

for i < 0 (on switching). 

The current i through the device is described by the Sim-

mon’s formula introduced in [57]: 

𝑖 =  
𝑗0𝐴

∆𝑤2
 {𝜙1𝑒

−𝐵√𝜙1 − (𝜙1 + 𝑒|𝑣𝑔|)𝑒
−𝐵√𝜙1+𝑒|𝑣𝑔|

}, 
(16) 

where 

𝑗0 =
𝑒

2𝜋ℎ
, 𝐵 =

4𝜋∆𝑤√2𝑚

ℎ
, 𝜆 =

𝑒2 ln(2)

8𝜋𝜅𝜀0𝑤
, 

(17) 

∆𝑤 = 𝑤2 − 𝑤1, 𝑤1 =
1.2𝜆𝑤

𝜙0
, 

(18) 

𝑤2 = 𝑤1 +𝑤 (1 −
9.2𝜆

3𝜙0 + 4𝜆 − 2𝑒|𝑣𝑔|
), 

(19) 

𝜙1 = 𝜙0 −  𝑒|𝑣𝑔| (
𝑤1 + 𝑤2
𝑤

)

− (
1.15𝜆𝑤

∆𝑤
) ln (

𝑤2(𝑤 − 𝑤1)

𝑤1(𝑤 − 𝑤2)
), 

(20) 

where A represents the junction area, e is the elementary 

electronic charge, vg is the voltage across the tunnel barrier, 

m is the mass of the electron, h is the Planck constant, κ is 

the dielectric constant, ε0 is the vacuum permittivity and ϕ0 is 

the barrier height. Based on the physical model description 

presented in [16], a SPICE model was presented in [58]. Alt-

hough this physical model accurately describes the static and 

dynamic behavior of the TiO2 memristor, its complexity 

leads to a computationally inefficient implementation. More-

over, depending on the voltage applied to the device, simu-

lations can present numerical problems, from convergence 

problems up to finding unphysically solutions [59]. These is-

sues manifest themselves, especially, in large scale simula-

tions, such as crossbar arrays and neuromorphic applications.  

 E.  Eshraghian’s Model 

Eshraghian et al. [60] introduced a modeling approach 

based on modified Simmons tunneling relation, which in-

cludes the concept of programming threshold. The model is 

based on the same Metal-Insulator-Metal (MIM) structure 

introduced in [16] and exhibited in Fig. 8. However, this new 

proposition explores a different approach for the memristor 

dynamics, by using simpler equations that simplify its SPICE 

adaptation. The state equation in this model is given by 

dw

dt
=  

{
 
 

 
 fon (1 −

v

2φ0
) e

p(w)φ0(1−√1−
v
2φ0

)
,     v > 0, w < wmax

−foff (1 +
v

2φ0
) e

p(w)φ0(1−√1+
v
2φ0

)
,     v < 0,w > wmin

0,                                                     Otherwise,

 

 
 

(21) 

where fon and foff are fitting constants to identify on and off 
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switching speeds in a normalized distance. The constant φ0 is 

the equilibrium barrier height in eV and p(w) is called shape 

factor function, which is defined as 
 𝑝(𝑤) = 𝛿 + 𝜂 (1 − (2𝑤 − 1)2𝑝), (22) 

where δ is an offset constant (positive) related to the mono-

tonically increasing condition in  (21) and 𝜂 is a positive con-

stant used to adjust the nonlinearity of p(w). The term  

1 − (2𝑤 − 1)2𝑝 is the window function proposed in [51], 

and serves to model the nonlinearities at the boundaries. 

The tuning of the shape factor allows the programming of 

different thresholds, which can be specified in a certain range 

of voltages. In addition, the exponential terms in (22) can be 

used symmetrically or asymmetrically for negative and pos-

itive voltages. The current/voltage relationship uses the same 

modelling introduced by [36], which is given in (12). 

F. Yakopcic’s Model 

Yakopcic et al. [17] presented a generalized memristive 

SPICE model based on a set of equations previously pre-

sented in [61] . The main goal of this proposal is to reproduce 

accurately the behavior of several memristive devices for 

different types of voltage stimulus. In particular, the im-

portance of accurate modeling the memristive response for 

repetitive dc sweep signals is emphasized, as this is an im-

portant requirement for neuromorphic systems development, 

since neural spikes are similar to this kind of signal. 

The generality of the model is supported by its correlation 

with characterization data from multiple physical devices 

composed by different materials, such as a-Si and Ag [14], 

Ag chalcogenide [62], TaOx [63] and TiO2 [64]. The I-V re-

lationship is the same proposed in [65], i.e.  

I(t) =  {
𝑎1𝑥(𝑡) sinh(𝑏𝑉(𝑡)) , 𝑉(𝑡) ≥ 0

𝑎2𝑥(𝑡) sinh(𝑏𝑉(𝑡)) , 𝑉(𝑡) < 0,
 

 

(23) 

where a1, a2 and b are constants and x is the state variable 

of the memristor, whose value is constrained between zero 

and one. The hyperbolic sinusoid shape is typical of electron 

tunneling. This characterization establishes an increase in 

conductivity when a specific threshold voltage is surpassed. 

The derivative of the state variable is based on the func-

tions g(V(t)) and f(x(t))  

𝑑𝑥

𝑑𝑡
=  𝜂𝑔(𝑉(𝑡))𝑓(𝑥(𝑡)), 

(24) 

where g(V(t)) is implemented so that there may be different 

thresholds depending on the polarity of the voltage 

g(V(t)) =  {

𝐴𝑃(𝑒
𝑉(𝑡) − 𝑒𝑉𝑝), 𝑉(𝑡) > 0

−𝐴𝑛(𝑒
−𝑉(𝑡) − 𝑒𝑉𝑛), 𝑉(𝑡) < −𝑉𝑛

0,                              − 𝑉𝑛 ≤ 𝑉(𝑡) ≤ 𝑉𝑝.

 

 
(25) 

In (25), the parameters 𝑉𝑝 and 𝑉𝑛 represent the positive 

and negative thresholds, respectively. The constants 𝐴𝑝 and 

𝐴𝑛 correspond to the magnitude of the exponentials. These 

constants represent how fast the state changes when the volt-

age across the device is exceeds the threshold. The constant 

η in (24) defines the direction of the motion of x according to 

the voltage polarity. If η = 1/η = −1, applying a positive volt-

age above the threshold will increase/decrease the value of x. 

The function f(x(t)) is modeled in such a way that the var-

iation in x slows down as the state variable approaches the 

boundaries. Moreover, it is possible to describe the motion 

of x in different ways, according with the polarity of the input 

voltage. 

𝑓(𝑥) =  {
𝑒−𝛼𝑃(𝑥−𝑥𝑝)𝑤𝑝(𝑥, 𝑥𝑝), 𝑥 ≥ 𝑥𝑝
1,                                       𝑥 < 𝑥𝑝,

 
 
(26) 

𝑓(𝑥) =  {
𝑒𝛼𝑛(𝑥+𝑥𝑛−1)𝑤𝑛(𝑥, 𝑥𝑛), 𝑥 ≤ 1 − 𝑥𝑛
1,                                       𝑥 > 1 − 𝑥𝑛.

 
 

(27) 

In the function f(x(t)), the variable motion will be constant 

until it reaches the points xp or xn. After these points are sur-

passed, the motion of the state variable will be reduced by a 

decaying exponential function at a rate of αp and αn, for xp and 

xn, respectively. In (26)-(27), wp(x, xp) and wn(x, xn) are win-

dow functions that nullify f(x) it reaches its boundary values: 

 𝑤𝑝(x, 𝑥𝑝) =   
𝑥𝑝 − 𝑥

1 − 𝑥𝑝
,  

(28) 

 𝑤𝑛(x, 𝑥𝑛) =   
𝑥

1 − 𝑥𝑛
.  

(29) 

These four fitting constants allow to adequate the motion 

of the state variable according with the dynamic of different 

memristive devices.  

In [66], it was proposed a model whose mathematical de-

scription of the state variable is very similar to (24)-(29), but 

its I-V relationship is based on (2), which is a much simpler 

approach than (23). The characteristics of this alternative 

proposition aim to meet the requirements of applications 

with complementary resistive switches (CRS). 

G. TEAM and VTEAM Models  

A generalized model called TEAM (Threshold Adaptive 

Memristor Model) was presented in [15]. This model repre-

sents the same physical behavior presented in [16], but with 

simpler mathematical functions and with flexibility to char-

acterize a variety of different practical memristive devices.  

This model assumes that there is no change in the state 

variable below a certain threshold, and a polynomial depend-

ence on the current is adopted. The derivative of the state 

variable for the proposed model is 

𝑑𝑥

𝑑𝑡
=  

{
 
 

 
 𝑘𝑜𝑓𝑓 (

𝑖(𝑡)

𝑖𝑜𝑓𝑓
− 1)

𝛼𝑜𝑓𝑓

𝑓𝑜𝑓𝑓(𝑥),       0 < 𝑖𝑜𝑓𝑓 < 𝑖

0,                                                      𝑖𝑜𝑛 < 𝑖 < 𝑖𝑜𝑓𝑓

𝑘𝑜𝑛 (
𝑖(𝑡)

𝑖𝑜𝑛
− 1)

𝛼𝑜𝑛

𝑓𝑜𝑛(𝑥),             𝑖 < 𝑖𝑜𝑛 < 0,

 

 
 
 

(30) 

where 𝑘𝑜𝑓𝑓, 𝑘𝑜𝑛, 𝛼𝑜𝑓𝑓 and 𝛼𝑜𝑛 are fitting constants, 𝑖𝑜𝑓𝑓  and 

𝑖𝑜𝑛 are the threshold currents, and x is the internal state vari-

able, which represents the effective electric tunnel width. 

The functions 𝑓𝑜𝑓𝑓(𝑥) and 𝑓𝑜𝑛(𝑥) acts as window functions 

which ensures that x ∈ [𝑥𝑜𝑛 , 𝑥𝑜𝑓𝑓].  If a linear variation of 

memristance as a function of x is considered, then the I-V 

relationship becomes 
 

𝑣(𝑡) =  [𝑅𝑂𝑁 +
𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁
𝑥𝑂𝐹𝐹 − 𝑥𝑂𝑁

(𝑥 − 𝑥𝑂𝑁)] 𝑖(𝑡). 
(31) 

 

However, in order to fit the behavior of some practical 

devices, such as [16], where the memristance change is de-

pendent on a highly nonlinear tunneling effect, a different 

expression is proposed: 

 
v(t) =   RONe

𝜆

(xoff−xon)
(x−xon)

i(t), 
 
(32) 

where λ is a fitting parameter 
 

eλ =  
ROFF
RON

. 
(33) 
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In the same work, the authors prove the flexibility of the 

model by fitting the Simmons Tunnel Barrier model. Besides 

the result is sufficient accurate, the simplicity of TEAM im-

proves the computational efficiency in the simulations. 

Since the characterization data of many physical devices 

exhibits a threshold voltage [3, 67, 68], a voltage-controlled 

model analogous to TEAM was developed to support this 

kind of behavior, which was named VTEAM [69]. VTEAM 

also provides the parameter setting to fitting some particular 

models, such as [61, 67, 70]. Both TEAM and VTEAM mod-

els have been implemented in Verilog-A.  

H. Pershin, Di Ventra Model 

Pershin and Di Ventra introduced in [71] a generic 

memristor model whose resistance switching mechanism is 

based on the existence of a threshold voltage. Mathemati-

cally, the authors propose a memristive system described by 

the following set of equations: 

IMEM = RMEM
−1VMEM, 

 
(34) 

𝑑(𝑅𝑀𝐸𝑀)

𝑑𝑡
= 

             

{
 
 

 
 
𝑓(𝑉𝑀𝐸𝑀), 𝑉𝑀𝐸𝑀 > 0 and  𝑅𝑀𝐸𝑀 < 𝑅𝑂𝐹𝐹

 
𝑓(𝑉𝑀𝐸𝑀),         𝑉𝑀𝐸𝑀 < 0 and  𝑅𝑀𝐸𝑀 > 𝑅𝑂𝑁

 
0,                              Otherwise,

 

 
 
 

 
(35) 

𝑓(𝑉𝑀𝐸𝑀) = β𝑉𝑀𝐸𝑀 + 0.5(α-β) 

× (|𝑉𝑀𝐸𝑀 + 𝑉𝑇| −  |𝑉𝑀𝐸𝑀 − 𝑉𝑇|). 

 
(36) 

In (34) , 𝑅𝑀𝐸𝑀 represents the resistance of the device, 

which relates the instantaneous voltage 𝑉𝑀𝐸𝑀 over its termi-

nals and the instantaneous current 𝐼𝑀𝐸𝑀  flowing through it. 

Equation (35) describes the resistance variation rate of the 

device according to 𝑓(𝑉𝑀𝐸𝑀), when |𝑉𝑀𝐸𝑀| > 0 and  

RON  < 𝑅𝑀𝐸𝑀 < ROFF. Otherwise, there will be no re-

sistance variation. RON and ROFF are parameters related to 

the minimum and maximum resistance boundaries, respec-

tively.  

The function 𝑓(𝑉𝑀𝐸𝑀) uses some important parameters of 

the model, one of which is the threshold voltage 𝑉𝑇. Exceed-

ing this voltage level can trigger the start of the resistance 

switching or significantly increase a switching already 

started, which will depend on the configuration of the param-

eters α and β. These parameters characterize the rate of 

growth or decrease of the resistance variation, when |𝑉𝑀𝐸𝑀| 
< 𝑉𝑇 and |𝑉𝑀𝐸𝑀| > 𝑉𝑇, respectively. A SPICE implementa-

tion of this model was presented in [72]. Based on this work, 

we proposed a new model for threshold current controlled 

memristors in [73]. In this implementation, naturally, all the 

variables and the parameters expressed as electrical voltages 

in the reference material were replaced by the corresponding 

electric currents. Moreover, a new function (dependent on 

the resistance itself) called proportionality factor has been 

added to the mathematical modelling, so that the rising (𝑅𝑂𝑁 

→ 𝑅𝑂𝐹𝐹) and falling (𝑅𝑂𝐹𝐹  → 𝑅𝑂𝑁) transitions can be handled 

differently. In addition, the adopted approach increases the 

non-linearity of the transitions as they approach the intended 

values, which also favors the convergence of simulations.  

I. Spintronic Memristor Model 

Zhang et al. [74] presented a compact model of 

CoFeB/MgO/CoFeB PMA MTJ [5, 75] based on the STT 

switching mechanism. In this proposition, the resistance of 

the MTJ is calculated through a simplified equation obtained 

from the physical model introduced by [76], i.e., 
 

𝑅𝑃 =
𝑡𝑂𝑋

𝐹 × 𝜑̅1/2 × 𝐴𝑟𝑒𝑎
× (1.025 × 𝑡𝑂𝑋 × 𝜑̅

1/2), 
(37) 

where 𝑅𝑃 is the resistance of the MTJ in the parallel state,  

𝜑̅ = 0.4 is the potential barrier height of crystalline MgO, 𝑡𝑂𝑋 

is the thickness of the oxide barrier, and Area is the MTJ 

area. F is a factor calculated from the resistance–area product  

(R-A) value of the MTJ, which depends on the material com-

position of the three thin layers.  

Another important aspect of the model is the description 

of the TMR ratio. This variable is calculated considering the 

influence of the bias voltage 𝑉𝑏𝑖𝑎𝑠, according to the theory 

evidenced in [77], resulting in 
 

𝑇𝑀𝑅𝑟𝑒𝑎𝑙 =
𝑇𝑀𝑅(0)

1 +
𝑉𝑏𝑖𝑎𝑠

2

𝑉ℎ
2

 , 
(38) 

where 𝑇𝑀𝑅𝑟𝑒𝑎𝑙 is the real value of the TMR ratio during 

simulation, TMR(0) is the TMR ratio with 0-V bias voltage, 

and Vh is the bias voltage as TMRreal = 0.5 × TMR(0). The 

default values of TMR(0) and Vh are set to 120% and 0.5 V, 

respectively. Thus, the resistance of the MTJ in the anti-par-

allel state (𝑅𝐴𝑃) can be calculated as 
 𝑅𝐴𝑃 = 𝑅𝑃 × (1 + 𝑇𝑀𝑅𝑟𝑒𝑎𝑙). (39) 

The threshold or critical current 𝐼𝐶0 involved in the STT 

mechanism is defined as: 
 𝐼𝐶0 =   𝛼

𝛾𝑒

𝜇𝐵𝑔
 (𝜇0𝑀𝑆)𝐻𝐾𝑉 = 2𝛼 

𝛾𝑒

𝜇𝐵𝑔
𝐸, (40) 

where E is the barrier energy, 𝐻𝐾  is the effective anisotropic 
field, 𝜇0 is the vacuum magnetic permeability, 𝑀𝑆 is the sat-
uration magnetization, α is the magnetic damping constant, γ 
is the gyromagnetic ratio, e is the elementary electrical 
charge, 𝜇𝐵 is the Bohr magnet and V is the volume of the free 
ferromagnetic layer. The variable g is a function of the spin 
polarization percentage of the tunnel current and the angle 
between the magnetization of the free and reference layers. 

The switching dynamics relates the writing current and 

the time required to perform this operation, based on the 

equation presented by [75]: 

1

〈𝜏〉
= [

2

𝐶 + ln (
𝜋2𝜉
4
)
]

𝜇𝐵Pref
𝑒𝑚(1 + PrefPfree)

(I𝑤 − I𝑐0), 

(41) 

where 〈𝜏〉 is the average switching time, C is Euler’s con-

stant, 𝑃𝑟𝑒𝑓  and 𝑃𝑓𝑟𝑒𝑒 are the tunneling spin polarizations of 

the reference and free layers (the model assumes 𝑃𝑟𝑒𝑓  = 𝑃𝑓𝑟𝑒𝑒  

= P), m is the magnetic moment of the free layer,  𝐼𝑤 is the 

writing current and 𝐼𝑐0 is the zero temperature threshold cur-

rent; 𝜉 = 𝐸/𝑘B𝑇 is the activation energy, 𝑘B is the Boltz-

mann constant and T is the temperature.  

The compact model was implemented in Verilog-A and 

its was validated through the simulation of a writing circuit 

and a nonvolatile flip-flop. In order to facilitate the configu-

ration of the model, the authors provide a list of default pa-

rameters and variables. 
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J. Other models and correlated works 

In addition to the models covered in this Section, there is 

a wide variety of works focused on different aspects of the 

memristive devices modeling. Regarding models related to 

practical implementations, Zhang et al. [78] proposed a 

model consistent with experimental data from different de-

vices intended for the development of electronic synapses. 

Bayat et al. [79] presented a general phenomenological ap-

proach for deriving mathematical equations for modeling 

real memristive devices. Lupo et al. [80] reported a model 

for oxide-based filamentary memristors, and the simulation 

results showed excellent match with HfO2 devices.  

Extending the discussion, Naous et al. [81] presented an 

study where stochasticity phenomenon are incorporated into 

the behavior of different threshold-based memristors models. 

There is also a concentration of efforts in the modification of 

computationally complex models, which may present several 

numerical problems, mainlly in large scale simulations[82].  

Another alternative for the design and testing of memris-

tive systems are the emulator circuits. These tools allow us 

to build circuits based on memristors at the hardware level. 

Emulators can be designed in different ways. Pershin and Di 

Ventra [83] combined a digital potentiometer, an analog-to-

digital converter and a microcontroller to create a circuit for 

this purpose. Implementations based on components such as 

operational amplifiers, voltage multipliers, MOSFETs, resis-

tors and capacitors are also common [84, 85]. 

IV. APPLICATIONS 

Memristors provide the unique opportunity to either sup-

plement or replace CMOS technology. In this section we ex-

plore the potential of memristors in several applications. 

Digital applications are the first aspect explored, following 

to the analog ones. Resistive memories are discussed to-

gether with nonvolatile Flip-Flops. The neuromorphic com-

putation closes this Section. 

A. Digital Applications 

There is a large amount of memristor-based methods and 

circuits focused on performing logic operations. This broad 

spectrum of propositions includes different philosophies for 

the implementation of Boolean functions, some with univer-

sal coverage and others limited to some specific operations. 

This Section intends to give an overall insight of the main 

contributions in this field of research. 

1) Imply Logic 

Material implication is a logical operation represented as  

p → q or p IMP q, meaning “p implies q” or “if p then q”. 

By observing the truth table of this function, in Fig. 9a, it is 

possible to note that the operation p → q is logically equiva-

lent to the expression 𝑝 + 𝑞. For this reason, this function 

can be represented by the symbol shown in Fig. 9b. An im-

portant feature of the IMP function is that, along with the 

FALSE operation (that always yields logic value ‘0’), it com-

poses a complete computational set that can be used to per-

form any logic operation. The implementation of this func-

tion can be performed by the circuit shown in Fig. 10. 

 
Fig. 9. (a) Truth table of p → q. (b) Symbol of IMPLY logic gate. 

 
Fig. 10. (a) Circuit proposed in [86] for the implementation of memristive 
material implication.  (b) Polarity convention for increasing/decreasing re-
sistance. 

The logical variables of this structure are the resistances 

of P and Q, so that a logic level '1' corresponds to a low re-

sistance state 𝑅𝑂𝑁 and a level '0' corresponds to a high re-

sistance value 𝑅𝑂𝐹𝐹 . The computation of the imply operation 

is performed by applying voltages VCOND and VSET to P and 

Q, respectively. It should be noted that the input memristors 

at the beginning of the operation are P and Q, and the output 

memristor at the end of the operation is Q (the input value of 

Q may be destroyed). In addition, the following conditions 

must be met to ensure the operation of a material implication: 
 𝑉𝐶𝑂𝑁𝐷 < 𝑉𝐶  < 𝑉𝑆𝐸𝑇 , (42) 

 (𝑉𝑆𝐸𝑇 − 𝑉𝐶𝑂𝑁𝐷 ) < 𝑉𝐶 , (43) 

 𝑅𝑂𝑁 < 𝑅𝐺 < 𝑅𝑂𝐹𝐹, (44) 

where VC is the critical voltage, a minimum value required 

to change the state of the memristor. The polarity shown in  

Fig. 10b is assumed. When computing an implication, the 

current direction in the memristors can only be from top to 

bottom. So, whenever Q starts at ‘1’, that state will remain 

unchanged (combinations “01” and “11”). When P = ‘0’ and 

Q = ‘0’, most of the 𝑉𝐶𝑂𝑁𝐷 and 𝑉𝑆𝐸𝑇 voltages will fall on their 

respective memristors, switching Q to ‘1’ and keeping P at 

‘0’. Lastly, when P = ’1’ and Q = ’0’, VG will be approxi-

mately 𝑉𝐶𝑂𝑁𝐷  and the voltage over Q will be VSET-VCOND, 

which is insufficient to cause a resistance switching in this 

device. Laiho and Lehtonen [87] showed the extension of 

this operation to multiple input memristors. Later, the con-

cept of multi-memristor implication was proposed as a gen-

eralization of this approach [88]. 

2) MAGIC 

An important memristor-only logic family was proposed 

in [89]. In this method, called MAGIC (Memristor-Aided 

logic), a logic gate is built with an individual memristor for 

each of its inputs and an additional memristor for the output. 

As in the imply logic, logical values are stored through re-

sistance states. The schematic circuits corresponding to the 

implementation of the AND, NAND, OR, NOR and NOT 

gates in this logic family are shown in Fig. 11. 
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The description of the operation of a MAGIC gate will be 

based on the same polarity convention shown in Fig. 10b and 

divided into two steps. The first step consists in the initiali-

zation of the output memristor to a specific logical state. In 

the second step, a voltage V0 is applied to the circuit (see in 

Fig. 11) and is divided between its components. For some 

input combinations, the voltage drop across the output 

memristor will be sufficient to surpass a certain threshold 

value and, consequently, change its logical state. For other 

input combinations, this will not happen and the output 

memristor remains at its pre-established state. 

 
Fig. 11. (a) MAGIC logic gates of (a) NOR, (b) OR, (c) NAND, (d) AND 
and (e) NOT. 

The description of the operation of a MAGIC gate will be 

based on the same polarity convention shown in Fig. 10b and 

divided into two steps. The first step consists in the initiali-

zation of the output memristor to a specific logical state. In 

the second step, a voltage V0 is applied to the circuit (see in 

Fig. 11) and is divided between its components. For some 

input combinations, the voltage drop across the output 

memristor will be sufficient to surpass a certain threshold 

value and, consequently, change its logical state. For other 

input combinations, this will not happen and the output 

memristor remains at its pre-established state. 

For a NOR gate, for example, the first step is to write logic 

level ‘1’ on the output memristor and, if necessary, write the 

input values on the memristors In1 and In2. After that, the 

computation is performed by applying a voltage V0 to the 

circuit, as shown in Fig. 11a. Assuming ROFF >> RON, when 

the input combination is “00”, the equivalent resistance of 

In1 || In2 is ROFF/2, causing the voltage (current) over (across) 

the output memristor to be lower than the threshold voltage 

(current). Hence, the logical state of the output memristor 

does not change and remains at logical one. For other input 

combinations, the voltage/current is greater than the memris-

tor threshold voltage/current. The logical state of the output 

memristor for these input combinations switches to logical 

zero. 

MAGIC and Imply Logic are memristive-based design  

approaches that can be integrated within a crossbar array and 

enable in-memory-computing, i.e., simultaneous processing 

and storage of data by the same circuit [11, 90]. 

3) MRL 

MRL (Memristor Ratioed Logic) family [91] combines  

memristive and CMOS technologies. In this logical family, 

the AND and OR gates are implemented with memristors. 

These gates are combined with a CMOS inverter to form the 

NAND and NOR gates, which are universal Boolean func-

tions. The NOT gate also serves to restore degraded signals. 

An overview of such implementations is provided in Fig. 12. 

The following explanation regarding the operation of these 

gates is based on the polarity convention depicted in Fig. 10b 

and covers AND/OR gates. When the inputs have identical 

logic levels, there is no current flowing through the memris-

tors and, therefore, there is also no resistance variation in 

these devices. Thus, VOUT follows the input values in these 

cases. However, when the inputs are different, there will be 

a current flow from the VHIGH voltage terminal (level ‘1’) to 

the VLOW terminal (level ‘0’), ensuring complementary re-

sistance states in the devices. The output voltage will be de-

termined by a voltage divider. Assuming ROFF ≫ RON, if the 

grounded memristor is in the ROFF state, then VOUT ≅ VHIGH. 

If it is in the RON  state, then VOUT ≅ 0 V. The number of 

inputs can be extended by connecting more memristors to the 

common node, similar to a logic with diodes. 

 
Fig. 12. Schematic of the MRL gates. a) OR gate. b) AND gate. c) NOR 
gate. d) NAND gate. 

4) Other implementations 

The scope of alternatives for the design of memristive 

logic circuits also includes other notable techniques such as 

Programmable CMOS/Memristor Threshold Logic [92], 

CMOS-like Memristor Complementary Logic [93], Parallel 

Input-Processing Memristor Logic [94] and Memristors-As-

Drives Gate Design [95]. In addition, several works employ 

memristive devices in the development of alternative ver-

sions of classic circuits, including full-adders [96, 97], Look-

Up Tables (LUTs) [98], sense amplifiers [99], majority vot-

ers [100], etc. 

B. Analog Applications 

Memristors with gradual resistance variation can be ex-

ploited in several analog circuit implementations. Pershin 

and Di Ventra presented in [83] a few examples of memris-

tive-based programmable analog circuits, including a voltage 

comparator, a non-inverting amplifier and a Schmitt trigger. 

There are also reports of the use of memristors in different 

types of oscillators, such as Wien bridge oscillator [101], 

phase-shift oscillator [102] and reactance-less oscillator 

[103]. Ascoli et al.  [104] bring an insight on adaptable fil-

tering design with memristors, presenting a first-order low-
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pass filter with tunable cutoff frequency and a second-order 

band-pass filter with tunable quality factor. Potrebić et al. 

[105] analyze the application of memristors in several 

RF/microwave circuits, such as the Wilkinson power divid-

ers, antennas, frequency selective surfaces, and others. 

By exploring cumulative resistance variations in phase-

change memristors, Wright et al. [12] demonstrated that an-

alog computation is able to carry out the full set of arithmetic 

operations (addition, subtraction, multiplication, division), 

besides being able to handle other complex tasks such as par-

allel factorization and fractional division. There is also in the 

group of analog implementations a primary application for 

computational systems, which is the vector-by-matrix multi-

plication. This task can be performed in a single step from a 

memristive crossbar array [106], as shown in Fig. 13. 

 In a simplified way, this operation can be described using 

the following multiplication as an example: 
 𝐵1xM =   x1xN × ANxM (45) 

To perform this operation, the elements of vector x will 

be converted into a set of input voltage signals and the ele-

ments of matrix A will be mapped as conductances of the 

memristors in the crossbar. Then, by applying the voltage 

vector to the matrix rows, these components will be intrinsi-

cally multiplied by the column elements (memristor conduct-

ances) following Ohm's law, and the sum of the currents 

through each column will naturally be computed according 

to the KCL rule. For an arbitrary column α, the current is 

given by: 
 

𝐼𝛼 =   ∑𝑉𝑘
𝑖𝑛 × 𝐺𝑘,𝛼  ,

𝑁

𝑘=1

 

(46) 

where Vk
in is the voltage input vector and 𝐺𝑘,𝛼 is the conduct-

ance vector for the column α. The output current vector can 

be applied to transimpedance amplifiers (TIA), for example, 

to perform the conversion to voltage values. This technique 

provides essential support for the development of several ap-

plications involving neuromorphic computing, the subject of 

the next subsection. 

 
Fig. 13. A memristor crossbar array for vector-by-matrix multiplication. 

C. Memory Applications 

Memory circuits may be considered one of the most 

promising applications involving memristive devices. They 

challenge the traditional memory hierarchy, where nonvola-

tile memories are at the bottom of the hierarchy and are large 

and slow. The small memristor dimension allows high stor-

age density. The data is stored as resistance rather than elec-

tric charge, which allows longer data retention and no leak-

age currents. This feature makes memristors potential candi-

dates to replace the current mainstream memory. 

There are two main RRAM memory architectures: cross-

bar [90, 107-109] and grid [110-113]. The crossbar approach 

does not have access transistors in its memory cell topology. 

The cell is the memristor itself or the memristor and a diode-

selector. Fig. 14 exemplify both structures. This characteris-

tic makes it attractive to intense high density. However, the 

crossbar structure faces issues in terms of switching, access 

and writing time, array size, and operating voltage, which are 

caused by the wire resistance and sneak paths [107, 108]. 

Furthermore, several techniques have been proposed to deal 

with those aspects [109, 114]. 

The grid architecture, illustrated in Fig. 15, is more energy 

efficient and presents superiority in access time when com-

pared to the crossbar solution. However, grid architecture 

presents higher size and consequently lower density and 

higher cost. Even so, RRAM grid architecture, when com-

pared to traditional 6T SRAM, presents significant higher 

density associated to low power consumption. 

As in traditional SRAM architecture, the memory cell is 

also explored in RRAM grid to improve specific aspects. The 

smaller memory cell is the one composed by one transistor 

and one memristor [111]. It is called 1T1M. Emara et al. 

[110] introduces the 1T2M differential memory cell to deal 

with single and multi-bit data storage. The 2T2M cell is pre-

sented to offer higher stability and noise margins when com-

pared to the previous ones [113]. Fig. 16 illustrates all this 

three RRAM memory cells. 

 
Fig. 14. Crossbar RRAM structure (a) without selector and (b) whit diode-
selector [108]. 

 
Fig. 15. Grid RRAM structure with 1T1R memory cell [108]. 
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Fig. 16. Topologies of memristor-based RRAM cells. (a) 1T1M, (b) 
1T2M, and (c) 2T2M [112]. 

Some memristors have continuous resistance change. 

This characteristic has been explored to design memory cell 

that are able to store more than a single bit [115]. This multi-

level memory cells increase even more the memory capacity. 

In this solution, more issues beyond the ones already men-

tioned have to be solved. One of the more important is related 

to the nonlinear nature of memristor dynamic behavior. To 

deal with this, the voltage application to define the resistance 

value explore different types of programming strategies 

[116, 117]. 

In addition to high-density memories, memristors are also 

being explored in the design of nonvolatile latches and flip-

flops (NVFF). These components can transform traditional 

processors into fully nonvolatile circuits by storing perma-

nently all the data. They are vital elements for fast and energy 

efficient hibernation in nonvolatile processors (NVPs). The 

non-volatility enables NVPs to decrease the start-up latency 

from some micro seconds down to some hundreds of pico-

seconds [118].  

Fig. 17 presents complete schematic of a non-volatile flip-

flop (NVFF). This solution is only one of several existing in 

the literature. The design uses two complementary MTJs per 

bit to achieve higher robustness. In addition to the two MTJ, 

the schematic contains the sense amplifier used to read the 

data and the bidirectional current source responsible to write 

the information in the MTJs. The presented schematic per-

forms the storing data in a single-phase. There are other so-

lutions that uses an initial reset operation in both devices, and 

later set the specific memristor according to the data to be 

stored [119]. Comparing both solutions, the two-phase re-

duces the minimum time and energy required in the opera-

tion. However, the reset operation in all cycles compromise 

the cell endurance. The cell endurance (the maximum num-

ber of transitions between the high and low resistive states) 

may be considered the main limitation of NVFFs. This lim-

ited endurance can reduce the lifetime of NVPs and is receiv-

ing special attention in the community [120].  

 

 
Fig. 17. Complete Schematic of MTJ-based non-volatile FF [118]. 

D. Neuromorphic Computing 

The memory bottleneck has been an important barrier to 

the advance of conventional Von Neumann computing sys-

tems, once this issue leads to high power consumption and 

performance degradation [121]. In order to overcome these 

limitations, novel architectures and emerging technologies 

have been studied. In this context, one of the most promising 

alternatives consists of neuromorphic computing. This con-

cept, introduced by Mead in [122], describes the use of VLSI 

systems to mimic the nervous system in the brain. This sys-

tem is fundamentally composed by neurons and synapses, 

and the interconnections between these elements form the 

so-called neural networks. A neuron can be roughly de-

scribed as a processing unit that integrates the inputs coming 

from other neurons and generates action potentials (spikes) 

as a result. The synapses are adaptive memory elements that 

change their connection strength (or weight) as a result of 

neuronal activity, which is known as synaptic plasticity 

[123]. This mechanism is believed to underlies learning and 

memory of the biological brain. In order to mimic the mas-

sive parallelism inherent to the nervous system, which have 

~1011 neurons and ~1015 synapses, scalability and ultra-low 

power consumption are key factors for neuromorphic com-

puting. 

 
Fig. 18. Illustration of the interconnection between two neurons [123].  

Each neuron is mainly composed by a cell body called 

soma, branched projections called dendrites and a long ter-

minal called axon. The contact areas where the information 

is transmitted from one cell to another are called synapses 

[123]. 

This area of research has shown great interest in memris-

tive technology, since these devices not only meet these re-

quirements but also have a programmable resistance quite 

similar to the plasticity of a biological synapse. The neuro-

morphic computing is usually implemented in a crossbar 

configuration, as shown in Fig. 19a. In this structure, every 

neuron in the pre-neuron layer (vertical lines) is connected to 

every neuron in the post-neuron layer (horizontal lines) with 

individual memristive synaptic weights (resistance). These 

spiking neural networks (SNNs) can be trained to perform 

several tasks, using a set of different learning rules/algo-

rithms. Learning rules describe changes in synaptic plastic-

ity, that is, they determine when the strength of the connec-

tions increases or decreases. There is a considerable amount 

of learning rules, divided as supervised, unsupervised and re-

inforcement learning [124]. An experimentally demonstra-

tion of the Spiking-Time Dependent Plasticity (STDP) learn-

ing rule was presented in [14]. In this mechanism, the syn-

apse weight changes according to an exponentially decaying 
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function of the delay time between the pre-synaptic and pos-

synaptic spikes, as shown in Fig. 19b. When a pre-spike pre-

cedes a post-spike, Δt = tpost - tpre is positive and the weight 

increases (see in Fig. 19c). when this sequence is reversed, 

Δt is negative and the weight decreases.  

 
Fig. 19. (a) Typical crossbar architecture of a SNN with memristor synapses 
connecting neurons. (b) Excitation of a matrix synapse by pre and post 
spikes separated by a Δt interval. (c) STDP learning curve [125]. 

Another topic with special emphasis in studies related to 

this area of interest is neural behavior. Although there is a 

large amount of CMOS implementations of artificial neurons 

[125-127], these circuits usually require a large number of 

transistors. Thus, memristor-based neurons have been pro-

posed to simplify the circuits. For instance, the electrical cir-

cuit of the classic Hodgkin-Huxley model [128] was rede-

signed in [129], replacing two variable resistors in the potas-

sium and sodium channels with first and second order 

memristors, respectively (see Fig. 20a). In [130], a scalable 

neuristor, an electronic device with properties similar to the 

Hodgkin–Huxley axon, was built from two nanoscale Mott 

memristors. 

Other notable contributions based on memristors adapt in 

hardware the behavior of classic models like Morris-Lecar 

[131], FitzHugh-Nagumo [132] and Hindmarsh-Rose [133]. 

In addition, there is also reports of memristive-based inte-

grate-and-fire (I&F) neurons [134, 135]. As an example,  

Cobley et al. [13] presented a simple self-resetting I&F spik-

ing neuron model based on the exploitation of the accumula-

tion property of PCM devices. The schematic of this imple-

mentation is shown in Fig. 20b. Initially, the memristive de-

vice is in an amorphous state (high resistance) and is excited 

by postsynaptic pulses. After a certain number of pulses, the 

PCM cell switches to the crystalline state (low resistance), 

causing the voltage at non-inverting input of the comparator 

to rise above VREF (through the low-pass filter composed of 

RLPF and CLPF). As a consequence, the comparator output 

switches to high level and a spike is generated. The output is 

fed back through a delay block, which forces the PCM device 

back to the amorphous state. Further insight regarding this 

subject can be found in [136], where a comparative analysis 

in different aspects is made between several CMOS and 

memristive-based neuron models.  

 
Fig. 20. (a) Memristive Hodgkin-Huxley axon membrane circuit proposed 
by [129]. (b) Self-resetting spiking phase-change neuron [13]. 

Interesting applications have been exploited in neuromor-

phic computing. Prezioso et al. [137] realized the pattern 

classification of 3x3 pixel black/white images into three clas-

ses, while Yao et al. [138] showed a more complex gray scale 

face classification. Based on the same concepts, Truong et 

al. [139] developed a system for speech recognition of five 

vowels and Jeong et al. [140] proposed an accurate method 

for calculating the Euclidean distance. In addition, Choi et 

al. [141] used a memristive network to perform feature ex-

traction and analyze sensory data from a standard breast can-

cer screening database. 

V. FINAL CONSIDERATIONS 

In this paper, we discussed several aspects related to 

memristors. They represent one of the most promising 

emerging alternatives to replace or complement the standard 

CMOS. We described the current state of the art in memristor 

devices, models and applications. We examined how 

memristors can be used as building blocks for on-chip 

memory and many other digital and analog circuits. Addi-

tionally, we showed that its features conveniently meet the 

requirements for the implementation of neuromorphic com-

puting. While many challenges remain to be addressed, we 

believe that memristors can enable computing paradigms in 

beyond-CMOS era. We consider memristors an active and 

vibrant field of research, with extensive efforts under way. 

Advances are continuously presented in the literature, and 

we tried to summarize part of them in this paper. 
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