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The LHC has released precise measurements of elastic proton-proton scattering that provide a unique
constraint on the asymptotic behavior of the scattering amplitude at high energies. Recent reanalyses of part
of these data indicate that the central values of some forward quantities would be different than initially
observed. We introduce correlation information between the original and the reanalyzed data sets in a way
suitable for a global fitting analysis of all data. The careful treatment of correlated errors leads to much less
stringent limits on the ρ uncertainty and sets up the stage for describing the forward data using a scattering
amplitude dominated by only crossing-even terms. In the light of these correlated data, we determine the
parameters of the soft Pomeron from the Regge theory. We use Born-level and eikonalized amplitudes. In
the Born-level case, we estimate the contribution of the double Pomeron exchange, while in the latter case
we investigate the role of the eikonalization in both the one- and two-channel models. The role of the
proton-Pomeron vertex form and of the nearest t-channel singularity in the Pomeron trajectory receives
particular attention. We discuss the implications of our results and present predictions for the total cross
section and the ρ parameter in proton-proton collisions at LHC and cosmic ray energies.
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I. INTRODUCTION

Diffractive processes account for a substantial fraction of
hadron-hadron total cross sections at high energies. These
processes, which include elastic scattering or single- or
double-diffractive dissociation, are characterized by the
presence of one or more large rapidity gaps, which in turn
were, for many years, usually associated with the exchange
of a colorless state having the quantum numbers of the
vacuum: the Pomeron (P). Recently, the TOTEM experi-
ment at the LHC released measurements at

ffiffiffi
s

p ¼ 13 TeV
of the ratio real to imaginary parts of the forward scattering
amplitude, namely, ρ ¼ 0.09� 0.01 and ρ ¼ 0.10� 0.01
[1]. These values, as compared with measurements at lower

energies and predictions from a wide variety of phenom-
enological models, suggest that a crossing-odd elastic term
may play a central role in soft interactions at high energies.
Since then, an intense debate has centered around the
asymptotic nature of the C-parity of the scattering ampli-
tude. Specifically, the TOTEM results have triggered an
extensive discussion on the question of whether or not
the combined behavior of σtot and ρ at high energies is a
manifestation of the so-called Odderon [2], the C ¼ −1
partner of the C ¼ þ1 Pomeron [3]. In the QCD language,
the Odderon can be associated to a colorless C-odd
t-channel state with an intercept at or near one [4,5].
However, recent reanalyses of the TOTEM results for the

Coulomb-nuclear interference (CNI) region have shown
that the values of ρ at

ffiffiffi
s

p ¼ 8 and 13 TeV may be larger
than those reported by the TOTEM Collaboration [6,7].
In one of these reanalyses [6], using the same nuclear
amplitude used by TOTEM but a modified formula for the
CNI term, the value ρ ¼ 0.123� 0.010 is obtained atffiffiffi
s

p ¼ 13 TeV; in the other [7], by means of a modified
version of the nuclear amplitude [8], the values ρ ¼ 0.135
and ρ ¼ 0.137 are obtained at

ffiffiffi
s

p ¼ 8 TeV, whereas
the values ρ ¼ 0.133 and ρ ¼ 0.134 are obtained at
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ffiffiffi
s

p ¼ 13 TeV. We remark at this point that in a global
fitting analysis we cannot simply choose any of these
results over another, nor choose all the results while
neglecting the systematic correlation between them. We
must also remember that correlation information is already
necessary in dealing with part of the original TOTEM data.
For example, the measurements of ρ at

ffiffiffi
s

p ¼ 13 TeV were
extracted from the same set of differential cross section data
and have their central values depending on different physics
assumptions. In this paper, we show that it is possible to
include correlated systematics and combine all these data in
a meaningful way. For this, we apply the standard pro-
cedure adopted by the Particle Data Group in treating
correlated errors [9]. As we will see, after the inclusion of
the correlated systematics, each measurement may be
treated as independent and, as a result, averaged as usual
with other data.
In this work, we are also interested in the effects of the

unitarization on the soft Pomeron parameters. Then after
fitting analyses using only Born-level scattering ampli-
tudes, we investigate the consequences of including
eikonalization in one-channel models. Finally, we repeat
our eikonal analyses taking into account only two-channel
amplitudes. It is worth remarking on the fact that, in
general, only one of these three approaches is usually
adopted as a default, that is, some authors focus specifi-
cally on Born-level calculations (by arguing that unitarity
violation only occurs far above the LHC energies), while
others focus solely on one-channel eikonal amplitudes.
The use of different procedures made results difficult to
compare. Hence, in this work, we adopt all these
approaches, making not only the comparison of the results
more transparent, but also allowing us to follow the
evolution of the Pomeron parameters during the transition
from Born-level to eikonalized amplitudes.
In summary, we have shown that the LHC data, after

the introduction of correlation information, provide a
unique constraint on the Pomeron parameters and allow
us to study its behavior more thoroughly since the
contribution of the Pomeron component to χ2 is abso-
lutely dominant in the LHC regime. Moreover, the small
value of α0P usually obtained from screened Regge
models indicates that the soft Pomeron may be treated
perturbatively, since in the Gribov Reggeon calculus
the mean transverse momentum of the partons is given
by hpTi ¼ 1=

ffiffiffiffiffiffi
α0P

p
[10,11]. This perturbative approach

raises the possibility for building a fundamental theory
for soft processes based upon QCD. Additionally, screen-
ing effects can be calculated in terms of a two-channel
eikonal model and again the correlated LHC data are
instrumental in determining the effects of the eikonali-
zation on the Pomeron parameters in both the one- and
two-channel models. Thus, given the central role that the
soft Pomeron plays in strong processes, its close scrutiny
continues to be a core task in hadron physics.

The outline of this paper is as follows. In Sec. II, we
introduce the Regge formalism used to model Born-level
amplitudes. Within this approach, we investigate the single
as well as the double Pomeron exchange. In Sec. III, we
investigate the role of the eikonalization procedure in
Regge amplitudes. We study both one- and two-channel
eikonal models. In Sec. IV, we discuss the PDG procedure
for treating correlated errors and present our results. In the
last section, we draw our results and conclusions.

II. BORN-LEVEL AMPLITUDES

In the soft regime, i.e., small t domain, diffractive
processes are described by Regge theory [12], in which
the high-energy behavior of the scattering amplitude is
described by singularities of the amplitude in the complex
plane of angular momentum j. In the simplest scenario,
the diffractive processes are driven by an isolated pole
at j ¼ αðtÞ, resulting in an elastic amplitude Aðs; tÞ
written in terms of the Regge pole trajectory αðtÞ, namely,
Aðs; tÞ ∝ sαðtÞ. If more than one pole contributes, the elastic
scattering amplitude is expressed in the s-channel as a
descending asymptotic series of powers of s,

Aðs; tÞ ¼
X
i

γiðtÞηiðtÞsαiðtÞ; ð1Þ

where γiðtÞ is the residue function and ηiðtÞ is the signature
factor. Each term in (1) represents a specific exchange in
the t-channel. From the optical theorem, the total cross
section reads

σtotðsÞ ¼
X
i

4πgisαið0Þ−1; ð2Þ

where gi ≡ γið0ÞImfηið0Þg. The Pomeron as it emerges
from fits to forward observables is called soft Pomeron.
The magnitude of its intercept plays a central role in
Regge theory, since the Pomeron is the pole with the largest
intercept, originally αPð0Þ ¼ 1. However, in order to
describe the observed increase of all hadronic total cross
sections with s, the Pomeron should have an effective
intercept such that αPð0Þ ¼ 1þ ϵ with ϵ > 0. This super-
critical intercept value is arrived at by taking into account,
in addition to Regge poles, multi-Pomeron cuts in the
j-plane.
It is well known that good descriptions of forward data

up to the Tevatron energy have been obtained by using a
linear Pomeron trajectory [13–17], namely, αPðtÞ ¼ 1þ
ϵþ α0Pt. The energy dependence of the total and diffractive
cross sections is driven by ϵwhile α0P determines the energy
dependence of the forward slopes. We must note, how-
ever, that ZEUS and H1 small-t data for exclusive ρ and ϕ
photoproduction call forth a rather nonlinear Pomeron
trajectory [18]. We shall see that the data with correlated
systematics allow us to address more effectively the
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question of linearity versus nonlinearity of the Pomeron
trajectory.
The forward Born-level Regge amplitude introduced

some time ago by Donnachie and Landshoff has two
contributions [13], one representing an effective single
Pomeron and the other representing the exchange of the
highest-spin meson trajectories (a2, f2, ω, and ρ). However,
more recent analysis has indicated that the assumption of
degeneracy of the mesons trajectories is not supported by
the forward data [14–16]. The best results are obtained with
a Born-level amplitude decomposed into three contribu-
tions,

ABornðs; tÞ ¼ APðs; tÞ þAþðs; tÞ þ τA−ðs; tÞ; ð3Þ

where τ flips sign when going from pp (τ ¼ −1) to p̄p
(τ ¼ þ1). The termAPðs; tÞ represents the exchange of the
Pomeron,Aþðs; tÞ the exchange of the Reggeons with C ¼
þ1 (a2 and f2), and A−ðs; tÞ that of the Reggeons with
C ¼ −1 (ω and ρ). Specifically, the amplitude for single
exchange is

Aiðs; tÞ ¼ β2i ðtÞηiðtÞ
�
s
s0

�
αiðtÞ

; ð4Þ

i ¼ P;þ;−, where βiðtÞ is the elastic proton-Reggeon
vertex, ηiðtÞ is the signature factor, and αiðtÞ is the Regge
pole trajectory. Here s0 is a mass scale usually chosen to be
s0 ¼ 1 GeV2. By comparing the Eqs. (1) and (4), it can
be seen that the residue function factorizes as γiðtÞ ¼ β2i ðtÞ.
The signature factor, which completely defines the phase of
the scattering amplitude, is given by [12]

ηiðtÞ ¼ −
1þ ξe−iπαiðtÞ

sinðπαiðtÞÞ
; ð5Þ

where ξ ¼ þ1 for the Pomeron and the Reggeons a2 and f2,
and ξ ¼ −1 for the Reggeons ω and ρ. Thus, the pp and p̄p
scatterings are described in terms of Pomeron, positive and
negative signature Regge exchange. However, in order to
simplify the numerical calculations involved in the forth-
coming eikonal analyses, we adopt in this work ηiðtÞ ¼
−e−iπ2αiðtÞ for even-signature trajectories and ηiðtÞ ¼ ie−i

π
2
αiðtÞ

for odd-signature ones [15]. The choice of these simplified
signatures does not affect our results since the numerical
integrals are strongly dominated by the region where t is
very small.
The positive-signature secondary Reggeons (a2 and f2)

are taken to have an exponential form for the proton-
Reggeon vertex,

βþðtÞ ¼ βþð0Þ expðrþt=2Þ; ð6Þ

and to lie on an exchange-degenerate linear trajectory of
form

αþðtÞ ¼ 1 − ηþ þ α0þt: ð7Þ

Similarly, the negative-signature secondary Reggeons (ω
and ρ) are described by the parameters β−ð0Þ, r−, η−,
and α0−.
For Pomeron exchange, we investigate two different

types of proton-Pomeron vertex and two different types of
trajectory, one of which being nonlinear. Our philosophy is,
using the standard statistical χ2 test, to evaluate the relative
plausibility of these vertices and trajectories in the light of
the LHC data, i.e., to consider different combinations of
βPðtÞ and αPðtÞ, and the effectiveness of these combina-
tions at describing the high-energy forward data. In the
first combination, referred to as “BI model,” we adopt an
exponential form for the proton-Pomeron vertex,

βPðtÞ ¼ βPð0Þ expðrPt=2Þ; ð8Þ

and a linear Pomeron trajectory,

αPðtÞ ¼ αPð0Þ þ α0Pt; ð9Þ

where henceforth we define αPð0Þ≡ 1þ ϵ. In the second
model, called “BII,” we adopt the exponential vertex (8)
and the nonlinear Pomeron trajectory [19–22]

αPðtÞ ¼ αPð0Þ þ α0Ptþ
m2

π

32π3
hðτÞ; ð10Þ

where

hðτÞ ¼ −
4

τ
F2
πðtÞ

�
2τ − ð1þ τÞ3=2 ln

� ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

p
− 1

�

þ ln
�
m2

m2
π

��
; ð11Þ

with τ ¼ 4m2
π=jtj, mπ ¼ 139.6 MeV and m ¼ 1 GeV. The

nonlinear term in the Pomeron trajectory comes from
the nearest t-channel singularity (a two-pion loop) [19].
In the above expression, FπðtÞ is the form factor of the
pion-Pomeron vertex, for which we take the standard pole
expressionFπðtÞ ¼ βπ=ð1 − t=a1Þ. The coefficient βπ spec-
ifies the value of the pion-Pomeron coupling and for this we
adopt the additive quark model relation βπ=βIPð0Þ ¼ 2=3.
In the third combination, called “BIII model,” we adopt the
nonlinear Pomeron trajectory (10) and the powerlike form
for the proton-Pomeron vertex [20–23]

βPðtÞ ¼
βPð0Þ

ð1 − t=a1Þð1 − t=a2Þ
; ð12Þ

where the free parameter a1 is the same as the one in the
form factor of the pion-Pomeron vertex FπðtÞ. The total
cross section, the elastic differential cross section, and the ρ
parameter are expressed in terms of the amplitude (3),
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σtotðsÞ ¼
4π

s
ImAðs; t ¼ 0Þ; ð13Þ

dσ
dt

ðs; tÞ ¼ π

s2
jAðs; tÞj2; ð14Þ

ρðsÞ ¼ ReAðs; t ¼ 0Þ
ImAðs; t ¼ 0Þ ; ð15Þ

where Aðs; tÞ ¼ ABornðs; tÞ.
It is important to notice that the Pomeron intercept

αPð0Þ ¼ 1þ ϵ is an effective power, valid over a limited
range of energies; otherwise, the forward amplitude
Aðs; t ¼ 0Þ would grow so large that unitarity bound would
be violated. Thus, the parameter ϵ represents not only the
exchange of a single Pomeron but also n-Pomeron
exchange processes, n ≥ 2 [12,24]. These multiple
exchanges must tame the rise of σtotðsÞ so that the break-
down of unitarity is avoided and, as a consequence, the
value of ϵ should decrease slowly with increasing s.
The search for a hint of unitarization breaking up to
LHC energies can be verified by investigating the role
of multiple Pomeron exchanges on the scattering ampli-
tude. Unfortunately, despite the advances in theoretical
understanding of the Pomeron in the last four decades, we
still do not know how to do it. Nevertheless, there is a
consensus that the contribution of the double Pomeron
exchange (PP) is negative and has energy dependence
sαPPðtÞ divided by some function of ln s [25], where

αPPðtÞ ¼ 1þ 2ϵþ 1

2
α0Pt: ð16Þ

Thus, the PP contribution is flatter in t than the
single P exchange, becoming more important for
higher values of t. In order to estimate an upper bound
on the ratio R≡ β2PPð0Þ=β2Pð0Þ, we add the phenomeno-
logical term

APPðs; tÞ ¼ −β2PPðtÞηPPðtÞ
�
s
s0

�
αPPðtÞ�

ln

�
−is
s0

��
−1

ð17Þ

to the amplitude (3), where ηPPðtÞ ¼ −e−iπ2αPPðtÞ and
βPPðtÞ ¼ βPPð0Þ expðrPt=4Þ. We include this double-
Pomeron exchange term in the model BI. This combination
is henceforth called BIþ PP model.

III. EIKONALIZED AMPLITUDES

A. One-channel amplitudes

As it was mentioned in the previous section, in the
case of Born-level amplitudes, the breakdown of unitarity
can be avoided by introducing the exchange series Pþ
PPþ PPPþ � � �. Although some general analytic proper-
ties of these multiple-exchange terms are known, it is less
clear how to carry out a full computation of them. On the

other hand, it is well established that eikonalization is an
effective procedure to take into account some properties of
high-energy s-channel unitarity. In practice, the unitarity of
the matrix S in impact parameter (b) representation implies
the relation [12]

Im hðs; bÞ ¼ jhðs; bÞj2 þ Ginelðs; bÞ; ð18Þ

where hðs; bÞ is the elastic profile function and Ginelðs; bÞ,
known as the inelastic overlap function or shadow profile
function, is the contribution from all inelastic channels. The
profile function hðs; bÞ is related to the elastic scattering
amplitude Aðs; tÞ by

Aðs; tÞ ¼
Z

∞

0

bdbJ0ðb
ffiffiffiffiffi
−t

p Þhðs; bÞ: ð19Þ

In this picture, we can think of the sum over all inelastic
channels as forming a shadow, which “generates”
elastic scattering. The unitarity relation (18) imposes a
limit on the elastic profile function, namely, 0 ≤
jhðs; bÞj2 ≤ Im hðs; bÞ ≤ 1, while eikonalization enforces
the so-called black-disc limit: Im hðs; bÞ ≤ 1=2. The
upper value 1=2 is due to the requirement of a maximal
absorption within the eikonal unitarization, in which
hðs; bÞ is written as

hðs; bÞ ¼ i
2
½1 − eiχðs;bÞ�; ð20Þ

with the eikonal function χðs; bÞ ¼ iΩðs; bÞ=2 being a
purely imaginary function in the limit s → ∞. In other
words, at high energies, the inelastic contribution, Ginel,
dominates and the scattering amplitude Aðs; tÞ is pre-
dominantly imaginary. In this regime, Ωðs; bÞ ≫ 1 and
Im hðs; bÞ ¼ 1=2. The eikonalization scheme prevents the
Froissart-Martin bound for σtotðsÞ from being violated. The
bound follows from the theorem which states that
σtotðsÞ ≤ C ln2 s, as s → ∞, where C is a constant [26].
The Froissart-Martin bound imposes a strict restriction on
the rate of growth of any total cross section. It is worth
mentioning that while the Froissart-Martin bound holds for
all eikonalized amplitudes studied in this paper, it is not
necessarily synonymous with total unitarization: it was
shown some time ago that any model for input Pomeron
with intercept αPð0Þ > 1 but with linear trajectory is
affected by small asymptotic violations of unitarity [27].
We also notice that eikonal unitarization corresponds to one
of the two solutions of the unitarity equation

hðs; bÞ ¼ 1

2

h
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4Ginelðs; bÞ

p i
; ð21Þ

the one with minus sign. Choosing the plus sign in (21), we
get the alternative solution [28]
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hðs; bÞ ¼ Im χ̃ðs; bÞ
1 − iχ̃ðs; bÞ ; ð22Þ

where χ̃ðs; bÞ is the analogue of the eikonal χðs; bÞ. In this
approach, hðs; bÞmay exceed the black disc limit. Thus, we
see that different unitarization procedures are possible in b
representation. In this paper, we follow with the eikonal-
ization procedure: the eikonal function is related to the
Born amplitude (3) by the Fourier-Bessel transform

χðs; bÞ ¼ 1

s

Z
∞

0

qdqJ0ðbqÞABornðs; tÞ; ð23Þ

where t ¼ −q2; its inverse transform leads to the eikonal-
ized amplitude in ðs; tÞ-space,

Aeikðs; tÞ ¼ is
Z

∞

0

b dbJ0ðbqÞ½1 − eiχðs;bÞ�; ð24Þ

to be used in the calculation of the observables. Hence, the
total cross section, the elastic differential cross section, and
the ρ parameter are calculated using Eqs. (13)–(15) with
Aðs; tÞ ¼ Aeikðs; tÞ. In the calculation of the eikonal
function (23), the input amplitudes (ABornðs; tÞ) are simply
the ones related to BI, BII, and BIII models. These one-
channel eikonal models are referred to, respectively, as OI,
OII, and OIII models.

B. Two-channel amplitudes

As it was mentioned in Sec. I, an effective Pomeron
intercept αPð0Þ > 1 is obtained taking into account multi-
Pomeron cuts (moving branch points) in the j-plane. These
singularities are required in order to assure s-channel
unitarity. In the models considered in the preceding text,
we have not accounted for the possibility of diffractive
proton excitation in intermediate states, such as p → N�.
However, it is possible incorporate the s-channel unitarity
with elastic and a low mass intermediate stateN� by using a
two-channel eikonal approach. The Good-Walker formal-
ism [20,21,29–31] provides an elegant and convenient
form to incorporate p → N� diffractive dissociation. In
this approach, we introduce diffractive eigenstates jϕii that
diagonalize the interaction matrix T (where S ¼ 1þ iT).
As a result, the incoming hadron wave functions jhi (in our
case the “beam” and “target” proton wave functions) can be
written as superpositions of these diffractive eigenstates,
namely,

jhibeam ¼
X

aijϕii; jhitarget ¼
X

akjϕki: ð25Þ

Since we need at least two diffractive eigenstates, in a two-
channel eikonal model, we have i, k ¼ 1, 2. The extension
to n-channel eikonal models is straightforward; however, it
is well known that a two-channel model is sufficient to
capture the single- or double-diffractive dissociation

behavior very accurately [20–23,32–34]. In this paper,
we adopt a two-channel eikonal model in which the
Pomeron couplings to the two diffractive eigenstates k are

βP;kðtÞ ¼ ð1� γÞβPðtÞ; ð26Þ

i.e., the eigenvalues of the two-channel vertex are 1� γ,
where γ ≃ 0.55 [21,22]. This value is in accordance with
p → N� dissociation observed at CERN-ISR energies,
more specifically, it is the value required in order to
obtain the experimental value of the cross section for
low-mass diffraction measured at

ffiffiffi
s

p ¼ 31 GeV, namely,
σlowMSD ≃ 2 mb.
Since each amplitude has two vertices, the forward

observables are controlled by an elastic scattering ampli-
tude with three different exponents,

Aeikðs; tÞ ¼ is
Z

∞

0

bdbJ0ðbqÞ
�
1 −

1

4
eið1þγÞ2χðs;bÞ

−
1

2
eið1þγ2Þχðs;bÞ −

1

4
eið1−γÞ2χðs;bÞ

�
: ð27Þ

In the computation of the eikonal functions employed for
calculating the amplitude above, again the input Born-level
amplitudes are the ones related to BI, BII, and BIII models.
These two-channel eikonal models are referred to, respec-
tively, as TI, TII, and TIII models.

IV. CORRELATED EXPERIMENTAL
SYSTEMATICS

In our analyses, we carry out global fits to forward pp
and p̄p scattering data above

ffiffiffi
s

p ¼ 10 GeV and to elastic
pp differential scattering cross section data at LHC
energies. Specifically, we fit to the total cross section
σpp;p̄ptot , the ratio of the real to imaginary part of the forward
scattering amplitude ρpp;p̄p and to the elastic differential
cross section dσpp=dt at

ffiffiffi
s

p ¼ 7, 8, and 13 TeV with jtj ≤
0.1 GeV2 (this range for jtj is enough for an appropriate
evaluation of α0P). We use data sets compiled and analyzed
by the Particle Data Group (PDG) [9] as well as the recent
data at LHC from the TOTEM Collaboration [1,35–42],
with the statistic and systematic errors added in quadrature.
The PDG database is currently the standard data source

used by most research papers in the field. In order to ensure
the consistency between TOTEM and PDG information,
we must adopt common criteria for the selection and
treatment of data. Following the PDG discussion on treat-
ment of errors, we see that correlated errors are indeed
treated explicitly in the presence of results of the form Ai �
σi � Δ that have same systematic errors Δ. As usual, it is
possible to average the Ai � σi and then combine in
quadrature the resulting statistical error with the respective
Δ. However, the same result can be obtained by averaging
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Ai � ðσ2i þ Δ2
i Þ1=2, whereΔi are modified systematic errors

given by

Δi ¼ σiΔ
�X 1

σ2j

�
1=2

: ð28Þ

As pointed out by PDG, this alternative procedure has the
advantage that each measurement may be treated as
independent and, as a consequence may be averaged in
the usual way with other data. We will therefore adopt this
procedure in preparing the data set to be fitted.
Let us start with the original TOTEM data, which include

the first and second measurements of the total proton-
proton (pp) cross section at

ffiffiffi
s

p ¼ 7 TeV, σpptot ¼ 98.3�
2.8 mb [35], and σpptot ¼ 98.6� 2.2 mb [36] (both using the
optical theorem together with the luminosity provided
by the CMS [43]); the luminosity-independent measure-
ment at

ffiffiffi
s

p ¼ 7 TeV, σpptot ¼ 98.0� 2.5 mb [37]; the
ρ-independent measurements at

ffiffiffi
s

p ¼ 7 TeV of σpptot and ρ
parameter, σpptot ¼ 99.1� 4.3 mb and ρpp ¼ 0.145� 0.091
[37]; the luminosity-independent measurement at

ffiffiffi
s

p ¼
8 TeV, σpptot ¼ 101.7� 2.9 mb [38]; the measurements in
the Coulomb-nuclear interference region at

ffiffiffi
s

p ¼ 8 TeV of
σpptot and ρ parameter, σpptot ¼ 102.9� 2.3 mb and σpptot ¼
103.0� 2.3 mb (for central and peripheral phase formula-
tions, respectively), and ρpp ¼ 0.12� 0.03 [39]; the total
cross sections at

ffiffiffi
s

p ¼ 8 TeV, σpptot ¼ 101.5� 2.1 mb, and
σpptot ¼ 101.9� 2.1 mb, obtained from extrapolations of
the differential cross section to t ¼ 0 (for quadratic and
cubic polynomials in the exponent, respectively) [41]; the
luminosity-independent measurements at

ffiffiffi
s

p ¼ 13 TeV,
σpptot ¼ 110.6� 3.4 mb, and σpptot ¼ 109.5� 3.4 mb [44];
the first extraction of the ρ parameter at

ffiffiffi
s

p ¼ 13 TeV
(exploiting the Coulomb-nuclear interference), ρpp ¼
0.09� 0.01 and ρpp ¼ 0.10� 0.01, and the associated total
cross section σpptot ¼ 110.3� 3.5 mb, obtained from the
Coulomb normalization technique [1]; the elastic differential
cross section in the intervals 0.377 ≤ jtj ≤ 2.443 GeV2 [40]
and 0.00515 ≤ jtj ≤ 0.235 GeV2 [37] at

ffiffiffi
s

p ¼ 7 TeV, in
the interval 6× 10−4 ≤ jtj≤ 0.2 GeV2 at

ffiffiffi
s

p ¼ 8 TeV [39],
and in the interval 0.0384 ≤ jtj ≤ 3.829 GeV2 at

ffiffiffi
s

p ¼
13 TeV [42].
From the σpptot data at

ffiffiffi
s

p ¼ 7 TeV, there is already
a hint of some kind of correlation among the measure-
ments. The four measurements taken by the TOTEM
group were obtained using the same beam optics configu-
ration, namely, β� ¼ 90 m. The optics with this betatron
value is very insensitive to variations of the machine
parameters and led to very low systematic uncertainties
on horizontal and vertical scattering angles [35].
Nevertheless, the value σpptot ¼ 98.3� 2.8 mb was obtained
from the lower-luminosity run in June 2011, whereas the
remaining three values, namely, σpptot ¼ 98.6� 2.2 mb,
σpptot ¼ 98.0� 2.5 mb, and σpptot ¼ 99.1� 4.3 mb, were

obtained in a dedicated run in October 2011. The
October run has resulted in an improved measurement of
the t-distribution with higher statistics. Thus, although
there is no correlation between the June and October
measurements, the correlation among the last three values
of σpptot became clear: they were obtained from the same
data, recorded in the same run. Precisely, this type of
correlation also occurs in some σpptot and ρ

pp TOTEM data atffiffiffi
s

p ¼ 8 and 13 TeV.
The correlation issue also appears from reanalyses of

part of the TOTEM data. In one of these works [7], it is
observed that a zero in the real part of the nuclear amplitude
lies in the CNI region, leading to a positive amplitude at
−t ¼ 0. It has been proved some time ago [45] that in the
limit s → ∞, if the total cross section tends to infinity and
the differential elastic cross section tends to zero as −t ≫ 1,
the real part of the even amplitude must change sign near
−t ¼ 0. Since these assumptions correspond to the exper-
imentally observed behavior of the cross sections at high
energies, the ρ value obtained by TOTEM assuming a
constant real part of the nuclear amplitude near −t ¼ 0
might be underestimated. Thus, in [7], by analyzing the
complete TOTEM elastic differential cross section in the
CNI region at

ffiffiffi
s

p ¼ 8 and 13 TeV, it is shown that two
modified Barger and Phillips (BP) amplitudes [46] appear
to describe quite adequately the CNI data. The ρ values
obtained from these amplitudes are ρpp ¼ 0.135 and ρpp ¼
0.137 at

ffiffiffi
s

p ¼ 8 TeV as well as ρpp ¼ 0.133 and ρpp ¼
0.134 at

ffiffiffi
s

p ¼ 13 TeV. Of course, these results are
correlated to the TOTEM ones since the same data set is
used in their determinations. The modified BP amplitudes

TABLE I. LHC data used in our global fitting analyses. In the
case of correlated data, uncertainties are multiplied by a factor
fn ≡ ffiffiffi

n
p

, where n is the number of correlated quantities.
ffiffiffi
s

p
(TeV) σtot (mb) ρ

13 110.6� ð3.4 × f5Þ [44] 0.100� ð0.010 × f4Þ [1]
109.5� ð3.4 × f5Þ [44] 0.133� ð0.010 × f4Þ [7]
111.8� ð3.4 × f5Þ [7] 0.134� ð0.010 × f4Þ [7]
112.9� ð3.4 × f5Þ [7] 0.123� ð0.010 × f4Þ [6]
111.4� ð1.8 × f5Þ [6] 0.090� ð0.010 × f3Þ [1]

110.3� 3.5 [1] 0.133� ð0.010 × f3Þ [7]
0.134� ð0.010 × f3Þ [7]

8 102.9� ð2.3 × f4Þ [39] 0.120� ð0.030 × f3Þ [39]
103.0� ð2.3 × f4Þ [39] 0.137� ð0.030 × f3Þ [7]
101.6� ð2.3 × f4Þ [7] 0.135� ð0.030 × f3Þ [7]
102.7� ð2.3 × f4Þ [7]
101.5� ð2.1 × f2Þ [41]
101.9� ð2.1 × f2Þ [41]

101.7� 2.9 [38]

7 99.1� ð4.3 × f3Þ [37] 0.145� 0.091 [37]
98.0� ð2.5 × f3Þ [37]
98.6� ð2.2 × f3Þ [36]

98.3� 2.8 [35]
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also lead to different σtot values than those obtained
by TOTEM: σpptot ¼ 102.7 mb and σpptot ¼ 101.6 mb atffiffiffi
s

p ¼ 8 TeV, and σpptot ¼ 112.9 mb and σpptot ¼ 111.8 mb
at

ffiffiffi
s

p ¼ 13 TeV. Once again, we have correlation among
these and the TOTEM cross sections result at

ffiffiffi
s

p ¼ 8 and
13 TeV. In other reanalysis of the TOTEM data [6], using
a modified formula for the CNI term, the values ρ ¼
0.123� 0.010 and σpptot ¼ 111.4� 1.8 mb are obtained
at

ffiffiffi
s

p ¼ 13 TeV.
Since all results for ρpp and σpptot in [7] are obtained from

the same data source used by TOTEM, we would expect
their associated errors to be the same as those of the
TOTEM papers. Thus, in order to implement a prac-
tical procedure for introducing correlation information
in our fits, we will consider that the total and systematic
errors associated with the results in [7] are the same as
those presented by TOTEM. This assumption makes the
PDG procedure be consistent, in good approximation, to
the rule adopted by experimentalists in accounting for
correlation systematics, namely, to the product

ffiffiffi
n

p
δk,

k ¼ 1;…; n, where n is the number of correlated results

and δk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2k þ Δ2

q
. Thus, for practical reasons, we have

adopted this last procedure for the selection and treatment
of correlated data. The set of correlated data used in our
global fitting analyses is summarized in Table I. In Fig. 1,
we show these data with their corresponding uncertainties.
The inner error bars are the original (published) uncertain-
ties and the outer error bars are the uncertainties after
introducing correlation information.

V. RESULTS AND CONCLUSIONS

In all the fits presented in this paper, we use a χ2 fitting
procedure, where the value of χ2min is distributed as a χ2

distribution with N degrees of freedom (d.o.f). The fits to
the experimental data sets are performed adopting an
interval χ2 − χ2min corresponding, in the case of normal
errors, to the projection of the χ2 hypersurface containing
90% of probability. This corresponds to χ2 − χ2min ¼ 12.02

FIG. 1. Set of correlated data used in our global fitting analyses. The inner error bars are the original (published) uncertainties and the
outer error bars are the uncertainties after introducing correlation information. The squares, circles, and triangles correspond, respectively,
to the energies of 7, 8, and 13 TeV. The solid symbols represent the TOTEM data, while the open ones represent the ATLAS results.
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and 13.36 in the case of seven and eight free parameters,
respectively. Following the philosophy of using the mini-
mum number of free parameters, in the following analyses,
the slopes of the secondary-Reggeon linear trajectories, α0þ
and α0−, are fixed at 0.9 GeV−1. These values are in

agreement with those usually obtained in Chew-
Frautschi plots. Also, the slopes associated with the
form factors of the secondary Reggeons are fixed at
rþ ¼ r− ¼ 4.0 GeV−2. These parameters have very little
statistical correlation with the Pomeron parameters, and

TABLE II. TOTEM. The values of the Pomeron and secondary Reggeon parameters obtained in global fits to the
σpp;p̄ptot , ρpp;p̄p, and dσpp;p̄p=dt data using Born-level amplitudes. The parameters α0þ, α0−, rþ, r−, and a1 are fixed.

Born-level amplitudes

BI BII BIII BIþ PP

ϵ 0.0942� 0.0030 0.0943� 0.0030 0.0949� 0.0032 0.101� 0.012
α0IP (GeV−2) 0.249� 0.014 0.248� 0.014 0.3210� 0.0016 0.175� 0.084
βPð0Þ (GeV−1) 1.956� 0.048 1.955� 0.048 1.948� 0.052 2.034� 0.087
rP (GeV−2) 5.5 (fixed) 5.5 (fixed) � � � 5.5 (fixed)
ηþ 0.338� 0.050 0.338� 0.050 0.333� 0.053 0.310� 0.061
βþð0Þ (GeV−1) 3.73� 0.40 3.73� 0.40 3.71� 0.42 3.80� 0.40
η− 0.529� 0.085 0.529� 0.085 0.528� 0.089 0.524� 0.089
β−ð0Þ (GeV−1) 2.90� 0.52 2.90� 0.52 2.90� 0.54 2.88� 0.53
a1 (GeV2) � � � m2

ρ (fixed) m2
ρ (fixed) � � �

a2 (GeV2) � � � � � � 1.79� 0.44 � � �
βPPð0Þ (GeV−1) � � � � � � � � � 1.52� 0.66

χ2=d:o:f 0.65 0.65 0.65 0.63

(a) (b)

(c) (d)

FIG. 2. Total cross section [(a) and (b)] and ratio of the real to imaginary part of the forward scattering amplitude [(c) and (d)] for pp
(•) and p̄p (∘) channels. The solid line shows the results obtained using the BI or BII or BIþ PPmodels, while the dashed line shows the
results obtained using the BIII model. Also shown the predictions for cosmic ray energies.
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their fixed values are consistent with those obtained in
previous studies [15,21,22]. We also fix the scale of the
pion-Pomeron vertex at a1 ¼ m2

ρ ¼ ð0.776 GeVÞ2 [23].
In the case of Born-level amplitudes, the values of

the Regge parameters determined by global fits to pp
and p̄p data are listed in Table II. Notice that in the case of
BI, BII, and BIþ PP models we fixed the parameter rP at
5.5 GeV−2, which corresponds to the slope of the electro-
magnetic proton form factor. As discussed in Ref. [20], it is
the natural choice for the computation of double-diffractive
central Higgs production via WW fusion (since the W
boson is radiated from a quark, like the photon). Moreover,
our analyses show that at this rP value the Pomeron is des-
cribed by trajectories with α0P ≃ 0.25 GeV−2 (see Table II).
Interestingly enough, these values for α0P are consistent
with the ones recently obtained from holographic QCD
models [47]. Furthermore, if we perform the global fits at
another value of rP, say 4.0 GeV−2 (which is not atypical
[20]), we obtain the values α0P ¼ 0.3346� 0.0085 GeV−2,
0.3339� 0.0085 GeV−2, and α0P¼0.3346�0.0090GeV−2

in the case of BI, BII, and BIþ PP models, respectively,
while the remaining free parameters follow with the same
values. The parameters obtained in the analyses with

BI, BII, and BIþ PP models are very close to each
other and the description of the data resulted in substan-
tially the same curves, shown in Fig. 2 (solid curves). The
dashed curves in the same figure are for the BIII model.
Figures 2–4 have the same layout: the part (a) shows the
σpp;p̄ptot accelerator data, the part (b) extends the range in

ffiffiffi
s

p
of the part (a), the part (c) shows the ρpp;p̄p data, and the
part (d) extends the range in

ffiffiffi
s

p
of the part (c). For

comparison purposes, we have included in part (b) of
these figures estimates of σpptot obtained from cosmic ray
experiments, namely, the AUGER experimental result atffiffiffi
s

p ¼ 57 TeV [48] and the Telescope Array result at
ffiffiffi
s

p ¼
95 TeV [49].
The preceding results using Born-level amplitudes

have demonstrated that it is possible a good description
of forward data up to LHC energy by using a constant value
of ϵ; even so, from the Table II, we see that the ratio of
two-Pomeron to one-Pomeron exchange couplings is not so
small,

R≡ jPPcouplingj
Pcoupling

¼ β2PPð0Þ
β2Pð0Þ

≃ 0.6; ð29Þ

(a) (b)

(c) (d)

FIG. 3. Total cross section [(a) and (b)] and ratio of the real to imaginary part of the forward scattering amplitude [(c) and (d)] for pp
(•) and p̄p (∘) channels. The solid, dashed, and dotted lines show the results obtained using the OI, OII, and OIII models, respectively.
Also shown the predictions for cosmic ray energies.
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which suggests the violation of unitarity at the presently
available energies. Therefore, contrary to the expectation
that the violation of unitarity would occur only far above

the LHC energies, the value of R indicates that the
unitarization breaking is a current problem. Most impor-
tantly, this result indicates that multi-Pomeron exchanges

(a) (b)

(c) (d)

FIG. 4. Total cross section [(a) and (b)] and ratio of the real to imaginary part of the forward scattering amplitude [(c) and (d)] for pp
(•) and p̄p (∘) channels. The solid, dashed, and dotted lines show the results obtained using the TI, TII, and TIII models, respectively.
Also shown the predictions for cosmic ray energies.

TABLE III. TOTEM. The values of the Pomeron and secondary Reggeon parameters obtained in global fits to the
σpp;p̄ptot , ρpp;p̄p, and dσpp;p̄p=dt data using one-channel eikonalized amplitudes. The parameters α0þ, α0−, rþ, r−, and
a1 are fixed.

Eikonalized amplitudes (one-channel eikonal)

OI OII OIII

ϵ 0.1258� 0.0014 0.1267� 0.0049 0.1309� 0.0087
α0IP (GeV−2) 0.066� 0.012 0.039� 0.012 0.052� 0.029
βPð0Þ (GeV−1) 1.811� 0.010 1.795� 0.035 1.77� 0.12
rP (GeV−2) 6.53� 0.23 7.0� 5.2 � � �
ηþ 0.278� 0.063 0.275� 0.060 0.267� 0.056
βþð0Þ (GeV−1) 3.98� 0.47 3.95� 0.70 3.94� 0.40
η− 0.534� 0.087 0.531� 0.088 0.531� 0.087
β−ð0Þ (GeV−1) 3.41� 0.64 3.39� 0.71 3.40� 0.62
a1 (GeV2) � � � m2

ρ (fixed) m2
ρ (fixed)

a2 (GeV2) � � � � � � 0.58� 0.26

χ2=d:o:f 0.66 0.66 0.66
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must be included in order to restore unitarity. Multiple
exchanges can somehow be taken into account in an
appropriate unitarization scheme, such as the eikonalization
one, as already discussed.
The values of the Regge parameters obtained using one-

channel eikonal models are listed in Table III. We see that
all eikonalized fits to the data prefer very small values of
α0IP, in the case of OI, OII, and OIII models these values are,
respectively, α0IP ¼ 0.066� 0.012, 0.039� 0.012, and
0.052� 0.029 GeV−2. Thus, after the eikonalization, the
Pomeron looks similar to a fixed pole at αIPð0Þ ¼ 1. We
can see that the effect of the pion-loop insertions further
decreases the values of α0IP: the result for OII (OIII) model
is about a factor 1.7 (1.3) lower than the OI one. We also
note a substantial increase of the Pomeron intercept in
relation to Born-level models: the ϵ parameters are
increased by about 34% for OI and OII models and by
about 38% for the OIII model. The curves of σtotðsÞ and
ρðsÞ for the one-channel models, compared with the
experimental data, are shown in Fig. 3.
The same significant increase of the Pomeron intercept

in relation to Born-level models is observed in the two-
channel eikonal models, as shown in Table IV. In the case

of TI, TII, and TIII models, the increase is even greater,
with the ϵ parameters being about 61%, 60%, and 53%
higher, respectively, when compared to the same param-
eters in models with Born-level amplitudes. Again, we see
that the eikonal fits to the data prefer very small values of
α0IP, but now with values of α0IP closer to each other. In the
case of TI, TII, and TIII models, these values are,
respectively, α0IP ¼ 0.046� 0.012, 0.048� 0.012, and
0.050� 0.029 GeV−2. The results for σtotðsÞ and ρðsÞ,
using two-channel eikonal amplitudes, are shown in Fig. 4.
For both one- and two-channel eikonal models, the

values of the parameter rP are insensitive to changes in
the form of the Pomeron trajectory, as they are of the
same order. In the case of one-channel models, the change
from a linear to a nonlinear Pomeron trajectory leads to
an increase of rP of only 7%, while in two-channel
models the same change leaves the value of rP practically
unchanged. In Table V, we show the predictions on the high
energy total cross section and ρ parameter, made using the
BIII, OIII, and TIII models. A comparison among the cross
sections and ρ parameters at high energies, from the models
BIII (solid), OIII (dashed), and TIII (dotted), is shown
in Fig. 5.

TABLE V. Predictions and uncertainties for the forward scattering quantities σpptot and ρpp using different Regge
models. The uncertainties are just estimates since the full covariance matrix was not employed.

BIII model OIII model TIII modelffiffiffi
s

p
(TeV) σtot (mb) ρ σtot (mb) ρ σtot (mb) ρ

7.0 98.7� 2.7 0.149� 0.008 99.2� 2.7 0.135� 0.008 98.8� 2.7 0.134� 0.008
8.0 101.2� 2.8 0.149� 0.009 101.5� 2.8 0.134� 0.009 101.1� 2.8 0.133� 0.010
13.0 110.9� 3.3 0.150� 0.009 110.2� 3.3 0.130� 0.009 109.6� 3.3 0.129� 0.012
57.0 148� 8 0.150� 0.018 139� 7 0.116� 0.018 138.1� 7 0.117� 0.018
95.0 162� 12 0.150� 0.026 150� 11 0.112� 0.026 149� 11 0.113� 0.026

TABLE IV. TOTEM. The values of the Pomeron and secondary Reggeon parameters obtained in global fits to the
σpp;p̄ptot , ρpp;p̄p, and dσpp;p̄p=dt data using two-channel eikonalized amplitudes. The parameters α0þ, α0−, rþ, r−, and
a1 are fixed.

Eikonalized amplitudes (two-channel eikonal)

TI TII TIII

ϵ 0.152� 0.010 0.1513� 0.0017 0.1544� 0.0073
α0IP (GeV−2) 0.0460� 0.0085 0.048� 0.023 0.0500� 0.0053
βPð0Þ (GeV−1) 1.72� 0.16 1.726� 0.023 1.75� 0.12
rP (GeV−2) 5.7� 1.2 5.67� 0.39 � � �
ηþ 0.257� 0.058 0.258� 0.014 0.261� 0.053
βþð0Þ (GeV−1) 4.27� 0.44 4.28� 0.13 4.32� 0.42
η− 0.537� 0.086 0.535� 0.073 0.538� 0.086
β−ð0Þ (GeV−1) 3.80� 0.69 3.79� 0.59 3.83� 0.69
a1 (GeV2) � � � m2

ρ (fixed) m2
ρ (fixed)

a2 (GeV2) � � � � � � 1.02� 0.13

χ2=d:o:f 0.71 0.71 0.70
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In Fig. 6, we show the description of the elastic pp
differential cross section data for all models discussed so
far. We see that in all cases the data in the range jtjmin ≤
jtj ≤ 0.1 GeV2 are well described, where we have adopted
jtjmin ∼ 10jtjint, since in the region jtj ≫ jtjint the nuclear
scattering dominates. The value of jtjint (where the inter-
ference between the Coulomb and hadronic amplitudes
is of maximum significance) can be simply determined
from the practical relation jtjint ¼ 0.071=σtot [50]. In
Figs. 6(a)–6(c), we show the curves of dσpp=dt for the
Born level, one- and two-channel eikonal models, respec-
tively. We can see that it is not possible to distinguish
between different models of the Pomeron since the curves
representing models of types I (solid), II (dashed), and III
(dotted) fall on very nearly the same curve as the model of
type I. A comparison among the differential cross sections
from the models BIII (solid), OIII (dashed), and TIII
(dotted) is shown in Fig. 6(d).
In order to see more clearly the effects of the correlation

information on the data sets, we compare, in Fig. 2(b), the
total pp cross section data of TOTEM with the ATLAS
data. The ATLAS results include the luminosity-dependent
measurements at

ffiffiffi
s

p ¼ 7 TeV, σpptot ¼ 95.35� 1.36 [51]

[open circle in Fig. 2(b)], and
ffiffiffi
s

p ¼ 8 TeV, σpptot ¼ 96.07�
0.92 [52] [open square in Fig. 2(b)]. These measurements
rely on the optical theorem. The luminosity, necessary to
normalize the elastic cross section, is determined from LHC
beam parameters using van der Meer scans [53]. Before the
introduction of correlation information, we recognize some
tension between the TOTEM and ATLAS measurements.
For example, if we compare the ATLAS result for σpptot atffiffiffi
s

p ¼ 7 TeV with, say, the value σpptot ¼ 98.6� 2.2 mea-
sured by TOTEM at the same energy, the difference
between the values corresponds to 1.5σ. In the same way,
ifwe compare theATLAS result for σpptot at

ffiffiffi
s

p ¼ 8 TeVwith
the highest value obtained by TOTEM in the same energy,
σpptot ¼ 103.0� 2.3, the difference goes up to 3σ. However,
after the inclusion of the correlated systematics that allows
treating each result as independent, the difference between
the ATLAS results and the average values of the TOTEM
measurements and uncertainties at 7 and 8 TeV drops to 0.7
and 1.6σ, respectively. We can therefore ameliorate the
tension between the TOTEM and ATLAS measurements
by introducing correlation information.
In summary, the paper is devoted to a detailed study of

the soft Pomeron. More precisely, we evaluate the relative

(a) (b)

FIG. 5. Total cross section [part (a)] and ratio of the real to imaginary part of the forward scattering amplitude [part (b)] for pp (•)
channel. The solid, dashed, and dotted lines show the results obtained using the BIII, OIII, and TIII models, respectively. Also shown the
predictions for cosmic ray energies.
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plausibility of different combinations of vertices and
trajectories of the soft Pomeron in the light of the recent
LHC data, taking into account the existent systematic
correlation among them. The methods used in this paper
for the examination of the Pomeron properties can also be
applied to obtain constraints on the Odderon parameters.
Work in this direction is in progress.
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