

SERVIÇO PÚBLICO FEDERAL

AVALIAÇÃO DE CARVÕES ATIVADOS NACIONAIS DE ORIGEM VEGETAL NO TRATAMENTO AVANCADO DE ESGOTOS DOMÉSTICOS

TRABALHO APRESENTADO COMO PARTE DOS REQUISITOS PARA OBTENÇÃO DO TÍTULO DE

MESTRE EM ENGENHARIA CIVIL

Autor: Dieter Wartchow Orientador: Prof. Amadeu da Rocha Freitas

EXAMINADORES

Prof. Sérgio João de Luca
Prof. Amadeu da Rocha Freitas
Prof. Marcelo Barreto Vianna
Prof. Max Lothar Hess

Data do exame: 22/10/82

Aprovação:

Presidente da Banca

SERVIÇO PÚBLICO LI DERAL

MINISTÉRIO DE EDUCAÇÃO E CULTURA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL ÁREA DE CONCENTRAÇÃO RECURSOS HÍDRICOS E SANEAMENTO

RESULTADO DE EXAME DE DISSERTAÇÃO DE MESTRADO EM ENGENHARIA CIVIL

Titulo da dissertação: Avaliação de carvões ativados nacionais de origem vegetal, no tratamento avançado de Esgotos Domésticos. Orientador(es): Prof. Anadeu da Rocha Freitas Membros da Comissão Examinadora Conceito Prof. Sereio João de Luca A Prof. Amadeu da Rocha Freitas Prof. Amadeu da Rocha Freitas Prof. Marcelo Barreto Viana A Prof. Mar Lothar Hess A kesultado linal: APROVAJO com média A Forto Alegre 22 de outubro de 1982. Assinaturas	Aluno: DIETER WARTCHOW		ano de ingresso	1980
 Drientador(us): Prof. Amadeu da Rocha Freitas Membros da Comissão Examinadora Prof. Sergio João de Luca Prof. Amadeu da Rocha Freitas Prof. Marcelo Barreto Viana Prof. Max Lothar Hess A Prof. Max Lothar Hess A Resultado línal: APROVADO com média A Forto Alegre 22 de outubro de 1982. Assinaturas Espei Servio João de Luca Nomet: Amadeu da R. Freitas 	Título da dissertação: Aval de origem vegetal, no tratame	iação de carvõe nto avançado de	es ativados nac Esgotos Domés	ionais ticos.
Definitador(cs): Prof. Amadeu da Rocha Freitas Membros da Comissão Examinadora Concelto Prof. Sergio João de Luca A Prof. Amadeu da Rocha Freitas A Prof. Marcelo Barreto Viana A Prof. Max Lothar Hess A Kesultado línal: APROVADO com média Forto Alegre 22 de outubro de 1982. Assinaturas nome: Amadeu da R. Freitas A			· · · · · · · · · · · · · · · · · · ·	
Membros da Comissão Examinadora Conceito Prof. Sergio João de Luca A Prof. Amadeu da Rocha Freitas A Prof. Amadeu da Rocha Freitas A Prof. Marcelo Barreto Viana A Prof. Max Lothar Hess A kesultado linal: APROVA DO com média A Conceito A kesultado linal: APROVA DO com média Lepe: Seralo João de Luca nome: Amadeu da R. Freitas	Diintador(es): Prof. Amadeu	u <mark>da R</mark> ocha Frei		е — Поле Алек 11 и Полек
Prof. Amadeu da Rocha Freitas Prof. Marcelo Barreto Viana Prof. Max Lothar Hess A kesultado linal: <u>APROVADO</u> com média Forto Alegre 22 de outubro de 1982. Assinaturas Lene: Servio João de Luca nome: Amadeu da R. Freitas	Membros da Comíssão Examinador Prof. Servio João de Luca	· a	Conceito	;
kesultado linal: <u>APROVADO</u> com média Forto Alegre <u>22 de outubro</u> de 1982. Assinaturas Lepe: Seralo João de Luca nome: Anadeu da R. Freitas	Prof. Amadeu da Rocha Freitas Prof. Marcelo Barreto Viana Prof. Max Lothar Hess			**
kesultado linal: APROVADO com média Forto Alegre 22 de outubro de 1982. Assinaturas				•
Forto Alegre 22 de outubro de 1982. Assinaturas nome: Amadeu da R. Freitas	kesultado linal: <u>APROVA</u> DO	2 com médi	a <u>A</u>	a
nome: Seralo João de Luca nome: Amadeu da R. Freitas	Forto Alegre 22 de outubro Assinaturas	de 1982.		
	nome: Serdo João de Luca	nome: Am	adeu da R. Frei	tas

nome:

Increase and the second second second second second second

A minha esposa ROSA

•

AGRADECIMENTOS

Ao professor orientador, Professor AMADEU DA ROCHA FREITAS, ao Professor SERGIO de LUCA e às pessoas que esti veram direta ou indiretamente envolvidas na realização de<u>s</u> te trabalho.

OBSERVAÇÃO: Este trabalho teve o apoio financeiro da FINEP, CNPq E TANAC S.A., e foi realizado no Instituto de Pesquisas Hidráulicas (IPH) - Porto Alegre, e na Estação de Tratamento de Esgotos do DMAE Passo D'Areia - Porto Alegre.

SUMÁRIO

i i

	Página
1 - INTRODUÇÃO	1.
2 - REVISÃO BIBLIOGRÁFICA	4
2.1 - Processo da adsorção	4
2.1.1 - Introdução	4
2.1.2 - Causas e tipos de adsorção	5
2.2 - Equilíbrio de adsorção e isotermas de ad-	
sorção	б
2.2.1 - Introdução	6
2.2.2 - Tipos de isotermas	7
2.2.3 - Utilização das isotermas de adsor	
ção	8
2.3 - Taxas de adsorção	10
2.3.1 - Fator limitante da taxa	10
2.4 - Cinética da sorção em reatores de fluxo	
contínuo	12
2.4.1 - Introdução	12
2.4.2 - Relação do balanço de massa	13
2.4.3 - Relação para um reator com leito	
de CAG de fluxo contínuo	14
2.4.3.1 - Relação para reator contínuo com	
leitos de CAG	16
2.4.3.2 - Mecanismo e taxa de transferên-	
cia molecular	19
, 2.5 - Fatores que influenciam a adsorção	21
2.5.1 - Area superficial	22
2.5.2 - Natureza do adsorbato	22
2.5.3 - pH	23
2.5.4 - Temperatura	23
UFRGS	

BIBLIOTECA L. P. H.

			2.5.5 - Natureza do adsorvente	23
		2.6 -	Sistemas de contato	24
			2.6.1 - Sistemas em batelada e sistemas de	
			escoamento contínuo	26
			2.6.2 - Curva de saturação	27
			2.6.3 - Projeto de um leito fixo adsorvente	27
			2.6.4 - Testes de ETEs piloto	28
100	3 -	MATER	IAL E MÉTODOS	42
		3.1 -	Etapas de estudo	42
		3.2 -	Características das soluções	43
		3.3 -	Característica dos CAG	47
		3.4 -	Descrição do modelo experimental	49
			3.4.1 - Descrição do modelo experimental -	
			teste em batelada	49
			3.4.2 - Descrição do modelo experimental -	
			testes em colunas	51
		3.5 -	Metodologia	58
			3.5.1 - Determinação de isotermas	58
			3.5.2 - Operação das colunas pilotos	64
			3.5.3 - Parâmetros analisados	72
	4	RESULT	FADOS E DISCUSSÃO	76
		4.1 -	Testes de isotermas de adsorção	76
		4.2 -	Testes de colunas piloto	95
			4.2.1 - Testes de colunas piloto de CAG -	
			remoção de cor	103
			4.2.2 - Testes de colunas - piloto de CAG -	
			esgoto doméstico	120
		4.3 -	Comparação entre os resultados de testes de	
			isotermas em batelada com os resultados dos	
			testes contínuos com colunas piloto de CAG.	141
		4.4 -	O projeto de um adsorvente - leito fixo	143
		4.5 -	Limitações e extrapolação para um sistema	
			real de CAG	152
	5 -	CONCLU	JSÕES	155

Recomendações 160 6 - REFERÊNCIAS BIBLIOGRÁFICAS 161 ANEXOS Apêndice 1 - Dados para a determinação de isotermas, representados nas Tabelas 4.1, 4.2, 4.4 e 168 Apêndice 2 - Representação dos resultados da remo ção de DQO obtidos nos testes de coluna piloto com CAG, nas Tabelas 4.12, 4.13 e 4.14 172 Apêndice 3 - Anteprojeto de um sistema de trata mento avançado utilizando CAG 175 Apêndice 4 - Conceitos utilizados 178 Apêndice 5 - Lista de abreviaturas e símbolos ... 179

vi

RELAÇÃO DE FIGURAS

2.1	- Caracterização do balanço de massa de um rea-	
	tor de escoamento continuo	15
2.2	- Perfil de concentração de um reator carregado.	17
3.1	- Verificação do pico de transmitância	45
3.2	- Curva de calibração. adsorbância x concentra cão do corante (O-Suco)	46
2 3	- Configuração, occupatica do distoma de trata-	
3.5	mento: remoção de cor	52
3.4	- Configuração esquemática do sistema de trata-	
	mento: esgotos domésticos	52
3.5	- Perfil longitudinal de uma coluna de CAG	55
3.6	- Esquema do sistema de tratamento	57
3.7	- Esquema de coletas de amostras	69
3.8	- Expansão do leito de carvão para várias taxas	
	de aplicação durante a lavagem	71
4.1	- Isotermas de Freundlich - remoção de cor CAG B	78
4.2	- Isotermas de Freundlich - remoção de cor CAG A	79
4.4	- Isotermas de Freundlich - esgoto doméstico CAG	
	Β	80
4.5	- Isotermas de Freundlich - esgoto doméstico CAG	
	Α	81
4.6	- Isotermas de Langmuir - remoção de cor CAG B .	85
4.7	- Isotermas de Langmuir - remoção de cor CAG A .	86

viii

Página

.

 4.9 - Isotermas de Langmuir - esgoto doméstico CAG A 4.10 - Isoterma de BET - remoção de cor: CAG B 4.11 - Isoterma de BET - remoção de cor: CAG A 4.12 - Isoterma de BET - esgoto doméstico: CAG B 4.13 - Isoterma de BET - esgoto doméstico: CAG A 	88 91 92 93 94
 4.10 - Isoterma de BET - remoção de cor: CAG B 4.11 - Isoterma de BET - remoção de cor: CAG A 4.12 - Isoterma de BET - esgoto doméstico: CAG B 4.13 - Isoterma de BET - esgoto doméstico: CAG A 	91 92 93 94
 4.11 - Isoterma de BET - remoção de cor: CAG A 4.12 - Isoterma de BET - esgoto doméstico: CAG B 4.13 - Isoterma de BET - esgoto doméstico: CAG A 	92 93 94
 4.12 - Isoterma de BET - esgoto doméstico: CAG B 4.13 - Isoterma de BET - esgoto doméstico: CAG A 	93 94
4.13 - Isoterma de BET - esgoto doméstico: CAG A	94
4.14 - Comparação de isotermas de adsorção	97
4.15 - Variação de temperatura	99
4.16 - Variação de pH - remoção de cor 1	L01
4.17 - Variação de pH - esgoto doméstico 1	L02
4.18 - Perfil oxigênio dissolvido x tempo de operação 1	L04
4.19 - Curvas de saturação - remoção de cor 1	105
4.20 - Curvas de saturação - remoção de cor 1	L06
4.21 - Curvas de saturação - remoção de cor 1	06
4.22 - Curvas de saturação - remoção de cor 1	.06
4.23 - Curva de concentração de cor residual x tempo	
de operaçãol	.08
4.24 - Curva de concentração de cor residual x tempo	0.8
4 25 - Curran de concentração de con recidual y tempo	.00
de operação 1	.09
4.26 - Curva de concentração de cor residual x tempo	
de operaçãol	.09
4.27 - Representação esquemática do movimento da zona	
de adsorção e a curva de saturação resultante. 1	.10
4.28 - Remoção percentual de cor x volume de solução	3 C
	.10
4.29 - Kemoção percentual de cor x volume de solução escoado por peso de CAG	.16

,

Página

4.30		Remoção percentual de cor x volume de solução	
		escoado por peso de CAG	117
4.31	No.	Remoção percentual de cor x volume de solução	
		escoado por peso de CAG	117
4.32	443 9 0	Concentração de DQO efluente secundário ver-	
		sus tempo de operação: 1º ciclo operacional.	121
4.33		Concentração de DQO efluente secundário ver-	
		sus tempo de operação: 2º ciclo operacional.	122
4.34		Concentração de DQO efluente secundário ver-	
		sus tempo de operação: 3º ciclo operacional.	123
4.35	-	Perfil da concentração de DQO afluente ãs co-	
		lunas de CAG	125
4.36	346	Curvas de saturação - esgoto doméstico	125
4.37	NUT OF STREET	Curvas de saturação - esgoto doméstico	125
4.38	944 9	Curvas de saturação - esgoto doméstico	125
4.39		Remoção percentual de DQO versus volume de e-	
		fluente secundário escoado por peso de CAG	127
4.40	-	Comparação das concentrações efluentes	132
4.41	vær.	Capacidade adsortiva versus TCVV	135
4.42	-	Capacidade do CAG em sistemas de batelada e	
		sistemas de coluna	144
4.43	ema	Curva de saturação: concentração de DQO a-	
		fluente versus soluto removido do esgoto do-	
		méstico	146

ix

RELAÇÃO DE TABELAS

Pãgina

2.1 -	Resultados do teste de isotermas para diferen- tes ETES	11
2.2 -	Propriedades típicas de carvões ativados comer cialmente disponíveis	25
2.3 -	Resultados de uma estação piloto - tratamento terciário com CAG	31
2.4 -	Resumo do desempenho do sistema de tratamento físico-químico	33
2.5 -	Operação do tratamento terciário da estação de Colorado Springs	35
2.6 -	Estação piloto Orange County - qualidade típi- ca da água do afluente e efluente à estação p <u>i</u> loto	37
2.7 -	Resultados do tratamento de águas residuárias petroquímicas	38
2.8 -	Remoção de matéria orgânica e metais pesados pelo CAG	40
2.9 -	Qualidade média da água da estação piloto de Los Angeles utilizando CAG	41
3.1 -	Prop riedade dos CAG comercialmente disponíveis utilizados	50
4.1 -	Dados para a determinação de isotermas - remo- ção de cor: CAG B	168

Pãg	ina
-----	-----

4.2 - Dados para a determinação de isotermas - remoção de cor: CAG A	169
4.4 - Dados para a determinação de isotermas - esgoto doméstico: CAG B	170
4.5 - Dados para a determinação de isotermas - esgoto doméstico: CAG A	171
4.6 - Avaliação comparativa dos dados de isotermas de Freundlich	83
4.7 - Avaliação comparativa dos dados de isotermas de Langmuir	89
4.8 - Valores dos coeficientes de correlação amostral para isotermas de Freundlich, Langmuir	96
4.9 - Profundidades críticas mínimas para os CAG A e CAG B	114
4.10 - Volume de solução com cor por unidade de peso de CAG para diferentes objetivos de tratamento	115
4.11 - Influência do TCVV na eficiência dos CAG para a remoção de cor	119
4.12 - Representação dos resultados da remoção de DQO obtidos nos testes de coluna piloto com CAG - 19 ciclo operacional	172
4.13 - Representação dos resultados da remoção de DQO obtidos nos testes de coluna piloto com CAG - 29	
ciclo operacional	173
obtidos dos testes de coluna piloto com CAG - 39 ciclo operacional	174
4.15 - Volume de esgoto por unidade de peso de CAG à con centração média de DQO para diferentes objetivos de tratamento	130
4.16 - Influência do TCVV na capacidade adsortiva do CAG	143
πε τη τρομάτη του μπεράτερα από το	في في ست

4.17 -	Influencia da vazao na eficiencia dos CAG para	
	a remoção de matéria orgânica	136
4.18 -	Remoção de alquil-benzeno-sulfonato no CAG ut <u>i</u>	
	lizando TCVV diferentes	138
4.19 -	Remoção de elementos traço pelo CAG	140
4.20 -	Comparação entre resultados: testes de iso-	
	termas versus testes de colunas	142
4.21 -	Dados obtidos a partir da curva de saturação .	147

SINOPSE

A crescente conscientização e proteção do meio-ambiente certamente enfatizam e expandem o papel do carvão ati vado na tecnologia de tratamento d'água para abastecimento e águas residuárias.

O propósito deste estudo é o de apresentar informações da adsorção pelo carvão ativado granular (CAG) no trata mento de esgotos domésticos.

Foram determinadas as isotermas de adsorção dos carvões ativados para remoção de cor e matéria orgânica, de uma solução colorida e de esgotos domésticos, respectivamente, <u>u</u> tilizando dois CAG comerciais. A capacidade de adsorção de<u>s</u> tes carvões mostraram variações consideráveis entre os CAG e entre os dois compostos.

Foram desenvolvidos testes de colunas com o CAG em escala piloto. Certos procedimentos operacionais precisaram ser incorporados no projeto de testes piloto para assegurar que os dados obtidos sejam significativos e representativos para sistemas de CAG em escala plena. Os testes foram executados para desenvolver uma relação entre os tempos de contato e taxa de utilização dos CAG, para observar a eficiência na remoção de cor e matéria orgânica e observar processos operacionais de uma coluna piloto com CAG.

•

ABSTRACT

Increasing environmental awareness and concern definitely emphasize and expand the role of activated carbon in water supply and wasterwater treatment technology.

The purpose of this study is to present information on granular activated carbon (GAC) adsorption in the treatment of domestic wastewater.

Carbon adsorption isotherms for color and organic matter, from a solution with color and from domestic wastewater, respectively, have been determined using two commercially available granular activated carbons. The adsorption capacity of these carbons presents considerable variation, both between the carbons, and between the compounds.

Column tests were developed in a GAC system on a pilot-scale. Certain operating procedures would need to be incorporated into the pilot test design to ensure that the data is meaningful and representative of the full-scale GAC system. The tests were set up to develop a relationship between contact time and carbon usage rate, to observe the effective removal of color and organic matter and the operational process of a pilot column with GAC.

1 - INTRODUÇÃO

•

O desenvolvimento de sofisticados centros industriais tem contribuído para a proliferação de um grande número e va riedades de compostos químicos para o uso industrial, agríco la e doméstico. Vários destes compostos apresentam propriedades tóxicas, carcinogênicas, mutagênicas e teratogênicas, e seus efeitos podem incidir sobre o homem e seu ambiente em situações relevantemente incontroláveis (26).

Estes compostos acham-se eventualmente nos esgotos domésticos e águas residuárias, e a menos que sejam específicamente removidos por processos de tratamentos adequados, es tes podem aparecer nos mananciais d'água e nas águas servidas.

Além disso, o desaparecimento rápido da diferença na qualidade entre águas naturais e águas residuárias, devido ao aumento da densidade populacional das comunidades ao longo dos cursos de água, o aumento das necessidades de água para abastecimento, e a persistência e as propriedades de um gran de número de contaminantes orgânicos de origem relativamente recente e/ou detectáveis (65) vêm agravar este problema.

Alguns pesquisadores (13, 69) têm verificado a presença e a formação pela cloração, de trihalometanos e outros compostos organoclorados na água potável, e o aumento da con centração destes com o tempo. Muitos destes compostos tem o mesmo potencial no que se refere à toxidez, carcinogênese,

1

mutagênese e teratogênese de vários resíduos provenientes dos complexos industriais (4, 6, 15, 26).

Técnicas de tratamento convencionais de água para abastecimento (pré-cloração, coagulação, sedimentação, filtra ção rápida e desinfecção), bem como processos de tratamento biológico para o tratamento de águas residuárias dificilmente removem a totalidade dos compostos orgânicos, havendo por tanto, a necessidade de uma complementação com um tratamento físico-químico apropriado (51, 65).

Neste contexto, a adsorção por carvão ativado se apresenta como a tecnologia mais eficiente e segura para a r<u>e</u> moção do vasto espectro de impurezas orgânicas dissolvidas encontradas na água de abastecimento e água residuária (24, 51, 65), e portanto, o carvão ativado certamente tornar-se-á uma alternativa para o tratamento de água para abastecimento e de águas residuárias.

A aplicação e o desenvolvimento da tecnologia de um processo de tratamento físico-químico como a adsorção por ca<u>r</u> vão ativado requer, no entanto, um profundo conhecimento da eficiência e limitações do processo, do mecanismo de reações, microtransporte e das reações da dinâmica do processo

Através do conhecimento destes, os processos racionais de projeto poderão ser elaborados.

CAIRO et alii (1979) desenvolveram estudos visando incentivar a utilização de recursos nacionais para suprir ma teriais pouco desenvolvidos pela indústria brasileira, e que são indispensáveis ao desenvolvimento tecnológico na área in dustrial, e principalmente no saneamento. Baseado neste contexto, o presente trabalho teve por objetivos:

- Comparar o desempenho de dois Carvões Ativados Granulares (CAG) nacionais de origem vegetal sob mesmas condições dinâmicas de escoamento.

- Desenvolver testes em batelada e em colunas piloto de carvão ativado para avaliar a eficiência do processo de adsorção e desenvolver parâmetros de projeto para sistemas de tratamento avançado.

- Avaliar a utilização do CAG na remoção de matéria orgânica (DQO) dos esgotos domésticos.

- Interrelacionar conceitos básicos da adsorção de compostos orgânicos da fase líquida pelo carvão ativado, com o projeto e operação de um sistema de adsorção.

2 - Revisão Bibliográfica

.

۰.

2.1 - PROCESSO DA ADSORÇÃO

2.1.1 - Introdução

A adsorção envolvendo a acumulação entre fases, tais como, gás-líquido, gás-sólido, líquido-líquido, líquido-sól<u>í</u> do, ou a concentração de substância na superfície ou face interna, é um fenômeno bastante significativo na maioria dos processos físico-químico-biológicos de tratamento naturais de depuração.

O processo da adsorção é regido por um fenômeno de su perfície, no qual uma substância é extraída de uma fase e con centrada na superfície de uma outra fase; e geralmente resulta de forças ativas dentro das fases limites ou proximida des da superfície.

Particularmente a adsorção em sólidos, especialmente o carvão ativado, passou a ser de grande utilização na purificação de águas e águas residuárias.

As propriedades adsorventes e a flexibilidade de uti lização dos processos de adsorção, aliadas ãs necessidades crescentes de tratamento das águas residuárias a níveis elevados de eficiência, para atender às disposições legais de preservação de recursos hídricos visando o reuso das águas, têm feito com que a aplicação de CAG no campo do saneamento, assuma importância cada vez maior.

Primeiramente, o carvão ativado granular (CAG) teve sua utilização no tratamento de água para abastecimento, na remoção de compostos orgânicos causadores de problemas de odor, sabor e/ou cor. Atualmente, o CAG também está sendo aplicado na remoção de compostos orgânicos sintéticos, na remoção de compostos orgânicos (precursores) que reagem com de sinfetantes produzindo "sub-produtos" da desinfecção, na remoção de compostos orgânicos químicos que são os "sub-produtos da desinfecção", propriamente ditos, e na remoção e recu peração de compostos inorgânicos (5, 26, 52, 58).

2.1.2 - Causas e tipos de adsorção

A adsorção envolve a acumulação de substâncias na su perfície ou interface, e decorre em grande parte do resultado de forças ativas próximo à superfície. Existem várias for ças entre moléculas na proximidade da superfície das moléculas, cuja origem está na interação eletromagnética dos núcleos e elétrons. Considerando-se a afinidade da superfície com a molécula exterior, distinguem-se duas forças de ligação: física e química. Uma terceira força de ligação, a atração eletrostática, é encontrada na interação entre íons e cargas dos grupos funcionais nas superfícies sólidas, análogas às manifestadas nas operações de troca iônica (65).

A adsorção proveniente da ação das forças de Van der Waals é geralmente denominada adsorção "física" ou "ideal" um termo que tem sido usado para representar casos nos quais a molécula adsorvida não é fixada a um lado específico, mas pelo contrário, é livre para efetuar movimentos transacionais dentro da interface (65, 66).

No caso do adsorbato reagir com o adsorvente, o fen<u>ô</u> meno é referido como adsorção "química", ou "quimisorção". Moléculas "quimicamente adsorvidas" são aquelas que não tem liberdade para se movimentar na superfície, ou dentro da interface (65, 66).

2.2 - EQUILÍBRIO DE ADSORÇÃO E ISOTERMAS DE ADSORÇÃO

2.2.1 - Introdução

No equilibrio há uma distribuição definida do soluto entre as fases líquidas e sólidas. Desse modo, a isoterma de equilibrio de adsorção é uma expressão funcional que rel<u>a</u> ciona a quantidade de soluto adsorvido no sólido, com a concentração remanescente na solução a uma dada temperatura (19, 23, 27).

Isotermas são usadas para descrever a capacidade de um carvão ativado em adsorver compostos dissolvidos da água residuária, para facilitar a avaliação da possibilidade da adsorção no tratamento, para a seleção de um carvão apropria do, e para a determinação preliminar das necessidades de car vão. Além disso, a isoterma pode desempenhar um papel funcional importante na previsão de modelos e/ou projetos de ins talações de carvão ativado (65, 66).

2.2.2 - Tipos de Isotermas

Existem vários tipos de isotermas de adsorção das quais pode-se destacar a isoterma de Langmuir, Freundlich, e Brunauer, Emmett, Teller (BET).

O desenvolvimento da isoterma de Langmuir é baseado na suposição de que a adsorção máxima corresponda à monocama da saturada de moléculas solúveis na superfície adsorvente, que a energia de adsorção seja constante e que não haja transmigração do adsorbato na superfície (65). A relação da isoterma de Langmuir (22, 49, 65, 66) apresenta-se na forma:

$$\frac{X}{M} = \frac{QQ \cdot b \cdot C}{1 + b \cdot C}$$
(2.1)

onde: X/M - Peso de adsorbato por unidade de peso do adsorvente em equilíbrio C (mg/g)

- C Concentração da solução em equilíbrio (mg/l)
- b Constante de equilibrio (ml de adsorvente/mg de adsorbato)
- Q? Constante que representa cobertura da monocamada por unidade de peso do adsorvente (mg de adsorbato/g de adsorvente).

O modelo BET supõe a formação de camadas de moléculas adsorvidas na superfície, e que a equação de Langmuir é aplicada a cada camada. Ainda, uma dada camada não necessita uma completa formação antes do início da constituição das camadas subseqüentes, portanto, a condição de equilíbrio envolverá vários tipos de superfície, pois supõem-se haver várias camadas de moléculas em cada lado da superfície (65).

Para a adsorção da solução partindo da suposição, de que as camadas após a primeira, tem energias iguais de adsor ção, a equação de BET (65) toma a forma simplificada de:

$$\frac{X}{M} = \frac{B \cdot C \cdot Q^{Q}}{(Cs - C) |1 + (B - 1) (C/Cs)|}$$
(2.2)

onde: Cs - Concentração de saturação do soluto (mg/l)

- C Concentração na solução em equilíbrio (mg/l)
- QQ Constante que representa a cobertura da monocama da por unidade de peso do adsorvente (mg de adsorbato/g de adsorvente)
 - B Constante que expressa a energia de interação com a superfície.

A equação da isoterma de Freundlich (1, 19, 27, 49, 50, 65, 66) é um caso especial em que a distribuição das energias laterais é superficial e a adsorção móvel (65). Ape sar de basicamente empírica, esta é bastante usada para descrever o fenômeno da adsorção:

$$X/M = kf \cdot C^{1/n}$$
 (2.3)

onde: kf e n : são constantes características.

As demais constantes foram definidas anteriormente.

2.2.3 - Utilização das isotermas de adsorção

O projeto de uma coluna de CAG requer juntamente com os dados da taxa de adsorção, informações do equilíbrio de adsorção e curvas de saturação, que podem fornecer a capacidade teórica e características cinéticas da saturação de um adsorbato (46).

CULP et alii (1978) apresentam testes de isotermas de adsorção executados para avaliar a capacidade adsortiva do CAG na remoção de DQO de esgotos domésticos. A quantidade de DQO adsorvida por unidade de peso de carvão quando o carvão estiver em equilíbrio com a concentração afluente, foi de 300 mg DQO adsorvido/g de carvão = $(X/M)_{CO}$ (19).

ARBUCKLE (1980) executou testes de laboratório em b<u>a</u> telada para determinar a energia de adsorção e taxas de adsorção para substâncias com pesos moleculares diferentes ut<u>i</u> lizando isotermas de Langmuir e de Freundlich.

Um grande número de estudos referentes à adsorção, em escala piloto, foram executados para avaliar a eficiência do processo e para derivar alguns parâmetros de projeto para um sistema de tratamento terciário. Um exemplo destes, utilizou o efluente das instalações da Union Carbide contendo compostos orgânicos (39), tratados biologicamente. Estudos iniciais usaram testes de batelada e testes de isotermas para avaliar a adsorbabilidade e a variação do efluente em diferentes ETEs, usando parâmetros indicadores de desempenho tais como, DQO ou Carbono Orgânico Total (COT). Em estudos posteriores, colunas contínuas de CAG foram utilizadas para comparar os resultados das isotermas de equilíbrio e a dinâmica de adsorção das colunas. A grande percentagem de remoção de DQO que apareceu nos testes de isotermas, com altas dosagens de carvão, não podem ser relacionadas às remoções

> UFRGS BLIOTECALP.H.

alcançadas em leitos de CAG com tempo de contato a volume va zio (TCVV) e tempo de operação ideais. Uma comparação de qua tro estações de tratamento é dada na Tabela 2.1.

2.3 - TAXAS DE ADSORÇÃO

2.3.1 - Fator limitante da taxa

A taxa para a qual os compostos dissolvidos são remo vidos das soluções aquosas diluídas pelos sólidos adsorventes é um fator altamente significante para aplicações deste processo no controle de qualidade da água.

Há essencialmente três passos consecutivos na adsorção do soluto da solução pelos poros dos adsorventes como o CAG: transporte do adsorbato, através da película da superfície externa do adsorvente (difusão pelicular); a difusão do adsorbato dentro dos poros do adsorvente (difusão nor poros), e a adsorção do soluto no interior da superfície limitando os poros e os espaços capilares do adsorvente (l, 33, 65, 66).

Na determinação da natureza do mecanismo controlador da taxa de adsorção, um dos parâmetros significativos, a ser considerado deverá ser a velocidade para a qual tende a reação de adsorção (65).

A difusão externa e/ou o transporte na película, con trolam a transferência do soluto através da camada limite do fluido imediatamente adjacente à superfície externa da partí cula adsorvente. O transporte pelicular é governado pela di

TABELA 2.1 - Resultados do Teste de Isoterma para diferentes ETEs (39).

•

Estação de Tratamento	A	E	F	G
Máx. remoção de DQO (isoterma) %	72-95	75-97	81-92	` 77-97
Dosagem de carvão na isoterma (mg/1)	20	20-80	80	80
Remoção média de DQO antes da saturação da coluna (SC _o = 0,4) %	71	61	65	78
Peso de carvão na coluna (g/1)	0,28	0,46	0,64	1,4
Tempo de contato na coluna (h)	1,7	0,8	1,8	1,2

OBS.: A remoção de DQO na estação piloto foi calculada a partir da con centração final de vários leitos em série. fusão molecular e, no caso do escoamento ser turbulento, pela difusão em vórtices que controla a espessura efetiva da camada limite.

O mecanismo de transferência de massa entre partículas porosas e a difusão superficial agem em paralelo.

Resta saber qual dos transportes e reações é a taxa limitante da adsorção de poluentes na água pelos adsorbentes porosos. Isto é, se é a "difusão pelicular" ou a "difusão nos poros" que oferece a maior resistência para o transporte, tornando-se, desse modo, o controlador da taxa de transferê<u>n</u> cia. Isto depende em grande parte do sistema de contato do adsorvente com a água (65). Para um reator em batelada que fornece um alto grau de agitação ou mistura, a difusão nos poros é em geral a taxa limitante, não necessariamente só ne<u>s</u> te tipo de reator. Para sistemas de CAG de fluxo contínuo, a difusão pelicular será geralmente o fator limitante da taxa, isto quando o escoamento for normal (65).

2.4 - CINÉTICA DA SORÇÃO EM REATORES DE FLUXO CONTÍ-NUO

2.4.1 - Introdução

A adsorção em leitos fixos de CAG é uma técnica eficiente na purificação de águas poluídas, especialmente, na r<u>e</u> moção de impurezas orgânicas. O projeto de sistemas de adsorção em escala plena é dificultado pela adsorção simultânea de diferentes substâncias, tipicamente presentes nas ãguas residuárias, e que competem nas áreas superficiais do adsorvente. Desse modo, uma aplicação efetiva do CAG requer também compreensão do processo da taxa de adsorção para um número elevado de compostos e da cinética da adsorção, envol vendo efeitos interativos e competitivos das várias espécies adsorvíveis (37, 57).

Vários modelos descrevendo a cinética de adsorção p<u>a</u> ra diferentes sistemas de leito de CAG foram desenvolvidos (16, 17, 18, 21, 66, 68, 70).

2.4.2 - Relação do balanço de massa

A adsorção está relacionada ao estado de equilíbrio; este fato, juntamente com a natureza das diferentes reações na seqüência de transporte, evidencia a necessidade de uma consideração em termos de taxa global de adsorção (16, 17, 18, 66).

A equação da conservação de massa para uma espessura infinitesimal do leito a uma secção transversal na coluna de adsorção expressa o fato de que toda a perda de soluto pela solução que atravessa a secção deverá ser igual ao ganho de soluto pelo adsorvente contido nesta secção.

O princípio de conservação de massa (33, 77) pode ser expresso matematicamente por:

$$\left|\frac{\partial c}{\partial t_{o}}\right| \cdot V = Q_{i} \cdot C_{o} - Q_{f} \cdot C_{efl} + \left|\frac{\partial c}{\partial t_{r}}\right| \cdot V + \frac{\partial V}{\partial t} \cdot C_{efl}$$
(2.4)

Onde: Co - Concentração do soluto afluente ao reator (mg/ml)

- C_{efl}- Concentração do soluto efluente no reator (mg/ ml)
- V Volume do reator (ml)
- Qi Vazão afluente ao reator (ml/min)
- Qf Vazão de saída do reator (ml/min)

 $\frac{\partial V}{\partial t}$ - Taxa observada na variação do volume do reator $|\partial c/\partial t|_{O}$ - Taxa líquida observada na mudança da con-

centração da solução reator (mg/ml/min)

| lc/lt| - Taxa da reação (mg/ml/min)

A equação 2.4 é uma caracterização simplificada de um reator de escoamento contínuo.

2.4.3 - Relação para um reator com leito de CAG fluxo contínuo

A maioria das soluções matemáticas desenvolvidas para o fenômeno da cinética, requer o uso de uma hipótese sim plificadora com relação à distribuição do equilíbrio do solu to entre a fase líquida e a fase sólida.

A relação a seguir, prevê quatro fases da taxa de ad sorção, podendo-se observá-las quando a adsorção prosseguir até o equilíbrio. A taxa inicial será limitada pela taxa do adsorbato transferido através da camada pelicular - difusão pelicular, ou, se existir turbulência suficiente o controle poderá ser exercido pela taxa combinada da adsorção na super fície externa e preenchimento dos macroporos.

Após a saturação da superfície externa, existirão três taxas de adsorção secundárias controladas respectivamen

FIG.2.1 - Conscienização do balanço de massa de um reator de escoamento contínuo

15

te, pelo preenchimento dos macroporos, dos poros transicionais e microporos (33).

2.4.3.1 - <u>Relação para reator continuo com leitos de</u> <u>CAG</u>

De acordo com HENDRICKS (1978) os reatores de leito continuo tem algumas diferenças em relação a um reator de mis tura completa, onde o gradiente da concentração existe na di reção do escoamento.

No modelo de HENDRICKS (1978) a condição de homogeneidade é atendida apenas para uma fatia infinitesimal da co luna. Para esta fatia de espessura Z, como mostra a Figura 2.2, a aplicação do princípio do balanço de massa resulta numa equação diferencial:

$$\frac{\partial C}{\partial t} = \overline{V} \frac{\partial c}{\partial z} + D \frac{\partial^2 c}{\partial z^2} - \rho \frac{1 - P}{P} \frac{\partial \overline{x}}{\partial t}$$
(2.5)

Onde: C - Concentração do sorbato na fase líquida (mg/ml)
t - Tempo de referência, tal como o momento da intro
dução inicial do sorbato (min)

z - Distância ao longo do caminho escoado, a partir
 de uma referência conveniente (m)

 \overline{V} - Velocidade do escoamento intersticial (m/min)

- D Coeficiente de dispersão para o meio poroso à velocidade \overline{V} (m²/min)
- ρ Peso específico das partículas do adsorvente (mg/ ml)

¢

17

P - Porosidade do meio

 $\frac{\partial \overline{x}}{\partial t}$ = Taxa de utilização da partícula sólida.

A equação (2.5) dá a descrição básica para um leito de CAG de fluxo descendente. Vê-se que ela é aplicável a uma fatia ao longo da coluna, e sua resolução matemática está apresentada por HENDRICKS (1978).

Os termos da equação do balanço de massa podem ser determinados experimentalmente.

Considerando um grande número de partículas singulares, o perfil de concentração é a probabilidade de distribui ção de uma partícula singular. O gradiente de concentração do perfil resulta num fluxo, se estiver de acordo com a dif<u>u</u> são ou dispersão.

A difusão do soluto devido à dispersão num fluido que se move (sem adsorção), é descrito pela equação:

$$\frac{\partial C}{\partial t} = -\overline{V} \frac{\partial C}{\partial t} + D \frac{\partial^2 C}{\partial z^2}$$
(2.6)

Para se obter o coeficiente de dispersão, D, há a n<u>e</u> cessidade de medir toda a curva de saturação, pois:

$$D = \frac{1}{4 \, \text{I}} \cdot \left(\frac{L}{V^2 o \cdot S o^2}\right) \bullet \overline{V}$$
 (2.7)

Onde: Vo - É o volume escoado quando C/Co = 0,5 So - É a declividade da curva de saturação quando C/Co = 0,5 V - Velocidade de escoamento intersticial (m/min)

L - Profundidade do leito de CAG (m)
O desenvolvimento de expressões matemáticas que descrevem a dinâmica do fenômeno que ocorre num reator de leito -fixo/fluxo contínuo tem sido difícil devido a influência de variáveis múltiplas.

2.4.3.2 - <u>Mecanismo e taxa da transferência molecu</u>lar

A taxa de adsorção é limitada pela difusão pelicular, difusão nos poros na fase líquida e pela difusão interna ou reação com a superfície sólida do adsorvente.

A eficiência da taxa de adsorção será principalmente controlada pela etapa que oferecer maior resistência para a transferência, isto é, o passo mais lento.

Desse modo, partindo da suposição de que a adsorção na superfície do adsorvente é um processo extremamente rápido comparado a todo o processo de difusão envolvido, pode-se desprezar esta adsorção superficial.

A difusão externa ou transporte pelicular controla a transferência do soluto da solução através das camadas estag nadas do fluído imediatamente adjacente à superfície externa do adsorvente.

Partindo-se da suposição de que a concentração do so luto no ponto da camada limite hidrodinâmica imediatamente ad jacente à superfície externa da partícula está em equilíbrio com a concentração média da fase sólida nas superfícies internas (65) pode-se determiná-la algebricamente por:

$$\frac{dX/M}{(--)} = Kf \cdot \alpha \cdot (-) \cdot (C - Ce)$$
(2.8)
d To f ρ

Onde: Kf - Coeficiente de transferência de massa para o caso em que a difusão pelicular for a etapa limitante da taxa (mg removido/g CAG)

- α Area efetiva para a transferência de massa atra vés da película por unidade de volume do leito
 (m⁻¹)
- Ce Concentração do soluto na fase fluida em equilíbrio com a concentração da fase sólida coexisten te (mg/l)
 - p Peso específico das partículas do adsorvente (g/ ml)

P - Porosidade do leito

(d X/M / d To) - Variação da capacidade do adsorvente ao longo do tempo

Co - Concentração inicial do soluto (mg/l).

O processo da difusão interna controla a transferência do soluto do exterior dos poros do adsorvente para as l<u>a</u> terais das superfícies internas.

Nos casos em que a difusão superficial interna controlar a concentração do soluto na camada limite à partícula pode-se supor que esta seja equivalente àquela na solução em contato com a camada limite. Ainda, o valor do grau de satu ração de cada partícula do adsorvente é o valor da média do grau de saturação de todas as partículas, e a taxa aproximada para a saturação completa é tomada como sendo proporcional à diferença entre a extensão de saturação na superfície externa da partícula. Tal condição pode ser representada para a difusão superficial interna por:

$$\frac{d X/M}{(\frac{d T_{\varphi}}{d T_{\varphi}})} = Ks \cdot \alpha \cdot \xi \cdot (Ce_{X} - C')$$
 (2.9)

- Onde: Ks Coeficiente de transferência de massa para difusão superficial (mg removido/g CAG)
 - Ce_x- Concentração local do soluto na fase sólida que prevalece na superfície externa (mg/l)
 - ξ É a porosidade entre partículas
 - C'- Concentração local do soluto na fase sólida na su perfície interna (mg/l).

Para os casos em que a difusão externa e interna ocorrerem em série a taxas comparáveis, os coeficientes de mas sa cada qual, medidos individualmente sob circunstâncias para a qual, a resistência alternativa está ausente,ou foi des prezada, podem ser adicionados conforme o sugerido por WEBER (1972), adotando a expressão:

1/K = 1/Kf + 1/Ks (2.10)

2.5 - FATORES QUE INFLUENCIAM A ADSORÇÃO

Há vários fatores que podem influenciar a adsorção pelo CAG: a natureza do carvão, a natureza do material a ser adsorvido incluindo seu peso molecular e polaridade, a natureza da solução incluindo pH e temperatura, e o sistema de contato e sua maneira de operação, entre outros (23, 46, 65).

2.5.1 - Area superficial

A adsorção é um fenômeno superficial e desse modo é proporcional à área superficial específica - a parcela na área superficial total disponível para a adsorção. Desse modo a taxa de adsorção por unidade de peso de um adsorvente sólido é maior, tanto quanto mais finamente for dividido e mais poros tiver o sólido (65). Por outro lado, diminuindo a granulometria cresce a resistência ao fluxo. Por esta razão se dá preferência ao carvão granulado em lugar do carvão em pó quando da utilização de leitos fixos.

2.5.2 - Natureza do adsorbato

A natureza do adsorbato, tem grande influência no fe nômeno da adsorção. A solubilidade do soluto, o efeito do peso molecular na capacidade de adsorção, a variação na geometria das moléculas, os efeitos da ionização na adsorção, o efeito da polaridade do soluto na adsorção, foram estudados por WEBER (1972) e FORD (1976).

ARBUCKLE (1980) executou testes de laboratório para determinar as taxas de adsorção para compostos de pesos mol<u>e</u> culares diferentes, utilizando isotermas de equilíbrio. Os resultados obtidos mostraram que compostos com grande peso molecular são mais lentamente adsorvidos apesar de possuírem maiores energias de adsorção.

GIUSTI et alii (1974) estudaram vários compostos orgânicos e sua adsorbabilidade pelo CAG. Os dados obtidos nestes estudos foram usados para obter conclusões sobre os efei tos do pH, polaridade, grupos funcionais, peso molecular e outras diferenças nas características físico-químicas destes compostos.

2.5.3 - pH

Num estudo de laboratório MEIJERS et alii (1979) verificaram o efeito do pH na adsorção de grande número de com ponentes das soluções aquosas, e concluíram que ambas, a adsorção de um único sorbato e a adsorção de vários componentes, são afetados pelo pH da solução.

Em geral, a adsorção de compostos orgânicos aumenta com a diminuição do pH (22).

2.5.4 - Temperatura

As reações de adsorção são normalmente exotérmicas, assim a extensão da adsorção geralmente aumenta com a diminuição da temperatura (22).

MAQSOOD & BENEDECK (1977) mostram em seu trabalho que o decréscimo de temperatura melhora o equilíbrio de adsorção mas piora a cinética de adsorção.

2.5.5 - Natureza do adsorvente

As características de um adsorvente como o carvão ativado, são importantes na avaliação de sua adequacidade no tratamento de água residuária. Nestas, incluem-se a área su perficial, densidade do carvão, tamanho efetivo,volume de po ros, distribuição do tamanho de partículas, capacidade de ad sorção, adsorção de fenol, número de iodo e melado, percenta gem de cinzas, entre outras (19, 23, 27, 65). Trabalhos experimentais foram executados para verificar a influência do coeficiente de uniformidade do CAG, na remoção de sabor e ma téria orgânica (DQO) (7).

BRENER & RICHARD(1980), verificaram que a evolução do número de sabor foi idêntica para os leitos com C.U. dif<u>e</u> rentes, e que a remoção de matéria orgânica foi praticamente a mesma, tendo o CAG com menor C.U., uma pequena vantagem em eficiência sobre o CAG com C.U. maior.

Algumas propriedades típicas de CAG comerciais amer<u>i</u> canos são apresentados no manual do carvão da "US Environmen tal Protection Agency" (EPA) (1973); e estão transcritos na Tabela 2.2. Também estão incluídos nesta Tabela, as proprie dades típicas de outros CAG importados, bem como as propriedades típicas de três carvões ativados nacionais.

2.6 - SISTEMAS DE CONTATO

O sistema de contato do CAG com a solução a ser tratada, tem grande importância na aplicação do CAG para o tratamento de água para abastecimento e águas residuárias.

CARVÃO ATIVADO	MATERIA	DIAMET.	c.v.	A.SUP.	Nº IODO	N? FENOL	Nº DESCO	PESO ES- PECÍFICO	ABRASÃO	CINZAS	PAÍS
(marca)	PRIMA	(mm)		(m ² /g)	° (mg/g)	/	(g/100g)	APAR. (g/ml)	7	7	
207 C	Coco	0.5-0.7	_	1150	950	-	_	-	-	-	Inglaterra
athrasorb CC1230H	Antrac.	0.5-0.7	-	950	1000	-	-	-	-	-	Inglaterra
NUCHAR WV-G	Betum	0.4-0.7	1.8	1100	950	-	-	0.48	70	7.5	EUA
Filtrasorb 300	Betum.	0.8-0.9	1.9	1000	900	-	-	0.48	70	8.0	EUA
Filtrasorb 400	Betum.	0.9-1.1	1.9	1050	955	-	-	0.47	75	-	EUA
Norit ROW 0.8 SUPRA	Madeira	0.8	1.6	950	1050	-	300(M)	0.33	51	5.5	Alemanha
CECA GP	Betum.	-	1.9	750	750	-	33(M)	0.50	-	4.0	França
CECA TE	Betum	-	-	600	650	-	-	0.55	-	20.0	França
Chemviron F300(B)		0.8	2.1	1000	950	·	200(M)	0.42	40	8.1	França
ICI Hydroarco 300	Lignita	0.8-0.9	1.7	625	650	-	95(M)	0.43	70	-	EUA
Witco 517	Coque P.	0.9	1.5	1050	1000	-	-	0.48	85	-	EUA
BACM	Piche	-	-	1000	950	-	-	0.50	-	-	Japão
'Amoco	Coque P.	0.8-0.9	-	2400	10 00	-	12(M)	0.30	-	-	EUA
Hidroarco 400	Linhita	0.8-1.0	1.9	650	550	-	90(M)	0.35	25	18.0	EUA
Carbomafra WKG-C	Nõ pinho	põ	-	900	800	-	200 (M)	0.27	-	10.0	BRASIL
MSA Research Co.	Betum.	-	-	1100	1090	-	250 (M)	0.50	-	5.7	EUA
Carbomafra GM	Pêssego	0.98	1.98	900	800	-	-	0.33	-	8.0	BRASIL
TANACARBO	Acácia -	1.1	1.91	860	875	-	-	0.33	-	3.0	BRASIL

TABELA 2.2 - Propriedades Típicas de Carvões Ativados, comercialmente disponíveis.

Levantamento dos principais carvões ativados utilizados nos EUA, Inglaterra e França em Tratamento de água, esgotos e resíduos industriais. C.V. = Coeficiente de Uniformidade A.SVP = area superficial

(M) = Melaço

2.6.1 - <u>Sistemas em batelada e sistemas de escoamen</u>to contínuo

O sistema de operação em batelada proporciona através de uma mistura contínua, contato de uma determinada qua<u>n</u> tidade de CAG com um volume específico de água ou água residuária, até que o(s) poluente(s) na solução tenha diminuido a um nível desejado.

Operações de escoamento continuo em colunas parecem ter vantagens distintas sobre as operações em batelada pois as taxas de adsorção dependem da concentração do soluto na solução a ser tratada. Numa operação de coluna o CAG estará continuamente em contato com a solução. Conseqüentemente, a concentração da solução em contato com uma dada camada de car vão numa coluna é relativamente constante. Para o tratamento em batelada, a concentração do soluto em contato com a quan tidade específica de carvão decresce de modo constante enquan to ocorrer a adsorção, e conseqüentemente, diminui a eficiên cia do adsorvente para a remoção do soluto.

Existem várias alternativas de sistemas de contato com CAG nos quais se incluem: escoamento descendente e ascendente das águas residuárias através dos leitos de carvão; operação em série ou em paralelo; operação por gravidade ou sob pressão nos sistemas de contato de fluxo descendente; <u>o</u> peração de leito fixo ou expandido em sistemas de contato de fluxo ascendente; e operação em leito fluidizado.

Estas alternativas, suas vantagens e desvantagens, os sistemas de operações são apresentados pela EPA (1973) e WEBER (1972).

2.6.2 - Curva de saturação

Nas operações de leitos fixos de adsorção com CAG a água ou água residuária a ser tratada passa através dos leitos estacionários de carvão. Durante a operação prevalece <u>u</u> ma condição de equilíbrio instável, no qual a quantidade de soluto adsorvido pelo CAG aumenta ao longo do tempo.

Para a maioria das operações de adsorção no tratamen to d'água e águas residuárias, as curvas de saturação exibem a forma característica de <u>S</u>, mas com diferentes graus de variação de declividade e posição do ponto de saturação.

Os fatores que afetam a forma da curva, incluem todos os parâmetros discutidos anteriormente (concentração do soluto, pH, mecanismo de limitação da taxa para adsorção e natureza das condições de equilíbrio, tamanho das partículas ...) e, em complementação, a profundidade da coluna do carvão e a velocidade do escoamento (65).

2.6.3 - Projeto de um leito fixo adsorvente

Para os casos em que a adsorção segue uma isoterma "favorável" ou "côncava", e para a qual a taxa de atendimento do equilíbrio entre a concentração do soluto da fase da solução e da fase adsorvida num reator for conhecida, uma aproximação simples pode ser tomada para o projeto de um adsorvente de leitos fixos com CAG, e que está desenvolvida por WEBER (1972).

O projeto hidráulico básico e conceitos operacionais do escoamento por gravidade, pressão e adsorventes de escoamento do tipo leito-expandido são essencialmente os mesmos que para os filtros de leitos granulares dos tipos correspon dentes. Uma descrição detalhada destes, pode ser encontrada em RAMALHO (1977) e WEBER (1972).

2.6.4 - Testes de ETEs piloto

O desempenho de estações piloto e protótipos de tratamento de águas residuárias demonstram que a sorção pelo CAG é um tratamento possível e necessário para esgotos domésticos e resíduos industriais (21). Se a legislação brasileira vigente sobre pesticidas na água potável fosse observada,mui tas estações de tratamento de água já deveriam estar utilizando o carvão ativado após a filtração.

Um projeto adequado para a utilização de filtros de CAG requer uma definição exata das metas do tratamento e a <u>a</u> valiação e aplicação de métodos analíticos que satisfaçam as necessidades. Esta é uma das razões da utilização de uma e<u>s</u> tação piloto na obtenção de critérios do processo e do proj<u>e</u> to (56).

Do mesmo modo, a utilização de sistemas pilotos com escoamento contínuo tem o objetivo de determinar a eficiência da utilização da adsorção pelo CAG no tratamento de águas residuárias em um ponto da sequência do processo. A cur va de saturação, definindo a remoção do contaminante, (em ter mos de DBO, DQO, COT, cor ou constituinte orgânico específi co), a capacidade do carvão e a influência de variáveis do processo no desempenho, podem ser desenvolvidas utilizando--se colunas de escoamento contínuo em escala piloto (1).

Testes em escala piloto fornecem informações compar<u>a</u> tivas das eficiências das diversas configurações de colunas de CAG, e das características hidráulicas de operação. Tais resultados podem então ser utilizados na formulação de um pro jeto preliminar e uma análise econômica das instalações do sistema de adsorção. Visto que colunas piloto produzem efei tos hidráulicos que podem ser consideravelmente diferentes daqueles que ocorrem em colunas de CAG em escala plena, existem limitações no projeto destas instalações piloto (10).

Os objetivos de testes em coluna piloto e as vantagens da utilização de um sistema em paralelo ou em série são apresentados por EPA (1973), McGUIRE & SUFFET (1978), enquan to que HUTCHINS (1980) considera alguns parâmetros operacionais no projeto de ETEs piloto, de modo a desenvolver uma r<u>e</u> lação significativa entre o tempo de contato e a taxa de ut<u>i</u> lização do carvão.

A seguir, serão delineados resultados da eficiência do tratamento com CAG em ETEs piloto e ETEs em operação.

Extensos estudos em escala piloto foram conduzidos pela Union Carbide Corporation avaliando um sistema de trata mento terciário de CAG utilizando o efluente de uma unidade de tratamento por lodos ativados recebendo água residuárias petroquímicas (39). Os objetivos deste estudo constavam do estabelecimento de bases para justificar a aplicação do CAG

e para otimizar o seu projeto.

As eficiências obtidas são apresentadas na Tabela 2.3.

CAIRO et alii (1979) avaliaram o desempenho do CAG na remoção de compostos orgânicos na água, utilizando diferentes tempos de contato a volume vazio (TCVV) e taxas de aplicação. Os estudos em laboratório utilizaram colunas de CAG após unidades de coagulação.

BRENER & RICHARD (1980) efetuaram experiência em estações pilotos utilizando o CAG, para determinar parâmetros operacionais e de projeto.

Os parâmetros testados foram o TCVV e taxas de aplicação. Também verificaram a influência do coeficiente de uniformidade do CAG na remoção de sabor e matéria orgânica, a influência da velocidade e profundidade do leito de carvão na remoção de sabor e matéria orgânica, e a influência do mé todo de lavagem.

Concluiram que para a remoção de matéria orgânica e sabor, utilizando baixos TCVV, é preferível adotar profundidades do leito de CAG compatíveis, e altas taxas de aplicação. Por outro lado, para grandes TCVV, melhores resultados foram obtidos adotando baixas taxas de aplicação e pouca pro fundidade dos leitos.

DE WALLE & CHIAN (1974) investigaram a composição da matéria orgânica no efluente secundário e estudaram a remoção destes compostos em colunas com CAG. A passagem do efluente filtrado do tratamento secundário através do CAG mo<u>s</u> trou uma redução média de COT de 7,8 para 2,1 mg/1 (73 % de TABELA 2.3 - Resultados de ETE Piloto - Tratamento Terciário com CAG - adaptada de Ford, 1976.

	CONCEN	NTRAÇÃO (mg/1)			
	Afluente	Efluente	% Média de Remoção		
	600	280	53		
DQO (mg/1)	500	230	54		
	400	175	56		
	300	120	60		
	200	65	68		
	250	88 218	65 13		
700	200	70 186	65 7		
050	150	54 135	64 10		
(mg/1)	100	36 68	64 32		
	50	20 30	60 40		
	20	10 12	50 40		

i

remoção), e de DQO de 6,0 mg/l para 2,1 mg/l, representando uma remoção de 71%.

A ETE Piloto de Pomona, Califórnia, utilizando um sis tema de tratamento físico-químico foi operado por 27 meses pelo Distrito do setor de saneamento de Los Angeles е EPA (48). Os objetivos deste estudo incluíram uma avaliação а longo prazo, da eficiência do CAG na remoção de matéria orgâ nica solúvel de águas residuárias municipais clarificadas qui micamente, controlando a geração de H₂S nas colunas de CAG, e determinando os efeitos das regenerações térmicas na carac terística dos carvões e no seu desempenho. Um resumo da per formance global do sistema físico-químico, foi adaptado na Tabela 2.4 (27).

Em Orange County, Califórnia, avaliou-se no período de 1975, o tratamento terciário utilizando o efluente de um filtro biológico, clarificado quimicamente, filtrado por gra vidade em filtros mistos, e bombeado para cima através de co lunas de CAG, fornecendo um TCVV de 30 min. Os resultados, iniciais de operação mostraram que a adsorção por CAG removeu 70 - 85% de DQO, 90 - 99% de ABS e 65 - 75% de COT. As con centrações médias do efluente da coluna de CAG para DQO, ABS e COT foram 7,9; 0,05 e 4,4 mg/l, respectivamente (19).

SLECHTA & CULP (1967) apresentaram critérios de projeto e resultados da operação do sistema de tratamento terciário de South Lake Tahoe - Califórnia que opera continuamente. A ETE utiliza colunas de CAG para tratar o efluente de um tratamento por lodos ativados, submetidos a uma clarificação química e uma filtração em filtro misto. O sistema

PARÂMETROS	Esgoto	Efluente	Efluente	% Méd	lia Remoçã	Efluente Tratado	
	Bruto	Clarificado	CAG	T rata mento Químico	Tratamento CAG	Total	Lodo Ativado
Turbidez(JTU)		22,9	6,3	-	72,5	-	7,7
DQO (mg/1)	321	95,8	19,3	70,2	79,9	94,0	39,5
DBO (mg/1)	-	36,2	7,8	-	78,5	-	8,0
Nitrato(mg/lN)	-	0,9	1,3				
Cor	-	20	7,8	-	61,0	-	33,1
рH	7,7	6,8	6,8				

TABELA 2.4 - Resumo do desempenho do sistema de tratamento físico-químico - adaptada de Ford, 1976.

OBSERVAÇÕES: Dosagem média A12(SO₄)₃ = 25mg/1 A1

ŧ

Dosagem média polímero = 0,3 mg/l calgon Wt = 3000

ω

de contato opera num leito com fluxo ascendente e fornece à vazão média, um tempo de contato de 17 min.

A concentração média de DQO no afluente às colunas foi de 20,3 mg/l e a concentração média de DQO efluente foi de 10,0 mg/l, resultando numa eficiência de remoção de 50,8%.

A concentração média de ABS no afluente foi de 0,6 mg/l, enquanto que o efluente apresentou uma concentração mé dia 0,1 mg/l representando uma eficiência de 83,3% de remoção.

Os resultados de cinco meses de operação em 1971 na ETE de Colorado Springs - Colorado são apresentados na Tabela 2.5 adaptada de CULP et alii (1978). O efluente secundário (filtro biológico ou posteriormente lodos ativados) é cla rificado quimicamente, filtrado num meio duplo, e conduzido para colunas de adsorção por CAG com escoamento por pressão e de fluxo descendente.

Há evidências que o CAG é eficiente na remoção de a<u>l</u> guns materiais inorgânicos, incluindo alguns traços de metais potencialmente tóxicos (19).

Análises executadas na avaliação de uma ETE piloto com CAG, verificaram que todos os metais analisados (exceto Alumínio), mostraram concentrações decrescentes com o aumento da profundidade do leito. Entre os metais analisados estavam: Fe, Pb, Zn e Al (72).

Elementos traços, compreendem uma categoria de constituintes nas águas residuárias tratadas sob o ponto de vista de saúde pública. Vários destes elementos, tais como o Cd, Cr, Cu, Pb, Se, Ag e Zn são de particular interesse no TABELA 2.5 - Operação de Tratamento Terciário da ETE de Colorado Springs, Período de março/julho 1971 - Escoamento médio: 40.000 m³/d - adaptada de Culpet alii (1978).

	Efl.Filt.	СОІ	UNAS	CAG	% remoção	
	Biolog.	Afluente	Efluente	% remoção	Total da ETE	
	(mg/1)	(mg/1)	(mg/1)			
DQO	315	139	39	72	88	
DBO	129	57	24	58	81	
ABS	4,85	2,9	0,1	96	98	
Turbidez(JTU)	52	62	6	90	89	
NH3 — N	34,6	23,9	26,3		24	
рН	7,25	6,9	6,9			

suprimento d'água por causa de seus efeitos observados, apesar de presentes em pequenas concentrações (40).

CULP et alii (1978) apresentam resultados do tratamento terciário em testes piloto com CAG, conduzidos de maio /1970 a maio/1971 em Orange County - Califórnia. Esta ETE tratou o efluente de um filtro biológico quimicamente clarificado, em dois reatores em série de CAG, com escoamento de fluxo descendente. A concentração do afluente e efluente à ETE piloto é mostrada na Tabela 2.6 adaptada de CULP et alii (1978).

A EPA conduziu um estudo em ETE piloto tratando o efluente de uma refinaria de petróleo com CAG. A eficiência do tratamento com CAG foi testada utilizando-se o efluente de um separador API e o efluente do tratamento biológico. Houve boa remoção de Cr, Cu, Fe e Zn, embora os mecanismos exatos de remoção não tenham sido determinados. Os resultados destes estudos são mostrados na Tabela 2.7.

A estação de tratamento avançado de água residuária (Water Factory 21), tinha o objetivo de melhorar a qualidade de esgoto doméstico biologicamente tratado para injeção no lençol subterrâneo, e desse modo, prevenir a intrusão de água salgada. A preocupação desta instalação é semelhante às instalações de tratamento de águas altamente contaminadas pa ra o abastecimento público. O processo implantado utilizou um tratamento com cal, aeração, recarbonatação, cloração para controle de algas, filtração, adsorção por CAG, osmose r<u>e</u> versa final para desinfecção e remoção de amônia. O desemp<u>e</u> nho do CAG para a remoção de DQO, COT, traços orgânicos con-

TABELA	2.6	13404	Est	tação	pi]	loto	Orar	nge	County		qu	alidade	típica
			da	āgua	do	afl	uente	э е	efluer	ite	à	estação	piloto
			- a	adapta	ada	de	Culp	et	alii (197	78)	U	

.

	Concentração (mg/1)					
CONSTITUINTE	Afluente	Efluente				
NTK	15 - 30	2				
NH3	15 - 30	2				
NO2	. 1	1				
NO3	1	1				
dbo ₅	30 - 80	2				
DQO	50 - 200	10 - 30				
ABS	3 - 4	0,1				
Cu	0,09 - 0,39	0,02 - 0,3				
Рb	0,00 - 0,05	0,00 - 0,04				
Zn	0,07 - 2,08	0,02 - 0,07				

PARÂMETRO	Efluente Sep. API	Efl. Trat. C A G	Efl. Trat. Biológico	Efl. Trat. C A G
DB05(mg/1)	97	48	7	3
DQO (mg/1)	243	103	98	` 26
Cr	2,2	0,2	0,9	0,02
Cu	0,5	0,03	0,1	0,05
Fe	2,2	0,3	3	0,9
РЪ	0,2	0,2	0,2	0,2
Zn	0,7	0,08	0,4	0,15
Amônia(mg/1)	28	28	27	27
Sulfato(mg/1)	33	39	0,2	0,2
-				
	Tæatamento A		Tratamen	to B

TABELA 2.7 - Resultados do Tratamento de águas residuárias petroquímicas - adaptada de Ford (1976).

taminantes e vários metais pesados nos períodos de outubro/ 1976 a março/1978 (período 2) e março/1978 a janeiro/1979 (período 3), estão resumidos na Tabela 2.8 adaptada de McCAR TY et alii (1979).

Resultados da ETE piloto de CAG de Los Angeles, Cal<u>i</u> fórnia utilizando efluente do tratamento secundário por lodos ativados são apresentados por CULP et alii (1978). Os e<u>s</u> tudos incluíram a utilização de diferentes tempos de contato, taxas de infiltrações e capacidades adsortivas.

As qualidades médias do afluente à ETE piloto são mostradas na Tabela 2.9. Os dados indicam que cerca de 64% da DQO do efluente do processo de lodos ativados foi removido pelo tratamento com CAG. Em relação à ABS, houve uma redução aproximada de 96% do efluente do processo de lodos ativ<u>a</u> dos. Quanto à remoção de inorgânicos o CAG também apresentou boas remoções de vários traços constituintes: Al, Cd, Cu, Fe, Pb, e outros.

HUTCHINS (35) executou um teste numa ETE de uma indústria de corantes, utilizando uma coluna de leito pulsante com CAG tamanho 12 x 40 (1,68 x 0,42 mm).

Durante o teste a concentração da cor afluente apresentava um valor de 70.000 APHA, o equivalente a uma solução padrão com concentração de 70.000 mg/l (American Public Health Association). O objetivo do teste foi o de reduzir a cor em mais de 98%, ou seja, 1375 APHA, e para consegui-lo a vazão foi ajustada para 560 ml/min. O tempo de residência para esta vazão foi de 88 min. A dosagem de carvão foi de 6,95 g/l, e a taxa de utilização do carvão de 231,54 g/h.

TABELA	2.8	-	Remoção de matéria orgânica e metais pesados p	e
			lo CAG durante o período 2 e 3 - adaptada de	
			McCarty et alii (1979).	

CONTAMINANTE	PERÍOD	0 2	PERÍODO 3		
	Concentração Afluente	% Remoção	Concentração Afluente	% Remoção	
DQO (mg/1)	42	60	24	49	
COT (mg/1)	14	51	an a	-	
Cd (mg/1)	1,4	7	7,2	- 32	
Cr (mg/1)	29	38 -	5,6	45	
C u (mg/1)	56	64	36	56	
Fe (mg/1)	105	66	28	- 50	
Pb (mg/1)	3,0	27	3,1	68	

*

TABELA	2.9	****	Qualidade	média	da	água	da	estação) pi	Lloto	de Los	3
			Angeles ut	ilizan	do	CAG -	- ad	laptada	de	Culp	et	
			alii (1978).				ų				

Constituinte	Efl. Secund. (1968-69)	Efluente CAG (1968-70)		
(
DQO	24,6	8,1		
Nitrato	3,5	3,0		
Nitrito	0,4	0,5		
Amônia	7,4	7,1		
NTK	10,0	9,3		
ABS	0,15	0,02		
DBO	5,7	2,4		
A1	0,14	0,09		
Cđ	0,01	0,004		
Cu	0,21	0,21		
РЪ	0,013	0,01		
Zn	0,006	0,004		

·

.

•

3 - MATERIAL E MÉTODOS

3.1 - ETAPAS DE ESTUDO

As experiências foram desenvolvidas em três etapas: 1. etapa: Determinação das isotermas de equilíbrio de adsor ção;

- etapa: Utilização de colunas pilotos com CAG na remoção de cor;
- 3. etapa: Utilização de colunas pilotos com CAG no`tratamen to de esgotos domésticos.

A primeira etapa, a determinação de isotermas de equilíbrio, teve por objetivo verificar o grau de remoção de cor e matéria orgânica (DQO) por adsorção, e mostrar a capacidade adsortiva dos CAG para sua posterior aplicação, bem co mo estimar a quantidade de CAG necessária para o tratamento. Além disso, com os testes de isotermas pôde-se verificar o <u>e</u> feito da temperatura na adsorção. As isotermas fornecem gran de quantidade de dados de uma forma concisa possibilitando <u>u</u> ma avaliação e interpretação adequada dos mesmos. Isotermas obtidas sob condições idênticas usando a mesma solução na com paração de dois CAG podem revelar rápida e convenientemente os méritos relativos dos CAG (19, 23).

A segunda e terceira etapa, a realização de testes em colunas piloto para a remoção de cor e matéria orgânica (DQO) de esgotos domésticos, tiveram por objetivo, respecti-

vamente, verificar o desempenho dos CAG, a operação do sist<u>e</u> ma e critérios de projeto.

Sabendo-se que os testes de isotermas de adsorção es timam a capacidade relativa dos diversos tipos de carvão ati vado para o tratamento de águas residuárias ou uma solução específica, os testes pilotos tem por objetivo fornecer esti mativas mais precisas do desempenho esperado nas unidades em escala plena (23).

Os testes em colunas piloto de CAG possibilitam a ob tenção de informações sobre: 1) os tipos de carvão; 2) tem po de contato a volume vazio (TCVV); 3) profundidade do lei to; 4) necessidades de pré-tratamento; 5) dosagem de carvão em termos de peso de carvão por volume de solução tratada, ou peso de matéria orgânica removida por peso de carvão ativado; 6) característica de saturação; 7) comparação do desempenho de dois CAG sob as mesmas condições dinâmicas de escoamento.

3.2 - CARACTERÍSTICAS DAS SOLUÇÕES

Para os testes realizados com uma solução com cor*, fez-se necessário uma padronização da concentração de cor.

Determinou-se as características de transmissão de luz através da solução preparada, e verificou-se os valores

^{*} Cor obtida pela adição do produto "Q-suco" produzido pela Kibon SA e cujo corante é constituído de SAL BI-SÓDICO DE ÁCIDO 1-(4-SULFONAFTILAZO)-2-NAFTOL-6-SULFÔNICO, determina do pelo Instituto de Ciência e Tecnologia de Alimentos da UFRGS.

da transmitância percentual para esta amostra, nos diferentes valores de comprimento de onda visíveis, conforme \circ "Standart Methods for the Examination of Water and Wastewater" (59), parte 200, item 204B; determinando-se o minimo de transmitância para uma concentração de 2 ± 0,1 gramas de corante/litro estabelecida para os testes. Os valores obtidos são apresentados na Figura 3.1. O comprimento de onda encon trado foi de 515 nm. Para se verificar a concentração de cor residual na solução, determinou-se uma curva de calibração absorbância oercentual versus concentração de cor apresentada na Figura 3.2. Através desta curva se obtém a faixa de concentração de corante, para a qual é válida a lei de Lambert-Beer. As amostras cujas concentrações não estava, compreendidas nesta faixa, tiveram que ser diluídas.

A precisão nas análises de uma solução colorida depende muito da transmitância da amostra que está sendo testa da, e como conseqüência, a eficácia de um procedimento analí tico poderã depender tanto da diluição da amostra, como da ve racidade das reações químicas envolvidas.

Desse modo, para diminuir o êrro na condução das an<u>á</u> lises espectroquímicas deve-se evitar valores tanto muito ba<u>i</u> xos quanto muito altos em transmitâncias.

Por causa da absorção seletiva, a transmitância de <u>u</u> ma solução colorida dependerá da cor da luz usada para a medição, e qua a presença do elemento analisado será mais evidente quando as medidas em transmitância forem feitas com a cor da luz mais fortemente absorvida pelo elemento.

Estabeleceu-se que a concentração afluente de cor nos

Comprimento da anda (λ) $\,$ nm $\,$

concentração de corante (2g/l±0,1)

FIG. 3.2 - Curva de calibração Absorbância x Concentração de corante (Q-suco)

testes de coluna e a concentração inicial nos testes em bate lada seriam equivalentes a aproximadamente de 2 g corante/l.

O tratamento terciário com CAG utilizou o efluente proveniente do tratamento secundário, constituído de um processo de filtração biológica.

Sabe-se que as características químicas destes efluen tes do tratamento secundário estão sujeitos às flutuações de vazão e concentração que decorrem das variações nos hábitos de uma população. Este aumento de vazão para as unidades de pré-tratamento (tratamento primário) geralmente resulta num tratamento menos eficiente e consequentemente num efluente de pior qualidade para as unidades de tratamento posteriores.

Para identificar a água residuária utilizada nos tes tes de coluna com CAG, adotou-se o termo padrão - <u>efluente</u> <u>secundário</u> -, significando na realidade, a utilização do efluente proveniente de um processo de tratamento secundário de esgoto doméstico por filtração biológica.

3.3 - CARACTERÍSTICA DO CAG

Nos testes experimentais executados foram utilizados dois CAG de origem vegetal cujas características são importantes na avaliação de sua adequação ao tratamento de águas residuárias.

Devido às características de perdas de cargas mais favoráveis (23), utilizou-se nos testes de coluna um carvão ativado tamanho 8 x 30.

Um CAG tamanho 8 x 30 representa o material passando

Fotografia do carvão ativado de Acácia Negra, obtida com uma câmara fotográfica "Exacta" acoplada a um microscópio eletrônico de varredura modelo "Cambridge" da marce "Spectron". A amostra está au mentada 1000 vezes. (Gentileza da TANAC S.A.) na peneira nº 8 da série padrão ASTM, e que fica retido na peneira nº 30 da série padrão ASTM. As peneiras intermediárias nesta série, normalmente são as peneiras nº 10, 12, 14, 16 e 20.

O CAG GM utilizado, foi fabricado pelas Indústrias Químicas Carbomafra SA (Curitiba - PR), utilizando como matéria prima caroço de pêssego, enquanto que o CAG denominado TANACARBO foi fabricado pela TANAC SA (Montenegro - RS) util<u>i</u> zando como matéria prima madeira de acácia negra. Nesta pe<u>s</u> quisa para efeitos práticos, os CAG GM e CAG TANACARBO, passaram a ser denominados de <u>CAG A</u> e <u>CAG B</u>, respectivamente.

As propriedades típicas dos dois CAG comercialmente disponíveis, utilizados,o CAG A e o CAG B, são apresentadas na Tabela 3.1.

3.4 - DESCRIÇÃO DO MODELO EXPERIMENTAL

3.4.1 - <u>Descrição do modelo experimental</u> - <u>teste</u> em batelada

Um conjunto vibratório ou um aparelho utilizado para o teste de Jarros, são equipamentos adequados para a determi nação de isotermas de equilíbrio (1).

Para a determinação das isotermas de equilíbrio de adsorção foi adaptado o aparelho de "Warburg" fabricado pela GCA/Precision Scientific (EUA), o qual proporcionou a agitação dos frascos Erlenmeyer, boca larga e reforçada,graduado, marca PYREX com capacidade de 250 ml. Cada frasco continha

TABELA 3.1 - Propriedades dos CAG comercialmente disponíveis utilizados.

PROP. FÍSICAS	CAG A 8 X 30	САСБ 8 ж 30		
Área superficial (m ² /g)	500-1.500	847 - 899		
Densidade aparente (g/ml)	0,33 ⁺ 0,02	0,3229-0,3205		
Tamanho efetivo (mm)	0,98	1,1 (2)		
Coef. uniformidade	1,98	1,91 ⁽²⁾		
ESPECIFICAÇÕES				
Nº Iodo (mg/g)	800	879,7-826,6		
% cinzas	māx. 8%	3,3 - 3,6		

(1) Valores médios da média acumulada de 4/82 a 5/85

(2) Determinados pelo autor

a solução colorida ou o efluente secundário devidamente ved<u>a</u> do com uma rolha de borracha.

Os frascos Erlenmeyer com as amostras a serem testadas, foram previamente acondicionadas num recipiente com água no próprio equipamento usado para a agitação, às temper<u>a</u> turas de 15° C, 25° C e 35° C, estabelecidas para a avaliação dos testes.

A temperatura da água foi mantida constante até o final do teste, admitindo-se uma variação de $\pm 1^{\circ}$ C.

3.4.2 - Descrição do modelo experimental - testes em colunas

O modelo usado na realização das experiências consis tiu basicamente de um reator constituído de colunas de CAG, operado continuamente até a saturação das mesmas.

Esse modelo foi construído em escala piloto, inicial mente no laboratório de saneamento do Instituto de Pesquisas Hidráulicas (IPH) em Porto Alegre, devido à necessidade de se avaliar as condições e a sistemática das operações de um sistema de colunas de CAG (remoção de cor). Posteriormente o modelo foi transferido junto à ETE da vila IAPI em Porto <u>A</u> legre, face à necessidade de uma fonte contínua de esgoto p<u>a</u> ra a sua alimentação (tratamento do efluente secundário). A configuração esquemática das etapas 2 e 3 é apresentada nas Figuras 3.3 e 3.4

Para comparar o desempenho dos dois CAG sob mesmas condições dinâmicas de escoamento adotou-se um 'sistema de

•

FIG. 3.4 - configuração esquemática do sistema de tratamento das esgotos domésticos

52

×

contato de escoamento descendente, operando por gravidade e em paralelo.

A principal razão da utilização deste sistema deve--se à adsorção de matéria orgânica, filtração de materiais suspensos e grande experiência no uso destes sistemas no tra tamento de águas residuárias (23, 51).

O material usado para o modelo na etapa 2 (remoção de cor) apresentou a montante do sistema, um reservatório de cimento amianto com capacidade de armazenamento para 250 litros de solução.

A alimentação do modelo foi realizada diariamente me diante um dispositivo simplificado. Uma mangueira ligada à rede de abastecimento d'água alimentava o reservatório, cuja vazão foi medida com uma proveta graduada a conter, com base hexagonal de vidro, gravação permanente com faixa âmbar classe A, marca PYREX de 1000 ml, e um cronômetro de precisão.

De acordo com o volume alimentado no reservatório, <u>e</u> fetuou-se a dosagem do corante de modo que a cor da solução alcançasse o equivalente a aproximadamente 2 g corante/1.

Para a alimentação da solução colorida às colunas de CAG utilizou-se uma canalização de PVC de 20 mm de diâmetro, disposta de tal modo que a alimentação às colunas dispostas em paralelo fosse simultânea.

Para as colunas foram usados tubos cilíndricos de PVC com 44 mm de diâmetro interno e 1,95 m de altura.

O processo de retirada da solução aquosa do interior das colunas para a amostragem, foi feito por meio de tornei-
ras plásticas de 20 mm. Cada coluna era constituída de 5 tor neiras dispostas a alturas de 0,05 m, 0,55 m, 0,85 m, 1,15 m e 1,45 m a partir da base.

Um vertedouro constituído de uma canalização de 20 mm de PVC foi colocado à 1,80 m de altura a partir da base, pe<u>r</u> mitindo que a carga hidráulica às colunas fosse constante.

No fundo da coluna foi colocado um tampão rosqueável de 50 mm para possibilitar a substituição do material adsorvente saturado.

Leitos de CAG com escoamento descendente necessitam de um sistema de sustentação, e um sistema que possibilite <u>u</u> ma lavagem destes leitos (23). O controle dos leitos é sem<u>e</u> lhante ao utilizado para filtros de areia. Desse modo, conforme o sugerido pela EPA (23), utilizou-se nos leitos de CAG um sistema drenante semelhante ao recomendado para filtros convencionais de água.

O leito de sustentação para o CAG dentro das colunas foi constituído de camadas, cada uma com 0,10 m de profundidade na seguinte ordem: seixo 76 mm, seixo 38 mm, areião 7 mm, areião 3 mm e areião 0,8 mm como mostra a Figura 3.5.

Antes da colocação do material do leito de sustentação, efetuou-se uma lavagem destes materiais.

Para a composição do leito de CAG foram utilizados CAG comercialmente disponíveis, o CAG A e o CAG B, tamanho 8 x 30 (Ítem 3.3).

Maiores detalhes do processo de carga das colunas se rão apresentados adiante (ítem 3.5.2).

Para a fase experimental seguinte (utilizando esgo-

OBS.: As unidades não anotadas estão em metros.

FIG. 3.5 - Perfil longitudinal de uma coluna CAG

tos domésticos) foi necessário a adaptação do modelo às condições locais existentes na ETE da vila IAPI em Porto Alegre.

A alimentação do sistema foi realizado conforme apr<u>e</u> sentado na Figura 3.6. O efluente secundário usado nas exp<u>e</u> riências foi bombeado com auxílio de uma bomba centrífuga Schneider modelo BC-25, 1/3 cv, fabricada pela Schneider SA, a uma vazão de 12 l/min, através de uma canalização de sucção de 20 mm e de recalque de 15 mm, a partir de um decantador (em escala piloto) situado após uma unidade piloto constituída de um filtro biológico.

A operação de bombeamento foi conduzida de forma des continua até uma unidade de pré-filtração (51) constituído de um reservatório de cimento amianto com capacidade de 250 1, preenchido com material característico de um leito filtrante (1), com camadas de 0,05 m e cujas granulometrias são especificadas a seguir:

- seixo rolado 76 mm, seixo 38 mm, areião 7 mm

areião 3 mm e areia com um diâmetro entre 0,5 mm e
1,68 mm, com um coeficiente de uniformidade de 1,5
e um tamanho efetivo de 0,7 mm.

A instalação de filtros de areia antes dos filtros do CAG possibilitou maior tempo de operação e reduziu os problemas operacionais das colunas.

A unidade de pré-filtração foi colocada a montante de um reservatório de cimento amianto com capacidade de armazenamento de 250 l de efluente secundário para a alimentação das colunas de CAG.

As demais partes constituintes do modelo, com colu-

nas de CAG e o leito de sustentação, são idênticas àquelas <u>u</u> tilizadas no modelo descrito para a fase experimental utilizando a solução colorida.

3.5 - METODOLOGIA

3.5.1 - Determinação de isotermas

O sistema de adsorção sólido-líquido foi compreendido de CAG e a solução com cor ou efluente secundário. O esgoto foi obtido da ETE da vila IAPI, enquanto que a solução com cor foi preparada, conforme descrito no item 2.1, cuja concentração foi mantida aproximadamente constante.

Para a uniformidade do teste em batelada (34), efetuou-se uma padronização do CAG, peneirando-o e utilizando <u>a</u> penas o material passando na peneira nº 16 da série padrão ASTM (abertura 1,18 mm), e ficando retido na peneira nº 20 da série padrão ASTM (abertura 0,85 mm).

Antes da utilização dos CAG nos testes de isotermas, efetuou-se uma lavagem dos mesmos para remover impurezas lixiviãveis ou cinzas que poderiam interferir nos resultados de adsorção a obter.

O procedimento adotado para a lavagem do CAG uniformizado para os testes em batelada, foi o sugerido por HUANG & HARDIE (1971):

> - uma porção de CAG devidamente classificado por meio de peneiras da série padrão ASTM, foi colocado sobre uma tela com abertura de aproximadamente 1,0 mm

e lavado com água deionizada durante 5 minutos;

- após a lavagem, o carvão foi colocado num copo
 Griffin forma baixa, graduado (Becker) marca PYREX
 de 1000 ml, ao qual foi adicionado água deionizada
 até que a mistura se tornasse fluida;
- deixou-se o copo Becker sobre uma chapa aquecida durante 60 min, agitando-se freqüentemente a massa fluida com um bastonete de vidro;
- após a fervura, separou-se o CAG da água com auxí lio de uma tela, efetuando-se nova lavagem com á gua deionizada;
- após estas lavagens o CAG foi levado a uma estufa à temperatura de 105[°]C durante 8 horas,que após se co, foi utilizado para os testes em batelada para a determinação das isotermas.

O procedimento experimental utilizado para a avaliação e determinação de isotermas em testes de batelada, foi também apresentado por (1, 19, 34, 42) como segue:

- preparou-se e coletou-se uma amostra representati va de solução colorida ou efluente secundário a ser usado nos testes. Antes da utilização destas soluções fez-se uma homogeneização das mesmas.
- 2) Em cada teste de isotermas utilizou-se seis frascos Erlenmeyer, boca larga e reforçada, marca PY-REX com capacidade de 250 ml. A cada Erlenmeyer adicionou-se 200 ml de solução a ser testada, acon dicionando-os às temperaturas de 15° C, 25° C e 35 $^{\circ}$ C ± 1 $^{\circ}$ C, estabelecida para os testes.

UFRGS BIBLIOTECALP. B.

- 3) Aos frascos Erlenmeyer com solução, adicionou-se 0,1; 0,25; 0,4; 0,8 e 1,6 gramas de CAG preparados para o teste, vedando-os com rolhas de borracha. Um frasco de controle com a amostra a ser testada, foi submetido ao mesmo procedimento de maneira a obter uma leitura em branco.
- 4) Os frascos foram colocados em grupo de três e agi tados durante 60 min num agitador mecânico "Warburg Apparatus" fabricado pela GCA/Precision Scientific (EUA). Raramente o equilíbrio de adsorção não é obtido com este tempo de agitação (28).
- 5) Após o término do tempo de contato,o conteúdo dos frascos Erlenmeyer foi filtrado em um funil Buchner contendo filtro nº 12 inserido num frasco para filtragem a vácuo tipo KITAZATO, sem graduação, com saída superior para um tubo de borracha, marca PYREX. Desprezou-se os primeiros e últimos 50 ml de amostra filtrados, utilizando-se a parcela intermediária para análises.
- 6) Determinou-se a concentração de cor e/ou matéria orgânica (DQO) do filtrado de cada frasco utilizando um método quantitativo apropriado (espectro fotométrico para determinação de cor) e análise química para a DQO (59).

Os dados para a graficação das isotermas foram obtidos tratando volumes fixos da solução com uma série conhecida de pesos de carvão. A mistura carvão líquido foi agit<u>a</u> da durante 60 min, à temperatura estabelecida para o teste. Após a remoção do CAG da solução por filtração, determinou -se o conteúdo de cor ou matéria orgânica residual na solução. Destas medições se obteve todos os valores necessários para graficar uma isoterma (19).

Para a tabulação dos dados obtidos nos testes de iso termas utilizou-se o procedimento a seguir. A concentração residual de matéria orgânica ou cor C foi obtida diretamente das análises do filtrado. A quantidade adsorvida no carvão X, foi obtida pela subtração do valor C de Co, a concentração inicial. Dividindo-se X por M, o peso de carvão usado no teste, obteve-se a quantidade adsorvida por unidade de carvão.

Numa comparação entre três tipos de relações de isotermas de adsorção, verificou-se o melhor ajuste dos dados, através de uma análise de regressão e correlação linear (71).

O desenvolvimento de Langmuir é baseado na suposição de que a adsorção máxima corresponde à monocamada saturada de moléculas solúveis na superfície adsorvente, que a energia de adsorção é constante, e que não há transmigração do adsorbato no plano da superfície (23, 65).

O modelo Brunauer, Emmett, Teller (BET) supõe que v<u>á</u> rias camadas de moléculas adsorvidas se formam na superfície, aplicando-se a equação de Langmuir a cada camada. Uma suposição posterior do modelo BET é que uma dada camada não necessita de uma formação completa antes de se iniciarem as c<u>a</u> madas subseqüentes, a condição de equilíbrio irá portanto, e<u>n</u> volver vários tipos de superfície, pois há um certo número de camadas de moléculas em cada lado da superfície.

61

Para a adsorção da solução com a suposição adicional que as camadas após a primeira tenham energias iguais de adsorção, a equação de BET toma a forma simplificada de:

$$\frac{X}{M} = \frac{B \cdot C \cdot Q^{O}}{(Cs - C) |1 + (B - 1) (C/Cs)|}$$
(3.1)

onde: Cs - Ē a concentração de saturação do soluto (mg/l); C - Concentração na solução em equilíbrio (mg/l); Q^O - Nº de mols do soluto adsorvido por unidade de ad sorvente formando uma monocamada completa na su perfície (mg de adsorbato/g adsorvente);

A equação (3.1) pode ser rearranjada invertendo-se ambos os membros, para facilitar sua aplicação aos dados experimentais, resultando na forma linear:

$$\frac{C}{(Cs-C)X/M} = \frac{1}{B \cdot Q^{O}} + \frac{(B-1)}{B \cdot Q^{O}} \cdot \frac{C}{Cs}$$
(3.2)

A graficação do termo esquerdo da equação (3.2) na ordenada versus C/CS resultará numa linha reta com declivida de $(B-1)/B.Q^{O}$ e interceptação $1/B.Q^{O}$, para dados que estive rem de acordo com o modelo BET.

A isoterma de Langmuir é:

$$\frac{X}{M} = \frac{Q^{\circ} \cdot b \cdot C}{(1 + b \cdot C)}$$
(3.3)

onde: b - constante relacionada à energia ou entalpia do líquido (ml adsorvente/mg adsorbato)

Os demais parâmetros tem o mesmo significado das equações (3.1) e (3.2).

A equação (3.3) pode ser reescrita numa forma linear, invertendo-se ambos os membros da equação, facilitando a aplicação dos dados obtidos experimentalmente:

$$\frac{1}{X/M} = \frac{1}{Q^{0}} + \frac{1}{bQ^{0}} \cdot \frac{1}{C}$$
(3.4)

A graficação dos membros $1/\frac{X}{M}$ versus 1/C na ordenada e abcissa, respectivamente, resultará numa linha reta que permite a determinação dos parâmetros $1/bQ^{\circ}$ e $1/Q^{\circ}$ da sua d<u>e</u> clividade e interceptação, respectivamente.

Outra equação de isotermas de adsorção utilizada foi a equação de Freundlich ou van Bemmelen, e tem sido amplamen te usada para relatar o montante de impurezas na solução após a adsorção:

$$X/M = kF \cdot C^{1/n}$$
 (3.5)

onde: C - concentração de equilíbrio das impurezas na solu ção (mg/l);

> kF e n - constantes utilizadas para definir a nature za da solução adsorvida e do carvão, respectivamente.

A equação (3.5) pode ser reescrita numa forma linear tomando-se o logaritmo de ambos os membros:

> log (X/M) = (l/n).log C + log kF (3.6) Os demais parâmetros jã foram definidos anteriormen

te.

A equação (3.6) revela que o gráfico dilog X/M versus C resultará numa linha reta que permite a determinação dos pa râmetros l/n e kF, da sua declividade e intersecção igual ao valor log K para C = 1 (log C = 0), respectivamente.

3.5.2 - Operação das colunas pilotos

Os conceitos operacionais para adsorventes de CAG com escoamento por gravidade, tal como se apresentou o modelo ex perimental, são essencialmente uma reprodução da forma de operação para filtros de leitos-granulares (65).

O modelo experimental foi operado em duas etapas como já mencionado anteriormente (ítem 3.1), e pode ser resumi do no esquema a seguir:

- Remoção de cor, operada à vazão média de 36,26 ml/ min para o CAG A e 36,66 ml/min para o CAG B, respectivamente.
- Tratamento do efluente secundário esgoto domésti
 co em diferentes ciclos operacionais:
 - . ciclo operacional com vazão de 54,8 ml/min e 53,9 ml/min;
 - ciclo operacional com vazão de 96,6 ml/min e 95,8
 ml/min e
 - ciclo operacional com vazão de 146,7 ml/min e 145,3 ml/min, para os CAG A e CAG B, respectivamente.

As vazões adotadas estão dentro das recomendadas pe-

la EPA (23) para o diâmetro das colunas adotadas.

Um ciclo operacional completo consistiu de:

- cargas das colunas com CAG (23, 28);
- bombeamento do efluente secundário para uma unidade de pré-filtração;
- condução do efluente da unidade de pré-filtração pa ra um reservatório de armazenamento;
- por gravidade a solução armazenada foi conduzida
 continuamente através das colunas de CAG;
- condução da solução tratada para fora do sistema;
- término do ciclo operacional sempre que a perda de carga atingisse a níveis tais, que interferissem na vazão do efluente secundário através dos leitos de CAG ou quando o CAG estivesse sa turado.

Para a etapa na qual se utilizou a solução colorida o ciclo operacional ficou alterado apenas no que se refere ao bombeamento do efluente secundário. Após a carga das colunas com CAG procedeu-se à alimentação do reservatório de armazenamento com água, efetuando-se após a determinação do volume d'água armazenado, a dosagem necessária de corante de acordo com a concentração de cor pré-estabelecida.

Para carregar as colunas com CAG foi necessário a execução de um leito de sustentação para o CAG (l), conforme já especificado no ítem 3.4.2.

Antes da sua colocação nas colunas, o CAG foi devida mente lavado para remover finos e cinzas de carvão, para evi tar colmatação e excessiva perda de carga nos leitos de carvão (23, 35). Adicionou-se o carvão ativado num recipiente com água, medindo-se previamente o volume adicionado com uma proveta graduada, marca Pyrex com capacidade para 500 ml. Em seguida, com auxílio de um pano com uma abertura adequada, per mitiu-se a passagem dos finos de carvão, sendo que o material retido foi recolocado num recipiente com água, para for mar o que se denominou de "pasta", pronto para ser levado às colunas. Para cada coluna utilizou-se um volume de 1550 ml de CAG, volume suficiente de modo a permitir uma borda livre na coluna para a efetuação da lavagem da mesma.

Uma lavagem prévia do material a ser colocado nas co lunas proporciona a vantagem de minimizar a possibilidade da existência de bolhas de ar nas colunas, evitando o surgimento de canais preferenciais para o escoamento da solução (23).

Durante o preenchimento das colunas com a "pasta" de carvão ativado, devido ao excesso de água, abriu-se a válvula de descarga de saída da solução. O CAG permaneceu retido no leito de sustentação e a água em excesso escoou para fora do reator.

Para retirar o ar ainda remanescente na coluna efetuou-se uma rápida lavagem do filtro já carregado, invertendo-se o fluxo d'água (ascendente) a uma vazão de 300 ml/min durante 5 minutos. Para evitar que grãos de CAG saíssem pelo topo das colunas, dispôs-se sobre a mesma uma tela para a retenção dos grãos.

Concluída a lavagem, fechou-se a válvula de descarga até que fosse dado início às operações das colunas.

Após o processo de carga das colunas com CAG, ini-

ciou-se a alimentação de todo o sistema, efetuando-se o bombeamento do efluente secundário para a unidade de pré-filtr<u>a</u> ção a uma vazão de 12 l/min. Um sistema difusor de madeira distribuiu o efluente secundário uniformemente na superfície do filtro de areia.

O efluente secundário filtrado foi armazenado num r<u>e</u> servatório colocado a jusante do filtro a uma vazão entre 0,06 - 0,12 m³/h.m².

Com auxÍlio de um registro de 20 mm, liberou-se o es coamento do efluente secundário filtrado para as colunas com os CAG A e CAG B, dispostas em paralelo. Ao mesmo tempo regulou-se a vazão efluente às colunas previstas para o ciclo operacional, com auxÍlio de uma proveta graduada com capacidade de 200 ml e um cronômetro de precisão.

As amostras para análise foram coletadas adotando-se o seguinte critério para uma padronização da operação, obed<u>e</u> cido diariamente:

- Na etapa 2 (remoção de cor) as amostras foram cole tadas aproximadamente às 8 h e 16 h, sendo que eventualmente, ainda se coletou amostras noste intervalo, caso houvesse necessidade.
- Na etapa 3 (esgoto doméstico) as amostras foram co letadas aproximadamente às 7 h 30 min e 16 h, exceto no início dos ciclos operacionais devido à necessidade de alguns ajustes no sistema.
- Cada amostragem constou da retirada de amostra em diferentes pontos de cada coluna e da solução afluente a estas colunas. O esquema da coleta das

amostras é apresentado na Figura 3.7.

Abriu-se a válvula de amostragem de tal modo a permi tir a saída lenta da amostra. Após um minuto, tempo suficiente para a eliminação dos finos do carvão, fez-se a coleta das amostras utilizando frascos para coleta de DBO.

A operação das colunas foi realizada conforme o sistema de operação e controle recomendado pela EPA (23).

O controle da vazão e conseqüentemente, do tempo de contato entre a solução com cor ou efluente secundário com o CAG, foi realizado com uma proveta graduada de 200 ml e um cronômetro de precisão, ajustando-se a vazão por meio de uma válvula operada manualmente. As válvulas foram reajustadas sempre que a vazão diminuía, de tal modo a se conseguir uma vazão média de acordo com o previsto para o ciclo operacional.

Devido a estas variações das vazões durante o ciclo operacional, utilizou-se para o cálculo de vazões e TCVV médios, o método das médias ponderadas (71).

O Tempo de Contato para Volume Vazio (TCVV) foi determinado considerando dois parâmetros operacionais: a profundidade do leito de CAG após a rápida lavagem efetuada antes do início da operação, e a vazão do fluido (7, 24).

Assim, considerando Q a vazão de filtração (m^3/h) e V o volume vazio do leito, (h x área secção da coluna) $(m^3 \tilde{a}g./m^3 CAG/h)$, tem-se:

$$TCVV = \frac{V}{Q} = (min) \qquad (3.7)$$

Devido a uma perda de carga excessiva que ocorreu no topo dos leitos de CAG aproximadamente após três dias de ope

		PONTOS DE COLETA		
SOLUÇÃO		CAG A	CAG B	
COR	Afluente	E 10	E 20	
		E 11	E21	
		E 12	E22	
		E 13	E23	
ESGOTO Domestico	Afluente	E 10	E20	
		E 11	E21	
		E 12	E22	

EIG. 3.7 - Esquema de coletas de amostras

ração, e adotando-se os critérios da EPA (23), efetuou-se uma rápida expansão de 8% e 10% do leito de CAG (18) a uma va zão de 500 ml/min, para as colunas com o CAG A e CAG B, respectivamente.

O propósito de uma lavagem é de reduzir a resistência ao escoamento causado por sólidos que se acumulam no le<u>i</u> to. A taxa e a freqüência de lavagem dependem da carga hidráulica, natureza e concentração de sólidos suspensos na água residuária, tamanho das partículas de carvão e o sistema de contato (23).

O critério adotado para a freqüência de lavagem é su gerido pela EPA (23):

Para a etapa 2 (remoção de cor), efetuou-se lavagem quando se verificou "in loco" após uma coleta de amostra, um aspecto turvo no efluente coletado;
para a etapa 3 (tratamento de efluente secundário),

efetuou-se lavagem em intervalos regulares de tem-

po pré-determinados, de 2 1/2 dias aproximadamente.

A Figura 3.8 mostra a expansão dos leitos durante as lavagens dos CAG A e CAG B, tamanho 8 x 30 para várias taxas de escoamento.

Durante os testes realizados, a lavagem do leito fi<u>l</u> trante foi efetuada durante 10 min, com uma expansão de no máximo 20% do leito. O processo adotado foi o sugerido por FERRARA (1980).

Após o término de cada ciclo operacional, removeu-se o CAG das colunas pelo fundo, efetuando-se a limpeza das paredes internas das colunas, permitindo a utilização destas

Taxa aplicação m1 / min / área da coluna

temperature -26°C

para um novo ciclo operacional.

3.5.3 - Parâmetros analisados

Para uma melhor avaliação dos CAG utilizados nos tes tes experimentais, fez-se necessário a determinação de parâmetros físicos tais como o tamanho efetivo e o coeficiente de uniformidade dos CAG.

Na determinação das isotermas para verificar a capacidade adsortiva dos CAG na remoção de cor, fez-se análises de pH, temperatura da solução (pré-estabelecida), e determinação da cor residual. Na avaliação das isotermas utilizando efluente secundário, fez-se análises de DQO, pH e temper<u>a</u> tura da solução.

Para avaliar o comportamento do modelo experimental constituído de colunas de carvão ativado na etapa 2 - remoção de cor, foram coletadas amostras do afluente às colunas e do efluente dos pontos de coleta estabelecidos para cada coluna. A cada amostragem determinou-se a temperatura, pH e da concentração de cor remanescente na solução líquida. Também re<u>a</u> lizou-se uma determinação diária da DQO da solução afluente e efluente às colunas.

Na fase em que se verificou o desempenho das colunas de CAG utilizando o efluente secundário como solução, as amostras afluentes às colunas coletadas no reservatório de a<u>r</u> mazenamento do sistema, a montante das colunas; enquanto que as amostras da solução nas colunas foram coletadas nos pontos de coleta previstos. Para monitoramento do processo de tratamento foram feitas a cada coleta de amostra para análises, determinações de temperatura, pH, oxigênio dissolvido dos esgotos, bem co mo a temperatura do ar e da vazão efluente às colunas.

Medições da vazão foram feitas em tantas oportunidades quanto possíveis para verificar o funcionamento do sist<u>e</u> ma.

Para avaliar a eficiência do modelo analisado fez-se determinações da demanda química de oxigênio (DQO) de todas as amostragens realizadas.

Outras análises como turbidez, ABS e metais como Cu, Pb e Zn, foram realizadas durante campanhas intensivas duran te cada ciclo operacional.

Os métodos empregados na determinação dos parâmetros analisados foram os seguintes:

a) Tamanho efetivo e coeficiente de uniformidade:

O tamanho efetivo e o coeficiente de uniformidade dos CAG foram determinados por meio de peneiras - "U.S. Stan dard ASTM", com 8 polegadas de diâmetro, conforme prescrevem o "Manual da EPA" - Apêndice B (23) e as normas da "AWWA -Standard B604" (3) para carvões ativados granulares.

b) Temperatura

A temperatura do ar, da solução com cor e efluentes secundários foi medida por meio de um termômetro de mercúrio conforme prescreve o "Standard Methods for the Examination of Water and Wastewater" (59), parte 200, Item 212.

c) pH

O pH das soluções a serem testadas foi determinado

pelo método eletrométrico descrito no "Standard Methods for the Examination of Water and Wastewater" (59), parte 400, item 424. O aparelho usado foi um medidor de pH DIGI-SENSE MODELO 5985-20 fabricado pela Cole-Parmer Instrument Co.(EUA)

d) Oxigênio dissolvido

As medições do oxigênio dissolvido no efluente secun dário bruto e tratado foram feitas pelo método eletrométrico descrito no "Standard Methods for the Examination of Water and Wastewater" (59), parte 400, item 422 F. O aparelho us<u>a</u> do foi um medidor de oxigênio dissolvido YSI MODELO 57, fabricado pela Yellow Springs Instruments Co. (EUA).

e) Demanda química de oxigênio

A demanda química de oxigênio (DQO) da solução com cor e dos efluentes secundários foi medida pelo método colorimétrico usando um aparelho "HACH COD REACTOR MODELO 16500", fabricado pela Hach Chemical Co. (EUA), de acordo com as in<u>s</u> truções do manual "Hach Company - COD REACTOR - modelo 16500" (31).

f) Alquil Benzeno Sulfonato

A determinação do Alquil Benzeno Sulfonato (ABS) nos esgotos foi feita conforme descrito no "Standard Methods for the Examination of Water and Wastewater" (59), parte 500, item 512-A

g) Turbidez

A turbidez dos esgotos foi medida pelo método Nefelo métrico (NTU) usando um aparelho "Turbidimeter model 2100A" fabricado pela Hach Chemical Co. (EUA), conforme o descrito no "Standard Methods for the Examination of Water and Wastewater" (59), parte 200, item 214-A.

h) Metais

A determinação de metais nos esgotos foi feita util<u>i</u> zando o método da espectrofotometria de absorção atômica de<u>s</u> crito no "Standard Methods for The Examination of Water and Wastewater" (59), parte 300, item 301-A. O aparelho usado foi um "Atomic Absorption Spectrophotometer - série AA - 275", fabricado pela Varian Techtron Pty. Ltd. (Austrália).

A preparação das amostras para a determinação do Pb, Cu e Zn foi executada conforme prescreve o "Standard Methods for the Examination of Water and Wastewater" (59), parte 300, Itens 311, 308 e 323, respectivamente.

i) Determinação de cor

A cor residual da solução com cor foi determinada pe lo método espectrofotométrico conforme o prescrito no "Standard Methods for the Examination of Water and Wasterwater" (59), parte 200, item 204 B. Utilizou-se um aparelho "Espec trofotômetro digital B242" fabricado pela Micronal (Brasil).

4 - RESULTADOS E DISCUSSÃO

•

4.1 - TESTES DE ISOTERMAS DE ADSORÇÃO

Os dados para representar a interpretar as isotermas de adsorção foram obtidos em testes de batelada, tratando-se volumes fixos de solução com cor e/ou esgoto doméstico utili zando diferentes pesos de carvão ativado; e são apresentados nas Tabelas 4.1 até 4.5 do Apêndice.

Os dados das Tabelas 4.1 e 4.2 representam valores da remoção de cor para os CAG A e CAG B; e as Tabelas 4.4 e 4.5 representam os valores da remoção de matéria orgânica (DQO) do efluente secundário.

As temperaturas de testes 159, 259 e 359C admitindo--se uma variação de ± 19C, bem como o pH da solução a ser tes tada também estão anotados nas tabelas acima referidas.

Nas Tabelas 4.1 e 4.2 do Apêndice, alguns dados ref<u>e</u> rentes ao corante adsorvido foram desprezados por não apresentarem resultados coerentes.

A alteração da tonalidade da solução com cor, provavelmente ocasionada por reações com partículas microscópicas dos CAG, e conseqüentemente, a interferência desta na leitura efetuada pelo espectrofotômetro digital B242 - fabricado pelo Micronal (Brasil), o qual estava ajustado para um feixe luminoso específico, pode ter sido a origem deste problema.

A representação gráfica das isotermas de equilíbrio

de Freundlich, Langmuir e BET utilizando os dados obtidos nos testes em batelada, aparecem nas Figuras 4.1 a 4.13. O ajuste linear dos dados foi obtido através de uma análise de regressão e correlação linear (71).

As isotermas de Freundlich para a remoção de cor, r<u>e</u> moção de DQO, ou seja, da remoção de matéria orgânica do efluente secundário estão representadas nas Figuras 4.1, 4.2, 4.4 e 4.5, respectivamente.

Num papel di-log plotou-se a concentração residual (C) de cor ou DQO no eixo horizontal contra X/M no eixo vertical, ajustando a melhor reta entre os pontos. Na Figura 4.1, no teste executado a 35^oC, ao se tomar uma perpendicular a partir do ponto na abcissa correspondendo à concentração inicial (Co), e extrapolando-se a isoterma até a intersec ção com esta perpendicular, o valor de X/M neste ponto de in tersecção, representará a quantidade de cor adsorvida por unidade de peso de carvão, quando este estiver em equilíbrio com a concentração afluente. No exemplo, X/M será igual a 890 mg de cor adsorvida por grama de carvão ativado.

Teoricamente, este valor representará a capacidade de adsorção última do carvão ativado (19, 23).

O valor das capacidades de adsorção últimas dos CAG - representando uma situação de equilíbrio entre a solução e o adsorvente, são representados na Tabela 4.6.

Também são relatados os valores das constantes k = 1/n, obtidos da intersecção igual ao valor de log K para C=1 (log C = 0) e declividade das isotermas, respectivamente.

O uso da relação de equilíbrio de Freundlich pode ser

FIG. 4.1 - isotermas de FREUNDLICH - remoção de cor

CAG B

FIG. 4.4 - Freunds FREUNDLICH - esgoto domestico

` \G

limitado para soluções complexas e concentradas (1, 27), e um indicativo da adsorbabilidade dos constituintes destas soluções, serão as constantes k e l/n. A constante k é um indicativo da capacidade de adsorção do CAG e l/n indica o efeito da concentração na capacidade de adsorção (26).

A Tabela 4,6 apresenta os dados ajustados à forma lo garítmica da equação de Freundlich, e da qual se pode deduzir algumas considerações inerentes a estes parâmetros k e l/n, também preconizados por (1, 23, 26, 27), como:

- k e l/n diminuem com o aumento da complexidade do adsorbato. Os valores de k e l/n obtidos são maio res para a solução com cor do que para o esgoto do méstico;
- altos valores de k e l/n podem ser indicativos de uma adsorção elevada nos níveis de concentração da solução testada. Os valores de k e l/n para as isotermas de remoção de cor supõe boa capacidade de adsorção;
- baixos valores de k e l/n como os encontrados nos testes verificando a remoção de matéria orgânica (DQO), podem revelar uma pequena adsorção para aquelas concentrações testadas.
- menor o valor de l/n, ou seja maior a declividade, faz supor uma maior adsorção para concentrações de soluto elevada e menor adsorção para concentrações mais diluídas.

Deve-se enfatizar novamente que estas constantes podem ser indicativos dessas variabilidades acima supostas.

CAG	Identificação	Temperatura (?C)	Concentração inicial	к	1/n	Capac.adsort. máxima <u>mg adsorbato</u> g CAG
C	Remoção cor (g/l)	15 25 35	1,95 1,90 1,90	82 52 15	0,32 0,385 0,54	920 910 890
G	·					
В	Remoção DQO Esgoto doméstico (mg/l)	15 25 35	125 110 130	0,65 0,70 0,50	0,87 0,85 0,80	72 45 33
C A	Remoção cor (g/l)	15 25 35	1,95 1,80 1,90	43 6 3	0,42 0,70 0,75	990 1180 850
G						
A	Remoção DQO Esgoto doméstico	15 25	120 125	0,60	0,90	70 69
	(mg/l)	35	120	0,80	0,82	57

TABELA 4.6 - Avaliação comparativa dos dados de Isotermas de Freundlich.

Obs.: As constantes K e l/n são aplicadas à equação de Freundlich na forma logarítmica.

As representações das isotermas de Langmuir são apr<u>e</u> sentadas nas Figuras 4.6 e 4.7 (remoção de cor), e Figuras 4.8 e 4.9 (remoção de matéria orgânica (DQO) do esgoto domé<u>s</u> tico). Os parâmetros obtidos a partir destes isotermas, como a capacidade adsortiva última (Q^O) e a constante caracterizando a energia de ligação do substrato com o adsorvente b, são apresentados na Tabela 4.7.

Para obter as capacidades máximas adsorvidas dos CAG, anotados na Tabela 4.7, tirou-se uma perpendicular a partir do ponto da máxima remoção de adsorbato possível (1/Co), até a intersecção com a reta ajustada para a isoterma,fazendo-se a leitura correspondente na ordenada do valor $1/\frac{X}{M}$ (o inverso da capacidade máxima de adsorção).

WEBER (1972) preconiza que para pequenas quantidades de adsorção, isto é,quando b.C < 1, a adsorção específica será proporcional à concentração final do adsorbato na solução, podendo então ser calculado por: $\frac{X}{M} = Q^{O}$.b.Co, cujos parâmetros já foram definidos.

Para grandes quantidades de adsorção onde b.C > 1, a capacidade total do adsorvente para um adsorbato será dado pelo valor limitante de $\frac{X}{M}$, quando C a concentração removida se aproximar de Co a concentração inicial, e que será igual ao valor de Q^O.

Para as isotermas testadas não se fez uso das equações indicadas por WEBER (1972), pois os valores de b.C se <u>a</u> proximam positivamente e negativamente da unidade.

A isoterma de Langmuir apresenta algumas limitações e restrições (item 3.5.1), e apesar do reconhecimento destas,

FIG. 4.7 - isotermas LANGMUIR remoção de cor CAG A

FIG. 4.8 - isoterma LANGMUIR - esgoto domestico

CAG B

\$

87

FIG. 4.9 - isoterma LANGMUIR - esgoto doméstico

CAG A

8 8
CAG	Identificação	Concentração inicial	Temperatura (ºC)	Q? (g/mg) 10-3	1/ьQ? 10-3	$(mg/1^{-1})$ 10 ⁶	Cap. adsortiva <u>x mig adsortiva</u> M g CAG
, C A	Remoção Cor (g/1)	1,95 1,90 1,90	15 25 35	1,10 1,00 0,82	0,244 0,357 0,714	3,72 2,80 1,71	840 840 820
G B	Remoção DQO Esgoto Doméstico (mg/1)	125 110 130	15 25 35	-7 -22,5 -62	2700 4450 12000	-52,91 -9,99 -1,34	71 56 43
C	Remoção Cor (g/l)	1,95 1,80 1,90	15 25 35	0,93 0,40 -0,85	0,385 0,667 2,857	2,796 3,748 - 0,4 1 2	910 1050 1250
G	Remoção DQO Esgoto Doméstico (mg/1)	120 125 120	15 25 35	-48 -66 -50	6000 8500 6900	-3,47 -1,783 -2,899	500 400 150

TABELA 4.7 - Avaliação Comparativa dos Dados de Isotermas de Langmuir

-

a equação de Langmuir pode ser usada para a descrição das con dições do equilíbrio de adsorção e para o fornecimento dos parâmetros Q^{O} e b, comparando quantitativamente o procedimen to da adsorção com outros sistemas adsorbato-adsorvente, ou para variadas condições dentro de um dado sistema.

Estas limitações e restrições podem ter sido a causa das baixas capacidades adsortivas para o CAG B - utilizando o efluente secundário, obtidas nos testes de isotermas (Tabe la 4.7). Estes baixos valores decorrem da projeção na ordenada, da intersecção de 1/Co (inverso da concentração inicial da solução), com a reta ajustada aos dados obtidos expe rimentalmente.

Para as isotermas de adsorção que seguem o modelo BET (item 3.5.1) não há "capacidade total de adsorção", pois $\frac{X}{M}$ tenderá a uma valor assintótico quando C, a concentração adsorvida, se aproximar de Cs, a concentração de saturação. No entanto, Q^O tem o mesmo significado que na equação de Langmuir, o que possibilita a obtenção da capacidade limitante de adsorção dos CAG (65).

As isotermas BET estão representadas nas Figuras 4.10, 4.11, 4.12 e 4.13.

Da Tabela 4.6 pode-se observar ainda o efeito da tem peratura no processo da adsorção. Em princípio,pôde-se cons tatar uma tendência na elevação da capacidade adsortiva dos CAG com a diminuição da temperatura, o que comprovaria a influência deste parâmetro no mecanismo de adsorção, conforme pressuposto por WEBER (1972) e FORD (1976).

Este efeito deve-se provavelmente ao fato de que a

FIG. 4.10 - isoterma BET - remoção de cor

CAG B

s

٩

FIG. 4.11 - isoterma de BET - remoção de cor CAG A

ŝ

FIG. 4-13 — isotermas BET - esgoto doméstico CAG A

÷

temperatura afeta a taxa da reação da adsorção, influenciando a taxa de transporte entre partículas e a taxa de reação superficial (61).

Isotermas obtidas para os CAG A e CAG B, sob idênticas condições usando a mesma solução de teste, podem ser com paradas convenientemente, para revelar os méritos destes car vões. Na Figura 4.14 onde os dois CAG acima são comparados, o CAG A apresenta-se mais adequado para operações em colunas que o CAG B. O CAG A possui maior capacidade adsortiva à con centração afluente, ou seja, maior capacidade reservada. O CAG B, por outro lado, poderá ser melhor que o CAG A para o tratamento em batelada, admitindo-se que uma declividade menor indicará uma adsorção maior para toda a faixa de concentração de adsorbato estudada (19, 23).

Na Tabela 4.8 são fornecidos os valores dos coeficientes de correlação amostral, para as isotermas de Freundlich e Langmuir.

Nota-se de um modo geral, uma melhor adaptação dos dados obtidos experimentalmente, à isoterma de Langmuir, com exceção dos testes realizados para a verificação da remoção de cor, do CAG A às temperaturas de 15[°]C e 35[°]C, onde a melhor correlação existe para as isotermas de Freundlich.

4.2 - TESTES DE COLUNAS PILOTO

As reações de adsorção são normalmente exotérmicas; assim, a extensão da adsorção geralmente aumenta com a diminuição da temperatura. Como as mudanças na entalpia de ad-

	Identificação	Temperatura	Freundlich	(1 - x)	Langmuir	(1 - ∞)
		(ºC)		(%)		(%)
	Remoção de cor	15	0,96	95	0,99	99
		25	0,96	95	0,99	99
CAG B		35	0,89	95	0,99	99
	Remoção DQO-Esgoto	15	0,97	99	0,99	99
	doméstico	25	0,96	98	0,99	99
		35	0.94	98	0,99	99
	Remoção de cor	15	0,99	99	0,98	98
		25	0,91	95	0,98	98
		35	0,91 ·	95	0,88	95
CAG A	Remoção DQO-Esgoto	15	0,92	95	0,99	99
	doméstico	25	0,76	85	0,93	95
		35	0,81	90	0,97	95

TABELA 4.8 - Valores dos Coeficientes de Correlação Amostral para

Isotermas de Freundlich e Langmuir

FIG. 4.14 - comparação de isotermas de adsorção a 35 ° c

sorção são semelhantes às reações de condensação, pequenas variações de temperatura não alteram o processo da adsorção significativamente (65).

Para a etapa do estudo verificando a remoção de cor através do CAG desenvolvida sob condições de laboratório, a temperatura da solução permaneceu aproximadamente constante, conforme pode-se verificar na Figura 4.15-a. Desse modo,não houve interferência desse parâmetro no processo de adsorção.

Os perfis da temperatura do esgoto doméstico e da tem peratura do ar nos três ciclos operacionais experimentais, são apresentados na Figura 4.15-b, c, d.

O pH de uma solução pode influir na extensão da adsorção (27, 65). Em geral, a adsorção de um poluente tipica mente orgânico do esgoto aumenta com a diminuição do pH. Em vários casos isto pode resultar da neutralização de cargas negativas na superfície do carvão devido ao aumento da concentração de ions-Hidrogênio, e conseqüentemente aumentando a difusão, e colocando mais superfície ativa do carvão à dis posição do soluto. Este efeito pode variar para diferentes carvões ativados, pois as cargas, nas superfícies do carvão dependem da composição da matéria prima e da técnica de ativação (65, 66).

Nos testes de remoção de cor realizados em laboratório, verificou-se um pH ácido na solução com cor, cuja variação está representada na Figura 4.16, juntamente com o pH efluente às colunas utilizando CAG A e CAG B.

Na Figura 4.17 são apresentados os perfis de pH para o efluente secundário afluente e efluente às colunas de CAG,

÷.

FIG. 4.15 - varieção de temperatura

FIG. 4.16 - Variação pH - remoção de. cor

FIG. 4.17 - Variação pH - esgoto doméstico

para os três ciclos operacionais.

Pode-se observar nas Figuras 4.16 e 4.17 um pH básico no efluente das colunas na fase inicial da operação do sis tema.

Isto deve-se principalmente ao processo de ativação do CAG utilizando matérias primas vegetais (madeira, casca de côco ...) executado a altas temperaturas (800 - 1000^OC) for mando os carvões "básicos" (66). Estes CAG possuem hidrofobicidade e são capazes de sorver ácidos para o desenvolvimen to de óxidos predominantemente básicos na superfície, podendo elevar o pH de uma solução neutra ou solução ácida (66).

TOFLEMIRE et alii (1973) verificaram o efeito do oxi gênio dissolvido (OD) no desempenho do CAG no tratamento de esgotos domésticos. Altos valores de OD causaram um crescimento biológico rápido no topo da coluna, ocasionando a necessidade de lavagens mais freqüentes dos leitos de CAG. Ain da, um nível elevado de OD no afluente às colunas, reduz a possibilidade da produção de H_2S e a atividade de bactérias anaeróbicas (65).

Os valores de OD verificados durante os três ciclos operacionais executados neste estudo, podem ser vistos nos perfis da Figura 4.18.

4.2.1 - <u>Testes de colurías piloto de CAG - remoção de</u> cor

As curvas de saturação da solução com cor que são apresentados nas Figuras 4.19, 4.20, 4.21 e 4.22, foram obti-

FIG. 4.18 — Pertil oxigênio dissolvido x tempo de operação

Curves de seturação: remoção de cor

C/Co x tempo de operação

۹.

das a partir dos dados dos testes de laboratório em colunas piloto de CAG.

As vazões médias nestes testes de laboratório, foram de 36,26 ml/min e 36,66 ml/min, para o CAG A e CAG B, respec Mantendo-se estas vazões constantes e variandotivamente. -se a profundidade do leito, possível devido à localização dos pontos de coleta e uma profundidade do leito de 0,30; 0,60; 0,90 e 1,20 m, pôde-se obter os dados para o desenvol vimento das curvas mostradas nas Figuras 4.23, 4.24, 4.25 e 4.26. Estas curvas apresentam a concentração de corante no afluente e remanescente nos efluentes por litro de solução durante a operação do sistema utilizando TCVV diferentes. Pa ra o CAG A utilizou-se TCVV de 12,6 min, 25,2 min, 37,7 min e 50,3 min, enquanto que para o CAG B os TCVV foram de 12,4 min, 24,9 min, 37,3 min e 49.8 min.

Pode-se notar que as Figuras 4.19 a 4.26 são semelha<u>n</u> tes, pois as curvas de saturação são derivadas das curvas que relatam a concentração de cor remanescente por litro de sol<u>u</u> ção.

Para operações de leitos fixos adsorventes com CAG, a solução líquida ou esgoto a ser tratado é conduzido através de um leito estacionário de carvão. Prevalecem condições instáveis de equilíbrio enquanto o carvão continuar removendo quantidades crescentes de impurezas da solução dura<u>n</u> te o tempo de operação.

A Figura 4.27 é a representação de um modelo de adsorção que normalmente é obtido para um adsorvente em equil \underline{i} brio instável num leito-fixo. O soluto ou impureza é adsor-

FIG. 4.23

Cárvas de concentração de cor residual x tempo de operação

Curvas de concentração de cor residual x tempo de operação

u-fros Cit-Motega a **r. r.**

FIG. 4.27 - representação esquemática do movimento da zona de adsorção e a curva de saturação resultante

vido mais rapidamente e eficientemente pelas camadas superio res de carvão durante os estágios iniciais da operação. As camadas superiores estarão naturalmente em contato com a solução no seu nível de concentração mais elevado, Co. As pequenas quantidades de soluto que escapam da adsorção nas pr<u>i</u> meiras camadas do adsorvente são então removidas da solução nos estratos inferiores do leito, e essencialmente numa situação ideal, nenhum soluto escapa do adsorvente na fase in<u>i</u> cial (C = 0).

A zona de adsorção primária está concentrada próxima ao topo da coluna. Quando a solução alimentada continuar a escoar através da coluna, as camadas no topo do carvão tornam-se praticamente saturadas com soluto e menos eficientes para posterior adsorção. Assim, a zona de adsorção primária se locomove para baixo através da coluna para regiões onde o adsorvente ainda não foi utilizado.

Enquanto a zona de adsorção primária se move para bai xo, mais e mais soluto tende a escapar no efluente, como o indicado na seqüência do esquema desenhado na Figura 4.27.

graficação tempo (para uma de C/Co versus А volume de solução tratada, ou versus vazão constante) descreve o aumento na taxa da concentração efluente para a a fluente enquanto a zona se move através da coluna. O "breakpoint" desta curva representa o ponto na operação - para todos os propósitos práticos - onde a coluna está em equilíbrio com a solução afluente, e além do qual ocorrerã pouca remoção adicional do soluto. Neste ponto geralmente se deve ria efetuar uma reativação ou substituição do CAG.

A forma resultante do gráfico C/Co versus tempo ou volume - denominado curva de saturação, pode ser um bom indi cativo do sistema operacional de uma coluna de leito fixo (66).

Pode-se verificar nas Figuras 4.19, 4.20, 4.21 e 4.22 que as curvas de saturação geralmente exibem uma forma carac terística de S; mas, variando a declividade e a posição do "breakpoint".

Os fatores que afetam a forma da curva incluem todos os parâmetros relacionados com a adsorção (concentração do soluto, pH, mecanismos que limitam a taxa de adsorção, a natureza das condições de equilíbrio, tamanho das partículas e outros), e ainda a profundidade da coluna de carvão e a vazão (66).

Através das Figuras 4.19, 4.20, 4.21 e 4.22 pode-se verificar que o tempo para atingir o "breakpoint" diminui com a diminuição da profundidade do leito.

Se a profundidade total do leito for menor que o com primento da zona de adsorção primária exigida para a remoção eficiente do soluto da solução, a concentração do soluto no efluente alcançará rapidamente os níveis de concentração do soluto afluente às colunas. Para cada tipo de operação de adsorção existe uma profundidade crítica mínima de carvão (66).

BADORET et alii (1980) apresentam uma relação para determinar a zona de adsorção primária (Z.Ad.p) para uma solu ção específica representando a profundidade crítica mínima de carvão necessária, a uma vazão específica, para prevenir uma saturação da coluna logo após o início do escoamento:

$$Z.Ad.p = \frac{Ts - Tb}{Ts} x \text{ profundidade do leito}$$
(4.1)

onde: Ts - Tempo de saturação (h)

Tb - Tempo de "breakpoint" (h)

Aplicando-se a equação 4.1 aos dados obtidos experimentalmente, obteve-se as profundidades críticas mínimas de carvão necessárias para a solução com cor, cujos resultados são apresentados na Tabela 4.9.

Nas curvas de saturação apresentadas nas Figuras 4.19, 4.20, 4.21 e 4.22 verifica-se uma descontinuidade brusca na evolução uniforme da característica de saturação do carvão <u>a</u> tivado, aproximadamente a um tempo de operação de 167 horas.

Nas amostras coletadas com um tempo de operação de 167 horas verificou-se um aspecto mais turvo nestas, com auxílio de um método quantitativo apropriado. Adotando-se o critério sugerido pela EPA (1973) - determinação da turbidez e conseqüentemente a coloração do efluente coletado, efetuou -se uma lavagem das colunas. A lavagem dos leitos filtrantes foi efetuada com uma vazão de 200 ml/min durante 10 min, possibilitando a renovação parcial da capacidade adsortiva dos CAG na remoção de cor.

Nas Figuras 4.28, 4.29, 4.30 e 4.31 são apresentados os volumes de solução com cor por peso de CAG que escoaram <u>a</u> través das colunas de CAG, e suas correspondentes remoções percentuais de cor da solução.

Nota-se através da Tabela 4.10, que o menor o TCVV mantendo-se a vazão constante e variando-se a

TABELA	4.9	 Profundidades	críticas	mínimas	para	os	CAG	А	е
		CAG B - remoçã	ão de cor	•					

CAG	Prof. Leito	Ts	Tb	Z. Ad. p.
	(m)	(h)	(h))	(m)
CAG A	0,30	156	72	0,16
	0,60	154	78	0,30
	0,90	158	96	0,35
	1,20	160	100	0,45
CAG B	0,30	110	50	0,16
	0,60	152	76	0,30
	0,90	200	95	0,47
	1,20	230	110	0,63

OBSERVAÇÕES: - Concentração média afluente: 2,31 g corante/l Ter Tempo de saturação para C/Co:0,80 Tb-"Breakpoint"qd. C/Co : 0,10 TABELA 4.10 - Volume de solução com cor por unidade de peso de CAG à concentração média de 2,31 g corante/ l de solução p/diferentes objetivos de trata-mento.

C.A.G.	T.C.V.V.	70%	50%	
	(min)	1/kg CAG	1/kg CAG	
CAG A	12,6	485	595	
	25,2	505	570	
	37,7	560	655	
	50,3	655	690–805	
CAG B	12,4 CAG B 24,9 37,3 49,8		610 830 925 1025	

profundidade do leito), menor o volume de solução com cor por peso de CAG que passa pelas colunas para uma mesma eficiência de remoção almejada.

A Tabela 4.10 apresenta os resultados do volume de solução com cor por unidade de peso de CAG, para uma concentração média afluente de 2,31 g corante/1 de solução. Os v<u>a</u> lores percentuais escolhidos foram de 70% e 50% de remoção de cor da solução.

A variabilidade dos valores verificados para 50% de remoção a um TCVV de 50,3 min - CAG A são resultantes da renovação parcial da capacidade adsortiva do carvão ativado, por ocasião da lavagem dos filtros.

Nos leitos simples de CAG A e CAG B, a elevação do TVCC através do aumento da profundidade do leito, mantendo-se a vazão constante, resultou na diminuição da capacidade adsortiva dos CAG para a remoção de cor.

A Tabela 4.11 relata a influência do TCVV na eficiên cia dos CAG para a remoção de cor, baseados nos dados das Fi guras 4.23, 4.24, 4.25 e 4.26. Verifica-se que quanto maior o TCVV maior a remoção percentual média de cor. Exemplificando, da Tabela 4.11 para o filtro com CAG A e TCVV de 12,6 min, a redução percentual média foi de 59,87%, enquanto que com um TCVV de 50,3 min a redução percentual média em relação à concentração afluente média da solução com cor (2,31 g corante/1), foi de 75,71%.

	- Vazão (ml/min)	Profundidade	TCVV	CVV COR		
FILTRO		leito (m)	(min)	<u>mg corante of</u> l. .g CAG	<u>mg Corante adso</u> rv. g CAG	percentual (%)
CAG A	36,26	0,30 0,60 0,90 1,20	12,6 25,2 37,7 50,3	9922 4959 3306 2479	5940 3035 231 5 1877	59,87 61,20 69,96 75,71
CAG B	36,66	0,30 0,60 0,90 1,20	12,4 24,9 37,3 49,8	14461 7230 4820 3615	7052 4290 3273 2672	48,77 59,33 67,90 73,92

۹.

TABELA 4.11 - Influência do TCVV na Eficiência dos CAG para a remoção de cor. Concentração média afluente = 2,31 g corante/l

4.2.2 - <u>Testes de colunas-piloto de CAG - esgoto do-</u> méstico

Numa avaliação do desempenho de colunas piloto de CAG com diferentes tempos de contato e diferentes vazões na remoção de matéria orgânica contida num esgoto doméstico, pode-se medir a eficiência dos CAG na remoção destes compostos, com parâmetros tais como DQO ou COT, que representam a maioria dos compostos orgânicos presentes neste esgoto (46).

As curvas representando a concentração de matéria or gânica (medida pelo parâmetro da DQO) no efluente secundário de esgotos domésticos afluentes e efluentes às colunas de CAG durante a operação do sistema piloto, são mostradas nas Figu ras 4.32, 4.33 e 4.34.

Executou-se três ciclos operacionais com efluente se cundário, utilizando três TCVV diferentes. Os dados obtidos nestes testes estão apresentados nas Tabelas 4.12, 4.13 e 4.14 no Apêndice.

As concentrações de matéria orgânica no afluente às colunas de CAG, durante o período experimental, ficaram entre 115 mg/l e 255 mg/l, com valores médios de 169 mg/l, 157 mg/l e 165 mg/l, para o primeiro, segundo e terceiro ciclos operacionais, respectivamente.

O tempo de operação de cada ciclo operacional e a época da realização dos testes diferiram entre si, o que resultou numa significativa variação na concentração da matêria orgânica afluente.

÷.

2^e ciclo operacional

FIG. 4.34- concentração DQO esgoto doméstico x tempo de operação

٩

3º ciclo operacional

Visto que cada ciclo operacional teve um TCVV diferente, pois estes foram obtidos variando a vazão em cada coluna, as colunas com menor TCVV, e conseqüentemente, maiores vazões, foram expostas a maior massa de carga afluente de ma téria orgânica do que as colunas com TCVV progressivamente maiores.

Esta variação na carga afluente foi levada em conta na análise das características de remoção de matéria orgânica de cada coluna.

As curvas de saturação nas Figuras 4.36, 4.37, 4.38 derivadas a partir dos dados das Figuras 4.32, 4.33 e 4.34, indicam que o CAG apresenta alguma eficiência na adsorção de matéria orgânica, principalmente no início de cada processo.

A Figura 4.35 relata a variação da concentração de matéria orgânica afluente às colunas de CAG nos três ciclos operacionais.

As características de saturação de uma coluna de CAG tendem a evoluir uniformemente.

Entretanto, comparando-se as Figuras 4.19, 4.20, 4.21 e 4.22 com as Figuras 4.36, 4.37 e 4.38, pode-se observar que as curvas de saturação na etapa de remoção de cor são mais <u>u</u> niformes que as curvas de saturação da etapa utilizando o efluente secundário, devido à menor variação na concentração do soluto afluente.

Durante a saturação de uma coluna, a concentração do soluto efluente aproxima-se progressivamente à concentração afluente. No entanto, pôde-se verificar através de análises de DQO efetuadas durante os testes de coluna, a existência

de "picos" nas curvas de saturação das Figuras 4.33 e 4.34 para o CAG B. Na Figura 4.33 o fenômeno se verifica com um tempo de operação de 94 horas (TCVV - 14,6 min) e na Figura 4.34, com um tempo de operação de 45 horas (TCVV - 12,6 min).

Este efeito geralmente se atribui ao fenômeno denomi nado "efeito cromatográfico" (desorção) que resulta quando um composto orgânico (ou um componente do grande número de compostos presentes na solução afluente), for dessorvido num caso típico de adsorção competitiva com outro(s) componente (s); originando uma migração do componente com maior concen tração de soluto - o componente com menor atividade com o ad sorvente (11).

Esta é uma característica importante da adsorção de um grande número de compostos, onde o deslocamento de espécies com menor afinidade de adsorção com o adsorvente por ou tras com maior afinidade, resulta num aumento da concentração do efluente destas espécies com menor afinidade. Geralmente estes picos na concentração efluente serão ocultadas numa análise considerando uma concentração média dos efluentes. Este fato é relevante se as espécies envolvidas forem tóxicas, e portanto, sua presença será de suma importância (62).

Deve-se alertar que a adsorção é um mecanismo contr<u>o</u> lado pelos efeitos de equilíbrio e efeitos cinéticos e sua grande variação na concentração afluente de um composto irá alterar suas características de saturação (11).

A Figura 4.39 apresenta de acordo com os objetivos de tratamento, o volume de esgoto por peso de carvão escoado a-

۹.

través das colunas para os três ciclos operacionais executados.

A Tabela 4.15 apresenta resultados do volume de esgo to por unidade de peso de CAG A e CAG B, para concentrações médias afluentes de matéria orgânica de 169 mg/1, 157 mg/1 e 165 mg/1, quando os objetivos de tratamento foram de 70% e 50% de remoção.

Os altos valores obtidos para o objetivo de tratamen to de 50% de remoção de matéria orgânica para o CAG B utilizando-se um TVCC de 19,0 min, podem ter resultado de um possível efeito cromatográfico na coluna, onde parte do material orgânico foi subitamente dessorvido do carvão, criando uma capacidade renovada para a efetuação da adsorção.

Pode-se verificar na Figura 4.37 que para o CAG B com um tempo de operação de 78 horas, houve uma melhoria na capa cidade de adsorção.

Resumindo, entre algumas causas da descontinuidade das curvas de saturação colocadas até então podem ser, a variabilidade da concentração do soluto afluente às colunas e o deslocamento cromatográfico de matéria orgânica por outro composto ou vice-versa. Outros fatores, tais como o efeito da temperatura, intervalo entre as amostragens, e a precisão das análises podem ser considerados parcialmente responsáveis pela falta de suavidade observada nas curvas de saturação.

O que não se pôde verificar nestes testes experimentais com colunas piloto, através das curvas de saturação, foi a influência de uma rápida lavagem executada nos leitos de CAG para diminuir a perda de carga existentes nos leitos, e

TABELA 4.15

Volume de Esgoto por Unidade de Peso de CAG às Concentrações Médias de DQO para Diferentes Objetivos de Tratamento

C.A.G.	Concentração Mé- dia afluente DQO (mg/1)	TCVV (min)	<u>Objet. Tratan</u> 70% 1/kg CAG	<u> % remoção</u> 50% 1/kg CAG
CAG A	169,44	32,2	90	451
	157,20	18,1	183	750
	165,56	11,4	395	850
CAG B	169,44	32,7	80	390
	157,20	19,0	275	708-1200
	165,56	12,6	885	1015

130

.

possibilitar condições operacionais adequadas. A época da <u>e</u> fetuação das lavagens dos filtros estão anotados nas Figuras 4.32, 4.33 e 4.34.

Durante a realização dos testes experimentais, a con centração de matéria orgânica no início do sistema (afluente ao filtro de areia) e após a passagem do efluente secundário através de um filtro de areia existente (efluente ao filtro de areia ou afluente às colunas) foi semelhante, conforme mos tra a Figura 4.40, assim indicando que a remoção de matéria orgânica no efluente das colunas não pode ser atribuído à ad sorção nas superfícies das colunas piloto, filtração ou eva poração, mas devido à adsorção pelo CAG.

A influência do tempo de contato na remoção de matéria orgânica do efluente secundário através da utilização dos CAG A e CAG B também foi investigada.

As amostragens foram realizadas em três pontos distintos das colunas piloto de CAG, e os resultados obtidos nos três ciclos operacionais são apresentados na Tabela 4.16. V<u>e</u> rifica-se que um aumento na vazão de 54,8 ml/min, para 96,6 ml/min e para 146,7 ml/min para o CAG A; e 53,9 ml/min, para 95,8 ml/min e para 145,3 ml/min para o CAG B, proporciona um acréscimo na capacidade adsortiva destes CAG.

Observa-se ainda, que o aumento do TCVV, variando a profundidade do leito e mantendo a vazão constante, resulta numa diminuição da capacidade adsortiva dos CAG, representan do para um dado objetivo de tratamento um decréscimo de volu me de solução tratada por unidade de peso de carvão.

As taxas de utilização (capacidade adsortivas) dos

CAG	Vazão média (ml/min)	Concentração média afluente (DQO) (mg/1)	Profundidade leito (m)	TCVV (min)	Capacidade adsortiva mg DQO adsorvido g CAG
CAG A	54,8	169	0,50 0,80 1,10	14,3 22,8 32,2	8 6,2 6 3,6 5 4,7
CAG B	53,9	169	0,50 0,80 1,10	14,4 23,0 32,7	1212 818 769
CAG A	96,6	157	0,55 0,85 1,15	8,9 13,8 18,1	179,3 137,2 113,2
CAG B	95,8	157	0,60 0,90 1,20	9,7 14,6 19,0	2 3 9,8 1 7 3,3 1 4 2,3
CAG A	146,7	165	0,50 0,80 1,10	5,6 8,9 11,4	235,6 148,0 135,5
CAG B	145,3	165	0,60 0,90 1,20	6,7 10,1 12,6	3154 2103 1685

TABELA 4.16 - Influência do TCVV na capacidade adsortiva do CAG A e CAG B.

CAG para seus respectivos TCVV são graficados na Figura 4.41. Nota-se que quando o TCVV diminui, a taxa de utilização dos CAG aumenta e se aproxima de um valor assintótico. Geralmen te é conveniente usar um maior número de TCVV para obter taxas de utilização distribuídas vertical e horizontalmente nestas curvas.

O TCVV e a taxa de utilização adequada para o sistema de CAG pode ser determinado através de uma análise matem<u>á</u> tica desta relação. O valor ótimo será aquele que fornecer um sistema com menor custo total (capital + operação).

A Tabela 4.17 apresenta a influência da vazão na remoção de matéria orgânica.

Pode-se constatar que quanto menor a vazão linear, maior a redução percentual média relativa de matéria orgânica. Assim, para colunas utilizando o CAG A com vazões de 54,8 ml/min, 96,6 ml/min, 146,7 ml/min, obteve-se uma redu ção média de 65,1%, 55,7% e 51,8%, respectivamente. Para o CAG B, utilizando vazões de 53,9 ml/min, 95,m ml/min e 145,3 ml/min a remoção de matéria orgânica foi de 53,4%, 48,5% e 45,1%, respectivamente.

Observa-se ainda, que apesar dos percentuais de remo ção de matéria orgânica para o CAG B serem menores que para o CAG A, a taxa de utilização do carvão (mg DQO adsorvido/g CAG) do primeiro é mais elevada que a taxa de utilização do CAG A. Isto se dá devido ao menor peso do CAG B por unidade de volume.

Adotando-se maior vazão obtém-se uma menor redução percentual de carga orgânica. No entanto, devido à maior

CAG	Vazão	Prof. leito	TCVV	Matéria mg DQO aplicado	Percentagem	
	(ml/min)	(m)	(min)	g CAG	g CAG	(%)
CAG A	54,8	1,10	32,2	93,3	. 54,68	65,1
· CAG B	53,9	1,10	32,7	143,9	76,89	53,44
CAG A	96,6	1,15	18,1	203,2	113,19	55,7
CAG B	95,8	1,20	19,0	287,5	142,30	49,50
CAG A	146,7	1,10	11,4	261,2	135,50	51,89
CAG B	145,3	1,20	12,6	373,5	168,48	45,11

TABELA 4.17 - Influência da vazão na eficiência dos CAG para a remoção de matéria orgânica (DQO).

OBSERVAÇÃO: O volume de carvão ativado colocado nas colunas a cada ciclo operacional sem pre foi o mesmo. As diferenças encontradas para as profundidades dos leitos deve-se provavelmente á lavagem inicial dos leitos com CAG, expandindo-os de maneira diferente.

carga de DQO aplicada por peso de CAG, resultante da utiliza ção de uma maior vazão, esta redução percentual não represen ta uma redução na taxa de adsorção dos CAG; pelo contrário, ocorre uma elevação da mesma.

Determinações periódicas da concentração de alquil--benzeno-sulfonato (ABS) foram realizadas durante as campanhas intensivas a cada ciclo operacional.

Os resultados destas análises são apresentados na Tabela 4.18, na qual se verifica que a diminuição do TCVV proporciona também a diminuição da remoção percentual de ABS no tratamento dos efluentes secundários.

Os detergentes aniônicos tais como o ABS são facilmente removidos de um esgoto doméstico pela adsorção; e isto se deve principalmente pela relação entre a tensão superficial e a adsorção.

Detergentes como ABS podem reduzir drasticamente a tensão superficial, e assim causar o espalhamento da gota d'água na superfície, resultando num umedescimento da superfície.

Substâncias "aceptoras" dos detergentes são assim do nominados "agentes umedescedores" ou agentes ativos de super fície. Se um material que tende a ser ativo na superfície estiver presente num sistema líquido, ocorrerá uma diminuição da tensão superficial sobre o movimento do soluto para a superfície. A migração da substância para a superfície ou limites desta, resulta numa redução do trabalho necessário para aumentar a área superficial, sendo que esta redução é proporcional à concentração do adsorbato na superfície. Por-

	Vazão	Tempo de TCVV Concent:			tração ABS (mg	g ABS/1)
	(ml/min)	operaçao (h)	(min)	Afluente	Efluente	% Remoção
CAG A	54,8	20:30	32,2	9,0 8,2	1,0	87,78 85,36
CAG B -	53,9	20:30 68:30	32,7	9,0 8,2	0,96	89,33 68,78
CAG A	96,6	38:30 87:00	18,1	5,5 6,06	1,2 2,06	78,18 66,00
CAG B	95,8	38:30 87:00	19,0	5,5 6,06	1,0 3,54	81,82 41,58
CAG A	146,7	20:30 68:30	11,4	5,4	1,24 2,68	77,04 41,63
CAG B	145,3	20:30 68:30	12,6	5,4 4,9	1,16 3,34	78,52 31,84

.

TABELA 4.18 - Remoção de Alquil-benzeno-sulfanato (ABS) no CAG utilizando TCVV diferentes.

tanto, o balanço de energia do sistema favorece a concentração adsortiva das substâncias superficialmente ativas na fase da interface (65).

Durante as campanhas intensivas realizadas,também se avaliou o desempenho dos CAG na remoção de alguns elementos traços, como o Zn, Pb e Cu, cujos resultados são apresentados na Tabela 4.19.

As concentrações afluentes destes elementos-traço às colunas piloto são relativamente pequenas, certamente devido às características do esgoto doméstico. Portanto, para se verificar a habilidade destes CAG na remoção de elementos traços seria necessário a execução de testes específicos da remoção destes, bem como a utilização de concentrações afluen tes representativas de elementos traços às colunas de CAG.

Ao se interpretar estes dados deve-se tomar muito cui dado, pois agentes complexos, agentes quelantes e bactérias poderão desempenhar um papel importante na distribuição destes metais (72).

Desse modo, ao tentar explicitar o motivo pelo qual a concentração de Zn se apresenta maior no efluente das colu nas, certamente não se passaria do campo das suposições.

O fenômeno da remoção destes metais traços parece não estar completamente explanado (40, 67). No entanto, CULP et alii (1978), FORD (1976), LINSTEDT (1971) e McCARTY (1979), referem-se à utilização do CAG para a separação e remoção de certos elementos inorgânicos, como o Ce, Ba, Zn, Cd, Pb, Ni, Co, Cr. Sugestões para os mecanismos de remoção de inorgâni cos, postulam que o mecanismo possa ser uma interação quími-

IDENTIFICAÇÃO	Vazão ml/min	TCVV (min)	Tempo Operação (h)	Zn mg/1	Pb mg/1	Cu mg/1
Afluente Efluente CAGA Efluente CAGB	54,8 53 ,9	32,2 32,7	44:30	0,011 0,003 0,015	0,003 0,001 0,001	0,005 0,004 0,003
Afluente Efluente CAGA Efluente CAGB	96,6 95,8	18,1 19,0	38,30	0,008 0,008 0,002	0,004 0,004 0,001	0,004 0,000 0,000
Afluente Efluente CAGA Efluente CAGB	146,7 145,3	11,4 12,6	45:00	0,001 0,004 0,008	0,003 0,001 0,002	0,003 0,000 0,001

TABELA 4.19 - Remoção de Elementos-traço pelo CAG

Obs.: Os valores apresentados, referem-se aos resultados das análises pontuais efetivadas a cada ciclo operacional.

.

ca direta entre substâncias orgânicas na água e traços inorgânicos, seguido pela adsorção destes orgânicos dentro dos poros de carvão. Entretanto, isto são apenas especulações. Definições precisas deste mecanismo necessitam um estudo mais detalhado (40).

4.3 - COMPARAÇÃO ENTRE OS RESULTADOS DE TESTES DE I-SOTERMAS EM BATELADA COM OS RESULTADOS DOS TES TES CONTÍNUOS COM COLUNAS PILOTO DE CAG

A remoção de cor e matéria orgânica das soluções te<u>s</u> tadas obtidos nos testes em batelada, não pode ser relacion<u>a</u> da àquelas alcançadas nos leitos de CAG operados com difere<u>n</u> tes TCVV e durante diferentes tempos de operação. Uma comp<u>a</u> ração dos testes executados é apresentada na Tabela 4.20.

Os dados obtidos a partir de testes de isotermas poderão ser utilizados para comparar os desempenhos entre tipos da CAG, podendo ainda dar estimativas do nível de tratamento possível de ser alcançado, da capacidade adsortiva te<u>ó</u> rica dos CAG, bem como fornecer uma estimativa aproximada da dosagem de CAG necessária para a remoção de um soluto a níveis desejados.

Observa-se ainda na Tabela 4.20, que as maiores capa cidades adsortivas dos CAG verificados nos testes de isotermas são menores que aquelas obtidas nos testes de colunas pi loto, exceto para a maior capacidade adsortiva de 500 mg DQO adsorvidas/g CAG, obtida nos testes de isotermas com o CAG A.

Quando os valores das capacidades adsortivas de um

			C O L	UN	A S	I	S O T	ERM	AS
Cor	ncentração média	TCVV	(min)	Capacida mg adso	ade adsortiva pry/g CAG	Concentraç	ção Inicial	mg/ Maior adsorti	g capacidade va alcançada
	Afluente	CAG A	CAG B	CAG A	CAG B	CAG A	CAG B	CAG A	CAG B
corante	= 2,31g/1	50,3	49,8	1877	2672	1,90 g/1	1,95 g/1	1250(L)	920 (F)
Efluento Secundá- rio	169 mg/l 157 mg/l 165 mg/l	32,2 18,1 11,4	32,7 19,0 12,6	54,7 113,2 135,5	76,9 142,3 168,5	120 mg/1	125 mg/1	5 90 (L)	72 (F)

TABELA 4.20 - Comparação entre Resultados Testes Isotermas X Testes Colunas

OBSERVAÇÃO: L = Isoterma Langmuir

F = Isoterma Freundlich

٠

*As capacidades adsortivas dos CAG são referentes aos efluentes das colunas.

CAG nos testes de isotermas forem maiores do que nos testes de colunas,com CAG, diz-se que estas capacidades adsortivas apenas podem ser alcançadas no início da operação das colunas de CAG (19).

ADAMS (1981) relatando a aplicação limitada das isotermas, verificou que a capacidade de adsorção do CAG (que aumenta com o gradiente de DQO), foi maior quando determinada em estudos de escoamento contínuo em colunas de CAG do que para as capacidades adsortivas indicadas pelos testes de iso termas em batelada. A Figura 4.42 extraída de ADAMS (1981) relata os resultados obtidos.

No entanto, ADAMS (1981) atribuiu este fenômeno à r<u>e</u> moção biológica nas colunas, admitindo parte desta maior capacidade de adsorção nas colunas, às possíveis diferenças e<u>n</u> tre os testes em batelada e testes contínuos.

A capacidade de operação de uma coluna é estabelecida pelo fornecimento contínuo de um gradiente de concentração na interface da zona de adsorção de um CAG virgem, quando este passa através da coluna, enquanto que o gradiente de concentração diminui com o tempo para os testes de isotermas em batelada.

4.4 - O PROJETO DE UM ADSORVENTE - LEITO FIXO

Para o caso de adsorção de isotermas "favoráveis" (65), e para a qual a relação de equilíbrio entre a concentração do soluto na solução e no adsorvente num reator for conhecida, uma aproximação simples pode ser tomada para o pro

jeto de adsorvente de leito fixo.

O projeto hidráulico básico e conceitos operacionais do escoamento por gravidade, pressão e adsorventes de escoamento do tipo leito-expandido são essencialmente os mesmos que para os filtros de leitos-granulares dos tipos correspo<u>n</u> dentes.

Tomando-se como exemplo uma curva de saturação ideal, baseada nos dados obtidos experimentalmente e adaptados na Tabela 4.21, e representados na Figura 4.43, agora expressa em termos de concentração de massa de soluto no efluente C e a quantidade total de massa de soluto removido do efluente secundário Ve, que passou numa secção transversal unitária do adsorvente. WEBER (1972) idealiza uma curva de saturação que supõe a remoção completa do soluto acima dos estágios iniciais de operação. No entanto, analisando-se as curvas de saturação obtidas nos ciclos operacionais desenvolvidos, não se verificou a remoção total do soluto, o que reafirma o fato de que dependendo da concentração inicial do soluto e da quantidade de CAG utilizada, existe a possibilidade de parte deste soluto não ser removido e escoar para fora das colunas (65).

O "breakpoint" foi escolhido arbitrariamente quando C/CO = 0,30, o que representa uma concentração efluente Cb = 51 mg/l. Numa concentração do efluente também arbitrariamente escolhida C/Co = 0,85, o que representou uma concentr<u>a</u> ção do efluente Cx = 144 mg/l próximo de Co = 169 mg/l, o a<u>d</u> sorvente foi considerado saturado. As unidades de massa para C e Ve foram usadas para ilustrar o conceito de balanço

CAG A

1

TCVV - 32,2 min

TABELA 4.21 - Dados obtidos a partir da curva de saturação.

Volume escoado (1)	Massa DQO aplicado (mg)	C/Co	Massa que passa no efluente (mg DQO)	DQO* Efluente (mg/1)
1,8	305	0,02	6,1	3,4
16,65	2821	0,18	508	30,5
65,94	11173	0,37	4134	62,7
88,74	15036	0,34	5112	57,6
149,64	25355	0,36	9128	61,0
177,00	29991	0,39	11697	66,1
229,20	38836	0,50	19418	84,7
256,56	43472	0,63	27387	106,7
276,57	46862	0,94	44050	159,3

CAG A - TCVV = 32,2 min DQO médio afluente = 169 mg/1

OBSERVAÇÃO:* Os valores da DQO efluente foram calculados considerando a DQO média afluente de 169 mg/l

de massa no sistema de adsorção.

Para o propósito do projeto, dois parâmetros são de interesse primário: 1) a quantidade total de massa do efluen te ($\overline{V}b$) que atravessou a unidade de área de secção transversal no "breakpoint"; 2) a natureza da curva de saturação en tre valores $\overline{V}b$ e $\overline{V}x$. O desenvolvimento adotado a seguir, é o sugerido por Weber (63).

A zona de adsorção primária no adsorvente de leito--fixo representado pela curva de saturação na Figura 4.43, foi definida como aquela parte do leito sobre o qual houve <u>u</u> ma redução da concentração de Cx para Cb, podendo também ser obtida através da equação 4.1.

O tempo total tx, necessário para a zona de adsorção primária se estabilizar, movendo-se para baixo e para fora do leito, pode ser calculado por:

$$tx = \frac{Vx}{Fm}$$
(4.2)

onde: $\overline{Vx} = 39500 \text{ mg} \text{ de DQO} \text{ (do efluente)};$

- Fm = é a massa por tempo unitário por área de secção transversal unitária do leito afluente;
- Fm = vazão média x concentração média = 9,285 mg DQO aplicada/min.

Assim: $tx = \frac{39500}{9,285} = 4254 \text{ min} = 70:54 \text{ horas}$

O tempo necessário para o movimento da zona de adsor ção primária para fora de seu próprio comprimento na coluna após ter ficado equilibrada (estável) pode ser calculada por:

$$t\delta = \frac{\bar{V}x - \bar{V}b}{Fm}$$
(4.3)

onde: $\overline{V}b$ = 4000 mg de DQO (efluente)

assim:
$$t\delta = \frac{39500 - 4000}{9,285} = 3823 \text{ min} = 63:45 \text{ horas}$$

O comprimento da zona de adsorção primária, pode ser obtido de uma regra de três simples, considerando a profundi dade do leito (1,10 m), o seu tempo de exaustão (70:54 h) e o tempo de exaustão da zona de adsorção primária (63:43 h) e cujo comprimento resulta em 0,99 m.

Para a profundidade L do leito de carvão, pode-se relacionar a profundidade com o tempo:

$$\frac{\text{Z.AD.p}}{\text{L}} = \frac{\text{t\delta}}{\text{tx} - \text{tf}}$$
(4.4)

onde: tf = é o tempo necessário para o início da formação da zona de adsorção primária (h).

Substituindo-se os respectivos valores na equação 4.4

 $\frac{0,99}{1,10} = \frac{63,72}{70,9-tf}$ tf = 13:33 horas

A área hachureada na Figura 4.43 representa o montan te do soluto adsorvido pelo carvão na zona de adsorção primá ria desde o "breakpoint" até a exaustão. Esta quantidade Ms, pode ser calculada pela integração da quantidade (Co - C) em $\overline{V}e$, entre os limites de $\overline{V}x$ e $\overline{V}b$. Contudo, isto não represen ta a capacidade total do carvão dentro da zona de adsorção primária no "breakpoint". A capacidade total pode ser dada pelo produto de $(\overline{V}x - \overline{V}b)$ Co. Então, definindo-se a capacid<u>a</u> de fracional f, para a continuidade da remoção do soluto da solução pelo CAG no "breakpoint" da zona de saturação, tem--se:

$$f = \frac{Ms}{(\bar{v}x - \bar{v}b)(1 - Cb/Co)}$$
 (4.5)

Para sistemas nos quais o tempo de formação tf \tilde{e} mui to pequeno ($\tilde{=}$ zero) o valor de f se aproxima da unidade:

$$f = 1 - \frac{tf}{t\delta}$$
 $f = 1 - \frac{13:55}{63:72} = 0,7873$

Utilizando-se a equação 4.5 e substituindo adequadamente os seus parâmetros tem-se que:

$$Ms = f \cdot (\bar{V}x - \bar{V}b) (1 - \frac{Cb}{Co}) = 0,787 (39500 - 4000) \cdot (1 - 51/169) =$$

= 19.529 mg DQO

A quantidade de total de soluto, Ss, que se acumulará na coluna no ponto de saturação completa (isto é, quando toda a coluna do adsorvente estiver em equilíbrio com a concentração do soluto Co no afluente), é igual ao montante adsorvido, X,por unidade de massa do adsorvente M (capacidade adsortiva), vezes a massa total do adsorvente na coluna. P<u>a</u> ra uma coluna de área com secção transversal unitária e profundidade L,

$$SS = \rho p \cdot \frac{X}{M} \cdot L$$
 (4.6)

onde: ρp = densidade aparente do adsorvente na coluna. Ado tou-se para o cálculo o valor de ρp = 0,33 g/ml, con-

forme fornecido pelo fabricante.

Desse modo:

$$Ss = 330.000 \text{ mg/dm}^3 .0,05468 \text{ mg DQO/mg CAG .1,10}$$

 $dm = 198.488 \text{ mg/dm}^2$

A quantidade de soluto acumulado no adsorvente no "breakpoint" será dado por:

$$Sb = \frac{X}{M} \cdot pp | (L - Z.Ad \cdot p) + (1 - f) Z \cdot Adp | (4.7)$$

$$Sb = 0,05468 \cdot 330.000 | (1,10 - 0,99) + (1 - 0,787) \cdot 0,99 | = 5790 \text{ mg/dm}^2$$

e a percentagem de saturação neste ponto será. % saturação "breakpoint" = $\frac{L - Z A p (f)}{D} \cdot 100$ (4.8)

$$= \frac{1,10 - 0,99 \cdot 0,787}{1,10} = 29,17\%$$

A aproximação simplificada do projeto, também supõe o conhecimento da taxa de transferência do soluto da solução, $k^{0}\alpha$. A transferência do soluto da solução para o adsorvente ocorre essencialmente em três passos distintos, como indicado anteriormente (ítem 2.3).

O termo de transferência de massa total, será dado por k^o α , onde k^o é um coeficiente de transferência de massa total, e α é a área superficial externa do adsorvente sólido por unidade de volume do leito (65).

Tomando-se os dados do exemplo anterior, a massa de matéria orgânica aplicada na coluna de CAG, com um tempo to tal de operação de 92:18 horas, foi de 46862 mg DQO. Sabendo-se que foram utilizados 352 g de CAG, corres pondendo a um volume de leito de 1,672 dm³, e que a eficiência do processo de tratamento neste ciclo operacional para a remoção de DQO do efluente secundário ficou em 65,1%, teremos:

$$k^{\circ} = 1,56 \cdot 10^{-5} \text{ mg DQO removido/g CAG.min}$$

 $\alpha = 1,684 \cdot 10^8 \text{ m}^{-1}$

Additiour-se para o cálculo, um valor médio de área supenficial de 800 m²/g CAG. Portanto, a taxa de transferên cia do soluto da solução para o adsorvente, k⁰. α , neste exemplo será de 262,74 mg DQO/m³ CAG.min.

4.5 - LIMITAÇÕES E EXTRAPOLAÇÃO PARA UM SISTEMA PLE NO DE CAG

Um projeto de leitos-fixos requer a realização de tes tes em batelada e testes em coluna piloto, para sua posterior aplicação no projeto de um sistema em escala plena (11).

Os testes em batelada permitem a aquisição rápida de uma quantidade considerável de informações com baixo custo. As isotermas de adsorção e as curvas de saturação podem fornecer dados da capacidade teórica e a cinética de saturação de um adsorbato. No entanto, estes resultados não podem ser usados para o projeto de sistemas em escala plena até que a aplicabilidade dos dados seja testada em sistemas com compos tos orgânicos com níveis de concentração semelhantes encontrados na solução aquosa a ser tratada. Para determiná-los, geralmente se efetuam estudos em escala piloto de tamanho mé dio.

Testes em escala-piloto podem fornecer informações sobre a eficiência de vários sistemas alternativos de CAG, e das características hidráulicas.

Tais resultados podem então ser utilizados para formular um projeto preliminar visto que a concentração de mat<u>é</u> ria orgânica afluente às colunas em escala piloto é represe<u>n</u> tativa, e a capacidade adsortiva dos CAG para sistemas de e<u>s</u> cala plena, bem como a matéria orgânica residual para operações em escala plena não terão variações significativas.

Um fenômeno difícil de ser extrapolado de uma coluna -piloto para um sistema em escala plena, será o grau de ativi dade biológica nas colunas. Uma proliferação biológica excessiva numa coluna tenderá a causar o anaerobismo, a colmatação e problemas de odores que dificilmente se detectam nos testes em escala piloto (1). Portanto, quando se desenvolver um sistema de tratamento com o CAG em escala plena, será necessário um controle do crescimento biológico excessivo.

Este controle poderá ser efetuado através da elevação do nível de OD no afluente às colunas de CAG, reduzindo a possibilidade da produção de H₂S, da atividade das bactérias anaeróbicas e fornecendo condições favoráveis para o d<u>e</u> senvolvimento de um novo sistema de CAG.

O CAG adsorve matéria orgânica dos efluentes secund<u>á</u> rios fornecendo o substrato para o crescimento biológico que em condições favoráveis proporciona a elevação do tempo de serviço dos CAG, e a remoção de materiais não adsorvíveis d<u>e</u> vido à atividade biológica. Tais sistemas de CAG são denomi nados de sistemas de carvão ativado biológico (23).

Colunas piloto de CAG podem ainda, produzir efeitos hidráulicos consideravelmente diferentes daqueles que ocorrem em adsorventes maiores. Recomenda-se a utilização de um sistema de maior porte, incorporando no projeto da instalação os efeitos de um sistema real.

5 - Conclusões

1 - As máximas capacidades adsorvidas dos CAG A e CAG B obti das nos testes de isotermas de remoção de cor, adotando um diâmetro médio dos grânulos de carvão ativado de 1,02 mm, e um tempo de agitação de 60 min, foram de 1250 e 920 mg de corante ads./g de CAG, respectivamente.

Para os efluentes secundários de esgotos domésticos, as maiores capacidades adsortivas dos CAG A e CAG B obt<u>i</u> das, foram respectivamente de 500 a 72 mg DQO àdsorvido/ g CAG.

Altas capacidades adsortivas, como as obtidas pará o CAG A na remoção de matéria orgânica no teste de isotermas de efluentes secundários, não podem ser comparados aos testes em colunas com CAG, pois a adsorção nos testes de isotermas está em equilíbrio e não simulam efeitos de origem química ou biológica que possam ocorrer no adsorvente nos testes de coluna

Portanto, a realização de testes de batelada para a determinação de isotermas de adsorção, será aconselhável quando se desejar fazer uma avaliação rápida e/ou uma com paração de diferentes tipos de CAG para o tratamento de uma solução ou composto específico.

2 - As unidades do sistema de tratamento constituídas de colunas piloto utilizando os CAG A e CAG B, apresen taram respectivamente, uma eficiência de 75,71% e

73,92 % na remoção de cor, cuja concentração afluente mé dia foi de 2,31 g corante/l de solução.

A capacidade adsortiva do CAG A obtida para um TCVV de 50,3 min, foi de 1877 mg corante ads./g CAG, enquanto que para o CAG B utilizando um TCVV de 49,8 min, a capacidade adsortiva foi de 2672 mg de corante adsorvido/g CAG.

As remoções de matéria orgânica do efluente secundário, utilizando colunas piloto de CAG, foram de 65,13%; 55,7% e 51,89% com o CAG A, e 53,44%; 49,5% e 45,11% com o CAG B. O tempo para atingir o "breakpoint" (C/Co = 0,50) foi de aproximadamente 75 ± 5:00 horas. As concen trações médias afluentes de matéria orgânica a esta unidade do sistema de tratamento foram de 169 mg/l; 157 mg/ l e 165 mg/l de DQO.

Especificação	CAG	TCVV (min)	Concentração afluente (mg/l)	Remoção (%)	Capacidade adsortiva mg/g CAG
Remoção de cor	A	50,3	2,31 g/1	75,71	1877
nemoçuo de cor	В	45,8	2,31 g/1	73,92	2672
	a (Allen Kalviger) acceler overveine	32,2	169	65,13	54,70
Demonifica de mem	A	18,1	157	55,70	113,19
téria orgânica		11,4	165	51,89	135,50
de efluente se		32,7	169	53,44	76,90
cundario	В	19,0	157	49,50	142,30
		12,6	165	45,11	168,50

As capacidades adsortivas do CAG A utilizando TCVV de 32,2 min; 18,1 min e 11,4 min, foram de 54,7; 113,19 e 135,5 mg DQO adsorvido/g CAG, respectivamente. Para o CAG B, utilizando TCVV de 32,7 min; 19,0 min e 12,6 min, foram de 76,9; 142,3 e 168,5 mg DQO adsorvido/g CAG.

- 3 A capacidade adsortiva dos CAG A e CAG B é inversamente proporcional ao TCVV, portanto, uma elevação do TCVV,man tendo-se a vazão constante e variando-se a profundidade do leito, não produzirá maior eficiência na utilização dos CAG, mas proporcionará uma maior percentagem de remo ção.
- 4 Devido às propriedades que prevalecem na superfície do CAG, estes apresentam-se bastante apropriados para a adsorção de materiais tensoativos que possuem um caráter hidrofóbicó. Com a concentração afluente de ABS variando de 5,4 a 9,0 mg ABS/1, o CAG A apresentou nos testes experimentais realizados, uma concentração do efluente 1,0 a 2,86 mg ABS/1. Para o CAG B a concentração do efluente obtida foi de 0,96 - 3,54 mg ABS/1.
- 5 Os CAG A e CAG B adsorveram pequenas quantidades de Pb,
 Cu e Zn presentes no efluente secundário. No entanto,
 as concentrações afluentes dos elementos traços eram mui
 to pequenas para fornecer dados mais conclusivos da remo
 ção destes de um esgoto doméstico por um sistema de CAG.

Desse modo, para conhecer o mecanismo de remoção des tes elementos traços por adsorção, fazem-se necessários estudos específicos à concentrações representativas.

6 - Durante o desenvolvimento do trabalho experimental, pôde

-se verificar que o critério de projeto para sistemas de adsorção com CAG, deverá ser susceptível:

- Aos constituintes da água residuária ou esgoto domésti
 co, sua classificação em termos de adsorbabilidade, e
 o potencial tóxico do efluente;
- Aos efeitos do tipo de CAG selecionado, com relação às características hidráulicas;
- À necessidade de unidades de pré-tratamento para controlar os sólidos suspensos (orgânicos e inorgânicos), oxigênio dissolvido, população biológica e outros cons tituintes que podem afetar o desempenho do adsorvente.
- 7 As características da estrutura dos CAG, tornam-no um ad sorvente com grande aplicabilidade no tratamento de água para abastecimento e águas residuárias industriais. De modo a alcançar uma utilização ótima deste adsorvente, é necessário a compreensão dos mecanismos que governam a adsorção nos poros do adsorvente.

O emprego da adsorção no tratamento de água para abastecimento e águas residuárias pode ser recomendado quando:

- Resíduos industriais tiverem altas concentrações de com postos orgânicos dissolvidos, de difícil remoção e potencialmente tóxicas;
- Esgotos domésticos: apresentarem vazões afluentes con centradas (altas cargas e/ou misturas provenientes de

poluentes refratários das indústrias), e

 Aguas de abastecimento apresentarem problemas de cor, odor, sabor e presença de compostos orgânicos potencialmente prejudiciais à saúde da população servida.
RECOMENDAÇÕES

- 1 Recomenda-se o prosseguimento da pesquisa utilizando efluentes secundários melhor tratados, pois, o nível elevado de SS afluente aos sistemas de CAG promove uma rápi da diminuição da capacidade adsortiva dos CAG testados.
- 2 Recomenda-se que sejam realizados estudos específicos de adsorção de ions metálicos, pesticidas, compostos tensoativos e outros compostos orgânicos, determinando ao longo do tempo as respectivas curvas de saturação.

6 - Referências Bibliográficas

i.

 ADAMS, Carl E. Jr.; FORD, Davis & ECKENFELDER, Wesley Jr. 1981. Development of design and operational criteria for wastevater treatment, activated carbon adsorption. Nashville, Enviro Press, 493p.

- 2 ARBUCLE, Wm. Brian. 1980. Premature exhaustion of activated carbon columns. In McGUIRE, Michael J. & SUFFET, Irwin H., eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science, v.2, p.237-52.
- 3 AWWA. 1974. AWWA Standard for granular activated carbon. Journal American Water Works Association, Washington, 66(11):672-81, Nov.
- 4 BADOREK, Diane L.; THIEM, Leon T. & O'CONNOR, John T. 1980. Removal of thihalomethanes and total organic carbon from drinking water by adsorption onto several granular activated carbons. In: McGUIRE, Michael J. & SUFFET, Irwin H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.2, p.71-84.
- 5 BELFORT, Georges. 1980. Adsorption on carbon; theoretical considerations. Environmental Science & Tecnology, New York, 14(8):910-4, Aug.
- 6 BORNEFF, J. 1980. Elimination of carcinogens
 (excluding haloforms) by activated carbon. In:
 McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon
 adsorption of organics from the aqueous phase. Ann
 Arbor, Ann Arbor Science. v.1, p.145-56.
- 7 BRENER, L. & RICHARD, Y. 1980. Pilot plant experiments to determine design and operational parameters for granular activated carbon treatment. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.2, p.163-77.
- 8 CAIO, Francisco de Assis; ALEM, Pedro Sobrinho & BIGAL LI, Dino. 1979. Ativação de hulhas, lignitos e tur fas brasileiras - produção e aplicação em operações de saneamento. Revista Brasileira de Tecnologia. São Paulo, (10):93-107, Outubro.

- 9 CAIO, Francisco de Assis; ALEM, Pedro Sobrinho & BIGAL LI, Dino. 1979. Estudo das propriedades superficiais, sorptivas e mecânicas das hulhas, lignitos e turfas brasileiras. Revista Brasileira de Tecnologia, São Paulo, (10):109-127, Outubro.
- 10 CAIRO, Patrick R. et alii. 1979. Pilot plant testing of activated carbon adsorption systems. Journal American Water Works Association, Washington, 71 (11):660-73, Nov.
- 11 CAIRO, Patrick R., et alii. 1980. The application of bench-scale and pilot-scale studies for control of chemical contaminants in drinking water. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.2, p.3-26.
- 12 CHOW, D.K. & DAVID, M.M. 1977. Compounds resistant to carbon adsorption in municipal wastewater treatment. Journal American Water Works Association, Washington, 69(10):555-61, Oct.
- 13 CINI, R.; PANTANI, F. & GIUSEPPE, S. 1980.
 Physicochemical aspects of the use of activated carbon in drinking water treatment. In: McGUIRE, M.J. & SUFFET, I.H., eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science, v.1, p.425-46.
- 14 CLEASBY, J.L.; STANGL, E.W. & RICE, G.A. 1975. Development in backwashing of granular filters. Journal of the Environmental Engineering Division. New York, 105(5):713-27, Oct.
- 15 COOPER, Robert D. 1977. Health consideration in use of tertiary effluents. Journal of the Environmental Engineering Division, New York, 103(1):37-45, Feb.
- 16 CRITTENDER, John C. & WEBER, Walter J. Jr. 1978. Predictive model for design of fixed-bed adsorbers: parameter estimation and model development. Journal of the Environmental Engineering Division, New York, 104(2):185-97, Apr.
- 17 CRITTENDEN, John C. & WEBER, Walter J. Jr. 1978. Predictive model for design of fixed-bed adsorbers: single-component model verification. Journal of the Environmental Engineering Division, New York, 104(3): 433-43, June.
- 18 CRITTENDEN, John C. & WEBER, Walter J. Jr. 1978. Model for design of multicomponent adsortion systems. Journal of the Environmental Engineering Division, New York, 104(6):1175-95, Dec.

- 19 CULP, R.L.; WESNER, G.M. & CULP, G.L. 1978. Handbook of advanced wastewater treatment, "Activated carbon adsorption and regeneration". 2a. edição, New York Litton Educational Publishing, Inc. p.166-248.
- 20 DEWALLE, Foppe B. & CHIAN, Edward S.K. 1974. Removal of organic matter by activated carbon columns. Journal of the Environmental Engineering Division, New York, 100(5):1089-103, Oct.
- 21 DIGIANO, Francis A. & WEBER, Walter J. Jr. 1973. Sorption kinetics in infinite-bath experiments. Journal Water Pollution Control Federation, Washington, 45(4):713-25, Apr.
- 22 ECKENFELDER, W.W. Jr. & FORD, D.L. 1970. Water pollution control; experimental procedures for process design. Austin, Jenkins. 269p.
- 23 EPA. 1973. Process design manual for carbon adsorption. Ohio, Outubro n.p.
- 24 EPA. 1978. Interim treatment guide for controlling organic contaminants in drinking water using granular activated carbon. Cincinnati. n.p.
- 25 FERRARA, A. Peter. 1980. Controlling bed losses of granular activated carbon through proper filter operation. Journal Amenican Water Works Association. Washington, 72(1):60-3, Jan.
- 26 FOCHTMAN, Edward G. & DOBBS, Richard A. 1980. Adsorption of carcinogenics compounds by activated carbon. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.l, p.157-66.
- 27 FORD, Davis. 1976. Current state of the art of activated carbon treatment. 93p. presented on: Forum on management of Petroleum Refinery Wastewaters, Tulsa, Oklahoma, 26-29, January.
- 28 FORNWALT, H.J. & HUTCHINS, R.A. 1966. Purifying liquids with activated carbon. Chemical Engineering, New York, 73(8):179-184, April - 11.
- 29 FORNWALT, H.J. & HUTCHINS, R.A. 1966. Purifying liquids with activated carbon. Chemical Engineering, New York, 73(10):155-160, May - 9.
- 30 GIUSTI, D.M.; CONWAY, R.A. & LAWSON, C.T. 1974. Activated carbon adsorption of petrochemicals. Journal Water Pollution Control Federation, Washington, 46(5):947-65, May.

- 31 HACH CHEMICAL COMPANY. 1981. Cod Reactor; Model 16.500. Loveland. 16p.
- 32 HACH CHEMICAL COMPANY. s.d. Bottle manometric apparatus; model 2173 B. Loveland. 17p.
- 33 HENDRICKS, D. 1978. "Adsorption" Notas de aula da Colorado State University. 85p.
- 34 HUANG, Ju-Chang & HARDIE, Michael G. 1971. Treatment of refinery waste by physicochemical processes. Journal of the Sanitary Engineering Division, New York, 97(8):505-21, Aug.
- 35 HUTCHINS, Roy A. 1980. Liquid-phase adsorption: Maximizing performance. Chemical Engineering, New York, 80(4):101-10, Feb. 25.
- 36 HYDE, Robert Andrew. 1980. Removal of haloforms and pesticides by granular activated carbon. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.2, p.137-61.
- 37 ISHIZAKI, Chanel & COOKSON, John T, Jr. 1973.
 Adsorption of sulfur-containing taste and odor compounds. Journal Water Pollution Control Federation, Washington, 45(3):515-22, Mar.
- 38 JOHN, P.B. 1975. Carbon from lignite or coal: which is better? Chemical Engineering, New York, 82(9):

113-6, April - 28.

- 39 LAWSON, C.T.; BOOTH, A.C. & HOVIUS, J.C. 1979. Activated carbon for tertiary treatment of organic chemical wastewaters - bench and pilot-scale experience. Proceeding of the 33rd INDUSTRIAL WASTE CONFERENCE. May 9, 10, 11 - Purdue University, Michigan.
- 40 LINSTEDT, D.; HOUCK, C.P. & CONNOR, J.T. 1971. Trace element removal in advanced wastewater treatment process. Journal Water Pollution Control Federation, Washington, 43(7):1507-13, July.
- 41 MAQSOOD, R. & BENEDEK, A. 1977. Low temperature organic removal and denitrification in activated carbon columns. Journal Water Pollution Control Federation, Washington, 49(10:2107-17, Oct.
- 42 MATTSON, James S. & KENNEDY, Frank W. 1971. Evaluation criteria for granular activated carbons. Journal Water Pollution Control Federation, Washington, 43 (11):2210-6, Nov.

- 43 McCARTY, Perry et alii. 1979. Operational experiences with activated carbon adsorbers at water factory 21. Journal American Water Works Association, Washington, 71(11):683-9, Nov.
- 44 McCREARY, John J. & SNOEYINK, Vermon L. 1977. Granular activated carbon in water treatment. Journal American Water Works Association, Washington, 69(8): 437-44, Aug.
- 45 McGUIRE, Michael J. & SUFFET, Irwin A. 1978. Adsorption of organic from domestic water supplies. Journal American Water Works Association, Washington, 10(11):621-36, Nov.
- 46 McGUIRE, Michael J. & SUFFET, Irwin A. eds. 1980. Activated carbon adsorption of organic from the aqueous phase. Ann Arbor, Ann Arbor Science, 2v.
- 47 MEIJERS, Adrian P. et alii. Objectives and procedures for CAG treatment. Journal American Water Works Association, Washington, 71(11):628-37, Nov.
- 48 PARKHURST, J.D. et alii. 1967. Pomona activated carbon pilot plant. Journal Water Pollution Control Federation, Washington, 39(10):70-81, Oct.
- 49 RAMALHO, R.S. 1977. Tertiary treatment of wastewaters. In: Introduction to wastewater treatment processes. New York, Academic Press. Capitulo 8, p.343-400.
- 50 RIZZO, Joseph L. & SHEPHERD, Austin R. 1977. Treating industrial wastewater with activated carbon. Chemical Engineering, New York, 84(1):95-100, January - 3.
- 51 ROBERTS, P.V. & STUMM, Werner. 1974. Behandlung von Kommunalem Abwasser mit Aktivkohle. Gas-Wasser--Abwasser, Zuric, 54:78-88, separatum nº 479
- 52 ROOK, J.J. 1976. Haloforms in drinking water. Journal American Water Works Association, Washington, 68(3): 168-172, March.
- 53 SCHALEKAMP, Maarten. 1979. The use of GAC filtration to ensure quality in drinking water from surface sources. Journal American Water Works Association, Washington, 71(11):638-47, Nov.
- 54 SCHULHOF, Pierre. 1979. An evolutionary approach to activated carbon treatment. Journal American Water Works Association, Washington, 71(11):648-59, Nov.

- 55 SLECHTA, A.F. & CULP, G.L. 1967. Water reclamation studies at the South Tahoe Public Utility District. Journal Water Pollution Control Federation, Washington, 39(5):195, May.
- 56 SONTHEIMER, Heinrich. 1979. Design criteria and process schemes for CAG filters. Journal American Water Works Association, Washington, 71(11):618-22, Nov.
- 57 SONTHEIMER, Heinrich et alii. 1980. Competitive adsorption of dissolved organics on activated carbon. In. McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science, v.1, p.193-211.
- 58 SPATH, O.H.J.P.; CROOK, J. & GREENBERG, E. 1973. Public health aspects of organic in water. Journal American Water Works Association, Washington, 65(6): 495, June.
- 59 STANDARD methods for the examination of water, and wastewater. 1976. 14 ed. Washington, American Public Health Association. 1193p.
- 60 SUFFET, I.H. 1980. An evaluation of activated carbon for drinking water treatment: A National Academy of Science Report. Journal American Water Works Association, Washington, 72(1):41-9, Jan.
- 61 SUIDAN, M.T.; KIM, B.R. & SNOEYINK, V.L. 1980. Reduction of free and combined chlorine with granular activated carbon. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science, v. 1, p.397-424.
- 62 TIEN CHI. 1980. Bacterial growth and adsorption in a granular activated carbon column. In: McGUIRE, M. J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.2, p.303-21.
- 63 TOFFLEMIRE, T.J.; HETLING, L.J. & SHUSTER, W.W. 1973. Activated carbon adsorption and polishing of strong wastewater. Journal Water Pollution Control Federation, Washington, 45(10):2166-79, Oct.
- 64 WEBER, Walter J. Jr.; HOPKINS, Charles & BLOOM, Ralph Jr. 1970. Physicochemical treatment of wastewater. Journal Water Pollution Control Federation, Washington, 42(1):83-99, Jan.

- 65 WEBER, Walter J. Jr. 1972. Physicochemical Processes for water quality control - adsorption. John Wiley & Sons, Inc. New York. p.198-259.
- 66 WEBER, W.J.Jr. & VAN VLIET, B.M. 1980. Fundamentals concepts for application of activated carbon in water and wastewater treatment. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. vol.1, p.15-41.
- 67 WESNER, G.M. & RUSSEL, L.C. 1972. Wasterwater reclamation and seawater desalination. Journal Water Pollution Control Federation, Washington, 44 (10):1932-9, Oct.
- 68 WILDE, Kenneth A. 1980. Multicomponent adsorption column parameter studies. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.l, p.251-72.
- 69 WOOD, P.R. & DeMARCO, J. 1979. Treatment of groundwater with granular activated carbon. Journal American Water Works Association, Washington, 71 (11):674-82, Nov.
- 70 YING, Wei-Chi & WEBER, Walter J. Jr. 1979. Bio--physicochemical adsorption systems model. Journal Water Pollution Control Federation, Washington, 51 (11):2661-77, Nov.
- 71 YEVJEVICH, Vujica. 1972. Probability and statistics in hydrology. Water resources publications. Fort Collins, Colorado, USA. 302p.
- YOHE, T.L.; SUFFET, I.H. & COYLE, J.T. 1980. Monitoring and analysis of aqueous chlorine effects on granular activated carbon pilot contactors. In: McGUIRE, M.J. & SUFFET, I.H. eds. Activated carbon adsorption of organics from the aqueous phase. Ann Arbor, Ann Arbor Science. v.2, p.27-69.

<u>Apêndice 1 -</u>

.

TABELA 4.1

.

Dados para a Dete	erminaç	ão Is	sotermas
CAG - B	- 1	Remoçã	ão, cor
Diâmetro médio da Tempo de agitação: pH:	partíc:	ıla:	1,02 mm 1 h 2,8

Temperatura	Peso de Carvão por volume Solução (g/1) M	corante residual (g/l) C	Corante ads (g/1) X	. <u>Corante ad</u> s Peso carvao X/M (mg/g)
159C [±] 19	0,0	Cs = 1, 95		~~~
	0,5	1,55	0,40	800
	1,25	1,00	0,95	760
	2.0	0,60	1,35	680
	4,0	0,20	1,75	440
	8,0	0,40	-	
259C [±] 19	0,0	Cs = 1,90	na ny kaodim-paositra dia mampina mandritra dia mampina dia mampina dia mampina dia mampina dia mampina dia mam Mange	nen sen reinen a finsten men Malantaria Bird die Anteren, verspeine verstengen
	0,5	1,50	0,40	800
	1,25	1,00	0,90	720
	2,0	0,60	1,30	650
	4,0	0,25	1,65	412
	8,0	0,55	-	
35°C [±] 1°	0,0	Cs = 1,90		
	0,5	1,50	0,40	300
	1,25	1,10	0,80	640
	2,0	0,80	1,10	550
	4,00	0,40	1,50	375
	8,0	0,55		

.

Dados	para a De	terminação	de Isotermas
CAG	- A	- Re	moção de Cor
	Diâmetro	médio:	1,02 mm
	Tempo de	agitação:	1 h
	pH:		2,9

Temperatura	Peso de Carvão por volume Solução (g/l) M	corante residual (g/1) °C	Corante ads: (g/1) X	<u>Corante ads</u> . Peso carvao X/M (mg/g
159C ± 19	0,0	Cs = 1,95		
	0,5	1,50	0,45	900
	1,25	1,00	0,95	760
	2,0	0,70	1,25	625
	4,0	0,25	1,70	425
	8,0	0,55		
259C [±] 19	0,0	Cs = 1,80		
	0,5	1,30	0,50	1000
	1,25	1,00	0,80	640
	2,0	0,70	1,10	550
	4,0	0,40	1,40	350
	8,0	0,50		
359C ⁺ 19	0,0	Cs = 1,90		
	0,50	1,55	0,35	700
	1,25	1,15	0,75	600
	2,0	0,98	0,92	460
	4,0	0,60	1,30	325
	8,0	0,55	1,35	168

÷

Dados para a Determinação de Isotermas

CAG B - Esgoto doméstico

Diâmetro médio: 1,02 mm Tempo de agitação: 1 h

	Peso de Carvão por volume	DQO residual	DQO adsorvida	DQO adsorvida Peso carvão
	Solução (g/l)	(mg/1)	(mg/1)	(mg/g)
	М	, C	Х	X/M
Temperatura:	0,0	Cs = 125		
1590 ± 19	0,5	100	25	50
	1,25	80	45	36
pH: 7.3	2,0	65	60	30
P	4,0	45	80	20
	8,0	30	95	11,9
Temperatura:	0,0	Cs = 110	-	
259C ± 19	0,5	90	20	40
	1,25	74	35	28
pH: 7,1	2,0	65	45	22,5
	4,0	50	60	15
	8,0	35	75	.9,4
Temperatura:	0,0	Cs = 130		-
3590 ± 19	0,5	115	15	30
	1,25	105	25	20
ph: 7,1	2,0	95	35	17,5
	4,0	75	55	13,8
	8,0	60	70	7,6

Dados para a Determinação de Isotermas CAG A - Esgoto doméstico

> Diâmetro médio: 1,02 mm Tempo de agitação: 1 h

Temperatura	Peso de Carvão por volume. Solução (g/l)	DQO residual (mg/l)	DQO adsorvida mg/l)	DQO adsorvida Peso carvao
	M	C	X	X/M
Temperatura 159C ± 19	0,0 0,5	Cs = 120 95	- 25	`50
	1,25	75	45	36
pH: 7,0	2,0	65	55	27,5
	4,0	55	65	16,5
	8,0	40	80	10
Temperatura	0,0	Cs = 125	enter and an and a second of the control of the second of the second second second second second second second	na na posto por transmor e ostrono del fondar a posto del fonda de la composita del fonda de la composita de la Mante
$259c \pm 19$	0,5	95	30	60
	1,25	90	35	28
pH: 6,65	2,0	75	50	25
	4,0	60	65	16,3
	8,0	55	70	8,8
Temperatura	0,0	Csm 120	4cm	
* * *	0,5	95	25	50
359C - 19	1,25	85	35	28
pH: 7.1	2,0	75	45	22,6
	4,0	60	60	15
,	8,0	55	- 65	8,0

Representação	dos dos	Resultados	da Re	moção de	matéria	Orgânica	(DQO)
obtidos nos	testes	de coluna	piloto	com CAG	- 19 Cicl	lo operaci	onal.

2	Tempo oper.	Vazão no	Volume de es	Co(3)	CONCENTRAÇÃO EFLUENTE (mg/1)] 2
	(h)	intervalo (ml/min)	goto escoado (1)	mg/l	110cm(4) 32,2min (5)	85cm 22,8min	55cm 14,3 min	ênd 1 o
C A G A	0:30 5:00 20:30 30:00 44:30 (1) 54:00 68:00 78:00 92:30	60 55 53 44 70 48 60 48 23(2)	1,8 16,6 65,9 88,7 149,6 177,0 229,2 256,6 276,6	185 255 170 185 165 185 150 115 115	8 . 45 63 60 60 72 75 75 72 108	10 50 72 62 84 80 90 90	12 68 72 85 95 115 105 - -	se 2 -
				· ·	110cm 32,7min	80cm 23,0min	50cm 14,4min	Managera - Attacts access
C A G	0:30 5:00 20:30 30:00 44:30(1) 54:00 68:65 78:00	60 48 53 45 63 55 65 48	1,8 14,8 64,1 89,7 144,5 175,9 232,4 259,8	185 255 170 185 165 185 150 115	55 70 70 62 85 95 95 70	60 72 70 70 105 115 105 75	70 85 85 110 115 110 80	n na managan na she ang
В	92:30	45	298,9	115	72	85	95	

OBSERVAÇÕES: (1) Operação de lavagem (2) Valor desconsiderado para o cálculo de vazão média (3) Concentração de DQO afluente (mg/1) (4) Profundidade do ponto de coleta

(5) TCVV

*

	Tempo oper.	Vazão no	Volume de es	Co (3)	CONCENTRAÇ	ÃO EFLUENTE	(mg/1)
	(h)	intervalo (ml/min)	goto escoad o (1)	mg/1	115cm(4) 18,1min(5)	85cm 13,8min	55cm 8,9min
a a cara a c			****	an a shaka ka			an an an an air an
	1:00	115	6,9	140	15	15	30
C	16:30	88	88,7	160	46	60	60
	26:30	86	140,3	150	58	60	62
A	38:30	120	226,7	170	60	80	90
	48:00	118	294,0	170	70	75	115
G	63:00(1)	83	368,7	142	70	72	94
	67:00	105	393,0	-	-	-	-
	74:00	93	432,9	175	95	105	120
Α	87:00	108	517,2	130	85	90	105
	97:00	115	586,2	175	100	120	120
	112:00	70(2)	649,2	160	100	120	125
					120cm(4)	90cm	60cm
					19,0min(5)	14,6min	9,7min
	1:00	115	6,9	140	28	40	
	: 16:30	88	88,7	160	45	58	
С	26:30	92	143,9	150	62	75	
	38:30	100	215,9	170	62	85	
А	48:00	93	268,9	170	105	110	
	63:00 (1)	· 105	363,5	142	94	100	
G	67:00	100	387,5	-	-	-	
	74:00	88	424,4	175	85	90	
	87:00	115	514,1	130	80	85	
В	97:00	108	578,9	175	130	115	
	112:00	72(2)	643,7	160	110	108	

Representação dos Resultados da Remoção de Matéria Orgânica (DQO) obtidos nos testes de coluna piloto com CAG - 2º ciclo operacional.

OBSERVAÇÕES: (1) operação de lavagem

٩.

(5) TCVV

(2) valor desconsiderado para o cálculo de vazão média
 (3) Concentração de DQO afluente
 (4) Profundidade de ponto de coleta

Representação dos Resultados da Remoção de Matéria Orgânica (DQO) obtidos nos testes de coluna piloto com CAG - 3º Ciclo Operacional.

	Tempo oper.	Vazão no	Volume de es	Co(3)	CONCENTRAÇÃO EFLUENTE (mg/1)		
	(h)	interialo (ml/min)	goto escoado (1)	mg/l	110cm(4) 11,4min(5)	80cm 8,9min	50cm 5,6min
C A G	1:00 6;30 20:30 30:30 45:00(1) 54:00 69:00	155 148 148,5 144 135 152,5 153	9,3 58,1 182,9 269,3 386,7 469,1 606.8	155 152 157 200 215 142 124	68 44 40 95 80 75	72 52 52 80 110 90 90	80 52 52 95 110 105 100
A	75:00 90:00	135 125	679,7 792,2	135 210	85 145	105 155	110 180
					120cm(4) 12,6min(5)	90cm 10,1min	60cm 6,7min
C A G B	1:00 6:30 20:30 30:30 45:00(1) 54:00 69:00 75:00 90:00	155 140 138 140 150 155 160,5 145 113	9,3 55,5 171,4 255,4 385,9 469,6 614,1 692,4 794,1	155 152 157 200 215 142 124 135 210	72 57 62 70 120 90 85 90 175	75 77 96 95 100 95 108 180	85 77 87 115 120 110 95 115 190

OBSERVAÇÕES: (1) Operação de lavagem

٩

(4) Profundidade do ponto de coleta

(2) Valor desconsiderado para o cálculo da vazão média

(3) Concentração de DQO afluente (mg/1) (5) TCVV

Apêndice 3

ANTEPROJETO DE UM SISTEMA DE TRATAMENTO AVANÇADO DE ESGOTOS DOMÉSTICOS UTILIZANDO CARVÃO ATIVADO GRANULAR -

Estação: Paso D'Areia - IAPI - Porto Alegre.

Dados obtidos a partir de testes em coluna piloto com CAG-

TCVV - 11,4 min = 0,19 h

Capacidade adsortiva do CAG A - 135,5 mg DQO ads./g

Taxa de aplicação - 144 m³/m²/dia

Remoção percentual - 51,8%

Parâmetros adotados para o projeto de um sistema de colunas real com CAG -

População - 20.000 habitantes

Taxa de consumo d'água - 200 l/hab/dia

Coeficiente de retorno - 0,8

Concentração média de DQO do efluente secundário -

90 mg/l

Tipo de contactor - escoamento descendente, leito fi_xo.

Pré-tratamento - Decantador primário, filtro biológi co e filtro de areia.

Vazão de projeto = $\frac{20.000 \text{ hab } \cdot 0.8 \cdot 200 \text{ l/hab/dia}}{1000}$ =

$= \frac{3.200 \text{ m}^3/\text{dia}}{1000 \text{ m}^3/\text{dia}}$

Massa de matéria orgânica afluente às colunas de CAG: = 3.200.000 l/dia .90 mg/l = 2,88 .10⁸ mg DQO/dia Massa de matéria orgânica a ser removida:

$$= 2,88.10^{\circ}.0,90 = 2,592.10^{8} \text{ mg DQO/dia}$$

Quantidade de CAG necessária:

= 2,592.10⁸ mg DQO/dia ÷ (135,5 mg DQO/g CAG.0,518)=

= 3,69 toneladas de CAG/dia

Para evitar que a zona de adsorção primária se desloque para fora do leito adsorvente antes de se completar o ciclo oper<u>a</u> cional, adotou-se um coeficiente de segurança de 1,2. Logo, a quantidade de CAG necessária será de:

3,69.1,2 = 4,43 toneladas de CAG/dia.

Considerando um peso específico do adsorvente de 0,33 g/ml, o volume ocupado pelo CAG nas colunas poderá ser obtido dividindo-se o peso de CAG necessário pelo peso específico do adsorvente.

Portanto, V o volume ocupado pelo CAG será de 13,42 m^3/dia .

Considerando que um ciclo operacional se completa em 10 dias, o volume de CAG a ser utilizado nas colunas neste período será de 134,2 m³.

Adotando-se uma profundidade para o leito de CAG de 4,0 m., a área de secção transversal necessário será de

 $134,2 \text{ m}^3 \div 4,00 \text{ m} = 35,55 \text{ m}^2$

Adotando uma forma cilindrica para o contactor, o f<u>a</u> tor de forma a ser utilizado poderá ser de 1,5 (SANKS, Robert L. 1980. Water Treatment Plant Design for the Practicing Engineer - Design of granular media filter units. Ann Arbor Science Publishers, Inc., Michigan. p.682). Consequentemente, o diâmetro da coluna será:

 $= 4,0 \div 1,5 = 2,70$ m.

Para este sistema de colunas, serão necessárias seis colunas com 5,73 m², perfazendo num total 34,4 m².

Verificação da taxa de aplicação: 3.200 m³/dia \div 34,4 m² = <u>93 m³/m²/dia</u>

<u>OBSERVAÇÃO</u> - O desenvolvimento de cálculo, bem como as dimen sões adotadas para as colunas, servem apenas p<u>a</u> ra fins ilustrativos. No projeto real de um si<u>s</u> tema utilizando CAG, deve-se levar em consider<u>a</u> ção, entre outros fatores, o formato da coluna, o número de contactores e o tipo de operação do sistema. Uma análise Benefício-Custo detalhada poderá indicar qual a melhor alternativa para o projeto de um sistema utilizando o CAG.

Apêndice 4

CONCEITOS UTILIZADOS

- APHA Unidades baseadas nos padrões da "American Public Health Association". Derivada da comparação da cor de uma água residuária com uma solução padrão de Potássio Cloroplatinada. Uma cor de 70000 APHA é equivalente àquela solução padrão tendo uma concentração de 70000 mg/1.
- TESTES EM BATELADA Testes executados em grupo com um volume de solução pré-estabelecido.
- BREAKPOINT Representa o ponto na curva de saturação em que - para todos os propósitos práticos - a concentração da solução do efluente está em equilíbrio com a solução afluente. A partir do "Breakpoint" a remoção ad<u>i</u> cional do soluto se reduzirá rapidamente até um valor próximo a zero.
- ZONA DE ADSORÇÃO PRIMÁRIA Representa a profundidade crítica mínima de carvão necessária, a uma vazão específica, para prevenir uma saturação da coluna logo após o início do escoamento.

Apêndice 5

LISTA DE ABREVIATURAS E SÍMBOLOS

- APHA - American Public Health Association - Constante de equilíbrio da equação de Langmuir (ml b de adsorvente/mg de adsorbato) - Constante que expressa a energia de interação В COM a superfície - Carvão Ativado Granular CAG C.U. - Coeficiente de Uniformidade - Concentração local do soluto na superfície interna C' da fase sólida (mg/l) С - Concentração do soluto em equilíbrio (mg/l) - (equação 2.4) Concentração do soluto efluente Cefl no reator (mg/ml) - Concentração do soluto no breakpoint na curva Cb de saturação (mg/l) - Concentração do soluto na fase fluida em equilí-Ce brio com a concentração da fase sólida coexistente (mg/1)- Concentração local do soluto na fase sólida Cex que prevalece na superfície externa (mg/l) - Concentração inicial do soluto (mg/ml) Co - Concentração de saturação do soluto (mg/l) Cs - Concentração no ponto de saturação na curva de sa-Cx turação (mg/l)
- C(Z)t Concentração do sorbato C à profundidade Z do lei-

to, e que é função do tempo de operação t

D - Coeficiente de dispersão para o meio poroso à velo cidade \overline{V} (m²/min)

ETE - Estação de Tratamento de Esgotos

Fm - Massa por tempo unitário por área de secção trans versal unitária do leito afluente (mg DQO aplicado /min)

k^o - Termo de transferência de massa total

- kf e n Constantes características da isoterma de Freundlich
- Kf Coeficiente de transferência de massa para difusão pelicular (mg removido/g CAG)
- Ks Coeficiente de transferência de massa para a difusão superficial interna (mg removido/g CAG)
- L Profundidade do leito de CAG (m)
- Ms Soluto adsorvido pelo CAG na zona de adsorção primária desde o breakpoint até a saturação (mg)
- nm Nanometros
- P Porosidade do leito

Q - Vazão (ml/min)

- Qf Vazão de saída no reator (ml/min)
- Qi Vazão afluente ao reator (ml/min)
- Qo Número de moles do soluto adsorvido por unidade de adsorvente formando uma monocamada completa na superfície (mg de adsorbato/g de adsorvente)

Sb - Quantidade total de soluto acumulado no adsorvente no breakpoint (mg/cm²)

- Tb Tempo para atingir o breakpoint quando C/Co 0,10 (h)
- Tf Tempo necessário para o início da formação da zona de adsorção primária (h)

Tempo necessário para o início do movimento da zo na de adsorção primária para fora do seu próprio
 comprimento na coluna, após atingir o equilíbrio (h)

- Velocidade do escoamento intersticial (m/min)
- Ve Quantidade total de massa de soluto removido do efluente secundário (mg)
- Vb- Quantidade total de massa do efluente no break-
point (mg)
- Vx- Quantidade total de massa do efluente no ponto de
saturação

X/M - Peso de adsorbato por unidade de peso do adsorvente em equilíbrio C (mg/g)

 $\partial \mathbf{X} / \partial \mathbf{t}$ - Taxa de utilização da partícula

(∂c/∂t)o- Taxa líquida observada na mudança da concentração da solução no reator (mg/ml/min)

($\partial c/\partial t$)_r- Taxa da reação (mg/ml/min)

- ∂C/∂t Taxa líquida da mudança da concentração do sorbato
- OC/OZ Termo da taxa líquida de convecção

 $\partial C/\partial Z^2$ - Termo da taxa líquida de dispersão

- (d X/M / dT^O)_f Variação da capacidade de adsorção do adsor vente ao longo do tempo para a difusão pelicular
- (d X/M / dT^O)_s Variação da capacidade de adsorção do adsor vente ao longo do tempo para a difusão superficial interna
- P Peso específico das particulas do adsorvente (mg/ ml)
- Pp Densidade aparente do adsorvente na coluna (g/ml)
- α Área efetiva para a transferência de massa através
 da película por unidade de volume do leito (m⁻¹)

ξ - Porosidade entre as partículas

- = Aproximadamente
- > Maior
- < Menor

UFR65