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Triple point of synchronization, phase singularity, and excitability along the transition between
unbounded and bounded phase oscillations in a forced nonlinear oscillator
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We report the discovery of a codimension-two phenomenon in the phase diagram of a second-order self-
sustained nonlinear oscillator subject to a constant external periodic forcing, around which three regimes
associated with the synchronization phenomenon exist, namely phase-locking, frequency-locking without
phase-locking, and frequency-unlocking states. The triple point of synchronization arises when a saddle-node
homoclinic cycle collides with the zero-amplitude state of the forced oscillator. A line on the phase diagram
where limit-cycle solutions contain a phase singularity departs from the triple point, giving rise to a codimension-
one transition between the regimes of frequency unlocking and frequency locking without phase locking. At the
parameter values where the critical transition occurs, the forced oscillator exhibits a separatrix with a π phase
jump, i.e., a particular trajectory in phase space that separates two distinct behaviors of the phase dynamics.
Close to the triple point, noise induces excitable pulses where the two variants of type-I excitability, i.e., pulses
with and without 2π phase slips, appear stochastically. The impacts of weak noise and some other dynamical
aspects associated with the transition induced by the singular phenomenon are also discussed.
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I. INTRODUCTION

The synchronization phenomenon, singular phenomena,
and excitability are subjects of interest in theoretical and ap-
plied sciences. Synchronization arises in several areas such as
biology, chemistry, and physics [1–5]. Nonlinear oscillations
play a central role in synchronization, where the case of a
single macroscopic oscillator subject to a constant external
periodic forcing is a relevant situation that has attracted the
attention of the scientific community for a long time [6–9].
In dynamical systems, the impact of singularities, i.e., excep-
tional points associated with the divergence of some quantity
that eventually appear in mathematical descriptions of natural
phenomena, is another topic of considerable attention. For ex-
ample, phase singularity is discussed by Winfree in biological
contexts [1]. Other examples of singular phenomena arise in
chemistry [10] and physics, including vortex dynamics [11],
magnetic reconnection [12], and shock waves [13]. Last, the
excitable behavior of nonlinear oscillators due to applied stim-
uli or random fluctuations is a relevant topic within the study
of complex systems [14,15]. In particular, the excitable prop-
erties of optoelectronic devices has recently received a large
amount of attention due to the possibility to mimic neuron
networks to explore neurocomputational properties [16].

In this article we investigate the nonlinear dynamics of a
two-dimensional self-sustained oscillator subject to a constant
external periodic force, a system where the above mentioned
topics are connected. Our main interest is to investigate
the phase dynamics of the forced nonlinear oscillator along
the transition between unbounded (drifting) and bounded
(trapped) phase oscillations, where a new qualitative scenario
is revealed. Unbounded and bounded phase oscillations are

generic dynamic behaviors in oscillatory systems. A simple
example in physical systems comes from mechanics, where a
nonlinear pendulum can exhibit a continuous turning through
vertical planar circles or back and forth oscillations. As it
is well known, the transition between both phase regimes,
i.e., phase rotations and phase oscillations, is marked by a
trajectory in phase space called separatrix [8,9,17]. Other
examples of systems exhibiting transitions between phase ro-
tations and phase oscillations arise in interacting oscillatory
systems, including an electronic oscillator with injected signal
[18], a pair of coupled nonlinear oscillators [19], an optically
injected semiconductor laser [20], three-wave interaction [21],
a dual-mode solid-state laser with self-injection [22], and a
forced hydrodynamically self-excited jet [23], just to name
a few. In this case, the phase difference between the forcing
and perturbated oscillators can be unbounded or bounded.
As it is well known, in systems able to exhibit synchroniza-
tion, a phase difference constant in time corresponds to a
synchronous state, in which both phase and frequency of the
perturbated oscillator are locked to the corresponding ones
of the forcing oscillation. A phase difference growing or de-
creasing unboundedly in time corresponds to an asynchronous
state, in which both phase and frequency are unlocked. And a
phase difference changing in time by performing bounded os-
cillations corresponds to a partial synchronous state, in which
the average frequency is locked, but the phase is unlocked.
This regime is usually referred to as phase trapping [18,19]
or frequency locking without phase locking [22]. In recent
years, there has been an increasing interest in investigations of
injection-locked oscillators discriminating oscillatory regimes
with unbounded and bounded phase, especially within the
field of optics [24–29]. Moreover, injection-locked oscillators
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constitute an important class of systems where distinct types
of excitability are observed [29–45]. The fact that phase oscil-
lations can be unbounded or bounded affects the geometrical
aspects that the excitability phenomenon manifests itself, as
we discuss below.

A classification of excitabilility was introduced by
Hodgkin, in the 1940s, and it is still usefull nowadays.
Hodgkin identified three types (classes) of excitability, ac-
cording to the type of response due to stimulus applied in
squid giant axons [46]. Later, in the 1980s, Rinzel and Er-
mentrout explained excitability in the light of the modern
dynamical bifurcation theory [47]. The various types of ex-
citable dynamics occur because there are different transitions
or bifurcations relating resting (stationary) and spiking (os-
cillatory) states. In Type-I excitability, excited pulses can be
generated with arbitrarily low frequencies and the associated
bifurcation is a saddle-node infinite period (SNIPER) bifurca-
tion, also called saddle-node on invariant circle or saddle-node
homoclinic bifurcation. In Type-II excitability, pulses are ex-
cited within a relatively narrow frequency band, and the usual
associated bifurcation is the Hopf bifurcation. In Type-III
excitability, the pulse repetition frequency is not defined, since
there is not a sustained spiking activity. In this case, there is
not a formal bifurcation associated. For further discussions
about classification and geometrical aspects of excitability
see, e.g., Refs. [48–51].

For small injection strengths, the transition between phase-
locking and phase-unlocking regimes involves a SNIPER
bifurcation, and the injection-locked oscillator exhibits Type-I
excitability. By looking at the oscillator’s phase dynamics,
the phase performs a 2π rotation when a pulse is excited.
These are the well-known 2π phase slips that occur close to
a transition from phase-locking to phase-unlocking regimes
with unbounded phase, being the basic scenario of Type-I
excitability observed in the Adler approximation [33,34]. For
large injection strengths, the transition between phase locking
and phase unlocking typically involves a Hopf bifurcation,
and the injection-locked oscillator exhibits Type-II excitabil-
ity [52]. In this case, the transition from phase locking to
phase unlocking involves a bounded-phase limit cycle, and
phase oscillations do not exhibit a full 2π rotation. This has
an important physical consequence since, when crossing the
Hopf bifurcation, the phase of the oscillator is unlocked from
the external signal, but the average frequency remains locked,
giving rise to the phase-trapping or frequency-locking without
phase-locking regime [19,22].

While Type-I excitability with the phase dynamics exhibit-
ing full 2π rotations is the most common situation appearing
in the literature, dynamical scenarios involving experiments
and simulations of excitable dynamics not accompanied by
2π phase rotations have been found in delay-coupled lasers
[34] and in a dual-mode laser with self-injection [29]. These
scenarios of bounded-phase dynamics are not due to the Type-
I excitability mechanism. Only very recently, it has been
found that Type-I excitable pulses can occur without being
accompanied by 2π phase rotations in a dual state quantum
dot laser with optical injection [45]. In this case, the excitable
response depends on the interplay of two lasing states oper-
ating in antiphase. Simulations of a nine-dimensional model
have identified an associated bounded-phase limit cycle when

crossing the SNIPER bifurcation, charactering a new variant
of Type-I excitability.

The aim of this manuscript is to present three main nov-
elties. First, we show that, when the injection strength is
increased in a simple planar model of an injection-locked
oscillator, there is a transition from a SNIPER bifurcation
with full 2π phase rotation to a SNIPER bifurcation in the
bounded-phase regime. This transition corresponds to a triple
point of synchronization, i.e., a codimension-two point in
the phase diagram of the injection-locked oscillator where
three distinct regimes of synchronization meet, namely phase-
locking (PL), frequency-locking without phase-locking (FL),
and frequency-unlocking (FU) states.

As we show here, a phase singularity plays an important
role in this transition and we discuss in detail this point.
Second, we show that, for moderate injection strengths, the
limit-cycle oscillations are very sensitive to the influence of
low-intensity noise. In this case, the planar injection-locked
oscillator can easily exhibit noise-induced alternation between
unbounded and bounded phase dynamics. Third, we show
that, close to the triple point of synchronization, noise induces
excitable pulses in which the two variants of Type-I excitabil-
ity appear randomly. In other words, noise induces stochastic
intensity pulsations that sometimes exhibit 2π phase slips and
at other times do not.

The manuscript is organized as follows. We investigate
theoretically a second order negative differential conductance
oscillator, with cubic nonlinearity, subject to a constant ex-
ternal periodic forcing, whose model is presented in Sec. II.
This model can describe distinct physical situations, and we
address the cases of electronic and optical oscillators in Ap-
pendices A and B, respectively. In Sec. III, we investigate the
deterministic aspects of the model. We present a bifurcation
analysis and discuss the phase dynamics scenario, focusing
on the associated dynamics due to the occurrence of a phase
singularity. In Sec. IV, we investigate the influence of a
low-intensity noise on the limit-cycle dynamics close to the
transition between FU and FL. In Sec. V, we investigate the
Type-I excitable dynamics of the injection locked oscillator.
In Sec. VI, we discuss some physical considerations about the
phase singularity and the impact on the dynamics of the forced
oscillator caused by the collision between the limit cycle and
the singular point. Finally, in Sec. VII, we present the main
conclusions of this work.

II. MODEL

We investigate the dynamics of a second-order nonlinear
oscillator subject to an external periodic driving, whose model
is given by

dA

dτ
= (1 − |A|2)A − j�A + κ + Dξ (τ ), (1)

where A represents the normalized complex amplitude of
the forced oscillator, while � and κ represent the frequency
detuning and the injection strength, respectively. The last ad-
ditive term in Eq. (1) represents some generic unavoidable
stochastic fluctuation affecting the oscillator’s dynamics. Here
ξ = ξx + iξy is a complex noise source, where ξx and ξy are
two independent white noise sources with zero mean and
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unitary variance. D is the noise strength. Equation (1) can
describe many distinct physical situations of a self-sustained
oscillator under the influence of an external periodic signal.
By writing the deterministic part of Eq. (1) in terms of ampli-
tude and phase of the complex amplitude A = ae jφ , we have
the following pair of equations:

da

dτ
= (1 − a2)a + κ cos φ, (2)

dφ

dτ
= −� − κ

a
sin φ, (3)

where a is the normalized amplitude of the forced oscillator,
while φ is the phase difference between the self-sustained
oscillator and the external signal. When the strength of the
external signal is weak, the amplitude of the forced oscillator
remains almost unchanged and Eq. (1) can be reduced to
the well-known Adler equation [53] [which is Eq. (3) with
a = 1]. Thus, Eq. (1) represents a model of a periodically
driven self-sustained oscillator when amplitude perturbations
just beyond the Adler approximation are taken into account.
Physical situations modeled by Eq. (1) arise in, e.g., nega-
tive differential conductance devices subject to an external
periodic force, such as externally driven electronic or optical
oscillators. In the context of electronic oscillators, Eq. (1) is
the variational equation of the forced Van der Pol oscillator
[18,54,55]. It can also be obtained by modeling a nonlinear
electronic circuit with an injected signal, as we illustrate in
Appendix A. In the context of optics, Eq. (1) can be obtained
by performing a variable transformation in the cubic laser
model with optical injection, as we show in Appendix B.
Equation (1) can also be obtained as a particular case of the
more general problem of considering small periodic perturba-
tions on systems exhibiting a Hopf bifurcation [56]. In this
context, generalizations of Eq. (1) have been investigated in
the literature, such as studies of subharmonic resonance [57]
and analysis including the variation of a third parameter that
controls the distance from the Hopf bifucation [58]. In another
general context, an amplitude and phase model similar to
Eqs. (2) and (3) have been obtained and analyzed by Childs
and Strogatz [59] by doing a reduction of the forced Kuramoto
model to a low-dimensional (planar) system.

III. TRIPLE POINT OF SYNCHRONIZATION AND
SEPARATRIX WITH π PHASE JUMP

Despite being two dimensional, the noise-free nonlinear
oscillator described by Eq. (1) presents a relatively rich
dynamical scenario due to nonlinear effects of amplitude
perturbations. Many aspects of its nonlinear dynamics on
variation of the injection parameters have been extensively
investigated in the past and are well known [18,54–56]. Basic
scenarios of transition between phase-locking states (station-
ary states) and phase-unlocking states (limit cycles) can be
observed through saddle-node or Hopf codimension-one bi-
furcations, which are connected through codimension-two
Bogdanov-Takens (BT) bifurcations [55]. Also, homoclinic
[55] and frequency pulling [56] phenomena are well known to
occur. For small injection strengths, the transition from phase-
locking to phase-unlocking regimes is through a SNIPER
bifurcation. As the injection strength increases, the saddle-
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FIG. 1. Phase diagram and the associated bifurcation set of the
forced nonlinear oscillator as a function of the injection parameters
(κ, �). A global view is shown in (a) and a magnification of the re-
gion with complex dynamics is shown in (b). Gray tones correspond
to parameter regions with stable phase-locked states (PL) (light and
dark gray tones denote regions with overdamped and damped relax-
ation oscillations, respectively). Distinct line types denote SNIPER,
saddle-node (SN), unstable saddle-node (USN), Hopf (HB), and
Homoclinic (Hom) bifurcations. ZAH denotes the triple point of
synchronization, from which the phase singularity (PS) line emerges.
BT, C, and SNL denote Bogdanov-Takens, cusp, and saddle-node
loop codimension-two points, respectively. White and hatched ar-
eas correspond to frequency-unlocking (FU) and frequency-locking
without phase-locking (FL) states, respectively. The dynamics re-
lated to the point marked by (+) is investigated in Sec. IV.

node limit cycle becomes noncentral at the saddle node loop
codimension-two point (SNL), and a saddle homoclinic bi-
furcation takes place, existing up to the BT bifurcation. For
large injection strengths, the transition between phase lock-
ing and phase unlocking is through a Hopf bifurcation. All
this well-known scenario is illustrated in Figs. 1(a) and 1(b).
Figure 1 discriminates three distinct regimes related to the
synchronization properties of the forced oscillator, namely
PL, FL, and FU, denoted by gray tones, hatched, and white
areas, respectively. As can be seen in Fig. 1(a), the FL regime,
i.e., the bounded-phase oscillatory regime, appears as an in-
termediate step along the complete transition between PL and
FU states on crossing the Hopf bifurcation. However, the FL
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FIG. 2. Phase-space plots illustrating the evolution of the homo-
clinic cycles up to the BT point. (×) denotes the zero-amplitude
state, ( ) the saddle-node equilibrium, (©) the saddle equilib-
rium, and (•) the node equilibrium. The injection parameters
(κ,�), as well as the corresponding points marked in Fig. 1, are
(a) (0.5000, −0.5220) (point a), (b) (0.5131, −0.537733) (ZAH
point), (c) (0.5185, −0.5443) (point c), (d) (0.5235, −0.5505) (SNL
point), (e) (0.5185, −0.5380) (point e), and (f) (0.5000, −0.5000)
(BT point).

regime is not only associated with the Hopf bifurcation, but
can also be associated with the SNIPER bifurcation, as we
elucidate here [see Fig. 1(b)]. We discuss this point in detail
below.

A situation that has not been fully investigated until now
is related to the transition between FU and FL states. This
codimension-one transition between unbounded and bounded
phase oscillations in an injection-locked oscillator were stud-
ied by Cartwright a long time ago [18]. Here we show that this
transition originates at a special codimension-two point lo-
cated at the SNIPER bifurcation, denoted by ZAH in Fig. 1(b).
At this point, the zero-amplitude state of the forced oscilla-
tor collides with the SNIPER orbit, i.e., a homoclinic orbit
containing a saddle-node equilibrium point. The ZAH point
corresponds to a triple point of synchronization, where the
three regimes FU, FL, and PL meet. To better understand the
scenario of the phase dynamics along the SNIPER bifurcation,
we plot the homoclinic orbits for some representative injec-
tion parameter values in Fig. 2. The homoclinic orbits were
obtained with AUTO [60] by numerical integration of Eq. (1)
without the noise term and depicted as functions of the com-
ponents of the complex amplitude A = ax + iay. A SNIPER
orbit associated with the appearance or disappearance of limit
cycles with unbounded phase, which occurs for small injec-
tion strengths, is illustrated in Fig. 2(a). It is easy to see that,
since the origin (Re(A), Im(A)) = (0, 0) is in the interior of
the orbit connecting the saddle-node equilibrium, the phase
performs a full 2π rotation around the origin. As the injection
strength increases, a critical transition takes place at the ZAH
point, where the SNIPER bifurcation starts to be associated
with bounded-phase limit cycles, as shown in Fig. 2(b). At
this critical point, located at (κ,�) ≈ (0.5131,−0.537733),
the homoclinic orbit connects the zero-amplitude state of the
oscillator to the saddle-node equilibrium. The zero-amplitude

state is a point of phase singularity in time, where the
amplitude of the oscillator is zero, and the phase is indetermi-
nate. For injection strengths above the ZAH point, the origin
does not lie in the interior of the saddle-node homoclinic
cycle, and the phase will not perform a full 2π rotation any-
more, remaining bounded with rotation angles less than π . A
bounded-phase SNIPER orbit is shown in Fig. 2(c) and exists
up to the SNL point, determined with AUTO to be located at
(κ,�) ≈ (0.5235,−0.5505) [Fig. 2(d)]. After this point, the
scenario is well known: There is a separation in parameter
space between the saddle homoclinic orbit and the saddle-
node equilibrium, originating multistability, as illustrated in
Fig. 2(e). The saddle homoclinic bifurcation advances inside
the locking region until it disappears at the BT point illustrated
in Fig. 2(f).

The transition between unbounded and bounded phase os-
cillations can also be analyzed by writing Eq. (1) in terms
of phase and amplitude. In Fig. 3(a), we show some repre-
sentative SNIPER orbits (denoted by the dashed blue lines)
for parameter values in between the ZAH and SNL points.
The critical SNIPER orbit at the ZAH point, connecting the
zero-amplitude state to the saddle-node equilibrium (shown
by the dot), is plotted in solid red line. As can be seen, when
the amplitude is zero, a phase singularity occurs and there is
a jump of π rad in the phase of the oscillator. A line of phase
singularity in the parameter space, where limit-cycle solutions
contain the zero amplitude state, departs from the ZAH point,
giving rise to the codimension-one transition between FU and
FL states, what Cartwright denominated “critical drift” [18].
This transition does not correspond to a bifurcation when the
equations are written in Cartesian coordinates, but it does
correspond to a bifurcation when they are expressed in polar
coordinates, as discussed in the literature [20]. In Fig. 1(b),
the phase singularity line is denoted by the dashed purple line,
separating the white area (FU states) and the hatched area (FL
states). In Fig. 3(b), we illustrate some orbits with bounded
phase oscillations (denoted by the dashed blue lines) and an
orbit at the critical transition, i.e., over the phase singularity
line (denoted by the solid red line). As can be seen, the limit
cycle containing the phase singularity exhibits a jump of π

in its phase. In this case, the period of the limit cycle is
finite, in contrast to the case over the SNIPER bifurcation,
where the period of the cycle is infinite due to the presence
of the saddle-node equilibrium connected to the orbit. The
jump of π in the oscillator’s phase occurs instantaneously,
i.e., with an infinite speed. Equation (3) already suggests
the divergence of the phase speed when the amplitude of the
injection-locked oscillator vanishes. In Fig. 3(c), we plot the
phase velocity of the oscillator as a function of the phase for
some bounded-phase orbits. The phase speed increases when
approaching the phase singularity line, as shown in Fig. 3(d).
A time series in the unbounded phase regime, very close to the
phase singularity line, is shown in Fig. 3(e), where the curve
almost touches the zero-amplitude state. The corresponding
phase dynamics is shown in Fig. 3(f), where the phase of the
oscillator exhibits a π jump.

The dynamics along the transition between the FU and FL
states is further illustrated in Fig. 4. The left and right columns
depict the oscillator’s dynamics in the FU and FL regimes,
respectively. As can be seen in Figs. 4(a)–4(d), the oscillator’s
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FIG. 3. (a) Amplitude as a function of phase for dis-
tinct injection parameter values over the SNIPER bifurcation.
The parameter values corresponding (from the smallest to the
largest) to the limit cycles denoted by the dashed blue lines
are (κ,�) = (0.519, −0.545), (0.518,−0.544), (0.517, −0.542),
(0.516, −0.541), (0.515, −0.540), and (0.514, −0.539). The or-
bit denoted by the solid red line and the saddle-node equilib-
rium ( ) correspond to the ZAH point located approximately
at (0.5131, −0.5377). (b) Illustration of bounded-phase orbits
for (κ,�) = (0.75, −1), (0.74, −1) and (0.73, −1), corresponding
(from the smallest to the largest) to the limit cycles denoted by the
dashed blue lines. The solid red line is the critical orbit containing the
phase singularity located approximately at (0.723118, −1), and ( )
marks the unstable focus equilibrium. (c) Phase speed versus phase
corresponding to the three orbits denoted by the dashed blue lines in
(b). (d) Phase speed versus phase for (κ,�) = (0.72313, −1), close
to the phase singularity line. (e) Amplitude as a function of time
and (f) phase as a function of time for (κ,�) = (0.72311, −1), very
close to the phase singularity line. Angles are in radians.

phase is unbounded in the FU regime and bounded (less than
π ) in the FL regime. Since the injection parameters are close
to the phase singularity line, the phase speed exhibits large
values when the oscillator approaches the zero-amplitude
state, as shown in Figs. 4(e) and 4(f). It can also be seen that
dφ/dτ is strictly positive in the FU regime [Fig. 4(e)] and
changes sign in the FL regime [Fig. 4(f)].

The critical limit cycles containing the phase singularity
appear as a separatrix in phase space. In Fig. 5, we present
some distinct behaviors of the phase dynamics on varying the
initial conditions. The injection parameters are chosen very
close to the phase singularity line, according to some numer-
ical precision. When the initial conditions lie in the interior
of the limit cycle, the orbit remains bounded (shown by the
solid light blue line). When the initial conditions lie outside
the limit cycle, the orbit performs one or more rotations by an
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FIG. 4. Contrast between frequency-unlocking states (left col-
umn) and frequency-locking without phase-locking states (right
column). The injection parameters are in the vicinity of the phase
singularity line that marks the transition between these two regimes.
The parameter values are (κ, �) = (0.72, −1), for the left column,
and (0.726, −1), for the right column. Angles are in radians.

angle greater than 2π , until being trapped in a bounded phase
oscillation for larger values of the phase (shown by dotted
dark blue and dashed yellow lines). The critical limit cycles
containing the phase singularity [such as that illustrated by the
solid red line in Fig. 3(b)] are closely related to the so-called
limit phase trajectories investigated in several oscillatory sys-
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FIG. 5. (a) Amplitude versus phase and (b) phase versus time
for three distinct initial conditions. ( ) marks the unstable focus
equilibria. Injection parameters (κ, �) = (0.72312, −1) are set ap-
proximately at the critical transition (phase singularity line). Angles
are in radians.
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tems in the literature (see Ref. [61] and references therein).
Here the exact limit cycle containing a phase singularity can-
not be defined as exhibiting bounded phase oscillations or
unbounded phase rotations. In fact, it is a particular trajectory
that lies in between these two regimes, separating both types
of phase behaviors. Thus, infinitesimal perturbations can lead
to bounded phase oscillations or unbounded phase rotations.

It is interesting to connect the critical phase behavior in-
vestigated here with the classical case of separatrix observed,
e.g., in the nonlinear simple pendulum dynamics [9]. The
separatrix observed in the pendulum dynamics also separates
two phase regimes, i.e., bounded phase oscillations and un-
bounded phase rotations. In that case, the separatrix connects
stable and unstable manifolds of equilibrium states, where
the amplitude is finite and the phase speed tends to zero
when approaching the critical point (equilibrium state). In an
opposite way, the separatrix investigated here does not contain
equilibrium points, and the phase speed tends to infinity when
approaching the critical point (zero-amplitude state).

IV. NOISE-INDUCED TRANSITION BETWEEN LIMIT
CYCLES WITH UNBOUNDED AND BOUNDED PHASE

For injection parameters set over the phase singularity line,
or in its vicinity, weak noise can induce transitions between
unbounded- and bounded-phase limit cycles. To illustrate the
effect of disturbances very close to the critical trajectory con-
taining the phase singularity, we simulate Eq. (1) by taking
into account the additive white noise term. Throughout the
manuscript, all the stochastic simulations are performed by
integrating Eq. (1) written in Cartesian coordinates. Thus, the
temporal evolution of the amplitude and phase with noise are
obtained by properly transforming the Cartesian components
with noise integrated with Eq. (1). Noise induces bounded
or unbounded phase rotations in a random way, as can be
observed in Figs. 6(a)–6(c). Under the effect of noise, the
oscillator remains frequency locked for one or more cycles,
or frequency unlocked for one or more cycles, interchanging
these two regimes in a stochastic way. This fact has a large
impact over the average angular frequency (ωav = 	φ/	τ )
of the forced oscillator. When the injection parameters are
set very close to the phase singularity line, slightly inside
the FU regime, ωav is smaller for the case with noise than
for the case without noise, as shown in Fig. 6(a). If the
injection parameters are set to the other side of the phase
singularity line, slighly inside the FL regime, then we will
observe an opposite effect: the deterministic case will ex-
hibit ωav = 0 and the inclusion of noise will increase ωav. If
the injection parameters are set far enough from the phase
singularity line, the addition of weak noise will not change
significantly ωav.

We also investigate how weak noise affects the amplitude
solutions of the forced oscillator. If the injection strength is
large enough, as in the case illustrated in Fig. 6, the impacts of
weak noise are more pronounced only very close to the phase
singularity line, as shown in Fig. 6(d). In the presence of noise,
larger fluctuations can be seen in logarithmic scale, close to
the phase singularity point (zero-amplitude state), where the
oscillator’s dynamics is more sensitive to noise due to the
large values of the phase velocity around this region. Further
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FIG. 6. (a) Phase dynamics for (κ,�) = (0.7231, −1) simulated
with noise amplitude D = 0.02 (solid black line) and without noise
(dashed yellow line). The dashed straight lines show 	φ for simu-
lations with and without noise. (b) Phase versus time, (c) amplitude
versus phase, and (d) amplitude versus time simulated with noise
(solid black lines) and without noise (dashed yellow lines) for time
intervals magnified from (a). (e) Same as (d) but for � = −1.05,
further away from the phase singularity line. Angles are in radians.

from the phase singularity line, weak noise has little impact
over the oscillator’s dynamics, as shown in Fig. 6(e).

A very distinct situation occurs for moderate injection
strengths, as illustrated in Fig. 7. As we have already men-
tioned, for small injection strengths, the transition between
phase locking and phase unlocking is dominated by the
SNIPER bifurcation scenario, in which the forced oscillator
exhibits unbounded-phase limit cycles when becoming un-
locked. In this case, weak noise has little impact over the
limit-cycle dynamics, as shown in Fig. 7(a.1). The main effect
of noise is to induce an irregular time interval between the
spiking oscillations, as can be seen in Fig. 7(a.2). This occurs
in the FU regime when the injection parameters are set very
close to the SNIPER bifurcation. In fact, close to the SNIPER
bifurcation, the noise-induced dynamics in the FU regime is
the same as that observed in the PL regime, in which a train
of pulses with unbounded phase appears at irregular time
intervals. But amplitude fluctuations are not so significant,
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and the amplitude waveform almost does not change in the
presence of weak noise. A similar picture is observed for
large injection strengths, when the locking-unlocking transi-
tion is dominated by the Hopf bifurcation scenario, and the
forced oscillator exhibits bounded-phase limit cycles when
becoming unlocked. Also in this case, weak noise has little
impact over the limit-cycle dynamics, and amplitude fluctu-
ations are not so significant, as depicted in Figs. 7(b.1) and
7(b.2). On the other hand, for the case of moderate injection
strengths, the forced oscillator operates close to the transition
between the SNIPER and Hopf bifurcation scenarios. In this
case, the limit-cycle solutions are very sensitive to stochastic
fluctuations, even weak noise, as illustrated in Fig. 7(c). The
impact of weak noise for a moderate injection strength can be
seen in Fig. 7(c.1), where large fluctuations in the limit-cycle
dynamics occur due to the weak noise influence, in contrast
with the deterministic case. Moreover, an alternation between
unbounded- and bounded-phase limit cycles can be easily
observed even if the injection parameters are set not so close
to the phase singularity line, as is the case of Fig. 6. It is very
interesting to observe that the largest noisy limit-cycle oscilla-
tion, shown in Fig. 7(c.1), resembles the limit cycle provenient
from the SNIPER bifurcation, shown in Fig. 7(a.1), while the
smallest noisy limit-cycle oscillation, shown in Fig. 7(c.1), re-
sembles the limit cycle provenient from the Hopf bifurcation,
shown in Fig. 7(b.1). Clearly, for moderate injection strengths,
there is a mix between the SNIPER and Hopf bifurcation
scenarios, making the phase space of the forced oscillator
much more sensitive to stochastic fluctuations. In this case, the
amplitude fluctuations due to the influence of weak noise are
of much larger magnitude than those shown in Fig. 6, and they
can be easily observed without the logarithmic scale, as shown
in Fig. 7(c.2). In Fig. 7(c.3), we present the phase dynamics
exhibiting a stochastic alternation between the unbounded-
and bounded-phase limit cycles induced by the weak noise,
after properly converting the Cartesian coordinates integrated
from Eq. (1) to polar coordinates with continuous phase
evolution.

V. STOCHASTIC INTERPLAY BETWEEN VARIANTS OF
TYPE-I EXCITABILITY

In this section, we investigate the Type-I excitable dynam-
ics of the forced nonlinear oscillator described by Eq. (1).
Since we consider the complex stochastic term Dξ (τ ) by
integrating Eq. (1) in Cartesian coordinates, both amplitude
and phase of the forced oscillator are affected by the noise
influence. All the results of this section could also be obtained
by directly integrating Eqs. (2) and (3) by adding the appro-
priate transformation of the complex noise term, or even in the
simpler situation where amplitude perturbations are neglected
and the noise is applied only in the phase equation.

A magnification of the injection parameter space close to
the transition point (ZAH point) over the SNIPER bifurcation,
which marks the change from full 2π rotations to bounded
phase rotations, is shown in Fig. 8. When the bounded phase
limit cycle is born through the homoclinic bifurcation (the
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FIG. 8. Magnification of the vicinity of the triple point of syn-
chronization ZAH shown in Fig. 4. The excitable dynamics of the
points labeled a–d is shown in Fig. 9.
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κ = 0.5136 and � = −0.5384. The noise amplitude is fixed at D = 0.002.

blue line in Fig. 8), the forced oscillator exhibits bistability.
When the bounded phase limit cycle is born through the
SNIPER bifurcation (the green line in Fig. 8), the forced
oscillator exhibits Type-I excitability.

When looking at the oscillator’s phase dynamics, the
forced oscillator can exhibit three distinct qualitative scenar-
ios for the noise-induced Type-I excitable pulses, as illustrated
in Fig. 9. For small injection strengths, when the SNIPER bi-
furcation is associated with unbounded-phase limit cycles, the
excitable pulses exhibit only 2π phase rotations [Fig. 9(a)].
This is the typical qualitative scenario observed in the Adler
approximation. For large-enough injection strengths, when
the SNIPER bifurcation is associated with bounded phase
limit cycles, the excitable pulses never exhibit 2π phase ro-
tations [Fig. 9(b)]. This characterizes a new variant of Type-I
excitability. As we have mentioned in the introduction of
the manuscript, Type-I excitable pulses in the bounded-phase
regime have already been observed in Ref. [45]. But there
the physical situation is more complex, involving a nine-
dimensional system, where the return to the steady state
involves relaxation oscillations. Here the new variant of Type-
I excitable dynamics appears in a two-dimensional oscillator,
due to amplitude perturbations just beyond the Adler ap-
proximation. Moreover, the new variant of Type-I excitability
observed here does not exhibit relaxation oscillations. As can
be seen in Fig. 8, the Hopf bifurcation and the associated
saddle focus equilibrium solutions (the dark gray region),
where the forced oscillator exhibits relaxation oscillations, are
considerably distant from the SNIPER bifurcation.

A new qualitative scenario for the phase dynamics is shown
in Figs. 9(c) and 9(d). When the injection parameters are close
to the ZAH point at the SNIPER bifurcation, noise induces
excitable pulses that sometimes exhibit 2π phase slips and at
other times do not [Fig. 9(c)]. The alternation between phase

dynamics with or without 2π phase slips occurs in a very
random way, characterizing a stochastic behavior between the
two variants of Type-I excitability. It is important to mention
that this behavior is not exclusive for the transition point. Even
if the phase-locked oscillator operates beyond the transition
point, i.e., where the SNIPER bifurcation is associated with
bounded phase limit cycles, noise can still excite pulses with
2π phase slips [Fig. 9(d)]. Thus, there is a range of parameters
in the vicinity of the SNIPER bifurcation where noise can
excite both variants of Type-I excitability. This range depends,
of course, on the noise’s amplitude. By considering the same
level of noise used in Figs. 9(a)–9(c) for the injection param-
eters denoted by the point d in Fig. 8, 2π phase jumps are not
observed. However, increasing the level of noise, the stochas-
tic behavior between the two variants of Type-I excitability is
observed, as shown in Fig. 9(d).

VI. PHYSICAL CONSIDERATIONS ABOUT THE PHASE
SINGULARITY AND ITS IMPACT

In this section we draw some physical considerations about
the phase singularity and its connection with the transition
between unbounded- and bounded-phase regimes. As already
mentioned, by writing Eq. (1) in polar coordinates, there is
a qualitative change of the phase dynamics on the switching
between FU and FL regimes, which can be easily identified
by looking at the phase-space trajectories. However, by writ-
ing Eq. (1) in Cartesian coordinates, there is no qualitative
change in the limit-cycle trajectory on crossing this transition
[see Figs. 10(a)–10(c)]. Therefore, it is instructive to under-
stand better what is happening with the limit-cycle dynamics
and what are some physical quantities associated with this
transition.
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Before providing some general considerations about the
questions above, we first discuss a realistic physical situa-
tion modeled by Eq. (1), in order to understand better some
physical aspects associated with the singular phenomenon.
Let us consider a simple deterministic laser system (which
is described in Appendix B). Without gain (pump) and ex-
ternal force, the laser is in the off state, i.e., there is no light
inside the optical cavity. When the gain overcomes the losses
(i.e., the laser operates above threshold), the laser starts to
emit light with constant frequency and constant amplitude
(note that, in the simple laser model described by Eq. (1),
the fast optical frequency has been averaged). By writing the
laser equations in terms of the electric field components, the
transition from the laser-off state (|E | = 0) to the laser-on
state (|E | = const) is given by a Hopf bifurcation (by writing
the laser equations in terms of amplitude or intensity, the
transition is given by a pitchfork or transcritical bifurcation,
respectively). By considering that the gain is small enough,
we have the classical case of a self-sustained oscillator close
to a Hopf bifurcation. When an external force is added to the
laser, e.g., by injecting light from another laser with some
similar frequency, the free-running laser dynamics changes.
If the external force is weak, then this change will be small,
and the laser amplitude will be a bit greater or less than the
free-running laser amplitude. But if the external force is strong
enough, then the laser amplitude can eventually vanish. This
means that the laser-on state can instantaneously interact with
the laser-off state during the laser oscillations. The laser-on
and laser-off states are qualitatively distinct physical states.
For example, in the laser-on state, it is possible to decrease the
amplitude (intensity) due to the interaction with the external
force (by some sort of interference phenomenon). But in the
laser-off state, it is not possible to do that, since |E | = 0
is already the minimum amplitude state, and it cannot be

negative. Indeed, the laser-off state is a very particular phys-
ical state of the laser system. In the presence of the external
force, the laser-off state is not an equilibrium state (neither
stable nor unstable), but it is a singular point, i.e., a zero-
amplitude (or phaseless) state. This singular point marks a
limit (or a border) in the phase space where the trajectory can
evolve in a certain regime. When the trajectory touches the
singular point, occurs a change in the dynamics of the system,
corresponding to a physical transition in the system.

We now turn back to the limit-cycle evolution of Eq. (1)
in the Cartesian plane. In Fig. 10, we show the evolution
of the limit cycle when the frequency detuning is varied,
for a fixed injection strength. When the frequency detun-
ing is large, the interaction between the external force and
the oscillator is not so strong, and the resulting dynamical
scenario is similar to the free-running oscillator but with a
varying amplitude [Fig. 10(a)]. In this case, the phase and
frequency of the oscillator are unlocked, and the magnitude
of the phase difference grows unboundedly. By decreasing
the frequency detuning, the interaction between the external
force and the oscillator gets stronger and, eventually, the limit-
cycle dynamics touches the singular point (zero-amplitude
state) [Fig. 10(b)]. By keeping the decrease in the frequency
detuning, the interaction between the external force and the
oscillator increases even more, which leads to a switching to
the FL regime [(Fig. 10(c)]. In this case, the oscillator and
the external force oscillate with the same average frequency,
meaning that the oscillator is “captured” by the external force.
While in the Cartesian plane we do not see any significant
change in the limit-cycle dynamics by crossing this transition,
the dynamics of the oscillator is different in each side. This
is illustrated in Fig. 10(d), where we plot the peak-to-peak
amplitude ap−p, i.e., the difference between peak and trough
of the amplitude oscillations, as a function of frequency de-
tuning. As can be seen, ap−p reaches its maximum value
precisely when the limit cycle touches the phase singularity
(the zero-amplitude state). This means that the limit cycle
containing the phase singularity (which is the separatrix tra-
jectory in polar coordinates) maximizes the variation between
the minimum and the maximum of the amplitude oscillations.
In the example mentioned above, in the context of the laser
dynamics, we should observe the largest variation from dark
to bright light emission at the critical transition caused by the
phase singularity. Moreover, in Fig. 10, we can observe that
ap−p follows very different functional forms in each side of
the transition between the FU and FL regimes. Therefore, if
we had access only to the amplitude (or intensity) time series
as a function of frequency detuning, then we could identify
the FU-FL transition without any information of the phase
dynamics.

It is worth noting that the concepts of unbounded and
bounded phase are well defined when taking the origin of the
reference frame as being the equilibrium state of the unforced
system. In this way, when an external force acts on the system,
a restoring force appears associated with the displacement
with respect to the equilibrium state. The magnitude of this
displacement is a physically relevant amplitude. In the pres-
ence of a constant external force of not so large magnitude
(for example, a constant pump in the context of the simple
laser model discussed above), the equilibrium state, which is
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the zero-amplitude state, moves to a new steady state with
nonzero amplitude. In this situation, the phase singularity is
a physically relevant state of the system. By changing the
reference frame, e.g., by translating the origin, the new am-
plitude and phase variables may lose their physical meaning.
In this case, the concepts of unbounded and bounded phase, as
well as the phase singularity, will be relative to the choice of
the origin of the reference frame. But, in this situation, the
equilibrium state of the unforced system will be translated
to nonzero coordinates while still being a physically relevant
singular point. Therefore, even in a new reference frame,
when a limit cycle of the forced system collides with the
singular point, there will be a physically relevant transition.
In this case, the peak to peak amplitude with respect to the
singular point will be maximized at the critical transition, and
the scenario described in Fig. 10 will hold, irrespective of the
choice of the origin of the coordinate system.

As we discuss above, the singular point is physically rel-
evant, and the collision between the singular point and the
limit-cycle dynamics marks the change between two distinct
physical states. In Cartesian coordinates, there is not a formal
bifurcation associated with this transition, since there is not
a topological change in the limit-cycle dynamics itself. How-
ever, the relevant aspect in this transition is the location of the
singular point in relation to the limit-cycle trajectory in phase
space. When the singular point lies in the interior of the limit
cycle, it represents one qualitative scenario, corresponding
to one physical regime. When the singular point lies in the
exterior of the limit cycle, it represents another qualitative sce-
nario, corresponding to another physical regime. And when
the singular point is located on the limit cycle, it corresponds
to the transition point, i.e., the critical point of the qualitative
change induced by the singularity.

VII. CONCLUSION

We have reported the discovery of a triple point of
synchronization in the phase diagram of a simple two-
dimensional forced nonlinear oscillator, around which three
regimes associated with the synchronization phenomenon ex-
ist, namely phase-locking, frequency-locking without phase-
locking, and frequency-unlocking states. By increasing the
injection strength of the planar injection-locked oscillator,
there is a qualitative change in the phase dynamics of the
SNIPER bifurcation, in which the associated homoclinic cy-
cles change from full 2π phase rotations to bounded-phase
rotations (less than π ). This means that, when amplitude
perturbations are taken into account in an injection-locked
oscillator just beyond the Adler approximation, the SNIPER
bifurcation is associated with the transition between phase-
locking and frequency-unlocking states for small injection
strengths, and between phase-locking and frequency-locking
without phase-locking states for large injection strengths.

The triple point of synchronization, i.e., the transition point
on the SNIPER bifurcation that marks the change between the
two phase regimes, occurs when the homoclinic cycle with the
saddle-node equilibrium is connected to a phase singularity
point, i.e., an instantaneous zero-amplitude state of the forced
oscillator. A line in parameter space where limit cycles con-
tain a phase singularity departs from the triple point, giving

rise to the codimension-one transition between frequency-
unlocking and frequency-locking without phase-locking
states.

Trajectories containing a phase singularity appear as a sep-
aratrix in phase space, where the oscillator exhibits a π phase
jump. In the classical case of separatrix observed, e.g., in the
nonlinear pendulum dynamics, the phase-space trajectories
connect equilibrium states, and the phase speed vanishes at
the critical point. In the case investigated here, the separatrix
trajectory is connected to the zero-amplitude state of the os-
cillator, and the phase speed diverges at the critical point.

We have investigated the impacts of stochastic fluctuations
close to the phase singularity line. We have shown that, for
large injection strengths, weak noise can induce an alternance
between unbounded and bounded phase dynamics very close
to the phase singularity line. However, for moderate injection
strengths, the limit-cycle solutions are much more sensitive
to the presence of noise. In this case, the deterministic limit
cycles are highly disturbed, exhibiting a range from small
to large excursions in the phase plane due to the presence
of weak noise. Thus, the noise-induced alternance between
unbounded and bounded phase dynamics can occur even if
the injection parameters are set not so close to the vicinity of
the phase singularity line.

We have investigated the excitable dynamics of the planar
injection-locked oscillator. We have shown that this simple
two-dimensional system can exhibit two variants of Type-I
excitability, i.e., excitable pulses with and without 2π phase
slips. The new variant of Type-I excitability, i.e., the dynamics
of excitable pulses without 2π phase slips, occurs due to am-
plitude perturbations just beyond the Adler approximation. In
this simple situation, the Type-I excitable pulses do not exhibit
relaxation oscillations when returning to the phase-locked
state. We have also shown that, when the injection-locked
oscillator is operating phase-locked close to the triple point of
synchronization, noise can induce excitable pulses that appear
with or without 2π phase slips in a random way. Thus, both
variants of Type-I excitability can appear stochastically due to
random fluctuations.

We have discussed the physical relevance of the tran-
sition induced by the singular point. When the limit-cycle
oscillations collide with the singular point, the peak-to-peak
amplitude reaches its maximum value (for a fixed injection
strength), i.e., the highest gradient of the amplitude variations
is observed. This means that the transition between frequency
locking without phase locking and frequency unlocking could
be identified by measuring only the time series of the ampli-
tude (or intensity) oscillations, i.e., without any information
about the phase dynamics. We have also shown that the varia-
tion of the peak-to-peak amplitude as a function of frequency
detuning follows very different functional forms in each side
of the transition between frequency unlocking and frequency
locking without phase locking.

Here applications of the amplitude and phase planar model
have been illustrated in a forced electronic circuit and in a
cubic laser with optical injection, which is an approximation
of a class-A laser with optical injection. However, the model is
very general and should be applicable to a variety of other sys-
tems when amplitude perturbations are taken into account just
beyond the Adler approximation. Moreover, the phenomena
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FIG. 11. Equivalent circuit diagram of a negative differential
conductance oscillator with injection signal iinj(t ).

investigated here should also appear in more complex models,
either planar or with higher dimensionality. We believe that
our main findings can be experimentally verified in the near
future.
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APPENDIX A: NEGATIVE DIFFERENTIAL
CONDUCTANCE ELECTRONIC OSCILLATOR WITH

INJECTION SIGNAL

A generic LC oscillator, where 1/G represents the losses of
the oscillator, in parallel to a nonlinear element GNL is shown
in Fig. 11. The oscillator is driven by an external periodic
signal

iinj(t ) = GVinjexp( jωinjt ), (A1)

where Vinj is the voltage amplitude and ωinj is the angular
frequency of the injected signal. The output of the oscillator
can be expressed as

v(t ) = V (t )exp{ j[ωinjt + φ(t )]}, (A2)

where V (t ) is the envelope of the oscillator output and φ(t )
is the output phase modulation due to the presence of the
injected signal.

By considering the nonlinear voltage-current dependence
of the nonlinear element as

iNL(t ) = −Gav(t ) + Gb[v(t )]3, (A3)

where Ga and Gb are constants depending on the current-
voltage characteristic curve of the nonlinear device, the circuit
of Fig. 11 can be described by [62]

da

dt ′ = η(1 − a2)a + κ ′ cos φ, (A4)

dφ

dt ′ = −�′ − κ ′

a
sin φ, (A5)

where a and φ are the normalized amplitude and phase of
oscillation, respectively. Here, Eqs. (A4) and (A5) are writ-
ten in a dimensionless form. The time is redefined as t ′ =
tω0/Q, where t is the physical time, ω0 = √

1/LC is the free-
running frequency of the oscillator, and Q = ω0C/G is the
quality factor of the oscillator. The variables and parameters of

Eqs. (A4) and (A5) are related to the physical quantities as fol-
lows. a(t ′) = V (t ′)/VOS, η = (Ga − G)/2G, κ ′ = Vinj/2VOS,
�′ = (ωinj − ω0)Q/ω0, V 2

OS = 4(Ga − G)/3Gb. Note that, in
contrast to Ref. [62], a minus sign appears in the detuning term
in Eq. (A5). This is because we write the phase modulation
with the plus sign in Eq. (A2), in order to keep consistency
with the usual choice in laser analysis, which we also perform
in this work.

Variations of the parameter η do not change the qualitative
dynamical scenario of the nonlinear oscillator model given by
Eqs. (A4) and (A5), since it acts just as a scale factor and
can be eliminated from the model equations by the rescaling
� = �′/η, κ = κ ′/η, and τ = t ′η. Performing this additional
step, we obtain

da

dτ
= (1 − a2)a + κ cos φ, (A6)

dφ

dτ
= −� − κ

a
sin φ, (A7)

which have the same form of Eqs. (2) and (3).

APPENDIX B: CUBIC LASER MODEL WITH EXTERNAL
OPTICAL INJECTION

Certain types of lasers can be described by the so-called
class-A laser model [63]

dE

dt
=

(
−1 + �

1 + |E |2
)

E , (B1)

where E is the complex electric field amplitude and � is the
pump. We can perform a further simplification in this model
by approximating 1/(1 + |E |2) by 1 − |E |2, obtaining the cu-
bic laser model, which is usually considered the simplest laser
model [63]

dE

dt
= [−1 + �(1 − |E |2)]E . (B2)

By defining the new pump parameter P = � − 1 and rescaling
the electric field to Ẽ =

√
�

�−1 E , Eq. (B2) can be rewritten as

dẼ

dt
= P(1 − |Ẽ |2)Ẽ . (B3)

By considering an external monochromatic optical in-
jection, a term taking into account the injected light must
be added in Eqs. (B1), (B2), or (B3). Thus, in the cubic
laser model, given by Eq. (B3), we add the term Ẽinj =
K̃ ′ exp( j	t ), where 	 ≡ ωinj − ω0 is the frequency detuning
between the external light source and the solitary laser [64]. In
this case, in terms of amplitude and phase of the electric field
Ẽ = R̃ exp ( jψ ), where ψ = 	t + φ, the cubic laser model
subject to optical injection reads

dR̃

dt
= P(1 − R̃2)R̃ + K̃ ′ cos φ, (B4)

dφ

dt
= −	′ − K̃ ′

R̃
sin φ. (B5)

The above equations are mathematically the same as those
of the electronic circuit model with injected signal [Eqs. (A4)
and (A5)]. Here, the pump parameter P plays the role of the
parameter η in the circuit model; it can be eliminated from the
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laser model by rescaling the time and injection parameters. By
defining τ = tP, 	 = 	′/P, and K̃ = K̃ ′/P, the equations of
the optically injected laser model read

dR̃

dτ
= (1 − R̃2)R̃ + K̃ cos φ, (B6)

dφ

dτ
= −	 − K̃

R̃
sin φ, (B7)

which have the same form of Eqs. (2) and (3).
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