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Combining Prediction Models and Visualization Techniques for Enhanced

Performance Analysis of Irregular Task-based Applications

ABSTRACT

Parallel application performance analysis is an essential and a continuous step towards

understanding and optimizing any high-performance program. Nowadays, ubiquitous

and complex heterogeneous architectures turn this job even more burdensome. While

paradigms like task-based ease programming through its abstractions and its runtime sys-

tem, the analysis of such applications demand attention because of its specific view of the

applications. Likewise, the analysis of irregular applications built upon specific data struc-

tures need to consider its abstractions and behavior to improve and facilitate an analyst’s

work. Thus, the current work proposes strategies to enhance the performance analysis

of irregular task-based applications and propose application-centric visualization panels

to represent performance according to the elimination tree structure, the foundation of

many direct sparse factorization methods. The strategies rely on tracing information for

collecting task performance data. Since task-based applications can create many tasks

and huge trace files, the proposed automatic mechanism for anomalous task classification

based on regression models allows highlighting specific groups of problematic tasks and

guiding the analysis process. The visualization techniques represent the tree structure and

describe application-specific concepts like tree and node parallelism, child and parent de-

pendencies, and communications. Those strategies are applied to the qr_mumps sparse

task-based solver in an extensive set of experiments. The anomalous detection mecha-

nism exposed four different task anomaly sources, guiding a solution that improved per-

formance by up to 24% by reducing task interference. The elimination tree visualization

panels allowed detailed comparisons between different application and runtime configu-

rations, revealing other sources of inefficiency. The experiments also involved testing the

qr_mumps application in a real computational simulation application, where it presented

better performance than other parallel solvers. The results demonstrate the usefulness of

the proposed strategies to guide the performance analysis of irregular task-based applica-

tions and enhance the performance representation of elimination-tree based applications.

Keywords: HPC, Performance Visualization, Performance Model, Multifrontal Method,

Task-based Applications.





Combinando Modelos de Predição e Técnicas de Visualização para Melhorar a

Análise de Desempenho de Aplicações Baseadas em Tarefas Irregulares

RESUMO

A análise de desempenho de aplicações paralelas trata-se de uma etapa essencial e contí-

nua para entender e otimizar aplicações de alto desempenho. Arquiteturas heterogêneas

hoje estão onipresentes e tornam esse trabalho ainda mais oneroso. Enquanto paradig-

mas como a programação baseada em tarefas facilitam o desenvolvimento por meio de

abstrações e o sistema de runtime, sua análise exige mais atenção devido a sua visão es-

pecífica da aplicação. Da mesma forma, análises de aplicações irregulares e construídas

sobre estruturas de dados específicas precisam considerar tais características para facilitar

o trabalho de analistas. Assim, este trabalho propõe estratégias para aprimorar a análise

de desempenho de aplicações baseadas em tarefas irregulares usando painéis de visuali-

zação específicos, representando o desempenho de acordo com a estrutura da árvore de

eliminação, alicerce de muitos métodos de fatoração esparsa direta. As estratégias uti-

lizam informações de rastreamento para coletar dados de desempenho de tarefas. Como

aplicações baseadas em tarefas podem gerar grandes arquivos de rastreamento, é proposto

um mecanismo para classificação de tarefas anômalas com base em modelos de regressão

que permite destacar tarefas problemáticas automaticamente, direcionando a análise. As

técnicas de visualização representam a estrutura da árvore e comportamentos específicos

da aplicação, como o paralelismo da árvore e dos nós, dependências entre nós filhos e

pais, e comunicações. Essas estratégias são aplicadas ao solver esparso baseado em tare-

fas qr_mumps em um conjunto de experimentos. Os modelos de regressão expuseram

quatro fontes de anomalias, guiando uma solução que melhorou o desempenho em até

24% ao reduzir a interferência entre tarefas. Os painéis de visualização da árvore de eli-

minação permitiram comparações detalhadas entre diferentes configurações da aplicação

e runtime, revelando outras fontes de ineficiência. Também usamos o qr_mumps em

uma aplicação de simulação computacional, onde ele apresentou melhor desempenho do

que outros solvers paralelos. O estudo demonstrou a utilidade das técnicas propostas para

guiar a análise de desempenho de aplicações baseadas em tarefas irregulares e melhorar a

representação do desempenho de aplicações construídas sobre árvores de eliminação.

Palavras-chave: HPC, Método Multifrontal, Aplicações Baseadas em Tarefas, Visuali-

zação de Desempenho, Modelo de Desempenho.
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1 INTRODUCTION

High-Performance Computing (HPC) has been an essential tool for any research

field. It provides the necessary computational power to perform very complex and precise

simulations, for example, which contribute to many advances in technology. But just pro-

viding this computational power through many different complex architectures is insuffi-

cient to solve the ever-increasing problems in this context. To efficiently solve them, we

need applications that optimally explore the parallel capabilities of the current hardware

components. To implement such big and complex applications that are fast and accurate

is a real challenge. The heterogeneity over the architecture processing units builds up an

extra level of concern. Also, the application workloads can be extremely irregular, all this

leading to unbalanced and inefficient executions. One of the most common solutions to

overcome these challenges is to follow a task-based programming approach.

Task-based programming models have been under constant evolution during the

past years. There are now numerous libraries that support such a programming paradigm,

focusing on developing high-performance parallel applications. Libraries like OpenMP

(DAGUM; MENON, 1998), StarPU (AUGONNET et al., 2011), TBB (WILLHALM;

POPOVICI, 2008), Xkaapi (GAUTIER et al., 2013), Cilk (FRIGO; LEISERSON; RAN-

DALL, 1998), and OmpSS (DURAN et al., 2011) implement efficient and flexible task-

based models. With this technique, we can describe the main application structure using

a Directed Acyclic Graph (DAG), whose nodes represent different computational tasks,

and their edges the data dependencies among them. This structure defines the appli-

cation execution flow, which is scheduled dynamically by a runtime system following

a defined scheduling policy. This approach eases the work of programmers by tak-

ing care of the scheduling step in a portable way. There are many powerful strategies

like NUMA memory-aware scheduling (BROQUEDIS et al., 2010), heterogeneous data-

aware scheduling considering data transfer costs (AUGONNET et al., 2010) and even per-

formance model-based scheduling policies (AUGONNET et al., 2011). The task-based

approach is an effective and portable solution to evenly distribute the workload among the

computational units (DONGARRA et al., 2017), even if the workload is irregular and the

architecture complex.

Although the task-based model offers some ease for developing parallel applica-

tions, analyzing the performance of that kind of application is a troublesome job. The

runtime task scheduling decisions are stochastic, leading to variability in task duration
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and application behavior. One strategy used for analyzing these applications is to rely on

tracing systems that collect data of specific events during the application execution. This

detailed data allows us to reconstruct the application behavior to analyze it over time,

investigating runtime decisions, and even comparing the performance with expected re-

sults from performance models. The performance analysis is even more challenging when

we face irregular workloads, where the same type of tasks have different computational

weights depending on their parameters. The runtime decisions might not be aware of this

characteristic of the tasks. Thus, some runtime decisions might degrade the performance,

causing tasks to have a higher execution time than they should, based on a performance

model. To identify these decisions and scenarios where the performance is worse than

expected can help developers understand the application behavior better and improve its

performance. As application runs can generate a considerable amount of tasks, we need

to automatically detect such task duration anomalies because manually analyzing them

can be very cumbersome. This automatic analysis can be challenging but can lead to

improved performance analysis for many applications.

We propose the adoption of the qr_mumps application (AGULLO et al., 2013)

as a case study. This application performs a task-based sparse matrix QR factorization,

handling irregular task weights over multicore and heterogeneous platforms. It uses the

StarPU library to handle the task-based parallelism, using 2D tiled algorithms and the

concept of elimination tree (LIU, 1990) for expressing the factorization parallelism. Be-

sides the task irregularity that can be investigated, in qr_mumps, we can also investigate

the elimination tree structure. This algorithmic-wise investigation contributes to analyz-

ing the application performance in a space-time view aspect, looking into how it navi-

gates through the structure and relates it with performance. We also evaluate the use of

a fully-featured parallel task-based sparse solver like qr_mumps in a real simulation in

the RAFEM (JIANG et al., 2010) application, compared with other state of the art solvers

like the MAGMA (TOMOV; DONGARRA; BABOULIN, 2010) library and cuSOLVER

(NVIDIA, 2020). Besides that, we have chosen this application because our research

group already has contact with the developing teams of both qr_mumps and StarPU,

which makes the cooperation much more straightforward.
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1.1 Motivation

Developing efficient large scale parallel applications is difficult, and it is a pro-

cess that requires constant performance analysis methods to know what and where to

improve. Since task-based programming has gained popularity over HPC applications,

we also need to consider all factors that affect a task-based application in this analysis,

like the runtime system and its scheduling strategy, and provide a task-wise application

point of view. Providing tools and techniques for better performance analysis is an object

of constant study, and they help provide the necessary understanding of the application be-

havior and its performance. While there are many performance analysis tools like StarVZ

(PINTO et al., 2018), Vite (COULOMB et al., 2012), and Vampir (KNÜPFER et al.,

2008), among many others, they fail to consider all aspects of an application like task

irregularity. Furthermore, in the case of the multifrontal method, which is a widespread

technique for parallel direct sparse solvers, we can align application data structures to the

computational resources. This relation helps to synchronize programmers’ abstractions

to the performance delivered by the application, which, as far as we know, remains unex-

plored for the multifrontal method and the elimination tree. To further improve this kind

of tools, we can provide a technique to detect anomalous tasks based on a performance

model automatically. This technique can guide programmers to better analyze if there is

a strange behavior over the highlighted tasks by such a strategy. We will integrate our

contributions into the StarVZ tool, which represents an effort to understand and analyze

the performance of irregular task-based applications.

1.2 Contributions

The present work contributions are concentrated around two main points: (1) pro-

viding enhanced performance analysis for irregular task-based applications through per-

formance modeling using different regression models. And (2) specific visualizations for

the multifrontal method through application-oriented performance visualization panels

considering the algorithm data structures, in this case, the elimination tree. The principal

contributions are listed as follows:

1. Provide a set of algorithm-wise visual performance analysis panels for task-based

multifrontal methods in the StarVZ tool, which can be applied to any task-based
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multifrontal method that provides the necessary data.

2. Create a detailed performance prediction model, considering the irregularity of

tasks data and different regression model strategies, guiding the user with visual

interpretations of the models, helping it choosing the adequate model for each task

and run configuration.

3. Extensive set of experiments that identified some interesting scenarios regarding the

impact of the many factors in the qr_mumps application behavior, and scenarios

that caused performance degradation. Among the explored cases, we highlight:

• A set of different sources of task anomalies in the application that were cap-

tured by our modeling.

• The impact of different application and runtime factors in the application be-

havior regarding the elimination tree structure, such as scheduler, memory

consumption, and task priorities.

• Side effects of other factors that impact concurrent running tasks efficiency

and reduce their data locality benefits.

4. Exploring the performance and numerical properties of different state of the art

parallel sparse solvers for the real-world application RAFEM, accelerating it, and

discussing further steps towards increasing speedup.

1.3 Structure of the Text

This document is organized as follows. Chapter 2 presents a background and

context over the task-based programming paradigm, parallel task-based sparse solvers,

scientific applications, and the process of collecting performance data for further analy-

sis. Chapter 3 discuss related work on methods and techniques for general purpose and

task-based performance analysis, and strategies and uses of performance modeling and

prediction. Chapter 4 brings the methodological aspects of our contributions to the devel-

opment of novel performance visualization panels related to the multifrontal method and

the enhanced performance analysis of irregular task-based applications through regres-

sion models. Chapter 5 presents experimental results using the qr_mumps application,

showing the usefulness of proposed application performance analysis techniques. Chap-

ter 6 shows the use of qr_mumps in a real-world application, showing how to tune it and



21

discussing future improvement points. Lastly, Chapter 7 finalizes this document with the

conclusions and points to future work.
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2 BACKGROUND: HPC APPLICATIONS AND PERFORMANCE ANALYSIS

The present chapter provides, in a first moment, background information on the

task-based programming paradigm and an important class of applications built on top

of it: parallel sparse solvers. Section 2.1 presents the principal concepts of task-based

programming and the view of two different APIs for supporting this paradigm. Section 2.2

presents a common target application to represent using a task-based approach, which is

parallel matrix factorization algorithms and solvers. Then, in Section 2.3, we describe real

scenarios where those efficient parallel solvers are needed to achieve good performance

and allow computational scientific applications to simulate problems in a feasible time.

Lastly, Section 2.4 provides an overview of techniques to collect performance data for

application analysis.

2.1 Task-Based Programming Paradigm

HPC applications rely on hardware parallelism to accelerate computations. As the

supercomputers are continually moving towards heterogeneous architectures, the com-

plexity of creating efficient programs rises, increasing the number of concerns for parallel

programs conception and the amount of work necessary to deliver such high performance.

Heterogenous platforms imply distinct costs for communication, different throughput for

the computational resources, creating a challenging scenario for the applications to utilize

those resources efficiently. In addition, many APIs provide ways to handle the numer-

ous accelerators and explorable types of parallelism. MPI (GROPP; LUSK; SKJELLUM,

1999) is the de facto standard for handling multi-node parallelism, coordinating intra and

inter-node communications. For shared-memory platforms, the de facto standard is the

OpenMP API (OpenMP, 2018). OpenMP provides directives that extend the compiler

program’s understanding, allowing it to partition and divide work among the machine

cores automatically, supporting all sorts of parallelism types, multithreading, SIMD, task-

based (started in OpenMP 3.0, improved with dependencies later in version 4.0), and het-

erogeneous programming offloading computation to other devices (since OpenMP 4.0).

We can also use CUDA (NVIDIA, 2020), OpenACC (CAPS Enterprise, Cray, Nvidia,

PGI, 2018), and OpenCL (STONE; GOHARA; SHI, 2010) to offload calculations for

GPGPUs, and the latter can also control FPGAs programmability. Hence, with all avail-

able strategies that we can combine to explore parallelism over multiple platforms simul-
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taneously, considering its heterogeneity, creating a correct and efficient parallel program

may sound a bit overwhelming.

Task-based parallelism, also known as dataflow parallelism, is a programming ap-

proach that can ease such an overwhelming job by allowing programmers to express their

applications in a more declarative way, letting the runtime system decide what, when,

and where the tasks execute in the hardware (DONGARRA et al., 2017). It allows rep-

resenting the application computations and communications as a Directed Acyclic Graph

(DAG), transferring some of those complex responsibilities like scheduling considering,

load balancing, data locality, and ensuring data coherence to the runtime system. Fig-

ure 2.1 depicts the role and the view of the runtime system in a task-based application.

The runtime organizes the application tasks as a DAG like in the left part of the fig-

ure, representing the application according to the tasks data access modes. It creates the

dependencies between them when we have tasks with read-after-write, write-after-read

(anti-dependency) that can be avoided by making an extra copy of the data, and write-

after-write conflicts.

The runtime scheduler dynamically chooses how to distribute the tasks over the

available computational resources. This scheduling is done very efficiently since it is a

subject under constant research (TOPCUOGLU; HARIRI; WU, 2002; SINNEN, 2007;

AUGONNET et al., 2011), even considering heterogeneous platforms.

As the HPC landscape is continuously shifting to bigger, heterogeneous parallel

systems, the task-based approach has proved its value in simplifying programming and

providing performance in some cases. Standard APIs like OpenMP now support task-

based parallelism, and many others (AUGONNET et al., 2011; DURAN et al., 2011;

BOSILCA et al., 2012a) have arisen to help in efficient parallel programs development.

Furthermore, by decoupling the application from the computational resources, without the

need to explicitly mapping them to specific workers, one can create applications with per-

formance portability in a very natural way, as a side-effect of the task-based programming

structure.

2.1.1 OpenMP Tasks

OpenMP version 3.0 introduced the concept of explicit tasks using the task con-

struct, and later improved in version 4.0 with the depend clause, which allows defining

the access mode to the task data variables that are later translated into task dependencies
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Figure 2.1 – Runtime role and view in a task-based application.

Source: The Author

by the runtime. The OpenMP API already had the implicit task concept before imple-

menting explicit tasks. According to the OpenMP 5.0 specification, it defines a task as “a

specific instance of executable code and its data environment that the OpenMP implemen-

tation can schedule for execution by threads” (OpenMP, 2018). Every time that a thread

reaches a task construct, the program creates a new task that can be immediately exe-

cuted or postponed to a future moment. The task construct receives a series of optional

OpenMP clauses for specifying task dependencies, priority, affinity, and other behavioral

aspects for its data or synchronization with other tasks. A set of statements follows this

construct, representing the work the task will perform asynchronously. Figure 2.2 shows

three examples of task creation in OpenMP using the task construct with the depend

clause.

Figure 2.2 – Example of code to define tasks using OpenMP.
1 #pragma omp t a s k depend ( i n o u t : x , y ) depend ( i n : a )
2 { x+=a ; y*=a ; }
3
4 #pragma omp t a s k depend ( i n : x )
5 { foo ( x ) } / / w a i t f o r x v a l u e from t h e f i r s t t a s k
6
7 #pragma omp t a s k depend ( i n : y )
8 { b a r ( y ) } / / w a i t f o r y v a l u e from t h e f i r s t t a s k

Source: The Author.

The runtime constructs the DAG according to the task data dependencies specified

in the depend clause using the values in, out, and inout, and other synchronization

points like the taskwait, barrier, and groups of tasks using the taskgroup con-

struct. For example, the first task in line 1 of the figure uses the value of the variable

a as read-only defined by the depend(in:a) to update the variables x and y val-

ues. The other two tasks that use x and y as input must wait for this first task, and they

can run concurrently. The created task can be immediately executed or postponed to a
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future moment. The runtime can also preempt a task to run one with higher priority,

resuming the interrupted task’s execution later. OpenMP categorizes tasks into tied

and untied tasks. When a thread starts executing a task, the default behavior is to tie

this task to that thread, making it the only thread that can resume that task’s execution

if it was preempted. The OpenMP standard implements a limited preemptive strategy

(SERRANO; ROYUELA; QUIÑONES, 2018), which restricts the tied task preemp-

tions to specific application points, called task scheduling points in the OpenMP termi-

nology. Those scheduling points include creation, completion, synchronization points,

and manually specified points using the taskyield construct. In contrast, the runtime

can preempt an untied task at any time, and any thread can continue the untied task

execution. The API also offers ways to avoid creating a huge data environment by cre-

ating mergeable tasks and avoiding the overhead of creating too many tasks using the

final clause, which can help when using recursive algorithms and nested tasks.

The OpenMP API now provides a reliable way to describe task-based parallel pro-

grams and many features that achieve better performance. It is now moving towards being

the standard for shared-memory task-based parallelism, motivating popular libraries such

as Plasma to move from specialized custom task schedulers (AGULLO et al., 2009), to

the OpenMP general-purpose tasking model (DONGARRA et al., 2019), without losing

performance. However, it still lacks some flexibility, like providing multiple platform-

specific implementations of a task and deciding at runtime which implementation to use.

Still, there is an interest in implementing such approaches in an OpenMP environment

given its usefulness for heterogeneous platforms (MILANI, 2020). This ability to provide

multi-implementations of tasks is essential to achieve peak performance in the widespread

heterogeneous systems. Other runtime systems for task-based programming like Xkaapi

(GAUTIER et al., 2013) and StarPU (AUGONNET et al., 2011) already consider such

aspects to provide performance.

2.1.2 StarPU Runtime

StarPU is a library for task-based programming over heterogeneous architectures

with a C/C++ API and a Fortran interface to allow programmers to submit computational

tasks over resources, describing the application in terms of a DAG. StarPU allows express-

ing task parallelism by providing a representation of the program’s fundamental parts: the

tasks and the data, along with its input and output dependencies. StarPU exploits paral-
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lelism following the natural program flow by adopting the Sequential Task Flow (STF)

programming model (AGULLO et al., 2016), submitting tasks as they appear in the se-

quential code, and letting the StarPU runtime schedule them asynchronously. The StarPU

runtime infers the task dependencies based on their data access conflicts, building up

the application DAG and managing to provide optimized heterogeneous scheduling, data

transfers considering prefetching, data replication, and efficient cluster communication.

We can understand the StarPU functionality focusing on its basic concepts. The

top part of Figure 2.3 presents the steps to build a task until its submission following

the red arrows. The first part is implementing the computational kernels representing

the work a task will perform considering architecture-specific code. In the figure exam-

ple, we have a matrix multiplication kernel. A StarPU codelet relates a task operation

to its kernel implementations. Notice that a codelet can provide multiple implemen-

tations for the same task operation using different kernels to represent the task’s work,

allowing the application to have one implementation for each type of devices like CPUs,

CUDA GPUs, and OpenCL devices. In the StarPU codelet in the figure, we have a matrix

multiplication codelet, the gemm_codelet, that has two different operation implemen-

tations, one for GPU and the other CPU. The data handles in the application data

part represents a portion of data managed by StarPU. A task will then perform its kernel

operations specifying the handles access mode: read-only, write-only, or read

and write. StarPU provides structures and functions that help the user partition the

registered data, creating subsets from the total data. This partitioning is configured in the

starpu_data_filter structure, passed to the starpu_data_partition func-

tion. In the example, we divide the content of the variable matrix into 2D blocks.

A task in the StarPU concept is the instantiation of a codelet over some data

handles which executes the kernel atomically, represented by the bigger blue circle

in the figure. Unlike in OpenMP, the StarPU execution model has no preemption during

task execution.

From the application point of view, it is only submitting tasks in a specific order

using the starpu_insert_task function, which incredibly simplifies the efforts to

create efficient parallel programs. However, under the hood, StarPU is taking care of

the many concerns to provide performance and data coherence. Figure 2.3 also provides

an overview of the StarPU execution system, from the task submission to the runtime

scheduler and worker’s role. The data dependencies between tasks data_handle ac-

cess modes build up the DAG, and only the ready tasks (those whose dependencies are
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Figure 2.3 – StarPU application and runtime overview.

Source: The Author

already satisfied) are moved to the scheduler layer. The scheduler is responsible for as-

signing each task to a worker, considering aspects to provide load-balance and minimize

the total execution time. The StarPU runtime provides a comprehensive set of schedul-

ing policies that vary from simple central task-queues considering priorities (prio), one

task-queue per worker, considering classical techniques like work stealing (lws), to het-

erogeneous data-aware strategies that consider the tasks performance models and the ma-

chine topology communication costs (dmda), using the expected task cost as a scheduling

hint, considering where the data is currently located (dmdasd), and heterogeneous pri-

orities (heteroprio). StarPU enables the user to define multiple scheduling contexts

with different policies and a different set of workers, choosing which context to insert

the tasks, and also run through distributed memory environments with its MPI module
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(AUGONNET et al., 2012).

2.2 Towards Modern Parallel Task-Based Solvers

While many applications can achieve excellent performance with data-parallelism

and other techniques, there is still a good portion of applications that can take advantage

of the task-based parallelism (THIBAULT, 2018). Parallel solvers are one of those ap-

plications. They are essential for numerous scientific applications, as they often have to

solve large and typically sparse linear equations systems, representing more than 80%

of the application execution time (CAMARDA; STADTHERR, 1998). With the task-

based programming delivering a compact and powerful way to express parallelism, many

works considered implementing custom schedulers (AGULLO et al., 2016; HÉNON;

RAMET; ROMAN, 2002) based on algorithmic knowledge, and many domain-specific

runtime systems implementations arose for linear algebra applications (CHAN et al.,

2008; SONG; YARKHAN; DONGARRA, 2009; YARKHAN; KURZAK; DONGARRA,

2011; BOSILCA et al., 2012b). In fact, the task-based approach was explored even in the

pre-multicore era (GEIST; NG, 1989; AMESTOY; DUFF; L’EXCELLENT, 1998).

Throughout the years, the task-based approach proved to ease programming while

achieving high performance for many algorithms, widely adopted for both dense and

sparse linear algebra applications. Given this ease and flexibility to program, and the

ability to provide performance over heterogeneous platforms, an uncountable number of

projects for high-performance parallel direct solvers, if not all of them, nowadays adopt

a task-based approach. We have seen projects like Plasma moving from the Quark run-

time towards the OpenMP task standard as it evolved to support task-based parallelism.

Fully featured libraries like MAGMA (TOMOV; DONGARRA; BABOULIN, 2010) and

Chameleon (AGULLO et al., 2010), being developed on top of dynamic runtime sys-

tems. And other application like qr_mumps, and PaStiX, once based on hand-coded

schedulers moving towards general-purpose runtime systems like StarPU and considered

adopting other runtimes like Parsec.

The runtime systems’ dynamism is very useful for irregular problems, helping to

balance the computational load efficiently in cases of sparse or adaptative mesh refine-

ment (AMR) problems (GANGULY; LANGE, 2017; KLINKENBERG et al., 2020). Its

flexibility also allows to easily merge DAGs representing different application regions to-

gether, like the case in PaStiX, and qr_mumps, where the factorization and the solve
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operations can partially execute concurrently. The runtime system plays a role in the per-

formance as well. With many options available, studies try to evaluate different runtimes

considering the same workload to answer which one provides more performance for a spe-

cific application, considering many aspects including runtime overhead, scheduling, and

energy efficiency (AGULLO et al., 2017; LIMA et al., 2019; MILETTO; SCHNORR,

2019). Such comparisons are no easy job, as the different runtime systems come with

their own programming interface which can extend and provide new implementations of

task-based models, creating their own specific environments which complicate compar-

isons between different runtimes (AGULLO et al., 2017). In general, many runtimes

provide similar performance in the best case scenario considering application parameters

and runtime configurations. However, some of them provide more functionalities, gener-

icity, and customizability than others, providing performance portability in exchange for

a loss of fine-grain task efficiency (THIBAULT, 2018). The runtime system’s choice may

be guided by the different main goals that a runtime system and the application have, like

being lightweight or highly portable and customizable. Despite the differences, using the

task-based approach on top of modern runtime systems is definitely a good way to go for

performance efficient parallel solvers (DONGARRA et al., 2017). Next, we will describe

the implementation task-based parallel sparse solvers based on the multifrontal method.

2.2.1 Multifrontal Method for Sparse Factorization

The multifrontal method (DUFF; REID, 1983) is an extension of the classical

frontal method (IRONS, 1970). It was designed to factorize sparse symmetric matrices

using the Cholesky decomposition. However, the method provides a structure that can

be adjusted to sparse unsymmetric matrices factorization using the QR and LU decom-

positions, considering that the matrix holds the Strong Hall (i.e., fully indecomposable)

property. The multifrontal approach is now a widespread technique for the paralleliza-

tion of sparse direct solvers (DAVIS; RAJAMANICKAM; SID-LAKHDAR, 2016). This

method reorganizes and breaks the problem of factorizing the whole sparse matrix into

a set of smaller and denser subproblems called frontal matrices or simply fronts. These

subproblems represent partial factorizations, like one elimination step related to a specific

column j. Because of the matrix sparsity pattern, many of those elimination steps in-

volve disjoint sets of matrix coefficients and allows us to perform many of those steps in

parallel, factorizing multiple fronts at the same time, which gives the name to the method.
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However, when an elimination step of a column changes the coefficients used in

another step, there is a dependency between those front factorizations. This set of inde-

pendent and dependent subproblems are captured by a structure named the elimination

tree (SCHREIBER, 1982), which lies at the heart of the multifrontal method. The tree

structure nodes hold the frontal matrices, and it represents the dependencies between them

as a parent and child relation in the tree. The dependencies imply that a parent node can

only be factorized after all its child nodes were already factorized and their contribution

blocks were assembled into it. The whole matrix factorization is done by traversing the

tree in the topological order, from the bottom to the top. Figure 2.4 shows an example

of a given symmetric sparse matrix A (left), the computed Cholesky factor with the fill-

in coefficients represented with the "⊗" symbol (middle), and the matrix corresponding

elimination tree (right). The elimination tree is constructed based on the symbolic pre-

computed structure of the Cholesky factor L, where the relation between the parent pj of

a child node that represents the elimination of column j, is defined by Equation 2.1 as

follows

pj = min{i | i > j and Lij 6= 0}. (2.1)

The multifrontal approach provides two sources of parallelism based on the tree structure

and its denser matrices, where all the tree leaves represent independent fronts.

Figure 2.4 – Example of a sparse symmetric matrix, its computed fill-in after a symbolic
factorization step, and its elimination tree.

Source: (LOAN; GOLUB, 2013)

As sparse problems have to use specific matrix representations formats like Co-

ordinate (COO), and Compressed Sparse Row (CSR), specific data structures, and need

to handle the fill-in effect created during factorization, sparse solvers execution flow is

commonly divided into three different phases:

• Analysis phase: this step handles a critical concern in sparse matrix factorization:
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keeping the generation of new nonzero coefficients (fill-in effect) under control. In

this phase, software libraries like COLAMD (DAVIS et al., 2004), Scotch (PELLE-

GRINI; ROMAN, 1996) and Metis (KARYPIS; KUMAR, 1997) use matrix/graph

reordering algorithms such as Approximate Minimum Degree, Nested Dissection,

and Cuthill-McKee (LOAN; GOLUB, 2013) to provide a matrix permutation that

reduces the fill-in during the factorization, taking advantage of the sparse matrix

structure. Applications also perform a symbolic factorization step that enables

them to know where the fill-in coefficients appear to preallocate the correct nec-

essary memory size for the final structure by calculating the matrix’s final structure

after the factorization. This step creates the frontal matrices and their child/parent

dependencies. At the end of this phase, we have the elimination tree structure ready

to be computed by the next phase.

• Factorization phase: this phase is responsible for traversing the elimination tree

from the leaves to the root, computing the partial factorization in each front, and

combining the child node contribution blocks to the parent frontal matrix. Many

of these front factorizations can be done in parallel. For example, the method can

process all the leaves of the tree simultaneously since all of them do not have any

child node. This parallelism source is called tree parallelism. As the computations

move towards the tree root, the tree parallelism becomes more scarce because we

have more parent and child dependencies and fewer nodes than in the bottom of

the tree. However, the nodes upwards the elimination tree concentrate way more

computations than the bottom part. As fronts get bigger, we can use techniques to

parallelize the factorization of an entire tree node. Efficient implementations of the

multifrontal method consider applying techniques like tiled/blocked factorization

to explore the intra-node parallelism, commonly called node parallelism.

• Solve phase: lastly, the tree is traversed one more time, applying forward and back-

ward substitutions, and a triangular solve operation for each front, grouping their

results to provide the solution of the entire matrix.

2.2.2 QR_mumps: Fine-Grained Multifrontal QR Factorization

The qr_mumps application is a task-based parallel sparse solver based on the

multifrontal method that uses the StarPU runtime, written in Fortran 2003. It uses the

elimination tree to partition and parallelize the problem. In the first versions of qr_mumps
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(BUTTARI, 2013), it uses a block-column partitioning, relying on an in-house scheduler

to provide load-balance and memory consumption control over multicore architectures

(AGULLO et al., 2013). There are some comparisons between this earlier version against

a StarPU-based qr_mumps implementation and another QR sparse solver called SuiteS-

parseQR (DAVIS, 2009). Both qr_mumps implementations outperformed the SuiteS-

parseQR, but the StarPU version was slightly slower than the qr_mumps original version.

While there is a higher overhead for the StarPU execution, typically below 10%, adopting

a modern runtime system increased the code portability and allowed the programmers to

better control memory usage during the factorization. This portability and ease to pro-

gram allowed to improve qr_mumps using a finer-grained partitioning, substituting the

1D block-columns for 2D tiles on top of the StarPU runtime system (AGULLO et al.,

2016). This finer-partitioning enables the application to explore more parallelism and

provide heterogeneity support through the StarPU runtime system, considerably increas-

ing the speedup against the 1D version. The fine-grained 2D tiled partitioning approach

over the StarPU runtime system allows qr_mumps to explore a new parallelism level

in the multifrontal method, referred to as interlevel parallelism. This new level allows

to overlap computations of parent and child nodes, which was earlier blocked until the

complete child node factorization. In this finer-partitioned approach, as soon as a part of

the parent’s node is completely assembled with its child contribution blocks, the parent

node factorization can start. This overlapping brings more performance improvements but

also increases the complexity of understanding the application execution in performance

analysis tools.

We can divide the application into four different sets of tasks: initialization tasks,

deinitialization tasks, communication, and computational tasks. The initialization and

deinitialization tasks are created considering the frontal matrices and their blocks, allow-

ing fine control of the memory usage and ensuring data coherence through the StarPU

runtime system. The communication tasks represent the assembly of the contributions of

a child node to a parent node. As qr_mumps partition the fronts in 2D, these tasks can

assemble their contributions in the parent front while there are still computations in the

child node. The most costly part of the algorithm consists of the computational tasks,

which are calls for LAPACK kernels: geqrt, gemqrt, tpqrt, and tmpqrt.

The granularity of the matrix partitioning and LAPACK operations is controlled

by three user-defined parameters: mb, nb, and ib. The first two define the block and task

size, being mb the number of rows and nb the number of columns. The last parameter,
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ib, controls the internal block size granularity of the LAPACK operations, which holds

the number of extra floating-point operations needed in 2D algorithms (BUTTARI et al.,

2009) while taking advantage of the cache memory hierarchy. Despite this beneficial

effect from the LAPACK ib parameter, in qr_mumps, those kernels were slightly mod-

ified to help control fill-in level inside the blocks where there are zeroes in the bottom left

part of the block, forming the staircase structure. We can observe the influence of those

parameters in a frontal matrix partitioning and the fill-in level, and the task irregularity

sources in Figure 2.5. The figure depicts a frontal matrix with its rows sorted by the left-

most nonzero, emphasizing the staircase structure, leading to many zero elements in its

bottom left part. The red dashed lines express the front partitioning following the mb and

nb parameters. The left part of the figure shows the effect of two different values for ib:

nb/6 and nb/3. Observe how the fill-in is reduced with smaller ib values, but this comes

at the cost of lower efficiency in the BLAS-3 operations. The task cost irregularity arises

when the staircase structure traverses a block or when a task computes the bottom or right

border of the matrix in cases where the front size is not perfectly divisible by mb or nb.

This way, we can have tasks with the same type and size and a different computational

cost because of their block content. This irregularity makes performance analysis and

prediction a much harder job.

Figure 2.5 – Front partitioning considering mb and nb, ib size effect in fill-in, and sources of task
irregularity. Matrix coefficients are represented as light gray squares and fill-in coefficients as

dark gray.

Source: The Author

In practical implementations of the multifrontal method like in qr_mumps, we

commonly observe the amalgamation of elimination tree nodes to group elimination steps

forming bigger and denser frontal matrices, providing better exploiting the Level-3 BLAS



35

operations efficiency. In contrast with the tree presented in Figure 2.4, where each node

represents the elimination of one column, leading to small fronts, in amalgamated trees

(also called assembly tree), we have one tree node representing the simultaneous elim-

ination of k columns. This operation grouping comes at additional fill-in costs but is

controlled with a threshold value for the additional fill-in generated due to the amalgama-

tion process. While grouping tree nodes improve performance, the multifrontal method

still naturally leads to many small fronts in the elimination tree leaves. When running

over a runtime system, this number of small fronts can lead to considerable overhead in

the execution task due to creating too many tasks, reaching parallelism levels higher than

the architecture can compute. For this reason, qr_mumps implements what is referred to

as logical pruning technique (BUTTARI, 2013). This technique identifies a layer in the

tree where the subtrees rooted at that level contribute to a small amount of the total factor-

ization cost. According to a weight threshold, for example, 1% of the total factorization

cost, nodes whose weight contribution is smaller than the threshold are marked as pruned.

For each subtree marked as pruned, one unique task performs the complete factorization

over that subtree, making the operations in that region more performance effective and

avoiding creating too many tasks, reducing the runtime overhead.

For controlling the memory consumption, the StarPU runtime system allows stop-

ping the task submission according to the fronts memory usage. The application calcu-

lates the memory usage peak according to a sequential traversal of the elimination tree.

It defines a maximum usable memory threshold based on that value, for example, using

two times the sequential memory peak. This strategy reduces the application memory

footprint while maintaining performance as described by previous experiments (LOPEZ,

2015).

These optimization strategies specified in the qr_mumps application on top of

StarPU work as an architecture-independent solution. This solution provides perfor-

mance portability through heterogeneous platforms, thanks to the capabilities offered by

the StarPU task-based programming model. Despite all optimizations, a detailed perfor-

mance analysis of an application can reveal where we have high performance, and where

the lack of it manifests, evaluating and guiding further improvements or application and

runtime configuration parameters.
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2.3 Computational Scientific Applications

Scientific computing provides a way to create computational simulations of any

size in a controlled and reproducible way. Those simulations represent a cheaper alter-

native than real experiments both in cost and time and enable to study a phenomenon

even when there is no access to the physical equipment that can create it (or because it

is infeasible to produce such equipment). This ability to mathematically represent the

behavior of a real-world event, translating it to computational algorithms, helps to signif-

icantly impel progress in many fields of research. However, this kind of application is a

major source of computational demand, requiring a lot of computing power and depend-

ing on parallelization approaches to produce accurate solutions in a feasible amount of

time. Many of these simulations involve describing the rate of change in time and space

of a continuous variable using differential equations. While some of these equations are

simple enough to find an analytical solution, in almost all cases, we end up using partial

differential equations (PDEs) to express the problems, which are mostly hard to solve ex-

actly. There are many methods for the discretization to approximate the solution of partial

differential equations using a numerical model. For example, some of the most popular

ones are the finite differences method (FDM), the finite volume method (FVM), and the

finite element method (FEM), each one with its own characteristics and cases where they

fit best. However, these different discretizations create a system of equations that need to

be solved to obtain the approximate solution.

Regarding the type of the system generated, PDEs are a common source of sparse

matrices (SAAD, 2003). Therefore, we cannot use basic dense factorization algorithms

since the fill-in overhead would significantly degrade performance. Thus this is where

high-performance parallel sparse solvers like qr_mumps and PaStiX come into play,

providing an efficient solution for such problems. This Section will discuss some of

the discretization approaches and present a real-world case with the RAFEM application

(JIANG et al., 2010).

2.3.1 Scientific Applications: Mathematical Modeling, Discretization

Scientific applications start with a determined phenomenon that they want to sim-

ulate, typically describing its physical behavior over space and time, for example, in

fluid dynamics problems. Many physical laws can be described by PDEs, describing
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the changes in a continuous domain using more than one independent variable at a time.

The mathematical modeling of those equations depend on the domain we are interested in

studying the phenomena, considering, for example, the number of dimensions and phys-

ical properties we are interested in. Thus, after we determine the physical problem, its

mathematical model should be aligned with our domain representation. The domain dis-

cretization consists of representing the problem in a finite way, allowing solving PDEs

approximately through numerical methods.

We can discretize a physical domain in a computational environment using finite

meshes. The mesh is composed of a finite set of many interconnected points in space,

where the application will calculate the equations in those specific regions considering

the neighboring points. The meshes provide just an approximation of the real domain

shape using a combination of simple geometric forms. The more detailed our mesh (more

points it has), the more precision we will be able to estimate the PDEs result. A connected

set of points forms an element also called a cell. We have two different mesh types ac-

cording to their connectivity patterns: structured and unstructured meshes, as presented

by Figure 2.6, along with their particularities. In a structured mesh, all its points have the

same number of neighbors, and typically the points are distributed equidistantly, like in a

regular 2D grid where all elements have the same shape and size. This regular distribution

provides an efficient way to store and locate the neighboring points based on the sum of

their indices, allowing representations of such mesh types in structures like matrices. In

the unstructured meshes, the connectivity is irregular, where the nodes can have an arbi-

trary number of neighbors. This irregularity makes the storage less efficient because we

need to keep track of all node coordinates and adjacency lists, preventing simple storage

strategies like the arrays and matrices used in a structured grid.

Figure 2.6 – Structured 2D mesh (left) and an unstructured mesh using triangular elements to
approximate the domain (right).

Source: The Author

Structured meshes provide a memory-efficient way to represent the domain and

better convergence properties due to its alignment, which implies less time waiting for
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results. However, many problems have a complex geometry where using a structured

mesh will lead to rough approximations. Thus we should use an unstructured mesh in

those cases, which better approximates those geometries and can also represent specific

regions with more precision. Furthermore, hybrid meshes combine both strategies and

take advantage of what each mesh type offers. We can also use adaptative mesh refine-

ment techniques to improve our solution quality and speed. As the simulation behavior

changes over time, adding more points when reaching critical stages where more preci-

sion is needed or loosening the representation in areas far from our region of interest by

adjusting the mesh structure.

The most extensively used numerical methods to solve PDEs under discretized

meshes are the FDM, the FVM, and FEM. Each one of these methods better fits a specific

meshing approach and particular problems. They represent the whole problem by com-

bining the simpler equations we have defined for the elements and their neighbors in an

equation system. The FDM can be used with a structured grid, providing a very conve-

nient way to solve problems modeled in structured meshes. It is commonly used in cases

whenever we have a large number of cells in our discretized domain, where simpler ap-

proximations help keep the computational cost under control, like some CFD simulations.

The FVM is well suited for the simulation of conservation laws, and where knowing the

flux property is relevant. FVM works with structured and unstructured meshes, also being

widely used for CFD simulations. The FEM is the most used method for many engineer-

ing sciences due to its flexibility to discretize PDEs over complex geometry. It divides

the whole domain into finite smaller elements, defining the governing equation for each

element, and combining them to form a global system of equations. The flexibility of

FEM also allows us to describe multiple material properties, like in cases where we have

different element types.

2.3.2 Radiofrequency Ablation Finite Element Method: RAFEM

The RAFEM application (JIANG et al., 2010) is a scientific application to sim-

ulate the Radiofrequency Ablation (RFA) procedure. The RFA is a minimally invasive

treatment for some cases of hepatic cancer. This procedure consists of using a special

electrode connected to an alternated current generator. The tip of the electrode is posi-

tioned in the center of the tumor in the patient’s liver to eliminate the tumor cancer cells.

It generates heat in the area around the electrode through the Joule effect, killing the can-
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cerous cells because of the high temperature. The efficiency of the medical procedure

depends on the total heated area and the reached temperature. If it does not eliminate all

cancer cells, tumor recidivism can occur. The problem is that when the RFA starts, any

medical imaging techniques like ultrasound, computational tomography, and magnetic

resonance imaging are unable to provide precise visualization and measurements of what

is happening inside the liver, like the area affected by the heat. This way, the simulation

helps specialists adjust the RFA parameters for each patient, maximizing the success rate

and avoiding resubmitting the patient to a new RFA procedure.

RAFEM uses the FEM to model the RFA procedure in a 3D tetrahedral mesh,

calculating the heat and voltage distribution over time. Its original version is based on the

frontal method technique for solving the resulting equation system. While this method

is useful for reducing memory footprint, it is not focused on efficiency, spending too

much computational time to produce the results. Recently, works have dedicated efforts

to accelerate the two most costly phases in the application, which is the assembly of the

equation system and obtaining its solution (SCHEPKE; MILETTO, 2020), proving the

usefulness of sparse solvers and other parallel solvers in such applications. Figure 2.7

presents the main loop structure of the RAFEM application. The application principal

execution flow consists of two nested loops. The outer loop controls the steps advance in

time, and the inner loop controls the numerical convergence of the obtained solution. The

loop is based on the predictor-corrector method, where the application extrapolates the so-

lution further in time and corrects it until a certain precision threshold. These loops make

many repetitions of the costly phases of assembling and solving the system of equations,

where any improvements in their performance will propagate through these loops. We

consider using this application, integrating qr_mumps to accelerate it, and to analyze,

study, and tune the performance of qr_mumps in a real application scenario.

Figure 2.7 – RAFEM main loop structure.

Source: The Author
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2.4 Collecting Performance Data

Performance analysis tools and techniques depend on performance data collected

from an application execution. There are many methods to collect this kind of infor-

mation, which depends on the level of detail we need and the objective of our analysis.

We can obtain different types of data, which also implies different overheads that disturb

application execution. This disturbance is called the probe effect or also intrusion.

2.4.1 Performance Data Acquiring Methods and Data Types

Instrumentation is the act of modifying a program, either actively or automatically,

for an alternative purpose (ISAACS et al., 2014b). In this case, we are concerned about

techniques of modifying a program to obtain performance data for its post-mortem or

offline analysis. The data acquiring methods can be guided by time or by events (REED,

1994). Our analysis objective defines which type of data and method we should be using.

Profiling is a time-based instrumentation method that periodically pauses the exe-

cution in an interval defined by the user, and either it only saves the content of the instruc-

tion pointer to know which function is executing or can save the whole call stack. The

profiling technique produces sampled data , counting how many times its measurements

occurred in specific program regions. This sampled data is analyzed after the application

execution to estimate the percentage of the application execution time was spent in each

of its sampled regions. The precision of this estimation depends on how frequently the

application collects information. The more it collects data, the better we have estima-

tions at the cost of more overhead caused in the application execution due to the probe

effect. However, as the information produced by profiling is very simple, losing temporal

information, its overhead is very low, and it uses a small amount of memory. Profiling is

an excellent technique to provide a straightforward and quick way to detect critical hot

spots and bottlenecks in the code since it commonly does not involve any other step like

manually modifying the application code.

Interception is an event-based instrumentation technique consisting of intercept-

ing the functions calls present in a source code. The function calls are wrapped by an

interception library function that executes performance measurement code, collecting per-

formance data for that specific function. These interceptions can either be done automati-

cally according to the present function calls by simply compiling the original application
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with a performance measurement library or specified manually in the code. Compared

to profiling, the interception technique can aggregate the data to provide the exact profile

of the application, recording the precise time spent in each code region and how many

times a specific event occurred. Furthermore, besides collecting exact timing data, it

can register data from specific parameters passed to a given function, which provides se-

mantic context to the analysts. Also, it allows the collection of hardware counters data

for a determined event. The interception overhead depends on the number of events and

how much information we collect for each event but is much more significant than in a

profiling technique.

Tracing is possible through the interception method to create tracing data. A

trace is made of all the non-aggregated events that occurred during the application execu-

tion, with their entry and exit times. The application traces allows the analysts to recon-

struct the full application behavior along time and among the computational resources.

This detailed time-related data allows one to understand in detail what happened in the

execution, which can help answer questions about performance. Ideally, to fully represent

the application behavior, we should record all types of events, but this is impracticable be-

cause of the considerable intrusion generated (SCHNORR, 2014). Thus, we can carefully

select the essential events for our analysis to keep intrusion levels under control.

There are also different types of analysis, like online analysis, where data is col-

lected and analyzed concurrently with the application execution, which avoids the need to

save huge trace files, but limits the scalability in large-scale applications and causes more

intrusion. Hence, the post-mortem analysis is the most widely used analysis type.

2.4.2 Intrusion or Probe Effect

When an application runs without taking any other measurements, it expresses its

natural behavior. The methods to collect data presented earlier disturb this natural behav-

ior causing the probe effect or intrusion, which is mostly unavoidable for performance

analysis studies (SCHNORR, 2014). This effect represents the time spent using the plat-

form resources to record and manipulate the performance data, which will possibly slow

down the application by some factor.

We can characterize the intrusion level by comparing the application execution

time when it is not under observation to when it is. If the impact is too high, the behav-

ior we will analyze will probably be different from the real one. This way, we should
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carefully consider our data collection strategy to avoid changing the application behavior

while studying it. Besides the impact on time, memory usage can be a problem too. If

the collected data size is considerable, this can represent a limiting factor in systems with

reduced available resources. Thus, the data collecting system’s choice and method should

consider the level of intrusion that it causes. Otherwise, it can harm the analysis process.

2.4.3 Performance Data Over StarPU

The StarPU runtime system supports two ways of providing performance data for

any application built on top of it: online statistics and execution traces. The online statis-

tics consist of very simple measurements and should not degrade application performance

(THIBAULT, 2018). It provides profiling data like how much time was spent in a given

type of task, scheduling, idling, or waiting for data transfers. This information gives us

a big picture of the application execution, which helps to understand at a high level what

happened in the execution but is unable to tell where or why there were performance

deviates.

Conversely, the StarPU tracing system can provide all that information, helping

performance analysts to have an in-depth view of the application performance. Each task

entry and exit timing is recorded, along with other data related to task parameters. StarPU

uses the FxT (DANJEAN; NAMYST; WACRENIER, 2005) library to produce detailed

traces of the application, saving all task-related information through its execution, relating

it with the architecture, and locating events in time. The FxT tracing system was designed

to collect data efficiently, minimize impact in the execution, and proved to produce low

intrusion overhead (THIBAULT, 2018).

The tracing can be quickly enabled and disable using environment variables, and it

produces one FxT tracing file per computational node. In this work, we rely on those FxT

files, which are converted through the StarVZ workflow to the Paje/PajeNG (SCHNORR,

2012) general trace file format, processed and used as input for its many performance

visualization panels. Also, a combination of techniques is considered for future works in

the StarPU tracing system (THIBAULT, 2018), like a sampled tracing technique, which

would help in the scalability for very long application executions in a large scale comput-

ing environment.
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3 RELATED WORK: PERFORMANCE ANALYSIS

The performance analysis is an essential step to understand and improve any ap-

plication. As HPC platforms become increasingly complex, exploring different hetero-

geneity levels with GPUs, CPUs, and FPGAs, including NUMA memory nodes, shared

and distributed memory, and various communication types, analyzing applications for

such platforms became more complex as well. Moreover, considering that the execution

of task-based programs is stochastic, without regular computation and communication

phases. It turns out they are a more challenging scenario to analyze than data-parallel

applications, making traditional performance analysis strategies unfit because of lack of

DAG and runtime information. Task-based applications rely on dynamic runtime deci-

sions, which sometimes consider many task aspects such as priorities and cost estimations

for the duration and even energy consumption. The representation of the application as

a DAG simplifies the programming but loses track of application-specific structures by

diluting them in the individual tasks and dependencies. This way, there is an interest in

extending classical visualization techniques to help in task-based performance analysis,

easing application and runtime developers process to understand, debug, and analyze ap-

plications. Another way to improve task-based performance analysis is to recover this

application-related data, helping to relate performance through visualization in a mean-

ingful way to application developers.

This chapter presents a set of general and task-based performance analysis tools

and techniques in Section 3.1. In Section 3.2, we present works concerned with perfor-

mance modeling and prediction techniques commonly used for problem partitioning and

scheduling and can also help in application comprehension, performance analysis, and

anomalous behavior detection.

3.1 Performance Analysis Tools and Techniques

Performance visualization is a valuable technique to earn a comprehensive under-

standing of HPC applications and the factors that affect their performance. This com-

prehension is fundamental to improve applications on many levels, helping to detect and

enhance different inefficiency sources. Improving performance is the final objective of

performance analysis and visualization. Therefore, the means to do so can follow differ-

ent paths, focusing on many particular points of an application. According to (ISAACS
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et al., 2014b), we can divide the different sub-goals of visual performance analysis into

three distinct categories: global comprehension, problem detection, and diagnosis and

attribution.

Global comprehension provides an overall big picture of the application, allow-

ing users to perceive the natural application behavior, observing its phases like commu-

nication, computation, data movement, dependencies, and resource utilization. Such rep-

resentation can depict common patterns of these different aspects and how they relate

to each other, strengthening the understanding of an application execution performance

and guiding problem detection. The problem detection goal is to identify performance

bottlenecks, load imbalance, low resource parallelism usage, and anomalous behavior.

Diagnosis and attribution follows the latter goal. After the detection, one must try to

understand the cause of the problem. The problem origin might come from the com-

putational environment, application parameters, bad scheduling, and many other factors.

Pinpointing the cause of the detected problem can be quite challenging and commonly

needs an extensive investigation, demanding the use of specific visualization and perfor-

mance analysis methods.

3.1.1 General HPC Performance Analysis Tools

To face the complexity of parallel programs performance analysis, the scientific

community has been developing a vast number of performance analysis tools to enhance

analysts’ abilities for application performance comprehension, problem detection, and di-

agnosis. Such tools rely on profiling and tracing data to collect and derive performance

metrics. Commonly, the amount of data in large-scale parallel performance analysis can

be huge, making the analysis hard. Thus, it is often essential to summarize performance

data (BOUDEC, 2010), transforming raw data into knowledge. The common objectives of

general performance analysis tools are to highlight many types of performance problems,

pinpoint their location in the program execution both in time and source code, and the

system process that was running. Such applications fully support well-established par-

allel programming techniques like MPI/OpenMP, providing exploratory tools that help

users go through application events, identify computation and communication patterns,

bottlenecks, and other inefficiency sources. We present some of these classical tools in

the following paragraphs. We selected popular tools that cover the analysis of traditional

paradigms like the combinations of MPI, OpenMP, and CUDA, highlighting their strate-
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gies and functionalities for performance analysis.

TAU (Tuning and Analysis Utilities) (SHENDE; MALONY, 2006) is a complete

framework and toolset for the performance instrumentation, analysis, and visualization,

of large-scale parallel programs, conceived to be robust, flexible, and portable. Its in-

strumentation and data conversion features provide performance data that fits for trace

analysis and trace visualization. Despite this flexibility, TAU has its own trace explorer

(PerfExplorer) and visualizer (ParaProf). The PerfExplorer (HUCK; MALONY, 2005)

is a framework for parallel performance data mining, including features like clustering

and dimensionality reduction to reduce large-scale data complexity, as well as correla-

tion analysis and metric visualization panels. These features support single and multiple

experiments analysis, allowing users to compare the results of numerous experiments

quickly. ParaProf (BELL; MALONY; SHENDE, 2003) is the TAU’s performance visual-

ization tool. It can present classical views like timeline views, histograms and bar charts,

call graphs, along with performance data derived metrics. It also supports OpenGL-based

3D visualizations to compare multiple operations and metrics at the same time. The 3.1

presents a simple timeline view in a thread-centric way and its mean and standard devi-

ation metrics for the different event’s duration. The tool allows to explores these thread

regions in detail, displaying their performance statistics.

Figure 3.1 – ParaProf’s timeline view, displaying threads time information.

Source: (BELL; MALONY; SHENDE, 2003)

HPCToolkit (ADHIANTO et al., 2010) is a set of tools for scalable and effi-

cient measurement and performance analysis of HPC applications. It provides a statisti-

cal sampling of region times and hardware counters, which causes a low overhead in the

application (1-5%) and can trace applications to record space-time information during the
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execution for a more detailed post-mortem analysis. The toolkit counts with complemen-

tary tools to analyze the profiling and traces. For example, the hpcviewer (ADHIANTO;

MELLOR-CRUMMEY; TALLENT, 2010) is a java-based tool that allows users to ex-

plore, combine, and derive metrics from performance data, associating and organizing

performance measurements by their call-path in a hierarchical tree-based structure and

relating them to the source code. The traceviewer (TALLENT et al., 2011) provides an

interactive performance trace data visualization, presenting data as a classical Gantt chart.

The difference is that the user can control the Gantt chart’s colors by selecting different

call paths visible depth levels as presented by Figure 3.2, which can reveal execution

patterns, helping to understand and pinpoint sources of inefficiency.

Figure 3.2 – The traceviewer panel with multiple examples of call-path depth selection.

Source: (TALLENT et al., 2011)

Scalasca (GEIMER et al., 2010) is a collection of tools specially designed for

large-scale parallel applications performance analysis, focusing on MPI and OpenMP

based programs or hybrid approaches that combine both. It has a measurement library

that uses the PMPI interface to capture the MPI events and the POMP profiling inter-

face for tracing OpenMP. It can use the Scalasca EPIK user instrumentation API macros

and Score-P manual instrumentation regions to instrument user-defined regions. Further-

more, users can use TAU source-code instrumentor to insert Scalasca measurement API

calls straightforwardly. The tool automatically analyzes the trace to find performance

bottlenecks, focusing on problem detection like MPI late sends and receives, wrong order
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messages, and measuring MPI waiting time. It also provides these automatic analyses

for OpenMP-based code, analyzing aspects like task team creation and starting overhead.

Then, users can further investigate this enriched performance report data using tools like

the CUBE4 trace explorer, which presents the performance metrics, the call-path, and the

system resources. Figure 3.3 shows an example of the Scalasca/CUBE trace explorer use,

relating the performance metrics in the left part, to the program code in the middle to the

system architecture in the right.

Figure 3.3 – CUBE trace explorer using Scalasca performance report.

Source: (GEIMER et al., 2010)

Vampir (KNÜPFER et al., 2008) is a proprietary toolset to analyze parallel ap-

plications performance and message passing characteristics. It uses program trace events

collected in OTF2 (Open Trace Format 2), provided by many tracing tools and libraries

like TAU, Score-P, and VampirTrace, allowing instrumenting the application either au-

tomatically or manually by user-defined regions. The Vampir toolset can use the Vam-
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pirServer system to access performance data in remote computation nodes and present

it on a client-side. It shows several performance visualization panels for statistical data,

an interactive timeline view, including message passing information, allowing the user

to navigate and filter over the visual data, also relating it to other performance data like

hardware counters. Figure 3.4 presents a group of utility charts from Vampir, with many

different performance metrics, summarized data, and timeline information. It also shows

another type of visualization relating total data transferred by MPI communications be-

tween processes. Users can choose the color to represent other metrics, like the total time

spent in communications or the number of messages.

Figure 3.4 – Vampir trace view and communication matrix.

Source: (Vampir, 2019)

Paraver (PARAllel Visualization and Events Representation) (PILLET et al., 1995)

focus is on being a flexible performance data browser, where the user can extend the tool’s

metrics by using a set of functions and operations provided by the application without the

need of performing changes in the trace visualizer. It uses data from the Extrae measure-

ment system (CENTER, 2015), which supports MPI, OpenMP, pthreads, OmpSs, and

CUDA. Such flexibility provided by this tool can be noticed by recent studies using Par-

aver to study energy-efficiency in HPC applications (MANTOVANI; CALORE, 2018).

In the visualization part, Paraver counts with a small set of views, having two main vi-

sualization panels presenting qualitatively different information types: the timeline and

the statistics display. The first one represents the classical timeline view, showing the ap-

plication behavior along time, with communication and computation patterns. The latter

provides numerical analysis about any desired metric in a user-defined specific time win-

dow. Figure 3.5 presents these two types of views, with a timeline display on top and two

different statistic displays.

ViTE (Visual Trace Explorer) (COULOMB et al., 2012) is part of a tool-chain

for performance analysis, responsible for interactive, multi-format, and fast trace data vi-
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Figure 3.5 – Paraver timeline and statistics displays.

Source: (PILLET et al., 1995)

sualization. It reads Pajé (KERGOMMEAUX; STEIN, 2000) trace files and can use the

EZTrace tool to collect performance data, which have pre-defined plug-ins to trace MPI,

OpenMP, pthreads, and user-defined regions. EZTrace records the application events us-

ing the FxT library (DANJEAN; NAMYST; WACRENIER, 2005). This trace is then con-

verted by the GTG (Generic Trace Generator) to the Pajé or OTF2 trace formats. ViTE

can read both formats and quickly generate full trace visualization without time aggre-

gation using OpenGL, representing the resource states and communications interactively,

giving the user a fast and elementary overview of the program behavior. ViTE can easily

represent visualizations of vast amounts of raw trace data, as depicted by Figure 3.6. The

figure represents the hardware hierarchy in the left part, and the events are drawn through

time, identified by colors.

Nowadays, plenty of tools can help with the complex task of analyzing HPC appli-

cations’ performance. Other tools with similar functionalities include Pajé (KERGOM-

MEAUX; STEIN, 2000), JumpShoot (ZAKI et al., 1999), and Ravel (ISAACS et al.,

2014a). Although many of them have overlapping functionalities, they tackle large-scale

parallel performance data analysis very differently, even considering only post-mortem

analysis tools. We also have many differences in the instrumentation and tracing part.
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Figure 3.6 – ViTE trace view, displaying millions of events.

Source: (COULOMB et al., 2012)

However, the efforts to standardize tracing information for performance analysis tools like

OTF2 and Paje/PajeNG (SCHNORR, 2012) traces are well accepted since many tools can

read or convert those formats to one that suits for its own use. The tools have different

focuses, like having simple but useful views like Paraver and ViTE, having a comprehen-

sive set of visualization displays like in Vampir, and displaying specific information like

in HPCToolkit. Some of them present automatic analysis to ease the analysts’ work sig-

nificantly, like Scalasca. Those tools can also be used in a complementary way, combining

their non-overlapping functionalities to understand a program’s performance fully.

As tools should present performance data in meaningful ways for the user, aligning

application structures and parallel language constructs (SHENDE, 1999), which works

well for MPI, OpenMP, CUDA, and other data-parallel approaches in the presented tools.

We have a lack of task-based DAG-specific information in those tools. This way, we need

specific task-based tools to investigate task-based applications’ performance properly.

3.1.2 Task-Based Performance Analysis Tools

As the task-based programming paradigm has some specialized structures and

entities like the application DAG and the scheduler, to enhance task-based application

debugging, testing, and performance comprehension, we need to consider such informa-

tion. The stochasticity of the scheduler decisions and tasks and resources heterogeneity

makes the analysis hard and challenging to identify inefficiencies. Thus, specific tools
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and methods for a more in-depth task-based analysis look for task dependencies, different

task types and their durations, DAG-based metrics like the critical-path, trying to relate

this to poor application performance in both runtime or application-level.

TaskInsight (CEBALLOS et al., 2017) is a technique that characterizes the mem-

ory behavior of task-based applications considering data reuse and tries to relate applica-

tion performance with the scheduler decisions that favor or not the cache reuse between

tasks. Its methodology relies on using task-wise hardware counters data such as the num-

ber of cycles, instructions, cache miss ratio, and it uses the Pin tool (LUK et al., 2005)

to obtain a sample of the tasks’ memory accesses. They try to evaluate scheduler deci-

sions considering four different memory access categories: new data, last reuse, second

last reuse, and older reuse, being the latest when a task access a data region referenced

later than the two tasks before. As an experimental test case, the authors used a dense

Cholesky factorization application on top of the OmpSs runtime (DURAN et al., 2011).

They compare a naive approach that schedules tasks by their creation order according

to a breadth-first search against a smart scheduler that uses a heuristic that prioritizes

child tasks over other tasks in the breadth-first order. This way, the authors could verify

the scheduling decisions, quantifying their impact on tasks’ memory behavior through a

higher miss ratio and cycles per instructions. They report that besides the temporal local-

ity aspect that influences the miss ratio, co-running tasks can degrade their performance

because of how they interact with the last-level cache.

Temanejo (BRINKMANN; GRACIA; NIETHAMMER, 2013) is a toolset for de-

bugging purposes with an online debugger for parallel task-based applications. It has a

graphical user interface that displays the running application DAG and its tasks status in

the runtime system. The tool allows the user to analyze and interact with the DAG tasks

by prioritizing, blocking, setting breakpoints, and even creating artificial dependencies

between them. It also allows calling the gdb to analyze any task further. It relies on the

Ayudame library, part of the toolset, to instrumentate the application and communicate

with the runtime during its execution. The versatility of this library enables many run-

times to use Temanejo (DURAN et al., 2011; AUGONNET et al., 2011; BOSILCA et

al., 2012b; OpenMP, 2018). Figure 3.7 presents an annotated overview of the Temanejo

visual debugger.

DAGViz (HUYNH et al., 2015) is a visualization tool focused on parallel task-

based programs that provide a task-centric visualization of the applications by displaying

the program tasks as a DAG plus a classical timeline view of the application with the
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Figure 3.7 – Temanejo’s visual debugger overview with annotations.

Source: (BRINKMANN; GRACIA; NIETHAMMER, 2013)

available parallelism from the DAG on its top. It allows the user to explore the DAG by

expanding/contracting tasks and their dependent tasks, allowing them to focus on a given

part of the DAG. The DAG representation helps compare different schedulers, as it has

a consistent structure between other schedulers’ executions. The DAG Recorder extracts

the DAG information for tracing, and it is supported by OpenMP, Cilk Plus, Intel TBB,

Qthreads, and MassiveThreads. DAGViz breaks the task behavior using three primitives:

CreateTask when the current task spawns a new child task, WaitTask marking a task that

waits for all others inside a section, and MakeSection, which defines a region of tasks

creation until a WaitTask. Figure 3.8} presents a DAG representation with DAGviz with

different contractions. The upper triangles represent the CreateTask primitive, the down-

ward triangles are the WaitTask, and the squares depict the MakeSection primitive. The

colors identify the resource that executed the task, and sections with multiple colors mean

that many workers computed the DAG area. Also, the red circle marks the application

ending point. Although this DAG visualization provides a very detailed view of the ap-

plication, it can quickly become overwhelming depending on the size of the drawn DAG

area.

Grain Graphs (MUDDUKRISHNA et al., 2016) is a performance visualization

analysis tool focused on OpenMP programs with tasks and parallel-for loops. The tool

constructs the visualization of grains, which are computations made by tasks or parallel-
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Figure 3.8 – Four different expansions of a DAG represented with DAGViz.

Source: (HUYNH et al., 2015)

for loops. It can create derived metrics considering the graph structure considering aspects

like memory system behavior like cache miss ratio and memory hierarchy utilization, load

imbalance, task creation and synchronization overhead, and parallelism level. The tool

then uses those metrics to highlight grains that present performance problems in the DAG

according to one of the derived metrics. Figure 3.9 shows the analysis for the fast Fourier

transform application of the BOTS benchmark, considering memory hierarchy utilization

calculated as a ratio of the cycles spent computing and cycles waiting for data. The tool

uses a color gradient to depict low memory hierarchy utilization by the grains from red

(low) to yellow (high) while fades grains without this problem.

Figure 3.9 – Representation of the memory hierarchy utilization for the fast Fourier transform of
BOTS benchmark with Grain Graphs.

Source: (MUDDUKRISHNA et al., 2016)
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Atria (WILLIAMS; BIGELOW; ISAACS, 2019) is a task-based performance

analysis tool for the Phylanx/HPX runtime (TOHID et al., 2018; KAISER et al., 2014).

It does not use trace data and thus does not provide any timeline view. The tool’s pri-

mary goals are to present an overview of the execution using a DAG structure, relating

the DAG execution with the code, and associate performance data (hardware counters and

timing) with the tasks and paths, helping to understand performance and scheduler deci-

sions. Atria represents the DAG as an expression tree where the nodes are the operations

and children are operands, which makes sense in the Phylanx programming point-of-view.

The tool can compare two runs by overlapping their expression trees, and adding a color

encoding to distinguish task duration differences, easing the comparison between differ-

ent scheduling policies. Figure 3.10 shows an example of the tool’s views.

Figure 3.10 – Atria’s functionalities overview.

Source: (WILLIAMS; BIGELOW; ISAACS, 2019)

Aftermath (DREBES et al., 2014b) is a graphical tool for task-centric perfor-

mance analysis for the OpenStream runtime, an OpenMP data-flow, stream programming

extension. Currently, it only works with its own native trace format, optimized for Open-

Stream applications. The tool collects hardware counters performance data and runtime

task managing information. It uses an interactive timeline panel to display task execu-

tion and task managing information like task creation and scheduling. The user can use

a set of filters and summary statistics to explore application performance, following met-

rics evolution along time or inside individual tasks, and even create annotations. Despite

providing individual task analysis and task management information, the tool lacks DAG

dependencies information. Enhancements on Aftermath (DREBES et al., 2014a) provide

support for automatic detection of performance bottlenecks using a threshold-based anal-
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ysis considering the execution time and the number of processors to determine if there is

enough parallelism or too much overhead in task creation or scheduling. Also, it provides

a linear regression-based analysis to automatically determine which hardware counters

the user should use in the tasks’ performance analysis. Figure 3.11 shows an overview

of the Aftermath timeline view (1), along with its filters(2), statistics (3), events(4), and

menu to create derived metrics.

Figure 3.11 – Overview of the Aftermath graphical visualization tool.

Source: (DREBES et al., 2014b)

StarVZ (PINTO et al., 2018) is an R package available on CRAN, for the per-

formance analysis of task-based applications based on the StarPU runtime system. It

relies on the built-in tracing of StarPU that generates FxT traces. The tool provides a

comprehensive set of visualization panels for application behavior, runtime behavior, and

performance metrics visualization over the application execution time. It enriches the

classical Gantt chart timeline view with load-based metrics like the area bound estimation

(a lower bound for the execution time given the load) and DAG-based metrics like the

critical-path bound. It highlights abnormal tasks whose duration is higher than the mean

execution values given a task type and resource type and can represent dependency chains

between tasks. It also implements algorithmic specific visualizations like the Cholesky

iteration plot, which illustrates how the scheduler traverses the DAG considering algorith-

mic information. Recently, the StarVZ tool was enhanced to support memory behavior

analysis at runtime level (NESI et al., 2019). Figure 3.12 presents a set of visualization

panels from StarVZ.
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Figure 3.12 – Overview of the StarVZ panels.

Source: (PINTO et al., 2018)

As we have seen, the task-based specific performance analysis tools also have

overlapping functionalities with general-purpose ones. However, they extend the analysis

by including DAG and runtime information, approximating the performance data to the

real application scenario, helping in performance comprehension. The DAG information

is essential to compare executions because of the non-deterministic nature of dynamic

scheduling decisions. In this sense, understanding the causes of poor performance can

become a very complicated job. Thus, performance analysis tools should aid the perfor-

mance investigation allowing the user to explore performance data and provide automatic

analysis mechanisms.

3.2 Performance Modeling and Prediction

Another facet of performance analysis that helps in many aspects throughout its

process is performance modeling (JAIN, 2008). Performance models provide cost esti-

mation for application’s specific regions. This cost can represent many metrics related to

performance, like duration, the number of floating-point operations, energy consumption,

the volume of data transfers in communications, and the size of data used in cache. Mod-
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eling generally focuses on describing performance in low-level parts of the application,

like individual tasks. However, it can also combine such fine-grained modeling to predict

a whole computational system’s performance or one of its components. The crucial ad-

vantage of modeling performance is knowing beforehand the expected performance for

a given application component. We can then use a model (1) to build faithful simula-

tions of applications reducing the experimental cost to study many different factors, (2)

to develop smart scheduling algorithms that consider the expected performance and data

transfer time in heterogeneous platforms. And lastly, (3) to improve post-mortem perfor-

mance analysis by automatically detecting where performance deviates from its expected

value.

3.2.1 Task Performance Modeling Types and Use Cases

High-performance applications frequently use some cost metric obtained from

modeling to help perform duties like problem partitioning and achieving effective load

balancing. For example, the qr_mumps application uses the tasks’ theoretical floating-

point operation cost to prune the elimination tree nodes. PaStiX (HÉNON; RAMET;

ROMAN, 2002) uses communication and BLAS models to dynamically decide the elim-

ination tree nodes partitioning in either 1D (column-blocks) or 2D (tiled factorization)

and define a static scheduling when using its native internal scheduler. There are many

techniques and types of performance modeling for computational tasks, from developing

analytical models, which go deep in the details of how a computational kernel works, to

using statistical models based on previous executions of applications and its sampled or

measured performance.

When we have scenarios like in qr_mumps and PaStiX, where we need to know

the values online, a common approach is to develop analytical models for the application’s

basic building blocks, which are the computational tasks. Such application tasks are built

upon the widely used computation kernels of HPC applications BLAS/LAPACK rou-

tines. Thus, extensive research was done to properly model its routines costs analytically

(GEIJN; QUINTANA-ORTÍ, 2008; PEISE; BIENTINESI, 2012). Exploring different as-

pects of the performance like considering communication (DACKLAND; KÅGSTRÖM,

1996), memory access patterns (IAKYMCHUK; BIENTINESI, 2012), and even provid-

ing and using models to auto-tune linear algebra routines through the optimization of

its parameters (CUENCA; GIMÉNEZ; GONZÁLEZ, 2004). There is also a concern on
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modeling such routines and application performance considering sparse matrix operation

(GRIGORI; LI, 2007; CICOTTI; LI; BADEN, 2010). Moreover, studies still look at how

to model the task cost mathematically (STANISIC et al., 2015). This latter work focuses

on modeling the block-column version of qr_mumps using a set of task parameters and

machine-dependent memory hierarchy coefficients to correctly model its irregular task

behavior.

A model conception can depend on its purpose. For example, StarPU uses per-

formance models to improve scheduling policies. It builds the model for tasks according

to their type, the type of computational resource it was executed, and the underlying ar-

chitecture. Then, StarPU uses a calibration run to sample performance data to create

the models. The gathered information can be as simple as the duration of the task in a

given computational resource, although that works only for regular tasks. Combined with

communication bandwidth models in the target architecture, these measurements help

schedulers decide how to efficiently schedule tasks over heterogeneous platforms. In the

simulation aspect, the SimGrid (CASANOVA et al., 2014) tool uses those model results

to simulate application executions with lower computational costs, based on the DAG

information and a performance model for its tasks, providing a quick and reproducible

way to study resource-demanding applications. In the post-mortem performance analysis

utility, estimating the theoretical task cost can enable us to classify either the task had an

expected duration or an anomalous duration compared to the other tasks. (PINTO et al.,

2018) provides an example model used in performance analysis, highlighting tasks whose

duration was above the expected in a Gantt chart.

However, such simple models per task type are not sufficient in irregular task

cases. There is a need to combine task performance influential parameters like its size and

BLAS parameters to model irregular tasks’ performance behavior properly. Another prac-

tical and feasible technique is to use regression models. They can summarize the expected

task performance considering its different irregular costs throughout the application ex-

ecution. Such regression models can provide useful and straightforward predictions and

build very sophisticated simulations, as we will see in the next Section.

3.2.2 Regression Model-based Predictions

As we can model the performance of an application component through a set of

factors, we need to use a regression model to consider them all to make our predictions.
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Regression models provide a tool that assesses the different factors and the many levels

that they can assume to predict a response variable. The usefulness of regression model

predictions is noticeable in modeling applications with irregular tasks, where they can

extend the purposes mentioned earlier.

The StarPU runtime (AUGONNET et al., 2011) can consider different regression

models for application tasks’ to help in scheduling, including non-linear and multiple

regression models. One example that shows the usefulness of performance models is

Simgrid (CASANOVA et al., 2014). This tool supports the StarPU performance models

and uses them to provide accurate simulations of irregular applications, achieving a very

close result to real executions in the qr_mumps simulation example (STANISIC et al.,

2015). Typically, it manages to keep the difference below 3%, with some exceptions for

architectures with higher core count per L3 cache level and multiple NUMA nodes, where

the error rate rises to 8%. Still in the simulation goal, other works also consider modeling

the whole application, runtime system, and its workload using a regression model (OZ

et al., 2019). It models BOTS benchmark applications considering the scheduler and its

queueing policies, cut-off policy to hold task submission, the number of threads, and input

size to predict the execution time of a given configuration, reaching an error rate between

6.3% and 14%.

Lastly, besides smart scheduling algorithms and precise, low-cost simulations, re-

gression models can be quite useful for the post-mortem performance analysis. For ex-

ample, in the Simgrid scenario with many cores per the last level cache, task performance

degradation occurs due to cores cache sharing. If we can model such an effect, it may

come in handy to detect the regions in a space-time view where this degradation occurs

when analyzing a real execution. Another example is to provide an automatic analysis of

which factors are interesting to consider in performance analysis of a given workload by

analyzing the correlation coefficient of linear models (DREBES et al., 2014a). Lastly, we

can extend previous techniques, like automatically detecting anomalous tasks looking at

their deviation from the mean task duration (PINTO et al., 2018), which works only for

regular tasks, to consider irregular tasks through a regression model.

3.3 Discussion about Performance Analysis Toolset and Modeling

Many of the presented performance analysis tools focus on giving an overview

of the application performance through a classical timeline view of the computational re-
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sources and the application events. While this technique can be really useful for obtaining

a first big picture of what happens to application performance, it needs to be aided by other

techniques and tools to enrich performance analysis. For such reason, the tools commonly

present a trace explorer that allows users to navigate, filter, and derive metrics for better

application performance comprehension. However, as computational platforms became

more complex, programming paradigms like task-based arise and represent a paradigm

shift that affects both programming and program performance analysis. Thus, to align

programmers’ abstractions to the application performance, many tools represent the ap-

plication in a DAG or task-centric way. Task-based performance analysis tools consider

extra costs that the runtime system implies to the application through task creation and

scheduling. The extra information allows for investigating scheduler dynamic decisions

according to the actual DAG scenario regarding its tasks and dependencies. Modeling

also plays a role in application performance analysis as they guide scheduler decisions,

enable faithful simulations to quickly study factors effects, and can enhance post mortem

performance analysis.

The use of visual performance analysis is undoubtedly useful for application anal-

ysis as it allows to quickly analyze events that depict application performance through

time. Nevertheless, we can relate performance to specific application structures like DAG,

which can provide different insights by aligning the programmer’s point of view to per-

formance metrics, and better suit visualization to task-based workloads (HAUGEN et al.,

2015).

Based on this alignment between performance and application structures, we pro-

pose a novel application-centric visualization strategy related to the elimination tree used

in the widespread multifrontal methods to enhance performance comprehension by dis-

playing performance data over such a structure. While tree visualization is a quite popular

approach in the information visualization field (JANKUN-KELLY; MA, 2003; NOBRE

et al., 2018; NOBRE; STREIT; LEX, 2018), few works explore it for performance vi-

sualization. The typical approach found is related to representing the code’s call-graph

as expression trees (WILLIAMS; BIGELOW; ISAACS, 2019; ADHIANTO; MELLOR-

CRUMMEY; TALLENT, 2010). While there is an interest to represent such a structure, as

many multifrontal-based factorization applications like qr_mumps and PaStiX provide

routines to output a .dot file representing the tree structure for debugging and analysis.

The only work that provides a visual representation of elimination trees is (ALVARADO,

1990). However, it does not relate application computation over time to the tree structure.
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To the best of our knowledge, this is the first work to represent computations over the

elimination tree.

Another contribution of this work relies on the use of performance models for post

mortem analysis. While regression models are quite useful for simulation and improving

scheduling decisions, they are rarely used in enhanced visual performance analysis. The

amount of application performance data can quickly become overwhelming for a user to

analyze. Thus, tools have been concerned about providing some automatic analysis to

guide the user to focus on interesting performance data or application regions (GEIMER

et al., 2010; DREBES et al., 2014a). We provide a methodology based on the StarVZ

framework (PINTO et al., 2018) that extends the automatic anomalous task detection for

regular tasks employing regression models using the task’s modeled cost through their

theoretical GFlops count.

As performance variability is present in complex HPC systems because of the

many factors that can affect task performance, works consider that performance data may

come as bimodal or multimodal data. For example, in a scenario where we have a consid-

erable number of slower tasks than expected, and we also have many expected behavior

tasks. In this scenario, by considering the use of mixture models, we can better represent

the application tasks performance (XU et al., 2020). We employ both a regression model

and a mixture of models allowing the user to choose which ones to use for each task. This

mixture of models can capture task variability, typically caused by parallel task execu-

tion interference, which can stress the L3 cache level and degrade memory-bound tasks’

performance. We can then use our models to enrich the Gantt chart, highlighting areas

where tasks with anomalous duration occur, leading to a guided analysis that may reveal

performance problems on many levels, like system, application, or runtime level. This

variability modeling might also help to develop better simulations, for example, in Sim-

grid. The ability to model irregular tasks, capturing cases where task behavior is strange

and needs to be represented with more than one model, can enhance the post-mortem

performance analysis, as we will discuss in the next chapter.
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4 CONTRIBUTION: ENHANCED PERFORMANCE ANALYSIS FOR IRREGU-

LAR TASK-BASED APPLICATIONS

This chapter presents the methodological aspects of our contributions towards en-

hanced performance analysis for irregular task-based applications and multifrontal method

parallel solvers. Section 4.1 presents the regression models construction and validation,

describing the different approaches we used. Section 4.2 goes through the multifrontal-

based performance visualization panels, focusing on how and why we propose such a set

of panels and what we can represent with those application-wise performance visualiza-

tions. Then, in Section 4.3 we describe the addition of those techniques in the StarVZ

framework. Finally, Section 4.4 ends this chapter by discussing the proposed strategies,

how they can help developers in performance tuning, and our approach’s limitations.

All the strategies described in this chapter depend on tracing information pro-

vided by the StarPU FxT tracing system and organized in a specific way by the StarVZ

framework as implemented in the respective R package (SCHNORR et al., 2020). For the

regression models, we need the computational weight cost of each task that we want to

analyze, their type, and the type of resource it was executed. We assume a performance

model that captures the irregular aspects of the tasks like in qr_mumps, which considers

the blocking sizes, fill-in, and the staircase structure. We need access to the elimination

tree structure for the multifrontal-related panels and the tree node information each task

belongs to.

4.1 Regression Model for Automatic Task Anomalies Detection

As we saw in Section 3.2, there are different uses for an application performance

model, all relying on the power of predicting the expected performance. Here we are

interested in the performance analysis facet of performance modeling. We use them in

post-mortem performance analysis to compare the obtained performance in the real ex-

ecution, comparing it to what is expected according to our model. This way, we can

automatically detect those tasks that deviate too much from their expected duration and

highlight them in the other visualization panels, situating them over the resources and the

execution time. This classification guides a more in-depth analysis of these specific ap-

plication regions where the anomalies occurred. As many applications like sparse solvers
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have irregular kernels and commonly have implemented theoretical cost for partitioning

purposes, we propose using a regression model based on the tasks theoretical floating-

point operation count to detect anomalies automatically.

4.1.1 Building the Regression Model

To build a performance model and find what kind of regression model we should

use, we need to look at the trace data with the task observations. The regression model we

propose to fit application data uses the theoretical Gigaflops as the explanatory variable

for the task duration in milliseconds. The more straightforward model to use is a sim-

ple linear regression model, which maps the predictor variable to the response variable.

However, simple linear regression is based on a set of assumptions for which the data

must hold, otherwise using linear regression is inappropriate. In our collected datasets

from qr_mumps execution traces, we observed that although the relationship is linear,

the fitted linear models do not have a normally distributed error with a constant standard

error, which is one of the assumptions it should hold. The fact that the model residual

values increase as the predictor variable increases, not maintaining a constant standard

deviation of the errors, is called heteroscedasticity (JAIN, 2008).

There are ways to handle heteroscedastic data by changing the relationship using

a nonlinear regression model, a weighted linear regression model, or applying transfor-

mations in the data to reduce the error spread. We have implemented these approaches

to check which one provided effective results and ended up with a log ~ log transforma-

tion of the data to handle heteroscedasticity and use a linear regression model over the

transformed data. In Figure 4.1, we can observe the different model fits over the four

computational tasks in a collected dataset from qr_mumps with 419 geqrt tasks, 3.601

tpqrt tasks, 9.944 gemqrt tasks, and 98.760 tpmqrt tasks. Below each model fit, we

have a table with the R-squared value and other regression accuracy metrics to compare

the tested models. The Mean Absolute Error (MAE) sums up the error terms using its

absolute values and giving equal weights to all errors. In contrast, the Root Mean Square

Error (RMSE) sums the squared errors, giving high penalties for bigger prediction errors.

For the MAE and RMSE metrics, smaller is better.

From the R-squared perspective, we can observe that all models fit very well over

the data, especially the nonlinear model. However, when we look at the nonlinear model

fit over the data, it does not look good because it is above many observations for smaller
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Figure 4.1 – Regression models fit and accuracy metrics.

Source: The Author

GFlops values. It has a better R-squared because most of the task observations (≈78%)

have the maximum GFlop value among the same type of tasks, which fits those values

better. We can observe the effect of such data distribution in the linear model fit for

the geqrt task where the red line starts with an offset from zero. This is corrected by

assigning the weight 1/GFlops for each observation, increasing the observations’ contri-

bution with smaller GFlops for the model fit. However, looking at the MAE and RMSE

accuracy metrics, we continuously observe better values for the log-transformed linear re-

gression model in the Figure 4.1 (table cells with bold font). The linear regression model

overcomes the values where the log-transformed model does not have the best results, but

we should not use it since the data is heteroscedastic. While it is hard to tell which one

is the right model to use, we can think of what is the useful model for us, according to

our purpose. In this sense, despite having slightly better results for the accuracy metrics,

we selected the log-transformed model because it handles heteroscedasticity and provided

satisfactory results in the anomalous task classification process, observed throughout sev-
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eral cases.

In qr_mumps, the performance model to estimate the floating-point operation

cost is based on the reference BLAS implementation1 and considers the fill-in generated

and the ib parameter effect. This way, we can quickly use the theoretical GFlops count,

which captures the irregularity of computational tasks, to model task duration, according

to their type and the computational resource type (i.e., CPU or GPU) that executed the

task. However, in practice, HPC applications use heavily optimized BLAS libraries to

take advantage of data locality and architecture-specific instructions, accelerating compu-

tations. For such optimized libraries like in OpenBLAS (XIANYI, 2013), we have noticed

a higher variability in the data, illustrated in the bottom of the Figure 4.2 with the log~log

model. Nevertheless, despite this higher variability in the OpenBLAS version, the model

captures well the reference and the optimized BLAS implementations.

Figure 4.2 – Comparing the log-transformed regression model fit for both Netlib BLAS and the
optimized OpenBLAS.

Source: The Author

By looking at the model prediction intervals represented by the dashed red lines in

Figure 4.2, we can analyze its adequacy in fitting the data and detecting anomalous tasks

within the task and resource types. We use the upper prediction limit, considering a con-

fidence level of 0.95, and use the predicted values to draw this red line to determine the

boundary between the expected and the anomalous tasks. We classify as anomalies, ob-

servations whose task duration lies above the line for a given value of GFlops, represented

by the yellow points in the figure. Then, we use this anomalous task classification to en-

rich the space-time Gantt charts, differentiating the expected and anomalous tasks with
1Netlib reference BLAS implementation <http://www.netlib.org/blas/blas-3.8.0.tgz>

http://www.netlib.org/blas/blas-3.8.0.tgz
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a transparency level. Tasks whose duration falls into the expected region of the model

have high transparency. In contrast, the abnormal tasks have no transparency, producing

a highlighting effect over those tasks with stronger colors. Figure 4.3 demonstrates this

technique’s use to enrich such space-time representation with task classification informa-

tion.

Figure 4.3 – Anomalous task highlighting in a Gantt chart.

Source: The Author

While for the case described in Figure 4.2 one model seems sufficient to represent

the expected task behavior with precision. We have faced some cases during our experi-

ments where just one model seems insufficient to represent task behavior because of high

data variability. We employ a finite mixture of regression models to properly describe

such data, using the log-transformed model. The finite mixture model allows us to cluster

observations according to the likelihood of belonging to one of a set of multiple regres-

sion models. In cases where there is such high variability, we describe the data using the

two most likely models. The Figure 4.4 represent a case where we applied this technique

for the geqrt and tpqrt tasks for the OpenBLAS implementation.

Figure 4.4 – Fitting multiple models over data using finite mixture models.

Source: The Author

The fact that we have high variability in task duration of similar computational
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weights is already interesting. It can be a sign of a deeper performance problem in the

execution. We can use this enhanced modeling with multiple regression models the same

way we use the anomalous classification with a simpler model: highlighting the tasks in

the Gantt chart. The anomalous classification is done the same way as for a single model.

However, we also consider anomalies the tasks that seem extreme for both models, like

the ones below the lower prediction of the topmost model and above the upper prediction

for the bottommost model in the geqrt task.

Furthermore, as we observe in Figure 4.4, the two models successfully divide tasks

into what seems to be a cluster with slow tasks and an expected duration task cluster. Since

there are not many anomalous tasks within the clusters, it can be useful to highlight the

clusters in the Gantt chart instead of just the anomalous tasks. This cluster highlighting

will reveal the temporal and spatial characteristics of those two different behaved groups

of tasks.

4.1.2 Model Validation

As the theoretical GFlops values provided by qr_mumps are just an approxi-

mation for the tasks’ real cost, we should check its accuracy in modeling the real cost.

Because theoretical cost calculation in qr_mumps considers many task aspects, like the

fill-in, ib size, and the staircase structure, its estimation is reasonably close to the real

floating-point operation count reported by the PAPI library. Adding hardware counter val-

ues in the StarPU FxT tracing system allows us to verify the theoretical model alignment

compared to the real number of floating-point operations provided by the hardware coun-

ters. Figure 4.5 shows the relation between the theoretical and hardware counter values

for the tasks’ GFlops cost for the reference Netlib BLAS 3.8.0 implementation and the

OpenBLAS 0.3.9.

We observe the theoretical cost is very close in the magnitude of its value com-

pared to the PAPI floating point measurements for the BLAS version, validating how

qr_mumps computes the computational task costs. Even so, we observe a peculiar effect

for the gemqrt and tpmqrt tasks in the reference BLAS plot, where the observations

draw two well-defined lines. They may have arisen from the natural variability. However,

their organization is very structured, which is strange. The other hypothesis we have for

this is that low-level optimizations like speculative execution are causing an overcount-

ing for the PAPI_FP_OPS event, which can occur according to the wiki in the PAPI
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Figure 4.5 – Comparing task theoretical cost provided by qr_mumps with the PAPI hardware
counter measured floating-point operations.

Source: The Author

repository2.

In the case of the optimized BLAS library, the OpenBLAS, we have a very dif-

ferent scenario. There is a considerable mismatch between the theoretical values and the

values collected from the hardware counters. This mismatch comes from the implemented

optimizations in the OpenBLAS version, which explore operations like fused multiply-

add (FMA) and vectorized instructions like the ones provided by Advanced Vector Ex-

tensions (AVX). However, despite this discrepancy between theoretical and real values,

we can observe in Figure 4.2, built with the same data used in Figure 4.5, that there is a

relationship between task duration and their theoretical cost values for OpenBLAS. Fur-

thermore, they present a strong positive association that enables us to use these theoretical

values to develop regression models for both BLAS implementations.

4.2 Multifrontal-Based Performance Visualization

The multifrontal method is a widespread technique to obtain the direct solution of

a sparse system of equations, adopted by many implementations of high-performance

parallel solvers. Since the first multifrontal code (DUFF; REID, 1983), many other

implementations adopted this technique to provide performance (AMESTOY; DUFF;

L’EXCELLENT, 1998; JOSHI et al., 1999; GUPTA, 2000; TOLEDO, 2003; DAVIS,

2PAPI repository Wiki <https://bitbucket.org/icl/papi/wiki/PAPI-Flops>

https://bitbucket.org/icl/papi/wiki/PAPI-Flops
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2004; DAVIS, 2011; AGULLO et al., 2013), see (DAVIS; RAJAMANICKAM; SID-

LAKHDAR, 2016) for a comprehensive list of libraries and methods for direct sparse

factorization. The elimination tree is the structure located at the core of the multifrontal

method, shaping and guiding the computations and communication in a elegant way. De-

spite that, the supernodal method, which is another main approach for parallel numerical

factorization, can also describe its computations using a tree structure, with computations

on the nodes and communications on the edges, for which the visualizations we propose

in this work could also help.

Visualizing software for performance optimization is a well-established technique

(MATTILA et al., 2016) because of its power to understand application behavior better.

We propose a set of visualization panels related to the elimination tree structure in the

StarVZ tool’s context to depict application performance behavior along time, relating it

to this structure that plays an essential role in the factorization. We include panels depict-

ing the elimination tree along time, relating the application operations and performance

metrics to its structure, and resource utilization according to tree properties. By combin-

ing those application-specific visualizations with classical ones like Gantt charts, we can

enhance the performance analysis by aligning the application data structure and the way

it represents the problem to the performance.

To guide our visualization panels development, we used the What-Why-How

(WWH) (MUNZNER, 2014) visualization analysis framework, represented in Figure 4.6,

to ponder about the essential aspects to consider in the development of our panels. In

this framework, the domain represents our target users, who are familiar with the pre-

sented matrix factorization method, or, more specifically, people who work with or use

qr_mumps or similar applications. The abstraction level concerns translating the spe-

cific domain vocabulary to the visualization vocabulary. At this level, we have the What

and Why questions to answer. The first one asks us about what can be visualized by the

user, what kind of data we have to present, and what attributes our data has. For the sec-

ond question, we need to answer why we are presenting the data we have. Thinking about

this helps us define visualization tasks in their abstract form, which can be seen as a pair

of actions and targets, like in our regression model classification in the Gantt chart: locate

outliers. A more general and domain-specific task, for example, is to visualize the behav-

ior of the algorithm over the tree structure over time. After defining a set of goals in the

Why phase, the How concerns about determining ways to support those goals through

the visualization idiom, which is how the visual encodings and mappings will work to



71

accomplish those goals.

Figure 4.6 – What-Why-How analysis framework.

Source: (MUNZNER, 2014)

4.2.1 Elimination Tree Computation Along Time

The elimination tree’s shape and size depend on many factors during the analysis

phase of a direct factorization algorithm. By changing the ordering algorithm, amalgama-

tion threshold, and pruning techniques, we can produce very different elimination trees for

the same input matrix. Having a visual representation for this structure, we can provide a

way to understand the effect of its parameters in performance and tune them. Figure 4.7

represents our proposed panel for visualizing the events over the elimination tree. It or-

ganizes the tree nodes by their submission order in the Y-axis, representing the execution

time in the X-axis.

At its core, this panel draws the tree structure using points to represent the tree

nodes and arrows to represent the parent and child relation between them. The tree with

the green nodes and arrows marks each node’s starting point on its first initialization

task, while the orange tree delimits the last task for a tree node. The arrows represent

the parent-child relation, pointing from the green child nodes to its parent starting point

and connecting the orange ones to the end of its parent. In the highlighted nodes (A.1)

and (A.2), we can observe this parent and child relationship, and the starting moment

of the nodes in the green tree (A.1), and their ending point in orange (A.2). Each node

occupies a horizontal line in the panel and is delimited by these two different points. The

period between these two points, we call it the node lifespan. Which solely represents

the node memory footprint, not meaning that we had computations during all its lifespan.

For example, the distance between the two tree points (green and orange), pointed by the

lower arrows in (A.1) and (A.2).

We represent the computations inside each node using a color gradient to represent
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Figure 4.7 – The elimination tree panel depicting tasks over the tree structure and time for the e18
matrix.

B
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A.2

C

D

E
F

Source: The Author

low to high resource usage intensity based on the factorization tasks only, represented in

(B). This computational intensity over the structure reveals where the scheduler is con-

centrating the computational efforts. Alternatively, we can represent other performance

metrics besides the resource utilization, like the GFlop throughput or hardware counter

values. To represent the numerous pruned subtree nodes, we group all the pruned subtree

roots with the same parent, reusing its Y position, aggregating their computations, and

drawing them with half of the height of the non pruned nodes as depicted in (C). Be-

sides this spatial aggregation for the pruned nodes that share the same parent, we also use

a user-defined time aggregation to represent the computations in time slices, helping in

cases where the task count is too numerous and when the application has a long makespan.

In the Figure 4.7, we defined an aggregation step of size 100ms.

Furthermore, we also provide the representation of other events along the tree

and their execution. The initialization and memory allocation tasks are represented with

green rectangles, highlighted in (D). The black rectangles represent the communication

tasks between the child and parent nodes using transparency to know when we have a

higher concentration of these tasks as depicted in (E). Their length represents the raw

task duration, and their height is also half of the node height to avoid overlapping the

computations. Lastly, we can also represent the anomalous tasks location in the tree as

dots over the node’s computation representation, following the same colors for the Gantt

chart tasks, as pointed by (F).
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Besides promptly displaying an overview of the tree topology, with this represen-

tation of where and when the computations, initializations, communications, and anoma-

lies occur. Our elimination tree panel depicts precisely the scheduler path to traverse the

tree, revealing the prioritized and postponed paths and nodes through the computational

intensity over time that we observe in the figure. This panel still reveals the parallelism

sources in the application. The concurrent execution of nodes in different Y positions

reveals the tree parallelism, gradient colors within a node represent the node parallelism,

and the overlap in the computations of two dependent nodes the interlevel parallelism. As

this tree structure guides the execution controlling the number of available tasks and mem-

ory usage, observing how the scheduler traverses it to provide performance can reveal

some patterns imposed by task priorities or memory consumption restrictions, unveiling

the scheduler signature to traverse the DAG, relating it to the tree structure.

Another aspect that can be interesting is to compare different application and run-

time configurations for the same elimination tree. While simply juxtaposing two trees

can reveal some differences, it is hard to perceive them in detail. This way, we provide

a panel that uses the same visual elements to represent the tree structure and its com-

putations, merging the two trees and deriving new data to represent their performance

difference. This new data represents the difference in performance by subtracting the

slower execution from the faster execution, using the desired performance metric like re-

source usage or GFlop throughput. Figure 4.8 shows an example of this comparison panel

using the difference in the GFlops computed per time slice. In this plot, the segments with

a thicker line represent moments where we have an exclusive execution by some of the

trees. Segments that do not have this line means that we have a concurrent execution. The

vertical line at the end marks the end moment of the faster execution.

4.2.2 Resource Utilization and Sources of Parallelism

The usefulness of the elimination tree panel is to represent details of how the

multifrontal method evolves, but it lacks an aggregated view of the computational power

over time. Hence, we provide an additional visualization to depict the resource utilization

considering the node and depth elimination tree properties. Figure 4.9 provides a succinct

view of how much computational power is dedicated to each tree node (top) and each

tree depth level (bottom), and an overview of the idleness through the white area. Those

panels stack the cumulative resource utilization, aggregated by a user-configurable time
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Figure 4.8 – Scheme that shows the creation of the panel to compare two trees.
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step (100ms in this case).

Figure 4.9 – Visualization panels representing the resource usage by elimination tree node (top)
and depth (bottom).
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We use the colors for the nodes to purely differentiate one tree node from another,

not identifying each node individually. However, for the tree depth panel, the color scale

has a meaning that represents the distance from the root, with a darker color for nodes near

the root and lighter colors for nodes far from the root. The node panel reuses colors to

represent nodes that do not have overlapping task executions, reducing the range of used

colors and increasing the user’s capability to differentiate between two nodes. This color
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difference can reveal how computing power tackles parallelism in its different forms. We

observe the node parallelism by looking at the height of a specific color, the tree paral-

lelism by the multiple colors stacked at a given moment, and the interlevel parallelism

when we combine this visualization with the elimination tree panel.

4.2.3 Active Nodes and Memory Consumption

The order the scheduler traverses the tree computing its nodes has a significant

impact on the memory consumption peak. On the other side, memory consumption re-

strictions can have a significant impact on the tree traversal. Memory management is a

real concern over the multifrontal method since it can impact the available parallelism,

and if not adequately controlled, the peak consumption can overcome the available mem-

ory. Thus, memory is an important factor in such applications, and thus, considering it in

visualizations is also crucial.

In the multifrontal method, as the parent nodes need to gather their child node

contribution blocks, this implies that all nodes involved in this operation must be active

in memory at that moment. Figure 4.10 presents the panels related to the number of ac-

tive nodes in memory (top) and the total memory usage by the nodes (bottom). These

two panels provide a summary to understand better how the number of in-memory active

nodes and current memory usage evolves through execution time. As the qr_mumps ap-

plication can constrain the memory usage during the execution, keeping it under control,

these panels help understand how it manages the memory-related issues in scenarios with

restrictions.

The two different lines in the in-memory active nodes represent their type, if they

Figure 4.10 – Number of active nodes by their type (top) and memory usage (bottom).
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are pruned or not. Depending on the traversal of the tree and task priorities, it is usual

that the sequential nodes only exist at the beginning of the execution because they are the

leaves of the tree, which release the tree parallelism. Both panels’ information can also

be aggregated over time by user-defined intervals, or we can choose to represent the raw

data.

4.2.4 An Application-centric View of Performance Data

All these presented application-wise panels contribute to capture and represent the

performance behavior with a focus on the algorithmic point of view and its data structures.

In Figure 4.11, we present those panels in action for a real execution, pinpointing some

perspectives of the application execution that such set of visualization provides.

We observe in (A.1), in the application beginning, that there is a high level of tree

parallelism, depicted by the many different colors we see in the resource usage per node

panel. This amount of tree-level parallelism represents that the application built the tree

in a way to provide sufficient tree parallelism to occupy all workers at the beginning of

the application. Furthermore, we observe in (A.2) that the vast majority of the nodes in

memory are pruned nodes, and they are very small considering the amount of memory

they use. We also observe all those pruned nodes in (A.3), where the green tasks are

do_subtree computations, where we can observe a slow start in the application.

At (B), we highlight a delayed node activation imposed by the memory consump-

tion constraint. We observe in the nodes pointed by (B.1), the moment the lower node is

freed from memory, it released sufficient memory for the topmost node allocation with-

out violating the constraint. This new node activation creates lots of memory initialization

tasks (init_front and init_block), which reduces resource utilization in (B.2) be-

cause we do not consider the time taken by these tasks in the resource utilization. The

memory usage plot in (B.3) details this moment. We observe that the newly allocated

node would use too much memory, and so it had to wait for more available memory to

respect the constraint. We point out in (B.4) that the Gantt chart represents all these ini-

tialization tasks, but it would be difficult to interpret them without the tree dependencies

and the memory usage plot.

This scenario represents scheduler related decisions, which could be influenced by

the submission order of the tasks and their priorities. The scheduler could have chosen to

explore the subtree highlighted in (C) earlier in the execution. In (C.1), we see how that
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Figure 4.11 – Example of tree-related plots enriching a Gantt chart view.

Source: The Author

entire subtree was postponed to later in the execution, while (C.2) points out that many

new nodes appear in the resource utilization plot and that they are part of previously

explored depths of the elimination tree. Another fact that emphasizes that this was a

scheduling decision is because the new nodes allocated in (C.3) use just a few Megabytes

of RAM, which will probably not exceed the memory limit if computed earlier. In (C.4),

we observe that this decision led to late do_subtree tasks and might be related to the

outliers that appear at that moment.

Lastly, we observe in (D) that two of the nodes pointed by (D.1) are child nodes

from the last node, and even so, the three are working in parallel, also presented in the

resource utilization panel in (D.2). This is the interlevel parallelism presented earlier,
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which is possible because of the finer-grained partitioning of the elimination tree in a

DAG.

4.3 Implementation in The StarVZ Framework

StarVZ is a performance analysis tool available on CRAN3 that provides a set of

performance visualization panels for task-based applications that use the StarPU runtime

system. The tool works in two phases, where the Figure 4.12 illustrates this workflow. In

Figure 4.12 (B) is the preprocessing phase or StarVZ phase one, and (C) is the visualiza-

tions construction phase analogous to the StarVZ second phase. It converts the StarPU

FxT trace files to the Paje trace format in phase one, breaking them into different files,

cleaning and organizing data. Then it converts those files to suitable formats to read them

in a modern data analysis language like R. Still in phase one, it performs some operations

over the data like the anomalous task classification. Finally, at the end of phase one, it

saves all organized, and processed data in the efficient columnar storage format Apache

Parquet (VOHRA, 2016). Phase two then reads those files and a configuration file to

generate a set of fully configurable performance visualization panels, which can also be

manually produced by the user through the R package.

Figure 4.12 – Workflow and phases of the StarVZ tool.

Source: The Author

We enhance StarVZ with new functionalities. For example, building the regres-

sion models to support the anomalous classification of applications with irregular tasks,

based on the existing per-task theoretical floating-point operations cost. This step is high-

3StarVZ CRAN R-package <https://cran.rstudio.com/web/packages/starvz/index.html>

https://cran.rstudio.com/web/packages/starvz/index.html
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lighted in Figure 4.12 by the gray area. We group the computational tasks by their type,

resource type, and cluster (if using multiple models). Apply the regression model, and

classify the anomalous tasks. This classification will then translate in the highlighted

tasks in the Gantt chart or the tree structure. The other visualization panels were built

upon this preprocessed data from phase one, where we provide simple function calls to

create the visualizations, using the grammar of graphics as implemented by ggplot2

(WILKINSON, 2012). Those functions allow the users to fully configure visualizations

through a set of parameters.

4.4 Discussion and Summary

We have seen that we can provide very detailed performance visualization repre-

sentations of the qr_mumps application with all these strategies and visualizations. With

all this detail, we should be able to explore and analyze many different cases to observe

in practice what we can find out about performance with our techniques, which otherwise

would be inaccessible by just looking at a Gantt chart. Despite the multifrontal method,

the other main method for parallel sparse direct factorization is the supernodal approach,

which can also express parallelism in a tree structure. This extends the usability of our

contributions to other applications. They only need to provide the data.

Despite the usefulness of our proposed methodology, there are some limitations.

Although the user can explore data in the trace through the StarVZ function parameters, a

fully interactive display would be rather efficient than our static visualization, in terms of

data exploration aspects. Also, for huge elimination trees, properly identifying the visuals

aspects could be problematic without zooming. This way, a spatial aggregation like the

one used for the pruned nodes should also be considered to group the pruned nodes.
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5 EXPERIMENTAL RESULTS ON ENHANCED IRREGULAR TASK-BASED PER-

FORMANCE ANALYSIS

This chapter describes our experiments using the qr_mumps application over dif-

ferent workloads, machines, and different configurations to test our visualization strate-

gies proposed to the StarVZ tool. Section 5.1 describes the experimental setup, involving

the workload, computational platforms, runtime and application factors, and experimental

design. Section 5.2 presents the results of our investigation using the anomalous task clas-

sification approach. Section 5.3 describes detailed investigations for the interesting cases

we have found using our methodology. Lastly, Section 5.4 closes this chapter bringing a

summary of the chapter and discussion points.

5.1 Experimental Setup

To explore our performance analysis visualization techniques in distinct scenarios,

we selected different workloads from real problems registered in the SuiteSparse matrix

collection1 repository. The Table 5.1 lists the selected matrices, sorted by descending

order of the total GFlops when ordered with Scotch.

Table 5.1 – Matrices used as workload for qr_mumps.

Name Rows Cols NNZ GFlops with Scotch

TF18 95.368 123.867 1.597.545 196200.78
sls 1.748.122 62.729 6.804.304 66382.59
TF17 38.132 48.630 586.218 12389.67
ch8-8-b3 117.600 18.816 470.400 10978.69
Rucci1 1.977.885 109.900 7.791.168 5182.91
flower_8_4 55.081 125.361 375.266 2702.14
e18 24.617 38.602 156.466 1460.89
degme 185.501 659.415 8.127.528 402.05
karted 46.502 133.115 1.770.349 246.78
lp_osa_60 10.280 243.246 1.408.073 182.08
EternityII_E 7.362 150.638 782.087 133.41
g7jac200 59.310 59.310 717.620 90.16
fxm3_16 41.340 85.575 392.252 0.322

To run the experiments, we used three machines from the PCAD2 cluster, listed in

the Table 5.2. They provide different configurations in terms of hardware, which creates
1SuiteSparse Matrix Collection <http://sparse.tamu.edu>
2PCAD UFRGS <http://gppd-hpc.inf.ufrgs.br/>

http://sparse.tamu.edu
http://gppd-hpc.inf.ufrgs.br/
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different scenarios for the qr_mumps application because the size and shape of the tree

depend on the number of available resources and the pruning technique. Furthermore,

they provide different heterogeneous scenarios for the StarPU schedulers to handle. We

choose these matrices from previous works with qr_mumps, using a diversity of matrices

structural shapes, dimensions and computational weight.

Table 5.2 – Description of the machines used in the experiments.

Machine CPU GPU CUDA cores RAM

Draco 2×8 E5-2640v2, 2.0GHz Tesla K20 2.496, 706MHz 64GB
Hype 2×10 E5-2650v3, 2.3GHz Tesla K80 4.992, 824MHz 128GB
Tupi 1×8 E5-2620v4, 2.1GHz GTX 1080Ti 3.584, 1.582MHz 64GB

For the system configuration of the machines, we have Debian 10 kernel ver-

sion 4.19.0-8-amd64 with exclusive access to the machines during the experiments. We

used a branch of the qr_mumps v3.0 with our modifications to enrich the trace data

with the information we needed. It was compiled using GCC 8.4.0, linked with CUDA

11.1.0, Scotch 6.0.8, and Metis 5.1.0 for matrix reordering. The BLAS implementa-

tion from OpenBLAS 0.3.9, and the StarPU library master branch with the commit hash

cc8d6e7fea87e825b90631bd9a164082cbb1ae5b.

The qr_mumps application is extensively configurable through its parameters.

We considered two global configurations of the application that enables or disables com-

putations on the GPUs. For the cases using only CPUs, we fixed the block size (nb) as

square blocks of size 320 and 32 for the internal block size (ib). When using GPUs, we

expect more performance by creating bigger tasks to take advantage of the GPU com-

puting power. Thus, we used nb = 900, and ib = 90. We fixed those values to enable

performance comparisons between two executions with the same global configuration but

different factors. These values may not provide the best performance for each tested ma-

trix, but preliminary experiments showed that they reach reasonable performance levels.

Despite fixing nb and ib, we explored different application and runtime factors

to investigate their impact over the tree structure and application behavior. We explored

the impact of the memory constraint parameter using two levels for it: limited to

sequential peak and unlimited memory usage. These parameters determine and con-

trol the maximum amount of memory that the application is allowed to use during the

factorization. When limited, it restricts the memory usage to the peak reached by a se-

quential traversal, representing a lower bound. This memory control is important for

the application behavior and directly impacts the available parallelism. Another crucial
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factor considered in our analysis is the StarPU scheduling algorithm. We have chosen

the prio and the lws schedulers for executions using only CPU, and heteroprio,

dmda, and dmdasd for executions including GPUs. We also considered two different

ordering algorithms, using the Scotch or the Metis library. Both libraries handle

matrix reordering differently, generating unique eliminations trees and different costs of

floating-point operations.

We then created a factorial design for our experiments combining all machines,

factors, and qr_mumps configurations. In Section 5.2, we systematically executed, col-

lected trace data, and created the visualizations to analyze the presence of anomalous

behavior between tasks for some configurations. Then for Section 5.3, we performed

executions without tracing information first to find interesting cases where performance

between configurations is different and further analyzed with our proposed techniques.

5.2 Detecting Anomalous Tasks Within qr_mumps

This Section presents our regression-based task anomaly classification results, ex-

plaining the causes of anomalies in four different cases. The first is related to the task

submissions, the second with application tracing overhead, the third is related to the nu-

merical content of the task data handles and compiling flags. Lastly, in the fourth case,

the anomalous tasks are associated with a high L3 cache miss number.

5.2.1 Case 1: Task Submission Peak

In the StarPU programming model, the main thread is responsible for handling the

STF task submission, which can occur at any moment during the application execution.

Commonly, the whole DAG is unrolled and submitted early in the execution. Neverthe-

less, some scenarios with memory restriction, for example, may delay these submissions.

Figure 5.1 depicts the Gantt chart anomalies along with the StarVZ task submission panel,

showing a case where the tasks submissions are spread throughout the execution. In this

figure, we observe that the Gantt chart has a set of anomalous tasks highlighted in the

same worker (B.1, B.2, and B.3). Aligned with these anomalies, we observe that we have

peaks of task submission related to them (A.1, A.2, and A,3), and we also observe in (C)

that even a small number of task submissions can cause anomalies. In this example, we
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bound the main submission thread to the CPU9, which causes a slightly increased dura-

tion for the tasks in that worker because of the competition for the computational resource

captured by our model.

Figure 5.1 – Panel (A) depicts the number of submitted tasks over time, while (B) shows the
Gantt chart enriched with the anomaly dectection.
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Source: The Author

We used the environment variable STARPU_MAIN_THREAD_BIND to control

this thread’s location and investigate its impact interference in the application perfor-

mance. Given a set of N workers, we explored three configurations:

1. using all N workers and enforces the submission thread to compete for a core with

one of the StarPU workers,

2. dedicating an exclusive core for the submission thread, using N-1 workers, and

3. using N-1 workers with the submission thread competing for resources.

We used the flower_8_4 and the TF17 matrices in the Draco machine and

considered the different orderings and memory limitation values, making 30 repetitions

for each configuration. We try to measure the impact of the submission thread in the exe-

cution. As expected, configuration 1 with N workers provided faster results, but the inter-

esting comparison is between configurations 2, and 3, with the same number of workers.

The results we observed favors configuration 2, with the submission thread with an ex-

clusive core. However, the difference was kept below 1% (up to 722ms in the makespan).
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Nevertheless, when considering a 95% confidence interval to test the factorization time

variation for these executions, the performance difference has no statistical significance

for the cases we tested.

Hence, even that task submission is unavoidable and causes a small overhead for

its assigned worker. The additional cost to do it is neglectable, making efforts to avoid

it not worth it. As this effect was captured by our model and analyzed, we know we

can control it to not appear in the next cases, easing the task to focus on other anomaly

sources.

5.2.2 Case 2: Tracing Overhead

Another abnormal behavior we have noticed throughout the experiments repre-

sents a global idle time, spanning through all workers vertically at the same time. Fig-

ure 5.2 depict six different moments where this happened. We have observed this anoma-

lous effect throughout many different configurations of machines, matrices, and appli-

cation parameters, looking like a time-dependent phenomenon for some executions but

random for others. Looking to the StarPU workers’ state, when the cores are idling, they

are in an overhead state (among other states such scheduling, fetching, sleeping). Fre-

quently, only the anomalous task keeps executing while all others remain frozen, even if

we have enough ready tasks to compute. In other scenarios, some other tasks that already

started before this anomalous task were able to keep their execution, as depicted by the

left side of graphic (B), in (B.1).

Figure 5.2 – Six examples of the vertically spread idle time, associated with an anomalous task.

Source: The Author

We detail these cases in Figure 5.2, zooming in the Gantt chart where these anoma-

lies appear. In (A), we have the same execution with the lws scheduler on the left and

prio on the right. We highlighted two tasks that occur at a similar time, which may
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seem some time-dependent event. However, the duration of both anomalous region is

very close (56ms and 58ms) despite their tasks having mismatching computational costs,

which may indicate that this region’s duration has nothing to do with the task execution

itself. In Figure 5.2 (B) we illustrate two different moments of the same execution. In

(B.1), we observe that tasks that started before the anomalous one in CPU3 remain un-

affected and continue running. However, at (B.2), we observe that all other tasks are

delayed until the end of the anomalous task. We also noticed another anomaly later in the

execution, coincidentally with the same computational cost, and yet, they imposed very

different durations for the anomalous region (193ms and 52ms). This fact reinforces our

point that the anomalous task duration defines such anomalous regions, but its duration

does not necessarily represent that the tasks were executing. Lastly, in the rightmost plot

of Figure 5.2 (C), we observe the same effect when running with GPU. Here we can notice

two anomalous tasks. In (C.1), we identify that the task in the worker CUDA0_0 started

370µs earlier than the task in CPU12, and it seems that it was that task that was preventing

the others from starting. The CPU task ends 30ms later than the GPU task, and at this

moment, the other tasks already started their executions. In (C.1), the anomalous region

was responsible for up to 14% of the total worker idleness.

We hypothesize that this is not a task-dependent event but some behavior internal

to StarPU. Because tracing is an invasive technique, depending on the problem structure,

size, and granularity of the tasks, the amount of memory used to save the trace can be

considerable. Thus, application tracing systems consider flushing the collected trace if the

trace size meets some threshold during the application execution to avoid consuming too

much memory. With further investigations, we discovered that those anomalous regions

and tasks were related to the FxT tracing system, which was dumping the traces to the

disk during execution. This happens when the trace buffer, with its limited size controlled

by the environment variable STARPU_TRACE_BUFFER_SIZE, gets full. Hence, we

now consider setting the value big enough and still fitting in RAM to avoid flushing the

trace to disk during the application execution for our next experiments.

5.2.3 Case 3: Task Numerical Content

We noticed a somewhat curious effect in the experiments was the consistent pres-

ence of anomalies for certain matrix and ordering configurations, considering different

machines, schedulers, and memory factors. For example, the matrix ch8-8-b3 with the
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Scotch ordering. Among the different executions, there were always specific tasks whose

duration did not match the expected value according to the regression model.

The first step towards investigating those tasks was using the PAPI hardware coun-

ters to check if the cache misses explained the higher duration for those anomalous tasks

compared to expected tasks with the same amount of GFlops. We found out while there is

a positive correlation between the L1, L2, and L3 cache misses with the durations of the

tasks, it does not explain the enormous difference of those tasks repeatedly classified as

anomalies, for example, from≈7ms to 65ms for a geqrt task, and from≈9ms to 150ms

for the gemqrt tasks. Neither the cache misses nor other hardware counters like the total

floating-point operations explained their increased duration.

We also observed such an effect of repeatedly appearing anomalies for other matri-

ces. For the execution mentioned earlier, we noticed the same 20 gemqrt task identifiers,

preceded by an equally slow geqrt task, even in different machines and schedulers. To

make sure, we even performed a sequential execution of the application, where again, the

same tasks were classified as anomalies. Figure 5.3 represents this anomaly. The first two

plots are executions on the Draco machine using the lws schedule. The first does not use

GPU, and the anomalies appear spreading along with the execution, while in the second

plot, using GPU, they appear all at the same time, despite de last gemqrt task. The last

plot is an execution in the Hype machine that presents the same geqrt and gemqrt

tasks classified as anomalies. We have also noticed that many tpmqrt anomalies in the

figure are part of the same elimination tree node, which might be related to the same effect

that occurs in those 21 tasks, but their variability is much smaller than the other anoma-

lies. Furthermore, the quantity of tpmqrt anomalous tasks is not the same among the

different execution as what happens for the presented geqrt and gemqrt tasks.

Figure 5.3 – Three different executions with the same 20 blue gemqrt tasks and the same
orange geqrt task consistently classified as anomalies over the executions.

Source: The Author
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As the cache misses failed to explain the increased duration for those tasks, our

next step in the cause investigation was to analyze the blocks of the matrix those tasks use,

analyzing the spatial position and even their internal content, which can enable or prevent

some architecture-specific optimizations. This way, we dumped the content of the matrix

blocks those tasks use to investigate their content. Our finding includes that compared to

the expected task blocks, parts of the anomalous task block contains numbers really close

to zero that underflows the floating-point precision and are represented as a subnormal

or denormal number, according to the IEEE 754 standard for floating-point arithmetic.

Those numbers exceed the smaller representable normal numbers, for which arithmetic

operations can have different behaviors. When encountering a subnormal number, there

is an increase in the latency of the processor operations like multiplication, divisions, and

square root. However, we can control the way operations behave when denormal numbers

arise. For example, the SSE/AVX floating-point units of the x86_64 processors architec-

ture have the control flags flush-to-zero (FTZ) and denormal-as-zero (DNZ) to define

this behavior (WITTMANN et al., 2015). Enabling these flags can improve application

performance without losing solution quality if the application does not need denormal

precision. This way, we recompiled the qr_mumps application enabling those flags, and

those anomalies are gone.

This scenario occurred only for the Scotch reordered ch8-8-b3 matrix. Hence,

this finding can be interesting to the analysis of ordering algorithms in this numerical side

effect aspect. Thus, in addition to application and runtime related anomalies, we were

able to detect workload-dependent anomalies, more precisely depending on the ordering

algorithm and the underlying architecture configuration.

5.2.4 Case 4: High Cache Misses

Despite all the previously described cases, there are still anomalies that were not

explained. Arising in different moments than submission peaks, not aligned with over-

head states, and not repeatedly classified because of their specific block content. Our

hypothesis is that they are caused by bad scheduling decisions that harm temporal and

spatial locality, increasing the number of cache misses, rising task duration. We consid-

ered all the previously discussed configurations to isolate these anomalies in order to test

our hypothesis and used the PAPI library to collect the tasks’ number of L1, L2, and L3

cache misses. With this data, we try to relate the anomalous tasks explained by a higher
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cache miss level to bad scheduling decisions.

Firstly, we verify if there was some correlation between the total miss number for

all cache levels to the task duration increase. In general, the GFlops, L1, L2, and L3

cache misses have a strong positive correlation with task duration, with the correlation

decreasing as we go to the lower cache levels. However, as we described in Section

4.1, there are cases where using the GFlop is not good enough to explain task duration,

as well as the L1 and L2 misses. One example of a configuration with this behavior is

with the flower_8_4 matrix, previously illustrated by Figure 4.4 where we used the

finite mixture model to fit multiple models over the data. For this example, we noticed

that the huge variability for the geqrt tasks makes the GFfops variable not statistically

significant to explain duration, considering a significance level of 0.01, as presented by

Figure 5.4 in the combinations with the "5" symbol. However, for this task and tpqrt,

the L3 cache misses presented a high correlation value compared to other cases. Both of

these tasks are memory-bound, which makes the cache misses more decisive in the task

performance.

Figure 5.4 – Pearson’s correlation matrix for the flower_8_4 matrix tasks.
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We tried to investigate deeper those cases where the L3 misses explain the tasks

increased duration by analyzing the scheduler behavior related to the spatial and temporal

locality. We wanted to see if such tasks were scheduled far away from their last dependen-

cies in both space and time. The trace files contain data handles of the tasks, which define

the data blocks of size mb × nb, representing the matrix regions the tasks will work. Us-

ing this information, we tried to check when and where was the last use of an anomalous

task data handles, considering if it was in the same CPU, same NUMA node, and how

far in time it happened. This investigation led to no significant correlation between these

parameters and cache misses per task. Such evaluation is hard to work because the data
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handle states in the cache are uncertain, we can have parts of it in the cache and others in

the main memory or other levels of cache. In addition, the cache policies interfere in how

the architecture explores the temporal and spatial locality.

However, by clustering the tasks with the multiple regression model approach,

separating them into slower tasks and expected ones, we used the cluster information

instead of the anomalous classification to highlight tasks in the Gantt chart. By doing

so, we observed that the slower tasks are related to specific moments. Figure 5.5 depicts

these moments in (A) and (B), presenting the highlighted clusters in the Gantt chart on the

top and the resource usage by tasks in the bottom. In both of these moments, we observe

that we have many geqrt and tpqrt tasks happening simultaneously and also many

do_subtree tasks. We can observe focusing in (B) that when we have peaks of resource

usage by do_subtree tasks. We start observing the slow cluster tasks again. The slower

tasks are related to the concurrent execution of the do_subtree tasks, which can reduce

cache reuse of those memory-bound tasks in two ways: (1) because the do_subtree

tasks can use a considerable amount of memory of distinct branches of the tree, flooding

the cache with new data disturbing data reuse for other tasks. Moreover, (2), because

geqrt tasks are the starting point for a node factorization, they are executed spatially far

from each other. Thus they do not share matrix blocks with other geqrt tasks, which

can also be the case for the tpqrt tasks.

Figure 5.5 – Cluster highlighting for the geqrt and tpqrt tasks.
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Source: The Author
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We analyzed this interference by running a sequential experiment using the same

partitioning of the parallel execution. As consequence, the tasks do not suffer from in-

terference from other concurrent tasks, enabling us to capture their expected behavior

without the interference. We could also use our fitted regression model using the cluster

with the expected tasks (i.e., the lower model in Figure 4.4 for geqrt) to extrapolate

the results of a scenario without task perturbation, to estimate how much computational

time we could save if we manage to avoid this undesired effect over tasks. Table 5.3

presents the comparison between the parallel and sequential execution for the total exe-

cution time for the tasks in the Draco machine. We observe that the geqrt tasks, when

running in parallel, took 357% more time than the sequential version. However, the worst-

case was with the do_subtree tasks, presenting a total increase of 12.3 times, which

means that we need at least 13 CPUs working in parallel to beat the sequential execu-

tion, making the parallel execution of those tasks extremely inefficient. The reason why

the do_subtrees are slower is the same as for geqrt and tpqrt because they are

composed of the same memory-bound kernels.

Table 5.3 – Total task time for parallel and sequential execution of flower_8_4 in the Draco
Machine.

Task Type # of Tasks Time parallel Time sequential slower factor

do_subtree 427 48,83s 3,95s 12,35×
geqrt 974 17,82s 4,99s 3,57×
tpqrt 2.857 15,47s 11,71s 1,32×
gemqrt 5.338 32,38s 26,84s 1,20×
tpmqrt 22.973 172,23s 152,12s 1,13×
block_copy 6.265 11,83s 10,94s 1,08×

Another case corroborates with the later results and the L3 cache miss analysis.

We noticed that for the EternityII_E matrix, we have a more extreme case related to

the task interference and cache misses. In our experiments, the execution with memory

limitation presented a smaller makespan than when running without memory limitation.

In this case, a simple look at the Gantt chart does not reveal anything because the paral-

lelism occupies all resources with little idle time, leading to no visible problems, as the

Figure 5.6 represents.

However, when we look at the relation between the task duration the theoretical

GFlops in Figure 5.7, we observe that there is high variability in duration and that the

tasks of the unlimited memory execution (orange) are clearly above the tasks of the lim-

ited execution (green). As in the flower_8_4 case, the EternityII_E execution has

many concurrent geqrt and tpqrt tasks when running with no memory limit, causing
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Figure 5.6 – Unlimited memory consumption (top) and limited (bottom) Gantt chart comparison
for the EternityII_E matrix in the Hype machine.
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more L3 cache misses. Highly inflating task duration as we can compare by looking

at Figure 5.7 with the L3 cache misses in Figure 5.8. The Table 5.4 reveals the differ-

ences between the two executions. This execution represents a specific scenario where

the geqrt, tpqrt, and do_subtree task sum up more than 60% of the total compu-

tational weight for the factorization, having fewer gemqrt and tpmqrt tasks. As we

mentioned before, these three task performance is more sensitive to cache misses, while

for gemqrt and tpmqrt, we observe that they had a slight change in both cache misses

and duration. In contrast, the other tasks have a much higher duration. Their cumulative

execution time was from 4 to 5 times greater, which is explained by the higher number of

cache misses, and explain why we observe an almost fully filled Gantt chart with no idle

time.

Figure 5.7 – Comparing the task duration between unlimited and limited memory consumption
executions for EternityII_E.
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In opposition, when running with limited memory consumption, the workers are

idle most of the time, but the execution time was reduced by up to 7,2% in the Hype
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Figure 5.8 – Comparing the L3 cache misses between unlimited and limited memory
consumption executions for EternityII_E.
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Table 5.4 – Total task time for limited and unlimited memory usage of EternityII_E in the Hype
machine.

Task Type # of Tasks Weight Time unlimited Time limited Slower factor

geqrt 199 4,63% 8,13s 1,57s 5,16×
do_subtree 292 20,20% 18,36s 4,25s 4,31×
tpqrt 1.206 37,79% 22.92s 5,77s 3,97×
gemqrt 116 3,18% 0,33s 0,39s 1,18×
tpmqrt 633 34,18% 2,60s 2,36s 1,10×

machine. This happened because the limitation constrained the number of concurrent

do_subtree, geqrt, and tpqrt tasks. Such slowdown due to the parallelism is

referenced as locality efficiency by (AGULLO et al., 2016). While such interference

effect is expected for parallel task executions, some techniques could better handle it to

improve overall performance. These techniques involve smart matrix partitioning and

mapping to resources or some interference-based or cache-aware scheduling to keep this

inefficiency under control.

5.3 Analyzing Performance Considering Runtime and Application Factors

This Section evaluates our performance visualization techniques analyzing differ-

ent cases for the parallel sparse factorization application qr_mumps. We consider factors

at the runtime level like the scheduling policy and application-level parameters such as

the fill-reducing ordering, memory constraint, and elimination tree pruning and amalga-

mation techniques. Those case studies represent frequently applied analysis in task-based

applications and the multifrontal method for sparse factorization. They also serve as a val-

idation process of our techniques when combined, enabling performance analysis beyond

the classical Gantt charts, aligning performance data to application data structures.
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5.3.1 Comparing Different Schedulers Behavior

We can use the visualization of the elimination tree structure over time presented

and described in Section 4.2.1 to study scheduler behavior in the tree traversal, consider-

ing task priorities and heterogeneous platforms. For example, the Figure 5.9 presents a

comparison between the lws and the prio schedulers for the degme matrix reordered

with Metis and unlimited memory usage in the Tupi machine, using the resource utiliza-

tion as the gradient colors. We can notice that the lws execution (7.02s) is faster than the

prio execution (7.46s).

Figure 5.9 – Comparison between prio and lws schedulers for the degme matrix in the Tupi
machine.
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Source: The Author

We observe that the prio scheduler’s behavior is to focus on one elimination tree

node at a time, as pointed in (A). This behavior occurs because qr_mumps assigns de-

creasing priorities for later submitted nodes, forcing the prio scheduler to consider this

submission order and sort the tasks in its unique central ready task queue, creating this

effect of lower tree parallelism and higher node parallelism. Another particular behavior

that we notice for prio is that it has clear computation and communication patterns as
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pointed by (B). The block_copy tasks are postponed to the end of a tree node after all

its computations ended because of its lower priority, delaying parent and child communi-

cation.

Restricting computations to only one or few tree nodes simultaneously, like in

the prio case, may improve spatial data locality. However, its restriction in the com-

munication reduces the availability of the tree and interlevel parallelism, compared to the

interlevel parallelism achieved by lws in (C) and the tree level parallelism in (D). A more

direct comparison of both executions using the compare tree panel presented by Figure

5.10, where we observe the non pruned nodes GFlops throughput difference of the faster

execution with lws in blue, and the prio slower execution in red. We observe that the

focus on only one node computation at a time indeed provided more performance when

looking at the computed GFlops difference in the bottom of Figure 5.10. Nevertheless,

the communications at the end of the nodes abruptly slow the execution (B).

Figure 5.10 – Using the compare tree plot to visualize where the GFlops throughput differ.
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However, the fact that the lws scheduler explored more tree and interlevel par-

allelism, making node computations last longer, as pointed in (A), was beneficial to per-

formance. This was good in this scenario because the lack of tree parallelism at the end

of the application is compensated by the interlevel parallelism, which does not happen

for prio, as pointed in (C). This case depicts an excellent example of the alignment of

the application data structures with performance visualization, which clearly illustrates

what is happening and can help developers evaluate the impact of modifications towards

improving application performance.
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Comparing an execution using GPU, we have the TF17 matrix reordered with

Scotch and memory limitation in the Hype machine. Figure 5.11 represents the elim-

ination tree plot using the GFlops throughput. We used the GFlops metric because the

resource time utilization does not fit well when we have heterogeneous resources as the

CPUs and GPUs have different GFlops throughput. With this, we can compare the three

different schedulers. In the nodes pointed by (A.1) and (A.2) for dmdasd and dmda,

we observe a consistent increase in the GFlops throughput, gradually increasing and re-

ducing while the computations reach the node end. For the heteroprio scheduler on

(A.3), we can notice that the node computations spread for longer periods. This way of

exploring the tree, focusing computations in different areas, is the scheduler’s signature

and how it computes the tree.

Figure 5.11 – Comparing heteroprio, dmdasd, and dmda schedulers for the TF17 matrix in the
Hype machine.

Source: The Author
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In (B), we notice that the dmda scheduler was able to keep the peak performance

represented in the color gradient for an extended period, which could have led to its re-

duced makespan, being 10,65% faster than dmda, and 8,5% faster than heteroprio.

However, looking at the cumulative time spent for all tasks, the heteroprio and the

dmdasd reduced the total computing time by 3,78%, and 12,45% compared to dmda.

This difference reflects the focus on choosing the faster resource for each task, which

all three schedulers consider, but considering different aspects, causing different idleness

over the resources: 11,8% for dmda, 22,4% for heteroprio, and 31% for dmdasd.

Nonetheless, the application final makespan is what matters in the end.

Despite these differences, we can also merge two different trees for comparison,

highlighting their differences where performance deviates. We choose the heteroprio

and dmda schedulers to compare for this execution in the Figure 5.12 because they pro-

vided better performance than dmdasd. We can observe in (A) that the heteroprio

scheduler has a slightly better start than dmda. However, this advantage quickly changes

for dmda, increasing slow and consistently throughout the execution until the moment

represented in (B.1), where there is a steeper increase in the computed GFlops difference

for dmda. We relate this increase to the increase in the idleness depicted by the area

pointed by (B.1). However, the cause of this idleness was not due to lack of ready tasks

to compute, as we can observe by the lack of ready tasks panel in (B.2), which highlights

moments with fewer ready tasks than the number of workers in orange. The idleness in

heteropriowas caused by its decisions to schedule all those available tasks to the GPU

because of the higher priority the tpmqrt tasks have for GPU. This heteroprio deci-

sion not resulted in better performance than what dmda provided, as pointed by (B.3). By

observing the tree structure, we can see that the dmda scheduler better handles the nodes’

transition in (B.3) to the other node in terms of data prefetching and resource utilization.

Lastly, the vertical line in (C) delimits the end time of the faster execution.

In the experiments, we also have cases where heteroprio provided better per-

formance than dmda or dmdasd. By checking these cases, we noticed that the reason

the performance was better for heteroprio is the same that reduced its performance

in the last presented case. It only scheduled all gemqrt and tpmqrt tasks in the GPU,

which somehow not created communication delays due to data transfers and provided

better performance.
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Figure 5.12 – Comparing the tree computation difference (top) and Gantt chart for heteroprio
(center) and dmda (bottom) schedulers for matrix TF17.

Source: The Author

5.3.2 Comparing Fill-Reducing Orderings

A determinant factor in the execution of sparse factorization methods that define

the tree structure is the fill-reducing ordering operation performed in the analysis phase.

In our experiments, we explored the Scotch and Metis fill-reducing ordering pack-

ages. The Figure 5.13 presents the tree structure plot for two executions with the same

parameter configurations, except for the ordering. In general, the computation time dif-

ference between executions is caused by a difference in the total amount of GFlops for

the factorization imposed by the fill-in and the reordering algorithm. Despite the differ-

ence in the total computational cost, we can observe that the elimination tree structure
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is significantly different. We can observe that the tree organization for Metis produced

a poorly balanced tree, with few small nodes and a huge node that concentrates most of

the computations, pointed by (A). Comparing to the Scotch produced tree, we have

a more balanced tree, having more nodes, which better divided the computational load.

Also, as highlighted in (B), where the dashed lines cut the elimination tree at level two,

we observe the different sizes of subtrees, with a very small subtree for Metis and two

subtrees of very similar size for Scotch. Beyond these differences, they have a simi-

lar number of pruned nodes, producing few do_subtree tasks and a small node at the

root. Such visualization can help application developers analyze performance relating to

the tree structure provided with a specific ordering algorithm.

Figure 5.13 – Comparing Metis and Scotch ordering for ch8-8-b3 matrix in hype Machine.

Source: The Author

However, the fact that a specific ordering was able to reduce the total number

of floating-operations does not necessarily mean that the application’s performance will

automatically be better. Because the tree structure combined with other application pa-

rameters like memory limitation can dictate how the execution unfolds, respecting the

tree dependencies and memory threshold, different trees may have a more restrictive se-

quential memory peak. Furthermore, the analysis phase cost can sometimes exceed the
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performance that was gained in the factorization.

5.3.3 Comparing Memory Usage Threshold

For all experiments, we have noticed that the qr_mumps application was able

to keep performance while reducing the memory footprint, except for those cases where

the memory threshold was too limiting. Furthermore, there were also cases where the

memory limitation improved the application performance because it reduced interference

between tasks. The elimination tree panel reveals how the memory limitation impacts in

terms of the tree nodes exploring by the scheduler.

Figure 5.14 shows a case where performance was slightly improved by limiting the

memory consumption to the sequential peak for the flower_8_4 matrix using Metis

in the Hype machine using only CPUs and the lws scheduler. While in the plot with

unlimited memory usage, we see that the entire tree is allocated early in the execution. For

the limited case, the allocations were postponed to the last moments of the factorization.

The allocation of different portions of the tree in different moments impacts the available

tree-parallelism. In (A), we can notice that by around 5 seconds of execution, half of the

tree intermediary nodes were not touched yet by the execution with memory constraint,

while the other has started and even finished computing many other nodes.

The higher tree-parallelism available provided by the higher memory consump-

tion causes the nodes to have a longer computation span, as we observe n (B.1) and

(B.2), where the highlighted nodes computations end later for the unlimited memory con-

figuration. This was caused by the smaller computational focus on those nodes, as the

scheduler had many other tree nodes to explore, as highlighted by (C.1) and (C.2). Also,

the moment in (D) is different from the unlimited memory case because the tree nodes’

exploration order differs due to memory availability and their earlier or late availability.

Of course, this also depends on the scheduler used, but we compare an execution with the

same scheduler in this case. Finally, in (E.1) and (E.2), we can observe that the last tree

nodes’ computation started earlier for the unlimited memory case. However, even with

this, the application performance with memory limitation was not degraded. In fact, it

was faster because of the lower competition between the do_subtree tasks at the start

of the unlimited memory case. However, even if the application performance does not

change, this kind of visualization helps to understand the impact of such a parameter in

the application execution regarding this tree structure.
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Figure 5.14 – Limited and unlimited memory consumption for Metis ordering in flower_8_4
matrix on the Hype machine.

Source: The Author

5.3.4 Improving Performance by Reducing Task Interference

As we have been observing throughout our experiments a constant presence of

performance degradation due to running certain tasks in parallel as in the flower_8_4

matrix case presented in Figure 5.5. Furthermore, we noticed cases where memory re-

striction reduced the parallelism but improved task efficiency in a way that the execution

ended up being faster than without memory limitation as presented in the end of Section

5.2.4 by Table 5.4 for the EternityII_E matrix.

Based on our observations, we propose a naive solution to mimic the beneficial

effect of spreading the do_subtree tasks along with the application execution. We

created a different scheduling context for the do_subtree tasks, reducing the num-

ber of available workers to these tasks. This controlled context helps to reduce the

do_subtree tasks interference between themselves and the other memory-bound tasks.

We provided two environment variables, one to control the tree pruning according to the

number of workers, and the other to control the number of workers the do_subtree
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scheduling context will have.

From another set of experiments considering this scheduling context difference

we noticed cases where performance was improved by up to 24% using this technique.

The Figure 5.15 shows the case of the karted matrix in the Hype machine using the

Scotch ordering. We observe that half of the makespan of the execution that does not use

the scheduling context is for do_subtree tasks, and other good portion is for geqrt

tasks.

Figure 5.15 – Gant chart comparison for the karted matrix in the Hype machine not using the
do_subtree scheduling context(top), and using the restricted scheduling context (bottom).
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While this simple strategy improves performance in scenarios where we have

many concurrent memory-bound tasks, there are more sophisticated ways of controlling

the interference effect. For example, for the Hype machine, where we have two NUMA

nodes, we can map different branches of the tree to reside on only one NUMA node,

as some distributed memory versions of the multifrontal method consider (GUPTA et

al., 2016). Thus, we improve locality and better utilization of the shared cache within a

NUMA node. Other strategies at the runtime level can also be explored, like considering

inter-task interference and cache-aware scheduling strategies (GUO et al., 2020), which

could be implemented in the StarPU library.

5.4 Discussion and Summary

In this chapter, we have seen that the experiments revealed some particular behav-

iors of the application and the runtime. We analyzed the presence of anomalous tasks in
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different scenarios related to runtime, tracing, hardware configurations, and application

tasks. Although we can avoid most anomaly sources, some of them remain hard to fix,

like in the case of task submissions. However, in the case of task submission, the impact

was neglectable, so the efforts to reduce or avoid this cost would provide small or no

performance gain. In contrast, some other anomalous behavior significantly impacted the

tasks’ performance, affecting the overall execution performance. We identified this case

while trying to model the task’s behavior, using multiple models and clustering the tasks

observations.

The use of multiple models for task representation revealed a more profound per-

formance problem. We observed that the tasks that were part of the slower model hap-

pened in specific moments in the execution and certain task types. Using the PAPI library,

we later related the increase in duration to an increase in the L3 cache misses for those

tasks caused by concurrent task interference. Based on some experiments’ side effects,

like cases where reducing the available memory improved performance, we tried to en-

hance performance by spreading the do_subtree tasks along with the execution (see

Section 5.3.4), which proved to be useful for cases where we have many do_subtree,

geqrt, and tpqrt tasks. However, this is a naive approach. More robust techniques

can be used in future works to improve the application, like efficiently mapping the tree

structure to computational resources and considering scheduling policies that account for

task interference.

We also presented use cases of the elimination tree computation panel captured

the application and runtime behavior, which helped us analyze and understand the perfor-

mance of different configurations in detail. Those proposed panels, mainly the elimination

tree one, bridges the gap between the application data structures, tasks, and performance.

With those panels, we can study the impact of task priorities, platforms, and other ap-

plication parameters in a very detailed way, providing the necessary understanding and

possibly insights into improving performance. Even the smaller performance gains can

represent expressive improvements in real applications, where the factorization process is

called repeatedly. In the next chapter, we will present the use and performance analysis

of qr_mumps in a real application.
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6 OPTIMIZING AND USING SPARSE SOLVERS IN RAFEM

This chapter provides a study of the RAFEM application towards its acceleration

using different sparse solvers, including the previously studied task-based qr_mumps

solver and numerical analysis of the solution. Section 6.1 presents the steps towards the

application optimization, focusing on the two most costly steps: assembling the equation

system and solving it. Section 6.2 describes an evaluation study for the numerical solution

quality provided by the different solvers adopted in the optimization. Section 6.3 shows a

detailed analysis of the application performance and the qr_mumps solver performance

in the context of RAFEM. Section 6.4 closes the chapter discussing possible techniques

to improve the analysis and other performance optimizations.

6.1 RAFEM Application Optimization Strategies

The RAFEM application, earlier described in Section 2.3.2, uses the widely adopted

FEM strategy to represent the RFA procedure computationally. Such a standard method

like FEM is widely studied, focusing on improving its performance. There are common

steps in a FEM application that we should look for when we are concerned about perfor-

mance. The two steps contributing more to the computational weight are the assembly

and solve steps. During the first one occurs the assembling of all mesh element equations,

which are later combined into the global system of equations. This system represents the

whole problem, and it is the unknown values in this system of equations that we need to

solve, representing the other most costly step. The equations assembly commonly pro-

duce large and very sparse matrices. Therefore we need to consider specialized algorithms

like sparse or iterative solvers. Otherwise, the fill-in cost overhead would be catastrophic

for performance, generating new coefficients over all the matrix. As the simulation in

RAFEM calculates the changes over time, it repeatedly executes these two steps, advanc-

ing in the simulated time by small time-steps until it reaches the desired final simulation

time. Thus, by improving these steps, the benefit of performance gain spreads along the

application execution time.

We use the sequential application version as the baseline comparison for both

speedup and numerical validation experiments. The machines that we used in the RAFEM

experiments are the same described in Section 5.1 by Table 5.2. Table 6.1 describes the

two workloads used in the RAFEM application, representing two different finite element



106

mesh resolutions and the matrices they generate. The test cases generate two square and

sparse matrices represented in double precision.

Table 6.1 – FEM meshes used in the RAFEM experiments.

Mesh # Nodes # Elements Matrix size Nonzeroes Sparsity

A 3.548 18.363 7.096×7.096 189.462 0.0037%
B 8.364 44.811 16.728×16.728 450.451 0.0016%

To collect performance data, we manually instrumented the code using the ScoreP

6.0 library (KNÜPFER et al., 2012). This user-defined tracing allows us to collect data

only from code regions that we judge interesting, collecting simple measurements without

generating too much overhead in application execution time caused by tracing intrusion

(MEY et al., 2011). We focused on three main events in the application, composed of

smaller, more specific regions. Those main events are the assembly phase, the solve

phase, and the memory copies between CPU and GPU. The application tracing enable the

characterization of the application’s computational cost in these different regions, helping

decide which part we should optimize and estimate how much we expect to reduce the

application time. The ScoreP tool records application trace in the OTF2 format. We used

a conversion tool named otf22csv1 to transform the OTF2 trace data into the CSV

format, enabling the analysis with modern data analysis tools like the R language. To

obtain the performance metrics to calculate mean execution time and speedup consider-

ing the total computation time on a sequential system. We used a full factorial design

considering three factors machine (Draco, Hype, Tupi), workload (mesh A, mesh B), and

solver(Original, MAGMA, cuSOLVER, qr_mumps), making 30 repetitions for the smaller

workload A and 10 for the bigger one B. In total, we performed 480 executions to obtain

the performance metrics. Application-specific parameters like the total simulation time

which was fixed to 15 minutes, and the RFA generator input power as 15.

6.1.1 The Assembly Step Parallelization

The assembly step parallelization was already studied in a previous work (SCHEPKE;

MILETTO, 2020), which includes GPU support to accelerate the assembly step. A set of

CUDA kernels is responsible for assembling the individual element equations and later

grouping them in the Compressed Sparse Row (CSR) format, considering the bound-

1otf22csv tool <https://github.com/schnorr/otf2utils>

https://github.com/schnorr/otf2utils
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ary equations. The assembly can be seen in two main phases: assembling the element

equations and combining them. The first phase is an embarrassingly parallel problem,

and each GPU thread was responsible for one element. In the second phase, we need to

solve the race conditions of combining all these equations in the global matrix in parallel.

Hence, GPU threads were mapped to assemble specific matrix regions, similar to a graph

partitioning approach.

At the end of the assembly step, it provides the equation system matrix in the

CSR format, commonly what we need to use as input for parallel sparse solver libraries.

However, this assembly solution represents a naive approach. Other works consider de-

signing specialized algorithms and data structures aligned to GPU programming specific

concepts like dynamic GPU memory allocation, thread-block shared memory (SANFUI;

SHARMA, 2017; KIRAN; SHARMA; GAUTAM, 2019). Thus, there is a potential im-

provement to explore in the assembly part that we can later consider throughout the opti-

mization process. However, our focus on acceleration was in the most costly part: solving

the generated system of equations.

6.1.2 Incorporating and Tuning Parallel Solvers

This same previous work (SCHEPKE; MILETTO, 2020) that parallelized the as-

sembly step also used a parallel solver to speed up the application. It used the MAGMA

library for the solution phase, using an iterative solver based on the Restarted Generalized

Minimal Residual Method (GMRES(m)), but did not explore different solvers and com-

putational environments. In this work, besides the MAGMA solution, we also consider the

sparse QR factorization from cuSOLVER, handled entirely in GPU, and the task-based

sparse QR factorization from qr_mumps. All of them use CUDA version 11.1.0. The

version of the MAGMA library used is 2.5.2, and the qr_mumps version was compiled

with the same libraries versions previously described in Section 5.1, with small changes

in its C-Fortran interface to get the computed column permutation.

The CSR generated matrix fits as input for the MAGMA and cuSOLVER, but the

matrix type for qr_mumps needs to be in the Coordinate format (COO). We then adapted

the assembly process to create a COO matrix as well. Compared to the GPU-only solvers,

we need to perform an extra memory copy in the qr_mumps case to bring the global ma-

trix assembled in the device memory (GPU memory) to the host memory (RAM) for

every corrector step iteration (innermost loop in Figure 2.7). After obtaining the solu-
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tion, it needs to be both in the host and device memory for the convergence check of the

corrector step in CPU and the GPU’s next matrix assembly, making the same number of

memory transfers for this data in all three solver configurations.

Having the three parallel solvers working, we started to study the parameters that

affect their performance, tuning them to provide better performance. The matrix reorder-

ing algorithm is crucial for direct sparse solvers to enhance parallelism and control the fill-

in effect. Thus, for qr_mumps and cuSOLVER, we explored the Scotch and Metis

reordering algorithms, where Metis provided better acceleration for the matrix factor-

ization. For qr_mumps, as it performs a 2D tiled factorization, we need to specify the

mb, nb, and ib parameters, which we set to square blocks of size 320 because it provided

slightly better performance than using the default value 256, and the internal block size

default value was used, which is 32. We explored different values for these parameters,

but none provided better performance in the GPU for qr_mumps because the workload

was too small. Thus, we only consider using CPUs in qr_mumps along with the lws

scheduler.

Studying the problem, we noticed that the matrix structure remains the same

throughout the simulation. This structural steadiness allows us to reuse the fill-reduction

column permutation completed in a previous step, computing it only once. This reuse

reduces the time spent in the analysis phase that precedes the factorization, reducing the

total time for the application solve step. The qr_mumps application enables users to

pass a user-defined column permutation array to rearrange the matrix instead of calling

the Metis library again. Unfortunately, the cuSOLVER function call does not enable

passing a user-defined reordering as qr_mumps do. Figure 6.1 demonstrates the impact

of this optimization according to our trace data by reducing the total iteration time for the

inner corrector loop, avoiding recomputing the column permutation in the analysis phase.

However, for the cuSOLVER library, the solver function call does not allow the user to

pass an already computed column permutation. In an iterative solver such as the MAGMA

GMRES(m), the analogous step of the analysis is the matrix preconditioner. This step that

precedes the solution improves the matrix convergence properties but can take a consid-

erable time in the iteration, as observed in the figure for the MAGMA solver. Thus, using

techniques that allow reusing preconditioners (SINGH; AHUJA, 2020) between problems

with similar structure would benefit performance in this case.

For the MAGMA library, we used the iterative method GMRES(m). This method

has the m parameter that impacts the solver convergence rate, directly affecting its per-
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Figure 6.1 – Average time for different code regions and solver versions for mesh A.

Source: The Author

formance by controlling the number of iterations inside the solver to reach the desired

tolerance for the solution’s residual value. Considering this effect, we explored different

values for m in previous experiments to find a value that provides adequate performance

for the mesh workloads as presented by Figure 6.2. In the left part of the figure, we have

the different m values for the two meshes in the X-axis, and by how many times it was

slower than the faster execution time obtained for a given m value in the Y-axis. Another

aspect of the GMRES(m) iterative solver is that different values for m impact the solver

stagnation effect, represented in the right part of Figure 6.2. We could achieve better

performance results with the MAGMA GMRES(m) if it incorporates some ideas like using

an adaptative m value throughout the simulation execution for each solution (CABRAL;

SCHAERER; BHAYA, 2020). Another configuration of the GMRES(m) is the tolerance

value for the solution residual error, for which we set its value to 10−10.

Figure 6.2 – Best value for the parameter m for each mesh (left), and stagnation effect (right)

Source: The Author
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We adjusted all these solver configurations used, like the reordering algorithms,

task and matrix partitioning granularity, the m value, preconditioner, and tolerance for the

iterative solver, trying to extract the best performance for these solvers. Thus, we could

have a fair comparison between them in the real application scenario.

6.2 Solvers Numerical Validation

Besides parallelizing and accelerating the application, a crucial step is checking

if the application parallel versions are still producing valid numerical results. Because

there is no such thing as infinite precision, we are bound to the finite precision expressed

in floating-point numbers and limited to the machine epsilon or machine precision. This

limitation can cause rounding errors that can be propagated and magnified throughout the

application execution. Furthermore, by running operations in parallel, the order of the

rounding operations are different and can thus produce slightly different results. Other

architecture-specific factors like the Fused Multiply-Add (FMA), present in NVIDIA

GPUs, perform operations of the type X × Y + Z using a single rounding step, which

improves the accuracy of the results (WHITEHEAD; FIT-FLOREA, 2011).

To evaluate and quantify the quality of the numerical solution provided by the

multiple solvers, we propose the use of the Peak Signal-To-Noise Ratio (PSNR) (Korho-

nen; You, 2012), which is a common metric to estimate quality involving images. In our

case, we used this metric to estimate how far the parallel solutions with the three solvers

are from the original sequential solution, using it as the solution that remains unaffected

by noise. Using the RAFEM results for temperature and voltage written in binary files for

each simulation time step, we combine the results of different executions to compare the

solution given for each time step, using the following formula for calculating the PSNR

metric:

PSNRi = 20× log10

(
MAX(A)√

MSEi

)
(6.1)

where the Mean Squared Error (MSE) is

MSEi =
1

n
×

n∑
j=1

[Aij −Bij]
2 (6.2)

We calculate the PSNR value for each simulation step, using the MAX(A) as
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the maximum value for temperature or voltage in the current time step. The PSNRi

represents the PSNR value for the simulation step i, where n is the number of nodes

in the mesh, A is the original solution, and B the solution of a parallel version. Using

these values in the formula, we produced the results presented in Figure 6.3. The figure

presents two interesting cases for the PSNR values for the tested solvers using the two

meshes (Mesh A, left, and Mesh B, right), including different configurations of the solvers

like the MAGMA iterative solver with a lower tolerance of 10−6 (MAGMA_low_tol), and

the cuSOLVER compiled with the option --fmad=false (cuSOLVER_fmad_OFF),

disabling the GPU FMA operation. Lastly, the red dashed lines in both figures represent

control values for the PSNR metric to know what PSNR value we have when using the

original solution summed with a static noise of 10−12 and 10−5 in each mesh node.

Figure 6.3 – PSNR value for temperature and voltage for a simulation with mesh A (left) and
mesh B (right).

Source: The Author

In the Mesh A figure (left), we observe that the MAGMA solver with lower tolerance

provided poorer results than all the other solvers, while for the bigger mesh it kept close

to the MAGMA with a tolerance of 10−10, presenting a higher PSNR value than the other

solvers while accelerating the solution for MAGMA. In the Mesh A case, we also noticed

that the main loop corrector step not converged in less than the maximum configured

iterations (50) for step number 207. When this occurs, the RAFEM application does

not accept the solution for that step and reduces the time step size in half, continuing

the simulation from the same moment as when the solution was not accepted, increasing

the application execution time. Thus we have a mismatch in the simulation time that
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this step represents, which decreases the PSNR value at the end. Hence, depending on

the input problem and parameters, the simulation stability may be compromised when

relaxing the tolerance of an iterative solver, which may cause the need for smaller time

steps to advance in the simulation. This impact of precision in application performance is

discussed in the next Section, using this same configuration for the MAGMA solver.

Despite this particular case, comparing the other solvers, we observe that the

qr_mumps solver presented a lower value for PSNR in both cases, indicating higher

differences in its provided solution. In opposition, the cuSOLVER, which also performs a

sparse QR factorization, presented a higher value for PSNR than qr_mumps, even when

we disabled the FMA operations (cusolver_FMAD_OFF), except in the last steps for

Mesh A (left). Another interesting observation is that we can see how the FMA affects

the precision of cuSOLVER principally in the Mesh B. Overall, the PSNR metric reveals

that those different solvers and configurations provide slightly different numerical results.

However, we observe the same behavior for PSNR values with their ups and downs, ex-

cept for Mesh A with the MAGMA_low_tol configuration. This metric can represent

simulation-specific characteristics, like numerical stable and unstable regions during the

simulation through the variation of PSNR value.

One drawback of using the PSNR metric to evaluate the numerical solution is

that it hides the magnitude of the differences and their spatial distribution. Observing

the summarized PSNR data for a time step, we are unable to tell if we have many small

differences or fewer more significant differences and how they are spread over the mesh

space. This way, we compared the binary files used to calculate the PSNR values to

generate 2D surface plots of the steps that presented the lower PSNR value like step

177 for Mesh A, visually representing the differences of the solutions from the original

sequential code for temperature and voltage. Figure 6.4 shows the original values of

temperature and voltage with the Y-axis fixed to 0, displaying the electrodes side-by-side

as the diagram in the left shows. We observe that the distribution of the spatial values

for temperature and voltage is very symmetrical, except that for voltage, we have lower

values on one side to create the current flow between the electrodes.

We used the same plane to compare the numerical differences between solvers

as presented in Figure 6.5. The figure’s left part shows the temperature and the right the

voltage, faceting plots by their solver configuration. Note that the scale for the differences

in temperature and voltage is substantially different. From these plots, we can observe

that the higher numerical differences are contained in the area between x[−25, 25] and
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Figure 6.4 – Diagram of the Y plane facing the electrodes side-by-side (left), and the original
version values for temperature (center) and voltage (right) at simulation step 177.

Source: The Author

z[25, 75], around the electrodes’ position. These figures help us observe that no significant

numerical differences arise considering a spatial sense, being contained only around that

area and not spreading in regions like the edges of the image, or following the pattern of

the original values like in the qr_mumps case for voltage.

Figure 6.5 – Numerical differences for temperature (left) and voltage (right) for the step 177 of
Mesh A.

Source: The Author

We can observe that the solution provided by MAGMA is much closer to the original

values than the others for both temperature and voltage because of the smaller differences,

as the PSNR value illustrated. There is an increase in the difference when we go through

cuSOLVER to qr_mumps, including between the cuSOLVER and its version with FMA

disabled, but all the solvers presented differences around the same area. The maximum

absolute differences remain low, for example, 4e − 6 for qr_mumps voltage, and 8e −
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08 for temperature. However, looking at the MAGMA_low_tol case in Figure 6.6 the

difference values scale is much larger than the other configurations. Besides that, the

area where the differences occurred is wider than for the other solvers. In this execution

configuration of GMRES(m), we may start visually perceiving the differences in the final

simulation results, which can harm the analysis process. Furthermore, as we stated earlier,

these numerical differences may also impact the overall application performance because

of this numerical divergence. These differences can impact the number of time steps to

reach the simulation end and iterations within a corrector step to reach convergence.

Figure 6.6 – Numerical differences for MAGMA solver with lower tolerance for temperature
(left) and voltage (right).

Source: The Author

6.3 Trace Performance Analysis of qr_mumps and RAFEM

Our performance analysis experiments within the RAFEM application context

have two main objectives. Firstly we analyze and characterize the different solvers’ per-

formance in the most elementary program part: the corrector step iterations. Secondly, we

look for the whole application performance behavior throughout the simulation, looking

for behavioral changes within these iterations and time steps, characterizing the applica-

tion with the different solvers. Furthermore, we also evaluate our previously described

optimization to reduce task interference in qr_mumps to this real application scenario.

6.3.1 Detailed Performance Analysis in RAFEM

The performance experiments considered the different machines and solvers col-

lecting the total execution time and different executions to obtain trace performance. Ta-

ble 6.2 presents the mean execution time considering a confidence level of 99,7% for

Mesh A and B for all solvers and machines. We observe that the qr_mumps solver was
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faster for all machines and workload combinations, but the time difference between the

GPU solvers and qr_mumps shrinks when we have a more powerful GPU in the Tupi

machine. The original sequential version is also faster for the Hype and Tupi machines

due to the faster CPUs.

Table 6.2 – Execution time in minutes for Mesh A and Mesh B for each code version.

Machine Original cuSOLVER MAGMA qr_mumps

Mesh A

Draco 111,76 ± 0,079 23,57 ± 0,226 9,94 ± 0,148 4,97 ± 0,104
Hype 83,57 ± 0,918 16,98 ± 0,084 8,06 ± 0,086 4,28 ± 0,018
Tupi 82,99 ± 0,111 9,3 ± 0,029 4,36 ± 0,024 3,05 ± 0,011

Mesh B

Draco 1324,1 ± 2,03 621,47 ± 10,2 107.87 ± 0,67 38.51 ± 0,86
Hype 970,36 ± 3,53 411,84 ± 3,3 86.14 ± 0,133 30.82 ± 0,14
Tupi 958,34 ± 3,81 201,37 ± 2,1 45.96 ± 0,68 23.66 ± 0,09

We also present the speedup metric in the Figure 6.7 where the acceleration effect

of more powerful GPUs is better observed in the application acceleration, mainly in the

GPU solvers, where we have better speedup values for the Tupi machine. However, look-

ing at the different workloads, we observe a lower speedup for cuSOLVER for the bigger

Mesh B, suggesting that its QR solver does not scale very well for bigger problems. The

MAGMA and qr_mumps solvers presented more significant speedups for Mesh B, but the

increase for MAGMA compared to Mesh A was only about one or two times. In contrast,

the increases in speedup for qr_mumps are as high as 13 times for Mesh B, reaching 40×

of speedup compared to the 27× for mesh A.

Figure 6.7 – Values for speedup for the different machines and solvers.

Source: The Author

A part of the application speedup for all cases comes from the assembly step,

where the faster GPUs will provide better speedups because it is a very well scalable
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problem. Figure 6.8 presents the average duration for the assembly, memory copies, and

solve traced regions between all step iterations. Note that we also included the perfor-

mance of the MAGMA_low_tol version for these regions to represent how relaxing the

GMRES(m) tolerance affects the solve step duration. Nonetheless, we report that this

relaxation in the tolerance can reduce the total computational time by up to 20% for the

Mesh B case. However, there are cases with less performance increase like the execution

used in Figure 6.3 for Mesh A, where the simulation needed more correction steps be-

cause one step not converged. In addition, this reduced tolerance can cause undesirable

effects in the numerical results, as presented by Figure 6.6. For the larger mesh, however,

the solution with lower tolerance had no problems, performing the same number of steps

and iterations as the solution with the more restrict tolerance, which might be related to

the better discretization of Mesh B, creating a more stable problem. We also point out that

since we accelerated the solve step time, and with the assembly step being fast for pow-

erful GPUs, now the memory copies take a significant amount of time of the iteration, as

much as the entire assembly step, like for the Mesh A for Tupi machine. This way, efforts

to reduce this transfer time should now be considered in a future work.

Figure 6.8 – Trace iteration time for different application regions.

Source: The Author

Another aspect that can be observed in Figure 6.8 is that the MAGMA average time

for the solve step presents a higher variability, which motivated a detailed investigation

of its behavior along with the application iterations. Figure 6.9 depicts these regions
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execution duration over the application iterations with vertical lines to indicate the end

of a corrector step. In this figure, we can observe the difference of the first qr_mumps

execution for the analysis step in (A), where the actual column permutation calculation is

done. The subsequent analysis steps just reuse this calculated permutation. In (B.1) and

(B.2), we observe an interesting behavior for the MAGMA solver with both configurations

for tolerance, where we have an increase in the cost to obtain the solution within the

iterations of a corrector step. In (C), we observe a stable moment in the simulation where

the corrector steps converge in one or a few iterations, and we can notice a reduction in

the time to solution for the MAGMA_low_tol. Lastly, we report that the step demarked

in (D) not converged for all configurations, and it is after this step that we notice the same

effect of (B.1) in (B.2), while the qr_mumps time for solution remained stable during

all the execution. The cuSOLVER, which is absent in the figure, also presents a stable

behavior like qr_mumps, but with a higher duration (≈2.3s).

Figure 6.9 – Detailed trace performance data for the analysis/preconditioning phase and system
solution in the Hype machine for Mesh A.

Source: The Author

The MAGMA variability is also present in the Mesh B case. Figure 6.10 depicts the

solve phase duration over the application iterations for the Mesh B. We observe the same

behavior through time: qr_mumps is stable and faster than MAGMA, and the MAGMA

with the 1e−6 tolerance is faster than using 1e−10. However, in the highlighted area in

(A), we observe a change in behavior for MAGMA. The faster execution starts slightly

increasing the time to obtain the solution, spending more than three seconds. For the

slower MAGMA configuration, we notice a considerable change in performance during the
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simulation step 49 (B), which remains until the simulation end. This happens because

the GMRES(m) iterative method with its fixed m parameter needs more iterations to

converge for specific cases throughout the simulation, which reinforces the need for some

adaptative technique for the m value. Lastly, we also observe in the zoomed plot that

the different configurations have a different amount of iterations per step, thus causing a

mismatch throughout the simulation and affects the total number of iterations performed,

as we observe at the end of the topmost plot in Figure 6.10, pointed by (C).

Figure 6.10 – Detailed trace performance data for the analysis/preconditioning phase and system
solution in the Hype machine for mesh B.

Source: The Author

6.3.2 Improving qr_mumps for RAFEM

We have noticed that, despite the sequential execution for Hype (970min) and Tupi

(958 min) were close, the speedup value for the Tupi machine using qr_mumps is higher

than in Hype, even though Hype has more than twice the number of CPU cores than Tupi.

As the most costly part is in the solve step, this difference suggests that we may not have

enough parallelism in the matrix factorization because of qr_mumps parameters and

matrix structure, or because it might be some lack of task efficiency related to the matrix

partitioning, similar to the case presented in Section 5.3.4. Thus, further optimizations

can explore these aspects to improve application performance in this specific case, as we

investigate in this Section.

Despite reusing the column permutation, which significantly improves qr_mumps
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performance, we can use our proposed techniques in Chapter 4 to understand and opti-

mize the performance for this specific case of RAFEM. For this, we wrote the matrices

generated by the meshes A and B to an external file in the matrix market file format to run

it outside the RAFEM application and study the performance with StarVZ. By running

these two cases from the meshes and analyzing their tasks, we noticed that the factor-

ization is composed of many do_subtree, geqrt, and tpqrt tasks, which are more

cache-sensitive. Furthermore, besides the best overall makespan for the Tupi machine, we

also observed that the solve phase for qr_mumps was faster in this machine with fewer

cores than the others and with only one NUMA node.

Reducing task interference, lowering L3 cache misses: Based on these assump-

tions, we used the same technique as before (see Section 5.3.4) by adopting a smaller

scheduling context for the do_subtree tasks and reduced the number of cores to use

only the same NUMA node. We ran a set of experiments for the three different machines

varying the number of cores and the do_subtree scheduling context size, making thirty

repetitions for each. Those experiments revealed that for those matrices, the best configu-

ration for the machines that have NUMA nodes (Hype and Draco) is to reduce the number

of cores to use only one NUMA node and reduce the do_subtree concurrency by lim-

iting the scheduling context to three cores, allowing a factorization acceleration of Mesh

B by up to 35%. For the Tupi machine with only 1 CPU socket, using the do_subtree

interference reduction technique provided up to 12% improvement in performance for the

factorization. Figure 6.11 shows the results for the Hype machine. In the topmost plots,

we have the configuration used for RAFEM, and in the bottom, the best configuration.

The two Gantt charts reveal how different the do_subtree and geqrt task duration is

because of higher task interference and L3 cache misses.

The elimination tree panel in Figure 6.11 reveals the differences between the two

trees created and how they were traversed. We observe that the tree constructed for the

20 workers is very wide, made up of many small nodes and lots of pruned nodes. The

other elimination tree is smaller, with fewer nodes and more pruning because we have

fewer workers to compute it. However, the total cost for the factorization in both trees is

the same. The problem was the increase L3 cache miss number imposed by many cache-

sensitive concurrent tasks and the use of two NUMA nodes without mapping the tree

structure to the architecture. While StarPU has configuration options for considering dif-

ferent NUMA nodes by using the environment variable STARPU_USE_NUMA combined

with changing the weight of communications with STARPU_BETA, the NUMA-aware



120

Figure 6.11 – Gantt chart and elimination tree for the configuration used in RAFEM (left) and the
optimized configuration (right) for Hype using Mesh B matrix.

Source: The Author

scheduling still in an experimental phase and did not provide better performance for our

tested cases. In this case, a better strategy would be mapping the tree to the architecture

processors considering the different NUMA nodes (FAVERGE; RAMET, 2009).

Tuning amalgamation threshold, improving performance with more compu-

tations: Despite these architectural aspects, the fact that the elimination tree comprises

many small nodes with few computations may not be suitable for performance. We can

change these nodes by tuning the node amalgamation threshold parameter in

qr_mumps, used to better exploit the level-3 BLAS routines at the cost of additional

fill-in. This parameter controls the fusion of the child nodes into their father node, form-

ing a supernode. It represents a percentage, and if the additional fill-in to amalgamate a

node to its parent is less than this percentage, the node is amalgamated, otherwise not. We

improved a little by exploring different values for this threshold and tuning the number of

workers in the RAFEM matrices. However, now, the total cost of factorization compared

to the executions in Figure 6.11 increased by 1.4 and 1.54 times because of the additional

fill-in of amalgamating more nodes. Even though we could improve performance a little

as presented by Figure 6.12, compared to the results in Figure 6.11.

Considering these optimizations, we can tune qr_mumps and rerun the RAFEM

simulation to measure the impact in application acceleration. This parameter adjusts in-

creased RAFEM’s speedup from 31.4 to 39.6 times for the Mesh B in the Hype machine,
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Figure 6.12 – Gantt chart and elimination tree with different configurations for amalgamation
threshold for Mesh B matrix in Hype.

Source: The Author

showing the power of a fully configurable solver on top of a runtime system. Another

optimization could be done by overlapping the factorization and solve phase by running

it asynchronously. From the RAFEM traces, the qr_mumps solve step, after the factor-

ization takes up from 2.1% to 2.8% of the total execution time, which is already done

in parallel, also following a task-based approach. This solve parallelization is important

because some cases can have the time spent in solve comparable to the time used in fac-

torization (CAYROLS; DUFF; LOPEZ, 2020). However, the asynchronous routines for

factorization and solve are unavailable for the qr_mumps C-Fortran interface, but the

acceleration with this technique would be limited to the total time used in this solve step

as an upper bound.

6.4 Discussion and Summary

This chapter provided a detailed analysis of different solvers in accelerating a

computational simulation application and a numerical analysis of the results. The overall

performance of the RAFEM application also depends on the quality of those solutions

because it influences the total number of simulation iterations that will be needed. We

observed this for the MAGMA solver varying its tolerance, for which relaxing the tolerance



122

provided better results for the bigger mesh case, while the need for more iterations reduced

the gains for the smaller mesh. While iterative solvers like the MAGMA GMRES(m) natu-

rally fit for sparse equation systems, we observed that its performance changes throughout

the execution because of the numerical properties of the matrix change, and a single m

value does not provide the best results to reduce the number of iterations to converge for

GMRES during all simulation.

Since qr_mumps provided the best performance between the tested solvers, we

explored different parameters and techniques using the proposed visualization panels to

optimize it. The application has many configurable parameters that can affect the final

matrix and tree structure, total number of tasks, and those tasks efficiency. However, we

showed that it provided the best performance within the solvers, even only using CPUs

and its default configuration parameters. Furthermore, we show how a fine-tuning of these

parameters can improve performance even more. Besides its internal configurations, the

architecture also affects the performance, which also depends on the input problem. This

way, combining its lots of parameters, the architectural aspects, and the problem input,

finding the optimal configuration for a given problem is very difficult. Thus, our visual-

ization techniques support this optimization process by providing the task modeling and

the elimination tree structure overview. Another tool that would be great to find the op-

timal parameter set for a given input problem would be a simulation of the application,

enabling the exploration of a comprehensive parameter set with a low cost (TESSER et

al., 2017). However, for the simulation, effects like task interference and NUMA archi-

tectures must be considered as we saw how they affect performance. Lastly, an ultimate

approach would be providing an autotuning technique considering the application, run-

time, and architectural aspects (Bruel et al., 2019). However, finding the optimal values

for every given problem is very hard since they depend on many factors (LOPEZ, 2015).
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7 CONCLUSION

With the ease of programming and flexibility for performance portability over

heterogeneous systems provided by the task-based paradigm, its use nowadays is widely

adopted for high-performance applications. With the runtime system helping in many

responsibilities like memory management, data coherence, and dynamic scheduling, it

takes a crucial role in application performance and execution behavior, where many other

aspects can impact performance. Thus, a process of continuous performance analysis

throughout the development of a parallel application is necessary to attain high perfor-

mance. The visual performance analysis is a well-established technique for guiding such

a process. However, it needs to keep evolving to fulfill analysts’ requirements considering

complex architectures and equally complex applications, aligning the developer’s appli-

cation point of view to performance metrics. Along with the task-based abstractions like

the DAG representation of an application, other algorithmic-specific characteristics like

the irregularity of tasks and structures like the elimination tree for parallel direct sparse

factorization methods should also be considered when analyzing performance. Sparse

solvers encompass such a variety of complex and extensively configurable applications,

for which the performance analysis represents a vital step for its development and for

tuning the configurations for specific architectures and set of parameters.

This work presents two main contributions to improve task-based application per-

formance analysis, a set of application-specific visualization panels with the novel elimi-

nation tree panel among them, and the automatic anomalous task classification for irreg-

ular tasks. This tree-based visualization enhances the performance information with the

algorithmic structure used in the application, aligning them to the performance metrics,

improving the understanding of application behavior. Furthermore, it includes a tech-

nique for enhancing the post-mortem analysis by providing an automatic classification of

anomalous tasks considering their irregular theoretical cost, task type, and computational

resource type to predict the expected duration. All these contributions are part now of the

StarVZ and are publicly available.

We validate the usefulness of the proposed techniques within the task-based sparse

solver qr_mumps using a set of test workload matrices and included qr_mumps in a real

simulation application scenario. These strategies were evaluated considering different ar-

chitectures, runtime, and application configurations. We could observe the impact of

different parameters in the application relating them to the tree structure, like the memory
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consumption threshold, scheduling algorithms, task priorities, and ordering algorithms.

The anomalous task detection mechanism revealed four different sources of task anoma-

lies: (i) peaks of task submissions, (ii) tracing system overhead, (iii) numerical content

of task’s data block generating denormal numbers, and (iv) the task L3 cache misses. We

investigated a simple technique to mitigate the last case effect from these experiments,

which we found out to be caused by cache interference when running cache-sensitive

tasks in parallel. We proposed reducing the concurrency for the do_subtree tasks by

restricting their scheduling context to a few cores. This interference reduction improved

the execution time by 24% just by doing this, accelerating the tasks execution. Given

this anomalous task behavior source and the possibility of performance gain, more robust

techniques can be explored to gain performance in these cases.

These strategies were also applied along with a study for accelerating the RAFEM

application by using parallel solvers. This study included solver tuning parameters, a de-

tailed performance analysis over the application point of view using tracing techniques,

and a numerical analysis to assess the solution provided by the different solvers. The

qr_mumps application outperformed the iterative GMRES(m) solver from the MAGMA

library and another sparse QR solver from the cuSOLVER library. While all solvers were

able to accelerate the application, the MAGMA solver presented unstable behavior through-

out the simulation iterations. It increased the time-to-solution, revealing that the starting

configuration, initially good, no longer provided the best performance, implying the use

of an adaptative m parameter for the GMRES(m) solver. While MAGMA was able to keep

the same speedup value for the bigger and the smaller test case, the cuSOLVER reduced

the speedup value for the bigger mesh case from 9× to 5×, suggesting that its QR solver

does not scale well for bigger problems. However, for qr_mumps, the speedup was in-

creased for the bigger mesh case, reaching values up to 40×. We used our performance

analysis techniques for qr_mumps for the bigger mesh in the Hype machine, where we

improved the speedup from 31.4× to 39.6×, proving the usefulness of qr_mumps and

how adjusting its parameters can significantly improve performance, even when the total

cost for the factorization rises but it is composed of more performance efficient tasks.

Future work includes refining and proposing other visualization panels and perfor-

mance models, improving the scalability of the elimination tree visualization by grouping

tree nodes as did for the pruned nodes, and expanding a tree node within the tree, show-

ing its computational tasks. Also, one could apply the presented techniques to analyze

other elimination-tree task-based applications such as pastix. Furthermore, an interactive
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visual approach can also be beneficial for the visual performance analysis process. In the

anomalous detection behavior, studies to automatize and explore the relation between the

tasks duration, GFlops, and cache miss, for example, can be explored with techniques

like a multiple regression model. Lastly, a way to ease or automatize finding optimal

parameters for qr_mumps would be quite impressive, along with the ability to consider

task interference in the scheduling plus mapping the tree structure over the underlying

architecture.

7.1 Publications
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(HPCS). Barcelona, Spain (Virtual/Online event). (accepted)
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CAD), 20. , 2019, Campo Grande. Porto Alegre: Sociedade Brasileira de Com-

putação, 2019 . p. 25-36. DOI: <https://doi.org/10.5753/wscad.2019.8654>.
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APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS

A adoção do paradigma de programação baseada em tarefas está sendo ampla-

mente utilizada no contexto de computação de alto desempenho devido à sua capacidade

de simplificação na programação, e pela sua habilidade de prover portabilidade de de-

sempenho. Isso graças ao sistema de runtime, que assume responsabilidades como o

gerenciamento dos dados e o escalonamento das tarefas. Este paradigma é flexível e

se adapta a arquiteturas heterogêneas, que são hoje onipresentes em supercomputadores,

sendo suportado por diversas bibliotecas e interfaces de programação paralela (DAGUM;

MENON, 1998; AUGONNET et al., 2011; WILLHALM; POPOVICI, 2008; GAUTIER

et al., 2013; FRIGO; LEISERSON; RANDALL, 1998; DURAN et al., 2011). A análise

de desempenho de tais aplicações é uma etapa fundamental e complexa, que deve consi-

derar os aspectos específicos deste paradigma, como a representação da aplicação como

um grafo acíclico dirigido, para guiar uma análise voltada para as tarefas. Assim como

para análises envolvendo o paradigma baseado em tarefas, também devemos considerar

aplicações que usam estruturas específicas que definem e moldam a sua execução, como

o caso da estrutura da árvore de eliminação usada no método multifrontal. Considerando

estes aspectos, conseguimos alinhar as abstrações e estruturas usadas no desenvolvimento

de um método ou modelo de programação com as informações obtidas sobre o desempe-

nho de uma aplicação.

Este trabalho apresenta três principais contribuições. A primeira consiste em es-

tratégias voltadas para a melhoria do processo de análise de desempenho de aplicações

baseadas em tarefas com comportamento irregular. A segunda é um ocnjunto de técnicas

de visualização de desempenho específicas considerando a estrutura de árvores de eli-

minação, que são o alicerce de métodos diretos paralelos para a solução de sistemas de

equações lineares. Estes métodos de análise foram desenvolvidos na ferramenta StarVZ

(PINTO et al., 2018) e avaliados usando a aplicação qr_mumps (AGULLO et al., 2016),

que implementa o método de fatoração QR multifrontal. Já a terceira contribuição con-

siste em um estudo sobre o uso de diferentes solvers esparsos em uma aplicação de simu-

lação.

Mecanismo de Detecção de Tarefas Anômalas: A primeira contribuição é um meca-

nismo para detecção automática de anomalias de desempenho entre as tarefas da aplica-

ção. Para isto, foram utilizados e avaliados diferentes técnicas e modelos de regressão,

baseando-se no custo teórico de operações de ponto flututante destas tarefas para explicar
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a sua duração, possibilitando assim capturar a irregularidade do custo das tarefas em um

modelo. Usamos um modelo de regressão sobre uma transformação usando a função log

para a variável preditora e a variável resposta, a fim de contornar o efeito de heteroscedas-

ticidade dos dados. Um exemplo deste modelo é representado na Figura A.1 (A), onde as

linhas pontilhadas vermelhas representam os limites superior e inferior de predição con-

siderando um intervalo de confiança de 95%. As tarefas marcadas como anomalias são

aquelas em que a duração excede o intervalo de predição superior. Durante os experimen-

tos, notamos que para alguns casos o uso de somente um modelo se mostrou insuficiente

para representar o comportamento das tarefas. Assim, consideramos o uso de uma mis-

tura finita de modelos de regressão, representado em (B), onde usamos dois modelos para

agrupar e representar as tarefas de uma execução.

Figura A.1 – Modelo de regressão com transformação logarítmica utilizado para a classificação
de tarefas anômalas (A), uso de múltiplos modelos para a representação do comportamento de
tarefas (B), e a representação da computação da árvore de eliminação ao longo do tempo (C).

A B
C

Fonte: O Autor

Com a técnica de detecção de anomalias pudemos detectar quatro diferentes fontes

de anomalias dentre as tarefas: (1) durante picos de submissões de tarefas, (2) sobrecarga

do sistema de rastreamento, (3) conteúdo numérico dos blocos de dados de uma tarefa,

gerando números desnormalizados, e (4), o aumento do número de cache misses no nível

L3 causado pela interferência de tarefas concorrentes. Neste último caso, pudemos de-

tectar o momento em que essas anomalias ocorriam e exploramos uma abordagem para

reduzir a interferência causada por tarefas sensíveis a misses na cache L3. Para isto, res-

tringimos a execução de um tipo de tarefa a um número menor de CPUs, o que reduziu o

tempo de execução de um dos casos de teste em até 24%, onde havia uma interferência

significativa.

Métodos de Visualização para Análise de Desempenho: A segunda contribuição na

parte de análise de desempenho é ilustrada na Figura A.1 em (C), onde podemos observar
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o painel de visualização da computação da estrutura da árvore de eliminação ao longo do

tempo. As linhas representam a estrutura hierárquica da árvore e as cores em gradiente a

taxa de uso dos recursos computacionais dedicados à computação de um nó específico da

árvore. Com esta técnica, é possível visualizar as decisões de escalonamento em relação à

árvore de eliminação, possibilitando investigar o impacto de diferentes parâmetros a nível

do sistema de runtime e de aplicação na computação de sua estrutura. Exploramos aspec-

tos como a restrição no consumo de memória, diferentes algoritmos de escalonamento e

reordenamento, alinhando a estrutura principal do método multifrontal ao desempenho da

aplicação, o que aproxima a análise de desempenho do ponto de vista de especialistas e

desenvolvedores.

Estudo de Solvers Paralelos na Aceleração de uma Simulação: A terceira contribuição

deste trabalho foi o uso e análise de solvers paralelos na aceleração de uma aplicação de

simulação computacional, o RAFEM (JIANG et al., 2010). Essa aplicação usa o método

dos elementos finitos para a simulação de um procedimento médico usado no tratamento

de alguns casos de câncer de fígado. A simulação consiste num laço principal que avança

no tempo de simulação. Onde para cada passo de simulação, se monta e resolve um sis-

tema de equações representado por uma matriz esparsa, constituindo a parte mais custosa

do programa. A parte de montagem do sistema já foi paralelizada usando GPUs em um

trabalho anterior (SCHEPKE; MILETTO, 2020). O presente trabalho explora o impacto

no desempenho e na qualidade da solução numérica ao se usar diferentes bibliotecas para

obter a solução do sistema de equações.

Comparamos as bibliotecas cuSOLVER e MAGMA que fornecem solvers acelera-

dos por GPUs, e também incluímos a biblioteca qr_mumps. Foram exploradas dife-

rentes configurações para estas bibliotecas, a fim de termos uma comparação mais justa

entre o desempenho das diferentes bibliotecas ao usar a configuração com o melhor de-

sempenho para cada uma. Realizamos uma série de experimentos usando duas malhas

de elementos finitos de tamanhos diferentes. Usando técnicas de rastreamento com a bi-

blioteca Score-P, caracterizamos o desempenho da aplicação em três diferentes regiões:

montagem, cópias de memória, e a obtenção da solução do sistema. Observamos um

comportamento estável para o tempo de solução ao longo da execução da simulação para

as bibliotecas cuSOLVER e qr_mumps, e um comportamento variável para a biblioteca

MAGMA usando o solver iterativo GMRES(m), revelando a necessidade de se recalibrar os

parâmetros do método ao longo da execução. Para a biblioteca cuSOLVER, foi detectada

uma falta de escalabilidade, pois o nível de aceleração da biblioteca comparado com a
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versão sequencial da aplicação foi menor para o caso com a malha maior. A biblioteca

qr_mumps apresentou os maiores níveis de aceleração, chegando a ser até 40 vezes mais

rápida que a simulação sequencial, reduzindo o tempo de espera por resultados de 16

horas para 23 minutos, mantendo a qualidade da solução numérica.

Ainda realizamos uma análise detalhada do desempenho do qr_mumps dentro

da aplicação RAFEM, onde, usando as técnicas de visualização e análise, pudemos iden-

tificar fontes de ineficiência e contorná-las através de configurações na plataforma e na

biblioteca, aumentando a aceleração de um dos casos estudados de 31.4 vezes para 39.6

vezes. Essa aceleração atingida mostra o valor de se ter uma biblioteca construída sobre

um sistema de runtime, altamente configurável, e do uso de técnicas específicas de análise

de desempenho para encontrar a configuração mais adequada da aplicação, melhorando o

seu desempenho.

Conclusão: A série de experimentos realizados neste trabalho demonstram a usabilidade

das técnicas propostas, e permitiram investigar e identificar cenários onde o desempenho

é prejudicado. Como trabalhos futuros, destacamos melhorias na escalabilidade do painel

de visualização da árvore de eliminação para o tratameto de casos com árvores formadas

por milhares de nós, e o uso de estratégias mais sofisticadas para a redução de interferência

entre tarefas sensíveis a cache misses, como o uso de escalonadores que consideram este

efeito (GUO et al., 2020) e o mapeamento da estrutura da árvore sobre a arquitetura alvo.

Além disso, explorar o uso das técnicas propostas em outras aplicações como o PaStiX

podem gerar resultados interessantes.
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