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Abstract: A sensor is a device used to gather information registered by some biological, physical
or chemical change, and then convert the information into a measurable signal. The first biosensor
prototype was conceived more than a century ago, in 1906, but a properly defined biosensor was only
developed later in 1956. Some of them have reached the commercial stage and are routinely used
in environmental and agricultural applications, and especially, in clinical laboratory and industrial
analysis, mostly because it is an economical, simple and efficient instrument for the in situ detection
of the bioavailability of a broad range of environmental pollutants. We propose a narrative review,
that found 32 papers and aims to discuss the possible uses of biosensors, focusing on their use in the
area of occupational safety and health (OSH).

Keywords: occupational medicine; biosensors; ergonomics; health and safety; nanotechnology;
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1. Introduction

A sensor is a device used to gather information registered by some biological, physical or chemical
change, and then convert the information into a measurable signal. Typically, it contains a recognition
element and a transducer. Electrochemical biosensors, as a subclass of biological sensors, consist of a
biological sensing element and an electrochemical transducer [1]. A biosensor is an analytical device
which converts a biological response into an electrical signal, while the term “biosensor” is often used
to cover chemical sensor devices used in order to determine the concentration of substances and other
parameters of biological interest, even when they do not utilize a biological system directly (Figure 1).

The first chemical sensor that could be considered as a biosensor prototype was conceived
about a century ago in 1906, but a properly defined biosensor was only developed in 1956 by
Clark et al. Clark subsequently became the father of biosensors because he was able to demonstrate
an amperometric enzyme electrode for glucose detection later in 1962. Guilbault and Montalvo
implemented a potentiometric biosensor in 1969 by using glass electrodes. Interestingly, Yellow
Spring Instruments (YSI) developed the first commercial biosensors in 1975 [2]. Another source of
interest in the field of research and development (R&D) is represented by three-dimensional (3D)
printing, first patented by Hull in 1986. Since then, numerous 3D printing techniques have been
developed. Later on, the concept of including cells into 3D printed constructs emerged, leading
to the development of 3D bioprinting [3]. To this end, four-dimensional (4D) bioprinting has been
developed using stimuli responsive biomaterials and cell traction forces to make structurally dynamic
tissue constructs [3]. Electrochemical biosensors are widely developed, and some of them have
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reached the commercial stage and are routinely used in environmental and agricultural applications,
and especially, in clinical laboratory and industrial analysis [1]. This new technology allows the design
of analytical systems, which include a combination of advantages in terms of reduced time-to-result,
automation and miniaturization, and consequently portable and user-friendly system platforms for in
field high-throughput analysis, detection of a single analyte, as well as simultaneous multi-analyte
testing [4]. Electrochemical biosensors can provide large amounts of data in simple, rapid, automated,
and relatively inexpensive processes [5,6]. The research, development and use of these and other new
techniques, could improve monitoring of environmental pollution and its effects on human health [5].
Toxins in the environment are typically associated with detrimental health outcomes and loss of
ecological diversity; therefore, in this scenario, fast and accurate detection of pollutants is pivotal
to reduce these threats. Although conventional detection techniques for environmental pollution
using physical chemistry methods show a certain degree of sensitivity and specificity, there are still
many challenges that limit their practical application, such as expensive equipment and complicated
procedures, in addition to long waits for detection [5,7]. Since Sanseverino et al. reported on the
design of a whole cell-based biosensor for naphthalene detection in 1990, it has become commonplace
for whole cell-based biosensors to be used for bioavailability detection and toxicity assessment of
contaminants as these biosensors have been shown to be economical, simple and efficient for the in
situ detection of a broad range of environmental pollutants [7]. These biosensors can be classified
into three types based on differences in their molecular, cellular and tissue sensing components [7].
The first ones are the molecular-based biosensors, biological active substances such as enzymes, DNA,
antigens, antibodies and biofilms as the reporter element. They have high selectivity but expensive
macromolecule isolation costs, limited detection capability and short useable lifetime of the identifying
molecules. Cellular and tissue sensing biosensors, on the other hand, record information related to the
pharmacology, cell physiology and toxicology. Because of the obvious advantages of whole cell-based
biosensors such as their good sensitivity, high selectivity and their capability for high-throughput in
situ detection, they have been successfully applied to fields such as environmental monitoring, food
analysis, pharmacology and drug screening [7]. Nowadays there are different fields of applications
for those biosensors, from high-performance liquid chromatography (HPLC) to a whole cell-based
biosensor for detection of Pseudomonas putida (BMB-PL), to determination of phenanthrene (PHE)
added to red soil samples [7]. Another study, realized by Pasi et al., also tested the bioavailability of
lead (Pb) and copper (Cu) concentrations in natural soil using a similar bioluminescent whole cell
biosensor, reporting results that were consistent with the results demonstrated by the PHE study;
a much higher selectivity was obtained using the whole cell-based biosensor [7]. Recently, a speaker
dimension-like biosensor prototype was created for a laptop, controlled by simply plugging in a
smartphone. The “two3” device is capable of multiplexed detection of six nucleic acid targets per
run. Tests are analyzed onboard in real time, by simply popping open the top, adding sample tubes,
pressing start to run the test, and instantly reading the results on the smartphone display [8]. Those
devices are also used for analysis of pyrethroid insecticides, the use of which has increased over the
last decades, implicating serious concerns about human health. Pyrethroid insecticides are classified
as potential environmental endocrine disrupters [9]. Workers such as farmers, pesticide fertilizer
spreaders, and manufacturers may be professionally exposed via inhalation and dermal contact [9].
Compared to conventional chemically based analysis which are more expensive, time-consuming
and require a specialized laboratory [7], these whole cell biosensors represent a real-time, rapid and
unique diagnosis tool, in order to guarantee an improved public health policy, also with a return in
occupational health. The new era of the use of biosensors for diagnosis, monitoring and follow-up
treatment is already in the general medicine but what are the possible advancements especially for use
in occupational medicine? Could these devices provide a new way to help workers’ health?
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Figure 1. Scheme of a standard biosensor. The biological part is either integrated or closely associated
with the physical transducer, and behaves as a recognition element, capable to detect a specific biological
analyte, thus generating a measurable signal.

2. Materials and Methods

We propose a narrative review of the literature. The choice for this type of review was carried out
in order to provide a broader search of the existing literature and a comprehensive description of a
given theme, allowing the identification of gaps in scientific knowledge.

The PICO strategy was performed as follows:

• Problem: Workers monitorization;
• Interest: Use of biosensors;
• Context: Occupational health;
• Outcome: Possible use in Occupational Safety and Health (OSH).

The strategy research, based on PubMed, was defined as follows:

(((((biosensors[Title/Abstract]) OR bioprobes[Title/Abstract]) OR wearable device[Title/Abstract])
OR smartwatch[Title/Abstract])) AND (((((((((((workplace[Title/Abstract]) OR occupational
settings[Title/Abstract]) OR occupational medicine[Title/Abstract]) OR occupational
health[Title/Abstract]) OR workers[Title/Abstract]) OR job task[Title/Abstract]) OR
work[Title/Abstract]) OR worker health[Title/Abstract]) OR work environment[Title/Abstract])
OR environmental exposure[Title/Abstract]) OR exposure assessment[Title/Abstract])

We obtained 120 search results. As inclusion criteria we applied research filters, namely articles
with abstract or full production available online and open access in the period between 2010–2019.
We excluded not original articles, articles not related to the theme and that did not answer the research
question as identified in the PICO criteria. After applying the exclusion criteria, 32 articles were
selected from the 120 search results, answering the review question, as reported in Figure 2. The survey
was conducted in November 2019.

We also tried to run a research on EMBASE with another ad hoc string:

(“worker” / exp OR “laborer” OR “laborer” OR “worker”) AND (“biosensor” / exp OR “biosensor”
OR “biosensors” OR“ sensor, bio ”) AND (“ occupational health ”/ exp OR“ health, occupational
“OR“ occupational fitness” OR “occupational health” OR “professional health”) AND “occupational
health” / exp

We obtained only 4 search results with no article matching our PICO criteria.
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I ☑ 

Figure 2. Research strategy flow-chart.

3. Results

Just 32 articles, summarized in Table 1, including key messages, met the PICO criteria adopted for
this narrative review, as they are eligible for environmental and individual monitoring thanks to the
use of biosensors within the occupational health and safety process.

Table 1. Research strategy selected articles.

Title Year 1st Author Method Key Messages PICO
Criteria

1 Disease-Related Detection with
Electrochemical: A Review [1] 2017 Huang Y Narrative

review

Disease-related
detection with
electrochemical

biosensors

P 2
I V

C V
O 2

2

A Review on Carbon
Nanotubes in Biosensor

Devices and their Applications
in Medicine [2]

2018 Sireesha M Narrative
review

Carbon nanotubes
(CNTs) biosensors

P 2
I V

C V
O 2

3
Multiplex Biomarker Analysis

Biosensor for Detection of
Hepatitis B Virus [3]

2015 Xu H Scientific report

In vitro study
protein biosensor for
the detection of the

hepatitis B virus (HBV)

P 2
I V

C V
O 2

4

Toward the Development of
Smart and Low Cost

Point-of-Care Biosensors Based
on Screen Printed Electrodes [4]

2015 Ahmed MU Narrative
review

Biosensor applications
in environmental

analysis

P 2
I V

C V
O 2

5 Biosensor and Enviromental
Health [5] 2012 Preedy VR

Pattel VB
Book

(state-of-the-art)
General information -

history

P 2
I V

C 2
O V

6

How cutting-edge technologies
impact the design of

electrochemical (bio)sensors for
environmental analysis. A

review [6]

2016 Arduini F Narrative
review

Screen printed
electrodes

P 2
I V

C V
O 2

7

The Application of Whole
Cell-Based Biosensors for Use

in Environmental Analysis and
in Medical Diagnostics [7]

2017 Gui Q Narrative
review

Whole cell-based
biosensors in the areas

of pollution detection in
environmental and in

biomedical diagnostics

P V
I V

C 2
O V

8 Technology features - Pocket
laboratories [8] 2017 Perkel JM Scientific report

Mobile phone use as
laboratory-based

science

P V
I V

C 2
O V
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Table 1. Cont.

Title Year 1st Author Method Key Messages PICO
Criteria

9

Immunoassays and Biosensors
for Monitoring Environmental

and Human Exposure to
Pyrethroid Insecticides [9]

2011 Ahn KC Narrative
review

Immunochemical
approaches for the

detection of pyrethroid
insecticides

P 2
I V

C V
O 2

10

Paper Electrodes for
Bioelectrochemistry:

Biosensors and Biofuel Cells
[10]

2015 Desmet C Narrative
review

Electrochemical paper-
based biosensors

P 2
I V

C 2
O V

11

Inkjet Printing for Biosensor
Fabrication: Combining

Chemistry and Technology for
Advanced Manufacturing [11]

2012 Li J Narrative
review

Inkjet biosensor
fabrication

P 2
I V

C 2
O V

12

Plug-and-Play Metabolic
Transducers Expand the

Chemical Detection Space of
Cell-Free Biosensors [12]

2019 Voyvodic PL Narrative
review

Cell-free
transcription/translation

(TXTL) systems

P 2
I V

C 2
O V

13 Detection of Stress Using
Biosensors [13] 2018 Singh SA Clinical trial

A sensor based
biological method of
stress measurement

P V
I V

C V
O 2

14 Point of Care Testing: The
Impact of Nanotechnology [14] 2016 Syedmoradi

L
Narrative

review
Point-of-care (POC)
diagnostic devices

P 2
I V

C 2
O V

15
Printed Organo-Functionalized

Graphene for Biosensing
Applications [15]

2016 Wisitsoraat
A

Narrative
review

Organo-functionalized
graphene and printed

biosensor

P 2
I V

C 2
O V

16
Advances in Point-of-Care
Technologies for Molecular

Diagnostics [16]
2017 Zarei M Narrative

review

Miniaturization,
nanotechnology, and
microfluidics, along

with developments in
cloud-connected

point-of-care (POC)
diagnostics

technologies

P 2
I V

C 2
O V

17
Advances in Molecularly

Imprinting Technology for
Bioanalytical Applications [17]

2019 Li R Narrative
review

Molecularly Imprinted
Polymers (MIPs)
bioprobes and

biosensors

P 2
I V

C 2
O V

18

Fusion of Heart Rate,
Respiration and Motion

Measurements from a Wearable
Sensor System to Enhance

Energy Expenditure Estimation
[18]

2018 Lu K Experimental
clinical trial

A new method that
integrates heart rate,

respiration, and motion
information obtained

from a wearable sensor
system to estimate
energy expenditure

P V
I V

C V
O 2

19

Design and Fabrication of a
BiCMOS Dielectric
Sensor for Viscosity

Measurements: A Possible
Solution for Early Detection of

COPD [19]

2018 Zarrin PS Clinical trial

Complementary
metal-oxide

semiconductor (CMOS)
based dielectric sensor

for the real-time
monitoring of sputum

viscosity as early
diagnosis of COPD

P 2
I V

C 2
O V

20

Validation of the AppleWatch
for Heart Rate Variability

Measurements during Relax
and Mental Stress in Healthy

Subjects [20]

2018 Hernando D Clinical trial
Validation of the

AppleWatch in terms of
patient monitorization

P 2
I V

C 2
O V
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Table 1. Cont.

Title Year 1st Author Method Key Messages PICO
Criteria

21

Thermal Energy Harvesting on
the Bodily Surfaces of Arms

and Legs through a Wearable
Thermo-Electric Generator [21]

2018 Proto A Experimental
clinical trial

Measurements on
thermal energy

harvesting through a
wearable

thermo-electric
generator (TEG)

P V
I V

C V
O 2

22
Coverage of Emotion

Recognition for Common
Wearable Biosensors [22]

2018 Hui T Experimental
clinical trial

Emotion recognition
using common

off-the-shelf wearable
biosensors

P 2
I V

C 2
O V

23

Mining the Potential of
Label-Free Biosensors for In

Vitro Antipsychotic Drug
Screening [23]

2018 Kilik K Experimental
clinical trial

Electrochemical
biosensors for the

screening of
antipsychotic drugs

(APDs)

P 2
I V

C 2
O V

24
Re-usable Electrochemical

Glucose Sensors Integrated into
a Smartphone Platform [24]

2018 Bandodkar
AJ

Experimental
clinical trial

New smartphone-based
reusable glucose meter

P 2
I V

C 2
O V

25
Emerging Strategies and

Applications of Layer-by-Layer
Self-Assembly [25]

2014 Rawtani D Narrative
review

Layer-by-layer
self-assembly

P 2
I V

C 2
O V

26

Feasibility of a Secure Wireless
Sensing Smartwatch
Application for the

Self-Management of Pediatric
Asthma [26]

2017 Hosseini A Experimental
clinical trial

Real-time asthma attack
through physiological

and environmental
sensors

P 2
I V

C 2
O V

27

Antibody-Conjugated Gold
Nanoparticle-Based
Immunosensor for

Ultra-Sensitive Detection of
Troponin-T [27]

2014 Jacobs M In vitro study
In-vitro study

nanoparticles for
detection of troponin

P 2
I V

C 2
O V

28

Evaluating the Effectiveness of
Organizational-Level Strategies

with or without an Activity
Tracker to Reduce Office
Workers‘ Sitting Time: A

Cluster-Randomized Tria [28]

2016 Brakenridge
CL

Cluster-randomized
trial

Activity tracker to
reduce sitting amongst

office workers

P V
I V

C V
O 2

29
Health at Hand: A Systematic
Review of Smart Watch Uses
for Health and Wellness [29]

2016 Reeder B Systematic
review Smart watches

P 2
I V

C 2
O V

30
Estimation of Thermal

Sensation Based on Wrist Skin
Temperatures [30]

2016 Sim SY Experimental
clinical trial

Thermal sensation
estimation technology

based on wrist skin
temperatures

P 2
I V

C 2
O V

31

Photonics-on-a-Chip: Recent
Advances in Integrated
Waveguides as Enabling
Detection Elements for

Real-World, Lab-on-a-Chip
Biosensing Applications [31]

2011 Washburn
AL

Narrative
review

Grating-coupled,
interferometric,

photonic crystal, and
micro resonator

waveguide sensors.

P 2
I V

C 2
O V

32
Advances and Future

Perspectives in 4D
Bioprinting [32]

2018 Ashammaki
N

Narrative
review 4D bioprinting

P 2
I V

C 2
O V
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4. Discussion

The aim of environmental and personal toxicological monitoring and assessment is to determine
the effect of pollution on health. Traditionally, the diagnosis of disease was based on a single diagnostic
test. However, modern clinical practice bases the diagnosis of disease on the synthesis of data from
several sources [5].

Biosensors, compared to conventional chemically-based sensors, can provide real-time, rapid
and unique data [7] and they have a wide range of potential uses for personal toxicity testing
and environmental assessments [5], proving to also be useful in the area of occupational medicine,
to guarantee workers’ safety and health. They could be used, for example, for the detection of many
substances that workers are exposed to, such as organic noxae (e.g., bacterial toxins, mycotoxins and
hormones) and inorganic ones (e.g., pesticides, and heavy metals) [5].

It is widely known that personal toxicity testing, mostly used in occupational medicine, requires
rapid and accurate detection of a diverse range of chemicals, often present in small traces, and analysis
of the interactions of these noxae with human health. This remains a formidable challenge [5].

Currently, smartphones are used for a wide range of scientific and medical purposes [8]. Mechanical
engineer David Erickson and nutritional scientist Saurabh Mehta, both at Cornell University in Ithaca,
New York, have developed a smartphone-based system called the NutriPhone that can detect
micronutrients such as vitamin B12 and iron in blood [8]. Not only with smartphones, there are also
some studies that developed wearable devices, that can check heart rate, respiration, and accelerations
to estimate energy expenditure [18,30], emotion recognition [22] and includean activity tracker [28].

Smart watches are rapidly penetrating the health informatics research space. These studies for
health and wellness applications reported encouraging results but were characterized, mainly, by small
samples size. Smartwatch measurements, indeed, must be further validated in larger scale studies to
understand reliability of collected data [29].

Among the variety of biosensors available today, through physiological and environmental
sensors, it is possible to perform detection of real-time asthma attacks [26] as well as the diagnosis of
early COPD based on sputum viscosity [19] and, by using electrochemical biosensors, the screening of
antipsychotic drugs (APDs) can also be performed [23].

These types of devices, besides the uses already researched, could also be used for other forms of
monitoring, to protect the health of workers, helping also in the early diagnosis of work-related diseases
and subsequently allow the occupational physician to protect workers’ health against further risks.

The future of these new technologies is bright but there are some facts that still need to be
deepened. Most environmental samples tested contain a large number of pollutants as well as other
naturally occurring molecules that can mask the signal coming from the analyte of interest. Another
issue is the toxic nature of the samples, as these can contain heavy metals or organic pollutants,
and their presence can limit the choice of cells used on those microbes resistant to their action. Finally,
emission from whole cell-based sensors employed for extended periods of time can become unstable
over time as these cells undergo leakage or diffusion [7]. Careful studies should be undertaken to
evaluate their use in occupational medicine, as most analysis performed in this area may fit this sample
contamination requirement.

But, what can we expect in new advancements of these devices? Despite being a field already
well studied, the area related to biosensors is still on its journey and there is much more to be
developed besides increasing its applicability into several sectors. Some researchers are studying the
use of a portable whole cell biosensor system for environmental monitoring or even the fabrication
of specific and multifunctional biosensors for rapid and real-time detection in extreme unfriendly
environments [7]. Further studies for the advancement of these technologies should continue to be
carried out, especially in the area of occupational safety and health where there is still a lack of new
approaches for prevention and diagnosis.
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5. Conclusions

This narrative review has summarized advancements in the development of biosensors and their
possible applications. Machine learning can further increase the accuracy by extracting more features
from various biosensors. Future technology-supported interventions for health and wellness will
require the data collected from biosensors, which should be integrated with other sources of information.
Data, in fact, must be represented as meaningful information for health-related decision-making by
a range of stakeholders including patients, family members, health care providers, public health
professionals and, last but not least, policy makers.

The application of biosensors in the field of occupational health and safety is far from a reality.
The push of industry 4.0 has certainly confirmed a step forward, for example thanks to the extensive
use of wearable biometric sensors to monitor workers’ health, towards the application of biosensors.

We firmly believe that technology, if applied in compliance with ethical principles as well,
can contribute to improving the health and safety of workers, filling some gaps, such as for work in
solitude, with the consequent further reduction of occupational risks.

More research is needed to clarify the biosensors’ use in the occupational medicine area. These
studies will have to consider the differences in health disparities, health literacy and technology access,
influenced by demographic factors such as socioeconomic status, rural versus urban living situation,
gender, age, race and ethnicity.
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read and agreed to the published version of the manuscript.
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