
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

ANA PAULA CAROLINO DE OLIVEIRA MELLO

Use of embedding concatenation and
ensemble to improve node classification on

graphs

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dra. Mariana Recamonde
Mendoza

Porto Alegre
June 2021

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos André Bulhões
Vice-Reitora: Profa. Patricia Pranke
Pró-Reitora de Graduação: Profa. Cíntia Inês Boll
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciência de Computação: Prof. Rodrigo Machado
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

Artificial intelligence (AI) is a powerful tool that can be used in several different fields

to solve many problems, and its use has been increasing every year. However, tradi-

tional machine learning (ML) algorithms have a specific limitation: their input format.

Since they expect the input to be in vectors and matrices, data that is best represented by

graphs can not be easily used to train ML models, even though they could often be the

best alternative researchers have. This hurdle inspired the creation of a set of algorithms

for a process called embedding, which maps graph data to a vector space, allowing the

data to be fed to ML methods with ease. Embedding, however, does not yield a perfect

representation since there is an inherent trade-off in the process. Embedding algorithms

have to choose to preserve one out of two characteristics of a graph: community (the

neighborhood of each node) or structure (the role each node has in the graph structure).

Algorithms have to focus on one aspect over the other or attempt to balance them in the

representation, resulting in shallower preservation of both. This means essential aspects

of a graph can be lost in translation, which can yield bad results purely because of the

type of representation chosen. It can also mean that the results could improve by mak-

ing the graph representation more complete. Inspired by this observation, we propose a

combination of two ideas aiming at improving the representation of graph data to be used

in ML algorithms. The first is a simple concatenation of three types of embeddings, each

using a different embedding strategy, and the second is the use of a bootstrap aggregation

ensemble for the task. To evaluate these approaches, we run experiments on six datasets

comparing the performance of the proposed approaches against simple classifiers trained

on each embedding separately. Our results suggest that, while the concatenation does not

have the best results, it constantly gets very close to it in all tested datasets, which does

not happen with individual embeddings.

Keywords: Machine learning. ensemble. embeddings. graphs. node classification.

Uso de concatenação de embeddings e ensemble para melhorar a classificação de

nodos em grafos

RESUMO

Inteligência artifical (IA) é uma ferramenta poderosa que pode ser usada em diferentes

áreas para resolver vários tipos de problemas, e seu uso vem aumentando a cada ano.

Porém, algoritmos tradicionais de aprendizado de máquina (AM) possuem uma limitação

específica: o formato de entrada dos dados. Como eles esperam que a entrada esteja

na forma de vetores e matrizes, dados que são melhor representados por um grafo não

podem ser facilmente utilizados para treinar modelos de AM, mesmo quando podem ser a

melhor alternativa para pesquisadores. Esse obstáculo inspirou a criação de um conjunto

de algoritmos para um processo chamado embedding, que mapeia dados de um grafo em

um espaço vetorial, permitindo que esses dados sejam passados para modelos de AM com

facilidade. Embeddings, no entanto, não geram uma representação perfeita, já que existe

uma relação inversa inerente ao processo. Os algoritmos precisam escolher preservar uma

de duas características de um grafo: comunidade (a vizinhança de cada nodo) ou estrutura

(o papel que cada nodo tem na estrutura do grafo). Eles precisam focar em um aspecto

em detrimento do outro, ou precisam tentar balanceá-los na representação, resultando em

uma preservação pior de ambos. Isso significa que aspectos importantes de um grafo

podem se perder, o que pode gerar resultados ruins para uma tarefa de classificação ou de

predição apens por causa do tipo de representação escolida. Isso também pode significar

que os resultados podem melhorar caso a representação do grafo seja mais completa.

Inspirados pelo conceito, propomos a combinação de duas ideias para tentar melhorar a

representação de grafos para serem usados em algoritmos de aprendizado de máquinas.

A primeira é uma concatenação simples de três tipos de embedding, cada um focando em

uma característica específica, e a segunda é o uso de um ensemble boostrap aggregation

para a tarefa. Para avaliar as abordagens, nós rodamos experimentos com seis conjuntos

de dados copmarando a performance das abordagens propostas com a de clasificadores

simples treinados em cada embedding separadamente. Nossos resultados mostram que,

apesar de a concatenação não ter os melhores resultados, ela constamentemente fica perto

dos melhores em todos os datasets testados, o que não ocorre com embeddings individuais.

Palavras-chave: aprendizado de máquina, embedding, ensemble, grafos, classificação de

nodos.

LIST OF FIGURES

Figure 2.1 An example of a graph embedded in a 2D space using different embed-
ding concepts ..14

Figure 3.1 Node classification results on Citeseer and Wikipedia..................................21
Figure 3.2 Accuracy (%) on Citeseer dataset obtained by Zhang, Xiang and Wang

(2020). Similar results were found for the Cora dataset. ..24

Figure 4.1 First two experiments, using a simple classifier and an ensemble on each
embedding and them combining all three predictions in a final one using a soft
vote..26

Figure 4.2 Third and fourth experiments, concatenating all three embeddings into
one and using a simple classifier and an ensemble on the resulting vector.27

Figure 6.1 Boxplot showing distribution of F1 score results for brazilian_air_traffic
network ...32

Figure 6.2 Boxplot showing distribution of F1 score results for cora network34
Figure 6.3 Boxplot showing distribution of F1 score results for ecoli network..............36
Figure 6.4 Boxplot showing distribution of F1 score results for twitch_pt_br network.38
Figure 6.5 Boxplot showing distribution of F1 score results for wikipedia network......40
Figure 6.6 Boxplot showing distribution of F1 score results for yeast network42

LIST OF TABLES

Table 3.1 Accuracy (%) on Citeseer dataset obtained by Zhang, Xiang and Wang
(2019)..23

Table 5.1 Dataset statistics ..29

Table 6.1 Table with the average results for the brazilian_air_traffic network ob-
tained with basic evaluation ..31

Table 6.2 Table with the average results for the brazilian_air_traffic network ob-
tained with cross validation ..31

Table 6.3 Table with the average results for the cora network obtained with basic
evaluation ..33

Table 6.4 Table with the average results for the cora network obtained with cross
validation...33

Table 6.5 Table with the average results for the ecoli network obtained with basic
evaluation ..35

Table 6.6 Table with the average results for the ecoli network obtained with cross
validation...35

Table 6.7 Table with the average results for the twitch_pt_br network obtained with
basic evaluation...37

Table 6.8 Table with the average results for the twitch_pt_br network obtained with
cross validation ...37

Table 6.9 Table with the average results for the wikipedia network obtained with
basic evaluation...39

Table 6.10 Table with the average results for the wikipedia network obtained with
cross validation ...39

Table 6.11 Table with the average results for the yeast network obtained with basic
evaluation ..41

Table 6.12 Table with the average results for the yeast network obtained with cross
validation...41

LIST OF ABBREVIATIONS AND ACRONYMS

AI Artifical intelligence

ML Machine Learning

GCN Graph Convolutional Networks

SDNE Structural Deep Network Embedding

SVC Support-vector classification

SVM Support-vector machine

PPI Protein-protein interaction

GAE Graph Auto-Encoder

CONTENTS

1 INTRODUCTION...9
2 THEORETICAL BACKGROUND...11
2.1 Machine Learning...11
2.1.1 Support-vector classification..12
2.1.2 Ensemble learning..13
2.2 Machine learning on graphs with node embedding...14
2.2.1 Matrix factorization based ...15
2.2.2 Random walk-based...16
2.2.2.1 node2vec ...17
2.2.2.2 DeepWalk..17
2.2.3 Neural network-based ..18
3 RELATED WORK ...20
3.1 Combining more information to embeddings ..20
3.2 Ensemble for tasks on graphs ..22
4 PROPOSAL...25
5 EXPERIMENTS ...28
5.1 Implementation ...28
5.2 Chosen data ...28
6 RESULTS...30
6.1 Brazilian Air Traffic ...30
6.2 Cora..32
6.3 Ecoli..34
6.4 Twitch PTBR ...36
6.5 Wikipedia...38
6.6 Yeast ...40
6.7 Conclusions..42
7 CONCLUSION ...44
REFERENCES...45

9

1 INTRODUCTION

Artificial intelligence (AI), and more specifically its subset machine learning (ML),

is a powerful tool that has been used to solve many complex problems in several differ-

ent fields. It has been used for spam filtering (GUZELLA; CAMINHAS, 2009), speech

(DENG; LI, 2013) and image recognition (PAK; KIM, 2018), personalized recommenda-

tions (CHU; PARK, 2009), medical data analysis (KONONENKO, 2001), credit scoring

(WANG et al., 2011), disease prediction (JADHAV et al., 2019), among many others.

Over time, it has become more and more present in our lives, and this trend shows no sign

of slowing down.

For all their usefulness, however, traditional ML algorithms have a specific limi-

tation: their input format. Almost all of them expect data to be fed to them as vectors and

matrices, which makes it difficult to use these methods when data does not easily fit this

format. Biological networks, such as protein-protein interaction (PPI) networks and gene

regulatory networks, are good examples of this, since they are represented by graphs. The

tasks to be performed on these graphs, such as classification and prediction, are extremely

suited for ML algorithms, but the data itself is not, at least not in its original format.

Because of this hurdle, researchers developed algorithms for a process called em-

bedding, which can map nodes, clusters of nodes and even whole graphs into a vector

space (CAI; ZHENG; CHANG, 2017). This representation allows graph data to be used

as input to traditional ML methods, not requiring big changes to existing implementations

just to feed them data. This process, however, has some shortcomings. The biggest one is

an inherent trade-off when defining the exact algorithm to generate the embedding: they

can either preserve community (the neighborhood of each node) or structure (the struc-

tural role a node has in the graph as a whole) (HAMILTON; YING; LESKOVEC, 2017).

Even algorithms that try to balance both of them have to deal with the trade-off, priori-

tizing one over the other or preserving both types of information in a shallower way than

embeddings that focus on one of the characteristics.

The nature of this trade-off means different datasets can have much better or much

worse results on node classification or link prediction tasks depending on the embedding

method chosen and the specific characteristics of the graph. This can make good models

have bad results simply due to a mistake in interpreting which characteristic would be

more important for a specific task on a specific network. One of the state-of-the-art meth-

ods, node2vec (GROVER; LESKOVEC, 2016), attempts to work with this trade-off by

10

allowing some fine-tuning of parameters that control what information it preserves. Their

results showed an improvement when compared to other algorithms, showing that there

are interesting results when trying to enhance the vision of the graph so it can give the

ML models a better, more accurate representation of the data.

Inspired by this concept, in this work we propose a combination of two ideas as

means to improve the representation of graph data to be used in ML algorithms. The first

one is a concatenation of three types of embedding, each focusing on preserving a specific

property of the graph in order to generate a more accurate representation of the data as a

whole. The second is the use of a bootstrap aggregation ensemble as the classifier, since

the idea behind that ensemble is to get a better result by having a classifier that gets a

better view of the data by using several samples for training.

To test this, we run four types of experiments for six datasets in order to compare

the influence of the concatenation, of the ensemble and the combination of them on a

classification task, using a simple classification on each separate embedding as the base-

line. We also present the results of a soft vote between the predictions of each individual

embedding.

The work is structured as follows. In chapter 2, we explain the theoretical back-

ground needed to understand the proposal. We show works that use similar ideas or tech-

niques on the subject in chapter 3. In chapter 4 we explain the proposal itself, in chapter 5

we show how it was implemented and in chapter 6 we present all results in detail. Finally,

we conclude with a discussion of the results in chapter 7 and some suggestions for future

work.

11

2 THEORETICAL BACKGROUND

2.1 Machine Learning

Machine learning is the study of algorithms that are able to improve themselves

automatically, without any direct interference from humans (MITCHELL, 1997). It is

considered a subset of the field of artificial intelligence, which is usually defined as the

study of intelligent agents: something that can perceive its environment and take actions

to maximize the chance of success in its goal (RUSSELL; NORVIG, 2020). The field

is closely related to computational statistics, mathematical optimization and data mining,

and it aims to develop algorithms that generalize the ability to perform certain tasks on a

completely new data set based on the experience of performing them on a training set.

Since the results are based on previous data, it is important to note that every

ML model will have errors which can be measured by two different concepts: bias and

variance. Bias refers to assumptions models make about the data, which can lead to wrong

predictions, while variance is the sensitivity the model has to differences in the training

data, which can lead to predictions errors due to noise in the data. It is important to

observe these two characteristics, since high bias can lead to an oversimplified classifier

that can not predict more complex data very well, and high variance can lead to over-

fitting, where the classifier is so sensitive to any small change in the data that it is unable

to generalize its learning to work accurately with new inputs.

ML algorithms are used to make predictions that were not explicitly programmed,

and they are commonly used in situations where a traditional algorithm would be too hard

to define, usually due to size of the data or the complexity of the task itself. They can

be classified by the type of feedback provided in order to improve on its results, with the

supervised and the unsupervised approaches being the most used ones.

A supervised approach gives the algorithm a series of example inputs (x) and

their desired outcomes (y), usually used to learn a general rule f(x) = y that maps

inputs to outputs. This rule is learned through constant optimization, which is run in

a self feeding loop until it reaches a specific threshold, either a maximum number of

iterations or a minimum improvement in the current best result from one iteration to the

next. Some examples of supervised learning algorithms are linear regression, decision

trees, and ensemble learning.

A common supervised learning task is classification, a process where data can be

12

separated into two or more classes (or labels) based on the previous classification similar

input had. When the data can only be sorted into two classes, this is a binary classification

problem. When there are more, it is called a multi-class classification problem. Because a

lot of classification algorithms are made for binary classification, they are often adapted to

work with multi-class problems by turning them into several binary classifications, where

the classification is done based on whether a data can be categorized for a specific class

or not.

In order to evaluate how good is the model being used, we can extract some met-

rics from the results. They are usually based on the concepts of true positive (when the

prediction that data belongs to a class is correct), false positive (when the prediction that

data belongs to a class is wrong), true negative (when the prediction that data does not

belong to a class is correct) and false negative (when the prediction that data does not

belong to a class is wrong). The most common metrics are accuracy (the percentage of

right predictions made by the model), precision (the percentage of positive predictions

that were correct), recall (the percentage of positives that were correctly predicted) and

F1 score (the harmonic mean of the precision and the recall).

An unsupervised algorithm, on the other hand, does not receive any examples of

input-output parings, and instead tends to look for some structure in the given data, like

patterns or clustering. The input does not have any labelling or prior classification, so

instead of improving through direct feedback it reacts to similarities found in the data.

K-means clustering and hierarchical clustering are common examples of unsupervised

models.

2.1.1 Support-vector classification

Support-vector classification (SVC) is a learning method that can be used for clas-

sification tasks based on the Support Vector Machine (SVM) algorithm (CORTES, 1995).

It constructs a hyperplane (or a series of hyperplanes) in order to split the data into gen-

eral classes by using it as a boundary, trying to make the smallest distance between the

boundary and the elements of the classes as large as possible. This distance is called func-

tional margin, and its size is a good indication of the generalization the method was able

to achieve, since the distance between the members of the classes is as large as possible.

In order to improve its generalization capability, the data is mapped onto a much

higher dimensional space, since the original dimension the data is in might not allow it

13

to be linearly separated. This is done using kernel functions so the algorithm does not

require too much computational resource in this step.

2.1.2 Ensemble learning

Ensemble learning is a type of supervised machine learning algorithm that aims to

improve upon the results of selected base algorithms (DIETTERICH, 2000). It combines

several models in order to attempt to get the best parts of the prediction made by each

algorithm, yielding a better model than one that uses only one predictor.

The justification for this algorithm comes from the "wisdom of the crowds", the

idea that, in general, the average answer of a crowd will be closer to the real answer

than what a single random person would give you (SUROWIECKI, 2004). The ensemble

applies this logic to machine learning: the combination of several predictors will generally

be better than a single predictor.

The general algorithm for an ensemble is to run a base learner several times on a

dataset, with some pre-defined mechanism to generate diversity among models, combin-

ing the predictors to yield the final result. How many types of learners are used, if they

run serially or concurrently, if they are run on the whole dataset or on random samples

of the dataset, all of this is defined by the type of ensemble chosen. There are multiple

types, but the three main ones are bootstrap aggregating, boosting, and stacking.

Bootstrap aggregating, also called bagging, is a method that focuses on getting

a result with less variance than its components, using independent classifiers to create a

more robust model (BBEIMAN, 1996). It starts by using a statistical technique called

bootstrapping, generating samples of size n from a initial dataset by randomly drawing

with replacement. Each sample is then used to train a classifier, which sees the bootstrap

as an independent dataset (thus the learners can be trained at the same time). After the

models are trained, their results are aggregated, yielding the final result for the ensemble.

This aggregation can be done in several ways, such as simple averages (for regression

tasks) or majority vote (for classification tasks).

14

2.2 Machine learning on graphs with node embedding

Machine learning algorithms typically receive data in the form of vectors, making

it hard to use graph data as input, since they are defined by nodes and edges and can

not be easily represented as vectors. However, these techniques are very useful to ana-

lyze graphs, and they are usually more efficient then traditional graph specific algorithms

when the dataset is large. The great results obtained with machine learning in tasks like

node classification and link prediction create a need to represent graphs in a way those

algorithms can use. This is done by a process called embedding (CAI; ZHENG; CHANG,

2017), which maps graph data to a vector space of any size where every point in the vector

space will represent one piece of data, as it is shown in figure 2.1.

Figure 2.1: An example of a graph embedded in a 2D space using different embedding
concepts

Source: Cai, Zheng and Chang (2017)

Typically, most algorithms will embed single nodes, but it is possible to have those

points representing links, node clusters and even the graph itself, which is shown in figure

2.1. The graph shown in (a) has its nodes embedded in (b), its edges embedded in (c),

its substructures embedded in (d) and the entire structure embedded in (d). The choice of

what will be embedded is important since algorithms will not necessarily yield embed-

dings that are suitable for every type of task, and this can have great effects on the final

results. This work will discuss only node embedding, as it is the focus of our approach.

When it comes to node embedding, there is an important question to be asked

before choosing a specific method: what does it mean when two nodes are represented

by points that are close to each other in the vector space? There are two answers for

this, each one representing a specific graph property that was preserved (HAMILTON;

YING; LESKOVEC, 2017). The first is that two close points mean the nodes have a small

minimum path between them, which means the embedding is preserving the community.

The other is that those nodes have very similar structural functions in the graph, thus the

15

embedding preserves the structure.

The structure of a graph relates to the general shape of the graph, meaning that

nodes with a similar function in the graph have similar roles (HENDERSON et al., 2012).

For example, nodes that have several connections have similar roles, just as nodes with

only one connection to the rest of the graph. This property tends to be useful for tasks

such as link prediction or link classification.

The community, on the other hand, is about the nodes’ immediate neighborhood

(FORTUNATO; CASTELLANO, 2007). In general, a node is said to be another’s neigh-

bor when the minimum path to it has size one, but this can be extended to nodes that have

a path of size two or even size three. Preserving this property is most useful for tasks like

node classification.

There is usually a trade off between those two properties, meaning we have to

choose between preserving one of them more than the other. There are some algorithms

that will let you choose how much of each one you want to represent, like node2vec

(GROVER; LESKOVEC, 2016), but most techniques favor one over the other. Therefore,

you need to be aware of which one is more important for the problem you want to solve.

Just like the type of data that will be embedded, this is something that will have a big

impact, and preserving the wrong information can negatively impact your results. This

work will discuss embedding techniques regardless of the property they preserve.

There are three broad categories that most embedding algorithms fall into: matrix

factorization, random walk, and graph neural networks (CAI; ZHENG; CHANG, 2017).

In what follows we briefly review these categories.

2.2.1 Matrix factorization based

Matrix factorization is a mathematical operation where a matrix is decomposed

into two other matrices that, when multiplied, will return the original one. The first stud-

ies on node embedding focused on matrix factorization approaches (BELKIN; NIYOGI,

2001), (SHEPARD et al., 1994), inspired by dimensionality reduction techniques. The

main idea was that obtaining embeddings is equivalent to a structure preserving dimen-

sionality reduction problem, so techniques used to solve those problems could also yield

good vector representations for graphs (CAI; ZHENG; CHANG, 2017). To do so, the

connections between nodes are represented as a matrix, which is then factorized in such a

way that one of the resulting matrices can be used as an embedding (GOYAL; FERRARA,

16

2017).

There are several matrices that can be used to represent those connections, such

as node adjacency matrix, Laplacian matrix and node transition probability matrix. The

approach to the factorization itself is informed by properties of the matrix chosen. A

Laplacian matrix can use eigenvalue decomposition, for example (BELKIN; NIYOGI,

2001).

These earlier methods often required large memory and computational resources

due to the use of a matrix structure, which is a major problem when using larger datasets.

However, there are newer methods that are based on factorization take into account the

sparsity of real-world networks (OU et al., 2016) (GOOGLE et al., 2013), which allow

those techniques to scale better.

2.2.2 Random walk-based

Random walk methods are inspired by the Skip-gram, a neural network architec-

ture commonly used for neural language processing (MIKOLOV et al., 2013). A Skip-

gram is a neural network used to generate word embeddings, a similar concept to node

embedding where words are represented as points in a vector space, using a sentence dic-

tionary as context to train a model. The most notable aspect of the Skip-gram is that the

embeddings are not the neural network output after training, they are the hidden layer’s

weights represented as vectors.

Because of this, the Skip-gram’s hidden layer’s definitions are highly connected to

both the input and the size wanted for the embedding vector. The input layer has a node

for every word that will be embedded, and it generally receives a one-hot vector (a vector

set to zero in every row except the one corresponding to the word you want). The number

of hidden layers is determined by the number of features an embedding will have, and

each layer has the same number of nodes as the input layer. The output layer also has

the same number of nodes, and each one will return the probability that a random chosen

word will be a specific word from the input dictionary. Training for that means that every

row in the hidden layer’s weight matrix can be selected by the one-hot vector used as

input to be used as an embedding for a specific word.

Random walk methods work with the same principle. The name of this category

comes from how those methods turn graph data into the sentence dictionary a Skip-gram

architecture needs: a series of random walks are performed on the graph, and the resulting

17

sequence of nodes is the equivalent of a sentence in neural language processing problems.

This way, a dictionary of random walks can be used to train the network, and later it can

be used to select the node embedding as if each node was a word.

Random walk algorithms mainly differ from each other in their random walk strat-

egy, since the core Skip-gram tends to remain the same. Some algorithms, like node2vec

(GROVER; LESKOVEC, 2016), allow you to determine which graph property (struc-

ture or community) you want to preserve more by configuring random walk parameters,

while others, like DeepWalk (PEROZZI; AL-RFOU; SKIENA, 2014), have a more fixed

approach to their strategy.

2.2.2.1 node2vec

node2vec (GROVER; LESKOVEC, 2016) is a random walk embedding algorithm

that tries to capture both structure and function in its representation. The data used to train

the model is obtained by a series of 2nd-order random walks, in which the nodes visited

by the walk will constitute a sample. This movement is controlled by two parameters,

p (return rate) and q (exploring rate). p controls the likelihood of immediately returning

to a node you already visited in the walk, so the higher the p value is, the more likely it

is to choose vertices that haven’t been visited before. q, on the other hand, controls the

likelihood of choosing to go to nodes that are further from the one previously visited than

to nodes that are closer. The higher the q value is, the more it tends to choose nodes that

are closer to the previous one.

These parameters are what allow node2vec to balance structure and function. In-

stead of being restricted to a breadth-first or a depth-first search when sampling the nodes,

which respectively captures only a node’s immediate neighbourhood or its position on the

graph’s macro-structure, this random walk strategy can interpolate between those two and

therefore keep both types of information in its final representation for each node.

2.2.2.2 DeepWalk

Like node2vec, DeepWalk (PEROZZI; AL-RFOU; SKIENA, 2014) is an embed-

ding algorithm that uses the random walk approach to generate a vector representation for

graphs. Unlike node2vec, however, it leverages only the local information of a node to do

so, resulting in an embedding that captures community more than the global structure of

the graph.

18

Due to the focus on local neighborhoods, each node will generate γ short random

walks as the starting node. These walks use a uniform probability distribution, so each

possible node that can be reached during the walk will have an equal chance of being cho-

sen as the next step, and there is no mechanism to prevent the return to an already visited

note nor to make the current walk explore more of the graph. After being generated, each

random walk will immediately update the internal Skip-gram network, from which the

embeddings can be extracted after all the walks have been generated.

2.2.3 Neural network-based

Graph Convolutional Networks are a type of neural network that work directly

on graphs and attempt to use their structural information in order to get better results

(SCARSELLI et al., 2009). They are so powerful that even a small number of hidden

layers is enough to generate useful embedding. Due to leveraging the graph’s structure,

they usually yield embeddings that preserve it in detriment of the community.

The design of the network is dependent on the graph, but they always receive

a feature matrix and a matrix representation of the graph structure, like an adjacency

matrix. These inputs are fed to an activation function that is used for the propagation

through the hidden layers. Each layer can be represented as a feature matrix where each

row represents a node, which is propagated to generate more abstract features. In the end,

the output is a feature matrix from where the embeddings for every node can be extracted.

The main variation in the methods that fall into this category is in the activation

function, since the main structure construction for the network tends to be the same. The

number of nodes in the hidden layer are dependent on the size of the input matrices, and

the number of layers can be decided experimentally.

Structural Deep Network Embedding (SDNE) is a semi-supervised deep learning

model that aims to preserve a graph’s structure, exploiting first order and second order

proximity to do so (WANG; CUI; ZHU, 2016). It considers that, since graphs have a

highly non-linear network structure, the embedding process needs to be able to capture

non-linear information in order to preserve structural information.

The algorithm uses a deep learning model with multiple non-linear functions that

capture network structure by mapping the inputs to non-linear spaces. It uses a supervised

component to exploit first order proximity looking to preserve local network structure, and

since many links can be missed when using only first order proximity, an unsupervised

19

component is used to reconstruct second order proximity to preserve global structure.

Optimizing for both also helps with sparsity in data.

20

3 RELATED WORK

Although there is a large volume of research being done on embedding algo-

rithms, they mostly focus on creating new algorithms to improve either the preservation

of some specific characteristic or to make the process more efficient. It is also common

to see attempts to work with more realistic datasets, where the network is really large

or very sparse, noting that some common embedding methods have issues when dealing

with graphs that have those characteristics and proposing more specific methods to work

around those issues.

One thing that does not seem to be very explored in the literature is the combina-

tion of several types of information in order to improve the final result without creating

a new embedding process, which keeps those solutions stuck to the community-structure

trade-off. There are few works that go for the approach of combining the results of an

already established embedding process with other data, and even less that combine two

or more embeddings. That means there is a lot of room to explore the combination of

different types of embedding to leverage the different information each of them captures.

Another thing that is not very common is the use of ensembles on embeddings.

Most works proposing new algorithms use simple classifiers in order to test the perfor-

mance of their method, and there are few works testing the use of ensembles with graph

data, even though ensemble techniques can greatly improve the results of base classifiers.

Therefore, there is a lot of room to work with ensembles on embeddings to see which

methods work best and even to measure the impact they can have when compared to

simple classifiers.

3.1 Combining more information to embeddings

Goyal et al. (2019) propose a framework using an ensemble method in order to

aggregate different embedding techniques in an efficient way, arguing that graphs are

not properly represented by a single method when they have complicated combinations

between community and structure, since most embeddings have to preserve one property

in detriment of the other. Using the idea that simple classifiers combined in an ensemble

perform much better than any single one, using ensemble learning to combine diverse

embeddings to generate a new one would yield similar improvements to the resulting

representation.

21

Before choosing the methods to be used, they formally define a way to measure

the diversity between any two techniques, since an ensemble requires the classifiers to be

diverse in order to achieve good results. They adopt the RV coefficient, a multivariate

generalization of the Pearson correlation coefficient, using the distance covariance met-

ric to capture the possible non-linear relationship between two embeddings and calculate

the distance correlation. These metrics allow them to define their embedding correlation

upper bound and thus determine the label diversity prediction. In order to apply their

framework, the nodes of the input graph are divided dividing the nodes into training (50

percent), validation (20 percent) and testing (30 percent). First, the validation is used to

get the accuracy score for each embedding. Then the algorithm will greedily add the em-

bedding with the next best score, evaluating the ensemble result. After, the performance

is evaluated on the testing set. The greedy approach is used as a runtime optimization,

diminishing the time complexity of a naive approach.

The citation graph is the only one whose result was not improved by the ensemble.

Analyzing their results in figure 3.1, they note that the best improvement seems to be

when representing smaller classes, a scenario where individual methods could not yield

good results but the ensemble could, showing the usefulness of the ensemble in improving

graph representation.

Figure 3.1: Node classification results on Citeseer and Wikipedia

Source: Goyal et al. (2019)

Ata et al. (2018) combines PPI networks in the form of node embedding and vari-

ous biological annotations as feature representation for genes to find associations between

genes and diseases . This data then is used to build binary classification models for dis-

ease gene prediction, in a model called N2VKO. It uses an adaptation of node2vec to

22

learn embeddings for the chosen graph, and then it integrates with biological information

obtained from keywords or diseases associated with specific genes, obtained from bio-

logical datasets. The keywords are represented by a feature vector with binary values to

describe all the keywords a node can have, with its size determined by the total amount of

keywords selected to be used. A similar vector is used to represent the disease association.

The embeddings are aggregated to those vectors by simple concatenation.

In order to improve performance, the representation learned from N2VKO passes

through a feature selection before being used to build classifiers, since some features

may be irrelevant and different feature subsets may be used to predict the association

for specific diseases. They test four techniques to do so. They also use two oversam-

pling techniques for imbalance correction, since the data for disease gene prediction is

highly imbalanced and can lead to degraded performance. After optimization techniques

are applied, they build several classifiers for disease gene prediction. First they focus

their comparisons mainly in the impact the keywords and the oversampling have on the

results, comparing four scenarios: a simple node2vec, node2vec with oversampling and

without feature selection, N2VK with feature selection and N2VKO, which uses both

oversampling and feature selection. While N2VO had similar results to node2vec, N2VK

was already an improvement to both, showing that the keywords are a useful information

to add when attempting to predict gene-disease associations. When comparing the full

model with four state-of-the-art methods for disease gene prediction, it had better results

then all of them in most datasets. Observing the poor results in two of the datasets, they

note that high sparsity will result in low prediction performance, indicating that adding

keywords won’t be enough to compensate the lack of information.

3.2 Ensemble for tasks on graphs

Zhang, Xiang and Wang (2019) takes inspiration in the ensemble learning idea,

using it to design two neural networks to learn embeddings where each one will use a

different kind of data, such as network structure for one and node labels for the other.

The goal is to integrate them in such a way that it satisfies the ensemble learning pre-

conditions. The authors define two preconditions so that the ensemble learning principle

can take place: the performance of the weak classifiers can not be too bad, and the errors

of the classifiers must be mutually independent. The core idea of their method involves

designing two separate models using different targets, satisfying the second precondition,

23

Table 3.1: Accuracy (%) on Citeseer dataset obtained by Zhang, Xiang and Wang (2019).
Training Ratios 10% 20% 30% 40% 50% 60% 70% 80% 90%
Deepwalk 52.99 55.78 57.20 59.16 58.33 60.41 58.16 58.96 58.41
Line(1st) 45.70 51.22 54.55 56.28 57.02 58.05 58.94 59.77 59.37
Line(2nd) 46.68 51.23 53.36 55.41 57.55 58.14 58.37 59.00 59.04
SNE 31.25 48.38 59.77 68.85 76.62 84.00 88.49 91.74 96.10
GCN 49.65 63.97 70.80 77.52 80.89 81.44 82.58 82.43 84.68

Source: Zhang, Xiang and Wang (2019)

so any two models that perform well for node classifications will be enough to have the

ensemble learning effect desired when used in their framework. They combine the results

of the neural networks using a simple linear combination with a parameter λ, where λ

represents the influence of the embedding from one model in the final result and 1 − λ

the influence of the other model. The input is the spectral transform of adjacency matrix,

in order to make the models more stable. The first neural network has two layers and is

based on an autoencoder like model, with the target of learning network structure, while

the second has three layers and has the target of learning node labels.

As shown in Table 3.1, they find that, when the proportion of training labels is

over 80 percent, the ensemble does not perform as well as the baseline methods, and that

a proportion of between 10 percent and 30 percent is far too low for the node labels model

to learn anything useful, performing even worst at node classification than the model for

learning structure. However, when combined, even a low proportion of training labels

for the node label model is enough to improve on the results of the structure model.

The observed behavior when changing the proportion of the training data, combined with

adjustments on the λ parameter, show that the ensemble can be used to improve upon

baseline methods if the right settings are found.

Zhang, Xiang and Wang (2020) create an embedding method that uses an ensem-

ble to combine several different embedding methods into a final embedding that can be

used for tasks such as node classification and link prediction. The idea is to get similar

improvement over the individual methods like an ensemble does with classifiers without

running into too many scaling issues. They use a bootstrap sampling technique in order

to get diverse models.

Since one of the main motivations is to improve results without losing too much

efficiency, they use an ensemble that allows for parallel training for the models, more

specifically, bootstrap aggregating (bagging). They train each individual model on a set

obtained by bootstrap sampling, evaluate the performance of the resulting embedding and

24

use the evaluation score to calculate the weight for the aggregation of network embeddings

later.

They also use a stacking model to test heterogeneous ensemble methods. First, the

original learners are trained using the original dataset, and the outputs are concatenated

horizontally as a new set of features, which are then fed to the metalearner. Not only is

this a serial learning approach, the experimental results for stacking performed worse than

the individual learners, so they do not expand much on this.

For the ensemble, they design two models adapting GCN and Graph Auto-Encoder

(GAE), two graph convolution network embedding methods, by removing the graph con-

volution and feeding them network structures as input. They were chosen due to their

performance in both node classification and link prediction. They test their models on

two paper-citation networks, comparing them to a three-layer GCN in a node classifica-

tion task and to a GAE in a link prediction task.

The performance of the aggregated embeddings for the Citeseer dataset, as shown

in Figure 3.2, has a boost when compared to individual baseline models, which they

attribute to the repeated bootstrap sampling. Similar conclusions were extracted from

experiments with the Cora dataset. They also highlight the quick converging of the model,

which shows the efficiency they were looking for. Using only the GAE model as base, the

results were not good for node classification, likely because the method does not use labels

for training and an ensemble can only work if the base model has a strong generalization

ability, although it can learn enough about the structure in order to work well for link

prediction. The GCN model, however, has a strong generalization ability for both node

classification and link prediction tasks, performing well on both of them.

Figure 3.2: Accuracy (%) on Citeseer dataset obtained by Zhang, Xiang and Wang (2020).
Similar results were found for the Cora dataset.

Source: Zhang, Xiang and Wang (2020)

25

4 PROPOSAL

In order to get a more complete representation of graphs, we propose a simple

concatenation of three different embeddings generated using the exact same graph data

as input. Since we are working with node embedding, the concatenation is done by node

too, meaning each node will be represented by the concatenation of three vectors, each

one being the vector generated by an embedding algorithm for that node. By choosing

each type based on the information it preserves we can feed the classifier more detailed

information than if we used any single embedding, even if it was a representation that

tried to balance what type of information it preserves.

Using the same reasoning, we also propose the use of a simple bootstrap aggrega-

tion ensemble instead of a base classifier, since diminishing the classifier variance by the

use of representative samples is close to the idea that several representations of a graph

will improve the results by giving it a better and less biased vision of the graph.

To test both proposals separately and then their combination in order to see the

effect each of them have, we define four experiments. The first one is running a basic

classifier on each embedding separately and having a soft vote with the three results (First

flowchart in Figure 4.1). The second is running an ensemble on each embedding sepa-

rately, also using a soft vote at the end to combine the results (Second flowchart in Figure

4.1). The third is running a simple classifier on the vector resulting from the concatenated

embeddings (First flowchart in Figure 4.2). Finally, the fourth is running an ensemble on

the vector resulting from the concatenated embeddings (Second flowchart in Figure 4.2).

This way, we can verify not only if the combination of the concatenated embeddings and

the ensemble yields better results than we would get when not using any of them, but also

if they have better results than when using each technique on its own.

26

Figure 4.1: First two experiments, using a simple classifier and an ensemble on each

embedding and them combining all three predictions in a final one using a soft vote.

embedding
node2vec

predictions

classifier

embedding
SDNE

predictions
classifier

embedding
DeepWalk

predictions

classifier

results
voting

embedding
node2vec

predictions

ensemble

embedding
SDNE

predictions
ensemble

embedding
DeepWalk

predictions

ensemble

results
voting

Source: The Author

27

Figure 4.2: Third and fourth experiments, concatenating all three embeddings into one

and using a simple classifier and an ensemble on the resulting vector.

embedding

node2vec

embedding
SDNE

embedding

DeepWalk

final embedding
concat

results
ensemble

embedding

node2vec

embedding
SDNE

embedding

DeepWalk

final embedding
concat

results
classifier

Source: The Author

The models are evaluated twice. First, it uses a simple stratified split into training

(75%) and testing (25%) sets, and after it uses that same training set in a cross-validation

with five stratified folds. Due to limitations of the scikit-learn library, the predictions

made using the soft vote with the results of each embedding could not be evaluated with

the cross validation.

The implementation also yielded evaluations metrics by class, but those results

will not be discussed at length here since they did not have any information regarding the

initial proposal that was not present in the general evaluation metrics.

We run each experiment five times in each dataset, presenting the average result

between them in order to avoid any outliers in training muddying the results.

28

5 EXPERIMENTS

5.1 Implementation

In order to test the proposal, we implemented the basic algorithm in Python 3.6.12,

using the scikit-learn library for all machine learning algorithms (Bagging and SVC) and

support functions for basic tasks such as splitting datasets and running a cross validation.

The embedding algorithms used were implemented by the OpenNE library. The exact

version of the main external libraries used are as follows:

• scikit-learn: 0.22

• pandas: 1.1.5

• numpy: 1.16.4

The implementation was built in order to make the experiment’s repetition faster

and more accurate, ensuring the same steps were taken every time. It also allows easy

configuration for the dataset, embeddings and classifiers chosen for a specific run.

We chose to use the following three embedding algorithms: SDNE, prioritizing

structural information, DeepWalk, prioritizing community information and node2vec,

balancing both types of information as much as possible. Each embedding generated

has the number of features set to 32, in order to prevent the final vector from being too

big after concatenation. Other than that, the parameters used for all embeddings were the

ones set as default by the OpenNE library.

5.2 Chosen data

The parameters for the classifiers and ensemble are chosen during the run, using

the basic grid search implemented by the scikit-learn library. The SVC classifier uses

grids of 0.001, 0.01, 0.1, 1 and 10 for the regularization parameter (C) and 0.001, 0.01,

0.1 and 1 for the gamma parameter, and the Bagging ensemble uses grids of 5, 10 and 15

for the number of estimator and 0.6, 0.8, 1.0 for the number of samples.

We run the experiments on six different datasets: brazilian_air_traffic (WU; HE;

XU, 2019), a network that shows the existence of commercial flight between Brazilian

airports, where the labels for each airport are assigned based on how busy the airport

is; wikipedia (GROVER; LESKOVEC, 2016), a coocurrence network of words appear-

29

Table 5.1: Dataset statistics
brazilian_air_traffic wikipedia ecoli yeast twitch_pt_br cora

of nodes 131 2405 3489* 5548* 1912 2708
of links 1074 17981 178271 526392 31,299 5429
of classes 4 17 2 2 2 7

*Number of labeled nodes is smaller than the total number of nodes in the graph.
Source: The Author

ing in the million bytes of the Wikipedia dump, where the labels are grammatical tags;

ecoli (SCHAPKE et al., 2020), a PPI network for the Escherichia coli organism; yeast

(SCHAPKE et al., 2020), a PPI network for the Saccharomyces cerevisiae organism;

twitch_pt_br (ROZEMBERCZKI; ALLEN; SARKAR, 2019), a network of twitch users

that create content using the same language where the links are mutual friendships and the

labels indicate if a user uses explicit language; and cora (ORBIFOLD, 2019), a citation

network where the nodes are papers and the labels indicate the subject of the paper.

Since the experiment in focused on supervised learning for node classification,

the library expects that every node has a label, which is not the case for ecoli and yeast.

In order to treat this, the embeddings are generated using the complete graph, but the

classification task uses only the representation of the nodes that have labels.

brazilian_air_traffic and cora are relatively balanced multiclass networks, having

more or less an equal distribution of nodes between their many classes. wikipedia is an

unbalanced multiclass network, where the less represented class has around ten instances

in a graph with over 2400 nodes. twitch_pt_br, yeast and ecoli are binary, unbalanced

networks. This diversity in chosen networks allows us to better test the proposal, avoiding

a conclusion biased by the characteristic of the chosen dataset. The table 5.1 shows the

number of nodes, links and classes each dataset has.

30

6 RESULTS

The figures and tables bellow show the results from the experiments on brazil-

ian_air_traffic (Tables 6.1 and 6.2 and Figure 6.1), cora (Tables 6.3 and 6.4 and Figure

6.2), ecoli (Tables 6.5 and 6.6 and Figure 6.3), twitch_pt_br (Tables 6.7 and 6.8 and Fig-

ure 6.4), wikipedia (Tables 6.9 and 6.10 and Figure 6.5), and yeast (Tables 6.11 and 6.12

and Figure 6.6). The tables show the average metrics obtained from the results of the five

runs for each experiment, both using the basic evaluation and the cross validation, while

the boxplot shows the distribution of the F1 score results of all five runs using the basic

evaluation.

The results of the first experiment, as seen in the first flowchart in Figure 4.1, can

be found in rows where the embedding value is sdne, deepWalk, node2vec or vote, and

where the classifier value is SVM. The results of the second experiment, as seen in the

second flowchart in Figure 4.1, are the ones in the rows with the same embedding values

as mentioned above, but with the classifier value as Bagging.

The same logic applies for the other two experiments. Both have the embedding

value as concat, but the third experiment (first flowchart in Figure 4.2) will have the

classifier value as SVM and the fourth experiment (second flowchart in Figure 4.2) will

have the classifier as Bagging.

6.1 Brazilian Air Traffic

The Brazilian Air Traffic graph represents the airport network in Brazil. The nodes

represent airports, the edges represent the existence of flights between these two airports

and the node classification indicates how busy the airport is.

For this dataset, the best results were obtained with SDNE and the concatenation,

with the predictions made by the soft vote also having a good result in the basic evaluation.

Meanwhile, both deepWalk and node2vec underperformed, with lower results both in the

basic evaluation and the cross validation. This can be explained by the fact that the node

classification for this graph is heavily related to its structure.

The use of the ensemble seems to have yielded slightly worse results for almost

all embeddings. This can be seen more clearly in the results of the cross validation, where

the difference between the ensemble and the simple classifier is larger.

31

Table 6.1: Table with the average results for the brazilian_air_traffic network obtained
with basic evaluation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
SVM sdne 0.73 0.08 0.74 0.73 0.74
Bagging sdne 0.71 0.05 0.74 0.72 0.72
SVM vote 0.69 0.11 0.70 0.69 0.69
SVM concat 0.64 0.04 0.66 0.65 0.64
Bagging concat 0.59 0.04 0.59 0.59 0.59
Bagging vote 0.58 0.06 0.58 0.59 0.60
Bagging deepWalk 0.53 0.09 0.53 0.54 0.55
SVM deepWalk 0.52 0.11 0.52 0.53 0.53
SVM node2vec 0.44 0.09 0.46 0.45 0.45
Bagging node2vec 0.42 0.08 0.44 0.43 0.43

Source: The Author

Table 6.2: Table with the average results for the brazilian_air_traffic network obtained
with cross validation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
SVM concat 0.63 0.03 0.64 0.66 0.64
SVM sdne 0.62 0.10 0.63 0.65 0.63
Bagging concat 0.58 0.03 0.59 0.61 0.60
Bagging sdne 0.56 0.11 0.59 0.60 0.58
SVM deepWalk 0.53 0.04 0.55 0.56 0.55
SVM node2vec 0.51 0.05 0.52 0.54 0.52
Bagging deepWalk 0.47 0.05 0.49 0.50 0.49
Bagging node2vec 0.45 0.06 0.48 0.47 0.48

Source: The Author

32

Figure 6.1: Boxplot showing distribution of F1 score results for brazilian_air_traffic net-

work

/

Brazilian Air Traffic - Distribution F1 Score (basic evaluation)

concatenation deepWalk node2vec sdne vote concatenation deepWalk node2vec sdne vote
Embedding

BaggingClassifier SVM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

F1
 S

co
re

Source: The Author

6.2 Cora

Cora is a citation graph. The nodes represent papers, the edges indicate that one

paper has cited the other, and the node classification shows the paper’s subject.

This dataset had very similar results for most experiments, with little variation be-

tween the scores of the concatenation, deepWalk and node2vec. The predictions made

by the soft vote had a surprisingly good result for this graph, while SDNE greatly un-

derperfomed. Just as mentioned in Section 6.1, this is probably due to the nature of the

node labels, except in this graph they are highly related to the neighborhood instead of

the structure.

Once again, the ensemble did not have a big impact in the results. This time,

however, there was no slight worsening of the metrics, with most results either slightly

better or the same as the ones obtained with the simple classifier.

33

Table 6.3: Table with the average results for the cora network obtained with basic evalu-
ation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging vote 0.84 0.01 0.85 0.82 0.84
SVM vote 0.83 0.02 0.85 0.82 0.84
Bagging concat 0.73 0.27 0.74 0.74 0.73
SVM deepWalk 0.73 0.27 0.74 0.74 0.73
SVM concat 0.73 0.27 0.74 0.74 0.73
Bagging deepWalk 0.73 0.27 0.74 0.74 0.73
Bagging node2vec 0.73 0.27 0.73 0.74 0.72
SVM node2vec 0.73 0.27 0.73 0.74 0.72
Bagging sdne 0.19 0.12 0.36 0.26 0.23
SVM sdne 0.19 0.12 0.36 0.24 0.23

Source: The Author

Table 6.4: Table with the average results for the cora network obtained with cross valida-
tion

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging concat 0.83 0.01 0.84 0.85 0.83
SVM deepWalk 0.83 0.00 0.84 0.85 0.83
SVM concat 0.83 0.01 0.84 0.84 0.83
Bagging deepWalk 0.83 0.01 0.84 0.85 0.82
Bagging node2vec 0.83 0.01 0.83 0.84 0.81
SVM node2vec 0.83 0.01 0.84 0.85 0.81
Bagging sdne 0.17 0.00 0.38 0.25 0.22
SVM sdne 0.17 0.00 0.38 0.24 0.22

Source: The Author

34

Figure 6.2: Boxplot showing distribution of F1 score results for cora network

/

Cora - Distribution F1 Score (basic evaluation)

concatenation deepWalk node2vec sdne vote concatenation deepWalk node2vec sdne vote
Embedding

BaggingClassifier SVM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

F1
 S

co
re

Source: The Author

6.3 Ecoli

The ecoli dataset is a PPI network where nodes represent proteins, the edges rep-

resent a mathematical representation of physical interactions between proteins, and the

classification indicates gene essentiality (an essential gene is one that the organism re-

quires to survive or reproduce normally).

This dataset was the only one to see an improvement in the results when using

concatenation, which can be explained by its more complex node classification that ben-

efits from having more information from both characteristics. This can also be seen in

the fact that all three individual embeddings had very similar results, both in the basic

evaluation and the cross validation. It also possible to observe a big improvement when

using the soft vote. This was one of the few datasets in which the concatenation was not

so close to the best result, even though, as mentioned above, it was an improvement over

the individual embeddings.

This was also another dataset where the ensemble was responsible for a slight

improvement in results when compared to the simple classifier, although still not by much.

It should be noted that in this case this was a more constant improvement, and there was

35

Table 6.5: Table with the average results for the ecoli network obtained with basic evalu-
ation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging vote 0.59 0.05 0.79 0.56 0.95
SVM vote 0.58 0.06 0.77 0.55 0.95
Bagging concat 0.48 0.18 0.81 0.59 0.52
SVM concat 0.47 0.17 0.79 0.66 0.51
Bagging deepWalk 0.46 0.18 0.81 0.59 0.50
Bagging node2vec 0.46 0.18 0.81 0.53 0.50
SVM deepWalk 0.45 0.18 0.80 0.51 0.50
SVM node2vec 0.45 0.18 0.80 0.43 0.49
Bagging sdne 0.43 0.16 0.79 0.43 0.49
SVM sdne 0.43 0.16 0.80 0.42 0.49

Source: The Author

Table 6.6: Table with the average results for the ecoli network obtained with cross valida-
tion

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging concat 0.55 0.04 0.94 0.68 0.54
SVM concat 0.53 0.02 0.94 0.77 0.53
Bagging deepWalk 0.50 0.00 0.94 0.64 0.51
Bagging node2vec 0.49 0.01 0.94 0.58 0.50
SVM deepWalk 0.49 0.01 0.94 0.55 0.50
Bagging sdne 0.49 0.00 0.94 0.48 0.50
SVM node2vec 0.49 0.00 0.94 0.47 0.50
SVM sdne 0.49 0.00 0.94 0.47 0.50

Source: The Author

no instance where the ensemble did not have a better result than the simple classifier.

36

Figure 6.3: Boxplot showing distribution of F1 score results for ecoli network

/

Ecoli- Distribution F1 Score (basic evaluation)

concatenation deepWalk node2vec sdne vote concatenation deepWalk node2vec sdne vote
Embedding

BaggingClassifier SVM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

F1
 S

co
re

Source: The Author

6.4 Twitch PTBR

The Twitch PTBR graph represents the relationship network between Twitch (a

video stream platform) users. Nodes represent users that create content in Brazilian Por-

tuguese, the edges represent a friendship between users and the classification indicates if

the user uses explicit language or not.

This dataset had some of the most similar results when comparing all experiments.

The SDNE embedding had an underperfomance when compared to the rest, but not as

much as it did in other datasets. All other embeddings had very similar results, with the

concatenation being slightly worse than the others. Due to the nature of the classification

done here (whether a user uses explicit language or not), it can be hard to pinpoint which

characteristic would be more important. Although we can assume the neighborhood is

more important, this is an analysis done after the fact, and it is helped by the results seen

in datasets where we can derive this information before doing any experiments.

This was a graph where the use of the ensemble did not have a very consistent

result, so we are not able to draw any conclusion other than the fact that it did not seem

to change the results much.

37

Table 6.7: Table with the average results for the twitch_pt_br network obtained with basic
evaluation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
SVM vote 0.54 0.02 0.67 0.57 0.68
Bagging vote 0.53 0.01 0.67 0.56 0.68
Bagging deepWalk 0.52 0.19 0.60 0.57 0.53
SVM deepWalk 0.52 0.19 0.60 0.58 0.53
SVM node2vec 0.52 0.19 0.60 0.57 0.54
Bagging node2vec 0.52 0.19 0.60 0.56 0.53
Bagging concat 0.51 0.19 0.60 0.57 0.53
SVM concat 0.50 0.18 0.60 0.56 0.52
SVM sdne 0.41 0.15 0.57 0.52 0.47
Bagging sdne 0.41 0.15 0.57 0.53 0.47

Source: The Author

Table 6.8: Table with the average results for the twitch_pt_br network obtained with cross
validation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging node2vec 0.59 0.01 0.68 0.65 0.59
SVM node2vec 0.59 0.02 0.69 0.66 0.60
Bagging deepWalk 0.59 0.02 0.69 0.66 0.60
SVM deepWalk 0.59 0.02 0.69 0.66 0.60
Bagging concat 0.58 0.01 0.69 0.66 0.59
SVM concat 0.57 0.03 0.68 0.65 0.58
SVM sdne 0.45 0.03 0.66 0.59 0.52
Bagging sdne 0.45 0.02 0.66 0.61 0.52

Source: The Author

38

Figure 6.4: Boxplot showing distribution of F1 score results for twitch_pt_br network

/

Twitch PTBR - Distribution F1 Score (basic evaluation)

concatenation deepWalk node2vec sdne vote concatenation deepWalk node2vec sdne vote
Embedding

BaggingClassifier SVM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

F1
 S

co
re

Source: The Author

6.5 Wikipedia

The Wikipedia graph represents the words present in the first million bytes of a

Wikipedia content dump. The nodes are words, the edges indicate that two words ap-

peared beside each other, and the classification indicates a linguistic classification called

Part of Speech.

This graph had very interesting results. It was the only one where the soft vote had

a massive underperformance when compared to all other embeddings, which had similarly

high F1 scores in the basic evaluation. It was also the only one where the cross validation

yielded results that were much lower than the ones obtained with the basic evaluation,

although the order of which embedding performed best did not change much.

This was another one where, similar to most of the others, the concatenation was

close to the best results, but unlike the other graphs, there was no individual embedding

that massively underperfomed.

It was also the one dataset that saw bigger improvements with the ensemble in

the cross validation. The results with node2vec and deepWalk improved almost 0.1 when

compared with the results obtained with the simple classifier, while the improvements

39

Table 6.9: Table with the average results for the wikipedia network obtained with basic
evaluation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging node2vec 0.93 0.14 0.60 0.63 0.60
Bagging deepWalk 0.93 0.14 0.60 0.63 0.60
SVM concat 0.92 0.15 0.55 0.61 0.55
Bagging concat 0.92 0.15 0.54 0.60 0.55
SVM deepWalk 0.92 0.15 0.52 0.56 0.52
Bagging sdne 0.92 0.16 0.54 0.59 0.54
SVM node2vec 0.92 0.15 0.52 0.56 0.52
SVM sdne 0.91 0.16 0.52 0.55 0.52
SVM vote 0.57 0.03 0.65 0.54 0.71
Bagging vote 0.55 0.02 0.62 0.53 0.70

Source: The Author

Table 6.10: Table with the average results for the wikipedia network obtained with cross
validation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging node2vec 0.61 0.02 0.71 0.64 0.60
Bagging deepWalk 0.60 0.02 0.70 0.64 0.59
SVM concat 0.56 0.02 0.67 0.61 0.54
Bagging concat 0.56 0.02 0.68 0.61 0.54
Bagging sdne 0.55 0.12 0.65 0.61 0.54
SVM deepWalk 0.52 0.10 0.64 0.56 0.52
SVM node2vec 0.52 0.10 0.64 0.56 0.52
SVM sdne 0.52 0.10 0.64 0.56 0.52

Source: The Author

seen in other datasets were around 0.01.

40

Figure 6.5: Boxplot showing distribution of F1 score results for wikipedia network

/

Wikipedia - Distribution F1 Score (basic evaluation)

concatenation deepWalk node2vec sdne vote concatenation deepWalk node2vec sdne vote
Embedding

BaggingClassifier SVM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

F1
 S

co
re

Source: The Author

6.6 Yeast

The yeast graph is a PPI similar to the ecoli one. Nodes represent proteins, edges

represent protein interactions and the classification indicates gene essentiality.

As the largest graph, and one of the most complex in the selected datasets, the

results obtained by the yeast dataset were the least conclusive of all. It was the only one

where the concatenation was not close to the best results, and its performance was actually

closer to the worst. node2vec and deepWalk had the best results, specially in the cross

validation, but they lost by a big margin to the soft vote when using the basic evaluation.

The ensemble results were also inconclusive. Like in the twitch graph, there was

no consistency on whether the results were better or worse than when using the simple

classifier, and even when it did change the results it was not by much.

41

Table 6.11: Table with the average results for the yeast network obtained with basic eval-
uation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
SVM vote 0.85 0.01 0.92 0.81 0.92
Bagging vote 0.84 0.02 0.92 0.80 0.92
Bagging node2vec 0.77 0.29 0.81 0.79 0.76
SVM node2vec 0.77 0.29 0.81 0.79 0.76
SVM deepWalk 0.72 0.27 0.79 0.76 0.71
Bagging deepWalk 0.72 0.27 0.79 0.75 0.71
Bagging concat 0.59 0.22 0.73 0.65 0.59
SVM concat 0.57 0.21 0.72 0.65 0.58
SVM sdne 0.50 0.18 0.72 0.69 0.52
Bagging sdne 0.49 0.17 0.71 0.70 0.52

Source: The Author

Table 6.12: Table with the average results for the yeast network obtained with cross vali-
dation

Classifier Embedding F1 Score Std Dev F1 Score Precision Recall Accuracy
Bagging node2vec 0.88 0.00 0.93 0.91 0.86
SVM node2vec 0.88 0.01 0.93 0.91 0.86
SVM deepWalk 0.82 0.00 0.90 0.87 0.79
Bagging deepWalk 0.82 0.01 0.90 0.87 0.79
Bagging concat 0.67 0.01 0.84 0.75 0.65
SVM concat 0.65 0.02 0.84 0.75 0.63
SVM sdne 0.55 0.04 0.83 0.81 0.55
Bagging sdne 0.54 0.01 0.82 0.82 0.55

Source: The Author

42

Figure 6.6: Boxplot showing distribution of F1 score results for yeast network

/

Yeast - Distribution F1 Score (basic evaluation)

concatenation deepWalk node2vec sdne vote concatenation deepWalk node2vec sdne vote
Embedding

BaggingClassifier SVM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Av
er

ag
e

F1
 S

co
re

Source: The Author

6.7 Conclusions

As seen by the results, the concatenation of embeddings does not necessarily im-

prove upon every embedding method tested. In fact, when a network had labels that

highly correlated with the structure or the neighborhood, algorithms more tailored to that

specific characteristic had better results. The concatenation, however, seemed to have

one advantage over any individual embedding: a very good result regardless of which

characteristic mattered more for the node classification in each graph.

SDNE, for example, had very good results in the airtraffic network, as seen in

Table 6.1. This graph classified its nodes using a metric (how busy the airport is) that is

highly related to the number of connections each node has, so SDNE was able to capture

the structural information that was very useful for the classifiers in this task. deepWalk, on

the other hand, a method that focuses more on the neighborhood of each node, had better

results with graphs like wikipedia, as seen in Table 6.9 which used a metric (linguistic

classification) that was better informed by what was present in its neighborhood instead

of just the number of links.

None of those individual embeddings, however, managed to have a good perfor-

43

mance in every network tested, while the concatenation was constantly amongst the best

results, often having very similar metrics to the best one. This can be very useful for

networks where the classification is not as clearly related to one characteristic, because

it allows researchers to train only one classifier and have a satisfactory result, instead of

training several with different embeddings as input, saving on time and computer process-

ing power.

Another positive aspect of the concatenation is the possible improvement over

individual embeddings in networks where the classification is not directly related to one

single characteristic, often needing information from both of them for a more accurate

classification. The results were less conclusive in this direction, since we can see this

improvement on the ecoli graph, shown in Table 6.5, but a similarly complex network like

yeast (Table 6.11) saw worst results with the concatenation than with all three individual

embeddings.

An interesting point to note is that the soft voting done with the predictions of

each individual embedding also had very good results in every network, including a minor

improvement over the individual embeddings in the yeast networks. This could indicate

that a better way to combine individual embeddings is a soft vote of predictions made

by classifiers trained by each representation, since it consistently had similar or better

results than the concatenation and did not show an underperfomance on any network.

This method, however, still requires more time and computational resources since it needs

to train multiple models with different data, so the concatenation can often be a better

alternative, specially since after you train all classifiers you could just choose the best of

them.

As for the use of an ensemble instead of a simple classifier, the difference seems to

be negligible, both in the individual classifiers and the concatenated embeddings. It could

be due to the choice of ensemble, the choice of the classifier used for the ensemble, the

chosen parameters or any combination of those things. Either way, based on the results it

seems that the computational cost of a basic ensemble is not worth it when applied to a

node classification task.

44

7 CONCLUSION

From the results shown in the previous chapter, it is possible to conclude that,

while concatenating different embeddings does not necessarily improve upon the best

result you can obtain with a well chosen embedding algorithm, it can be a useful tool

to save on time and processing power and still get very good results when the choice of

the best embedding method to use is not obvious. On the other hand, using an ensemble

did not produce any meaningful differences in the results when compared to a simple

classifier.

Further research is needed in order to test this approach in complex, unbalanced

graphs, since the results obtained with the two networks used that had both these char-

acteristics (ecoli and yeast) were less conclusive than the rest. Since there were other

unbalanced, but simpler, networks used in the evaluations that had good results, the more

interesting approach seems to be focusing on the complexity of the data.

Other works could also explore the use of dimensionality reduction on the repre-

sentation obtained by the concatenation process before feeding it to classification models.

Since the size of the embedding vector effectively triples after the concatenation, the

larger dimensionality could be one of the reasons for the slightly worse performances

it had when compared to vector with less information but smaller. The use of dimen-

sionality reduction could improve results by eliminating noise in the representation while

maintaining important extra information.

Another aspect that could use further work is the optimization of the parameters

for each embedding algorithm. While we used hyperparametrization for classifier param-

eters, no such things was used when configuring the embedding algorithms, since we used

the default values set by the external implementation, and did no other tests to see how

much this aspect could change the results.

Finally, there is a possibility to expand upon the proposal by exploring the use of

a soft vote instead of a concatenation. As mentioned in the results, this could be a better

approach to improving upon individual embeddings in more complex networks. Another

approach to this vote can be the use of a stacking ensemble instead of a simple soft vote,

which could use the concept of ensemble to better combine the existing predictions.

45

REFERENCES

ATA, S. K. et al. Integrating node embeddings and biological annotations for genes to
predict disease-gene associations. BMC Systems Biology, BioMed Central Ltd., v. 12,
dec 2018. ISSN 17520509.

BBEIMAN, L. Bagging Predictors. [S.l.], 1996. v. 24, 123–140 p.

BELKIN, M.; NIYOGI, P. Laplacian Eigenmaps and Spectral Techniques for
Embedding and Clustering. [S.l.], 2001.

CAI, H.; ZHENG, V. W.; CHANG, K. C.-C. A Comprehensive Survey of Graph
Embedding: Problems, Techniques and Applications. sep 2017. Available from Internet:
<http://arxiv.org/abs/1709.07604>.

CHU, W.; PARK, S. T. Personalized recommendation on dynamic content using
predictive bilinear models. WWW’09 - Proceedings of the 18th International World
Wide Web Conference, p. 691–700, 2009.

CORTES, C. Support-Vector Networks. [S.l.], 1995. v. 20, 273–297 p.

DENG, L.; LI, X. Machine learning paradigms for speech recognition: An overview.
IEEE Transactions on Audio, Speech and Language Processing, v. 21, n. 5, p.
1060–1089, 2013. ISSN 15587916.

DIETTERICH, T. G. Ensemble Methods in Machine Learning. [S.l.], 2000. Available
from Internet: <http://www.cs.orst.edu/{~}t>.

FORTUNATO, S.; CASTELLANO, C. Community Structure in Graphs. Computational
Complexity: Theory, Techniques, and Applications, Springer New York,
v. 9781461418009, p. 490–512, dec 2007. Available from Internet: <http:
//arxiv.org/abs/0712.2716>.

GOOGLE, A. A. et al. Distributed Large-scale Natural Graph Factorization * Shravan
Narayanamurthy. In: 22nd International World Wide Web Conference. [S.l.: s.n.],
2013. ISBN 9781450320351.

GOYAL, P.; FERRARA, E. Graph Embedding Techniques, Applications, and
Performance: A Survey. Knowledge-Based Systems, Elsevier B.V., v. 151, p.
78–94, may 2017. Available from Internet: <http://arxiv.org/abs/1705.02801http:
//dx.doi.org/10.1016/j.knosys.2018.03.022>.

GOYAL, P. et al. Graph Representation Ensemble Learning. sep 2019. Available from
Internet: <http://arxiv.org/abs/1909.02811>.

GROVER, A.; LESKOVEC, J. node2vec: Scalable Feature Learning for Networks. 2016.
Available from Internet: <http://dx.doi.org/10.1145/2939672.2939754>.

GUZELLA, T. S.; CAMINHAS, W. M. A review of machine learning approaches
to Spam filtering. Expert Systems with Applications, Elsevier Ltd, v. 36,
n. 7, p. 10206–10222, 2009. ISSN 09574174. Available from Internet: <http:
//dx.doi.org/10.1016/j.eswa.2009.02.037>.

http://arxiv.org/abs/1709.07604
http://www.cs.orst.edu/{~}t
http://arxiv.org/abs/0712.2716
http://arxiv.org/abs/0712.2716
http://arxiv.org/abs/1705.02801 http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://arxiv.org/abs/1705.02801 http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://arxiv.org/abs/1909.02811
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1016/j.eswa.2009.02.037
http://dx.doi.org/10.1016/j.eswa.2009.02.037

46

HAMILTON, W. L.; YING, R.; LESKOVEC, J. Representation Learning on Graphs:
Methods and Applications. [S.l.], 2017.

HENDERSON, K. et al. RolX: Structural Role Extraction Mining in Large Graphs.
2012.

JADHAV, S. et al. Disease Prediction by Machine Learning from Healthcare
Communities. International Journal of Scientific Research in Science and
Technology, p. 29–35, 2019. ISSN 2395-6011.

KONONENKO, I. Machine learning for medical diagnosis: history, state of the art and
perspective. Artificial intelligence in medicine, v. 23, n. 1, p. 89–109, 2001. ISSN
0933-3657. Available from Internet: <http://www.ncbi.nlm.nih.gov/pubmed/11470218>.

MIKOLOV, T. et al. Efficient estimation of word representations in vector space. In: 1st
International Conference on Learning Representations, ICLR 2013 - Workshop
Track Proceedings. International Conference on Learning Representations, ICLR, 2013.
Available from Internet: <http://ronan.collobert.com/senna/>.

MITCHELL, T. Machine Learning. [S.l.]: McGraw Hill, 1997.

ORBIFOLD. The Cora Dataset. 2019. Available from Internet:
<https://graphsandnetworks.com/the-cora-dataset/>.

OU, M. et al. Asymmetric transitivity preserving graph embedding. In: Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. [S.l.]: Association for Computing Machinery, 2016. v. 13-17-August-2016, p.
1105–1114. ISBN 9781450342322.

PAK, M.; KIM, S. A review of deep learning in image recognition. Proceedings of the
2017 4th International Conference on Computer Applications and Information
Processing Technology, CAIPT 2017, v. 2018-January, p. 1–3, 2018.

PEROZZI, B.; AL-RFOU, R.; SKIENA, S. DeepWalk: Online learning of social
representations. In: Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, New York, USA: Association
for Computing Machinery, 2014. p. 701–710. ISBN 9781450329569. Available from
Internet: <http://dl.acm.org/citation.cfm?doid=2623330.2623732>.

ROZEMBERCZKI, B.; ALLEN, C.; SARKAR, R. Multi-scale Attributed Node
Embedding. 2019.

RUSSELL, S. J.; NORVIG, P. Artificial Intelligence: A Modern Approach, 4th
edition. [S.l.]: McGraw Hill, 2020.

SCARSELLI, F. et al. The graph neural network model. IEEE Transactions on Neural
Networks, Institute of Electrical and Electronics Engineers Inc., v. 20, n. 1, p. 61–80, jan
2009. ISSN 10459227.

SCHAPKE, J. et al. EPGAT: Gene Essentiality Prediction With Graph Attention
Networks. [S.l.], 2020.

http://www.ncbi.nlm.nih.gov/pubmed/11470218
http://ronan.collobert.com/senna/
https://graphsandnetworks.com/the-cora-dataset/
http://dl.acm.org/citation.cfm?doid=2623330.2623732

47

SHEPARD, . R. N. et al. Nonlinear Dimensionality Reduction by Locally
Linear Embedding. [S.l.], 1994. v. 1, n. 2, 50 p. Available from Internet:
<www.research.att.com/yann/ocr/mnist.>

SUROWIECKI, J. The Wisdom of Crowds: Why the Many Are Smarter Than
the Few and How Collective Wisdom Shapes Business, Economies, Societies and
Nations. [S.l.]: Doubleday, 2004.

WANG, D.; CUI, P.; ZHU, W. Structural Deep Network Embedding. 2016.

WANG, G. et al. A comparative assessment of ensemble learning for credit scoring.
Expert Systems with Applications, Elsevier Ltd, v. 38, n. 1, p. 223–230, 2011. ISSN
09574174. Available from Internet: <http://dx.doi.org/10.1016/j.eswa.2010.06.048>.

WU, J.; HE, J.; XU, J. Demo-net: Degree-specific graph neural networks for node
and graph classification. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery Data Mining. [S.l.: s.n.], 2019. p. 406–415.

ZHANG, B.; XIANG, J.; WANG, X. Ensemble learning for network embeddings.
In: Proceedings - 21st IEEE International Conference on High Performance
Computing and Communications, 17th IEEE International Conference on Smart
City and 5th IEEE International Conference on Data Science and Systems,
HPCC/SmartCity/DSS 2019. [S.l.]: Institute of Electrical and Electronics Engineers
Inc., 2019. p. 945–951. ISBN 9781728120584.

ZHANG, B.; XIANG, J.; WANG, X. Network representation learning with ensemble
methods. Neurocomputing, Elsevier B.V., v. 380, p. 141–149, mar 2020. ISSN
18728286.

www.research.att.com/yann/ocr/mnist.
http://dx.doi.org/10.1016/j.eswa.2010.06.048

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Theoretical Background
	2.1 Machine Learning
	2.1.1 Support-vector classification
	2.1.2 Ensemble learning

	2.2 Machine learning on graphs with node embedding
	2.2.1 Matrix factorization based
	2.2.2 Random walk-based
	2.2.2.1 node2vec
	2.2.2.2 DeepWalk

	2.2.3 Neural network-based

	3 Related Work
	3.1 Combining more information to embeddings
	3.2 Ensemble for tasks on graphs

	4 Proposal
	5 Experiments
	5.1 Implementation
	5.2 Chosen data

	6 Results
	6.1 Brazilian Air Traffic
	6.2 Cora
	6.3 Ecoli
	6.4 Twitch PTBR
	6.5 Wikipedia
	6.6 Yeast
	6.7 Conclusions

	7 Conclusion
	References

