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In this paper, we review and update the Amaral-Gay Ducati-Betemps-Soyez saturation model, by testing
it against the recent H1-ZEUS combined data on deep inelastic scattering, including heavy quarks in the
dipole amplitude. We obtain that this model, which is based on traveling wave solutions of the Balitsky-
Kovchegov equation and built in the momentum space framework, yields very accurate descriptions of the
reduced cross section, σrðx; y;Q2Þ, as well as DIS structure functions such as F2ðx;Q2Þ and FLðx;Q2Þ, all
measured at HERA. Additionally, it provides good descriptions of heavy quark structure functions, Fcc

2 and
Fbb
2 at small-x and Q2 ≲ 60 GeV2. We also use the improved model to make predictions for structure

functions to be measured in the near future at LHeC.

DOI: 10.1103/PhysRevD.103.016013

I. INTRODUCTION

Since long ago, it has been known that there is a
correspondence between high energy QCD and statistical
physics [1]. Of particular importance was the discovery
[2–4] that at very large rapidities, Y ¼ lnð1=xÞ, the leading
order (fixed coupling) Balitsky-Kovchegov (BK) equation
[5–7] is in the universality class of the Fisher-Kolmogorov-
Petrovsky-Piscounov (FKPP) equation [8], thus admitting
traveling wave solutions. These do not depend either on
initial conditions or on the definite form of the nonlinear
correction terms. Specifically, the BK equation derived for
the unintegrated gluon distribution (UGD) in momentum
space presents traveling-wave solutions in the transition
region near the saturation domain despite the precise form of
the nonlinear terms. Namely, the corresponding solution is
controlled but the linear (dilute) region. Interestingly
enough, the geometric scaling property observed in inclusive
and exclusive processes at DESY-HERA data at small-x is
connected to a traveling-wave structure of the scattering
amplitude for a QCD color dipole off nucleons. The
underlying quantity is the momentum saturation scale,
QsðYÞ, which has its rapidity dependence driven by the
velocity of the wave front, vc. The evolution time is

t ¼ ᾱsY and the position coordinate is ρ ∼ lnðk2=k20Þ (where
k0 ∼ ΛQCD is a fixed infrared scale, and we use ρ to denote
the coordinate to avoid confusion with the Bjorken x), and
the function obeying the universal class of equations is
uðρ; tÞ. The position of the wave front is measured by the
quantity ρs ¼ ln½Q2

sðYÞ=k20� ¼ vcY, and in the mean field
approximation, the solution to u presents the form uðρ; tÞ ¼
uðρ − vctÞ [2–4].
In the large-Nc limit and in the mean-field approxima-

tion, the small-x behavior of the forward QCD dipole
scattering amplitude, N ðr; YÞ, follows the BK equation in
coordinate space. This equation can be obtained also in
momentum space, where it evolves the amplitude
N ðk; YÞ, which is directly related to the UGD, F ðk; YÞ,
through

N ðk; YÞ ¼ 4παs
NcR2

p

Z
∞

k

dp
p

F ðk; YÞ ln
�
p
k

�
; ð1Þ

whereRp is the proton radius. It can be easily shown that the
celebrated Golec-Biernat-Wusthoff (GBW) [9] form for the
UGD, i.e., FGBWðk; YÞ ¼ F0ðk2=Q2

sÞ exp½−ðk2=Q2
sÞ� (with

Q2
s¼κ20expðλYÞ and F0¼NcR2

p=2παs), givesN GBWðk;YÞ¼
1
2
Γð0;k2=Q2

sÞ. Here, Γð0; xÞ is the incomplete Gamma
function and the amplitude presents clear scaling on
τs ¼ k2=Q2

sðYÞ. On the other hand, the complete behavior
of the amplitude at fixed QCD coupling (leading logarithmic
order, LL) has been extensively investigated and presents
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a k-diffusion term typical of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) solution [10–12] in the region k ≫ Qs.
However, for the BK equation, the saturation scale plays the
role of a natural infrared cutoff, and the fast broadening of the
UGD at small x is properly controlled. Geometric scaling
behavior on the scaling variable τs is restored in the region
where the diffusive factor is negligible and the solution is
closer to theGBWform. TheBKsolution at LL accuracywill
be revisited in next section, where it will be used in order to
describe the recent results for the proton structure function at
small x.
Going beyond the LL approximation, the solutions of the

BKequation at next-to-leading logarithmic (NLL)order have
been also investigated [13–17]. In Ref. [15], three versions of
the NLL BK equation were considered, namely the one-
dimensional BK equation with running coupling and two
versions using quark-loop contributions. Moreover, modi-
fied BK equations including the renormalization-group
corrections to the NLL BFKL kernels were studied. It was
shown that there is a unified asymptotic prediction to
observables and predictions for the behavior of exact
solutions fall upon a large universality class of solutions
[15]. That theoretical analysis led to phenomenological
models presenting geometric scaling in

ffiffiffiffi
Y

p
rather than in

Y as in the fixed coupling case [18–22]. The role played by
the fluctuations effects (Pomeron loops) in the NLL BK
solution was analyzed in Ref. [16]. The starting point is a
Langevin equation for the forward dipole-target scattering
amplitude, N ðr; YÞ, with a Gaussian white noise. It was
verified that a diffusive scaling for large rapidities,
Y > Yform, takes place, where Yform is the rapidity interval
needed for the solution to form a wave front down to the low
density domain, where the noise term is relevant. The
semianalytical solution is somewhat consistent with numeri-
cal solutions of the (1þ 1)-dimensional reaction-diffusion
toy model for high energy QCD presented in Ref. [23].
Afterwards, this numerical solution was used to describe
inclusive and diffractive deep inelastic scattering (DDIS) in
[24]. There, it was found that in DDIS the diffusive scaling is
present for fixed coupling, and on the other hand, in the
runningcoupling case, geometric scaling takesplace, and it is
reached at smaller values of rapidity than in the case without
fluctuations [24]. Furthermore, in Ref. [17], the connection
between the BK equation (with nonrunning and running
couplings) in the diffusive approximation with noise and the
extension of the stochastic FKKP (sFKPP) to the radial wave
propagation in an absorptive medium is done. An important
result is that a newgeometric scaling domain forward to usual
traveling wave front is found. The corresponding extended
scaling presents a new scaling variable, with thewave front at
position ρ0 ¼ ρ − vc tffiffi

ρ3
p .

In this work, we revisit the phenomenological model
proposed by Amaral, Gay Ducati, Betemps, and Soyez

(AGBS) [25], based on the analytical solutions of BK
equation at leading logarithmic accuracy in the momentum
space. An updated AGBS model is provided through fits to
the recently extracted combined HERA DIS data on the
reduced cross section. Both charm and bottom quark
contributions to the proton structure function, F2ðx;Q2Þ,
are included. As a by-product, charm, bottom, and longi-
tudinal structure functions are computed to be compared
with the data. The plan of the paper is as follows. In Sec. II,
we describe the DIS cross section in terms of the AGBS
model [25] for the dipole scattering amplitude in momen-
tum space. In Sec. III, fitting methods to HERA data on the
reduced cross section, σrðx; y;Q2Þ, are presented along
with the fit-tuned parameters to FQQ̄ (Q ¼ c, b) and FL
structure functions. In the last section, we discuss the main
results of this study and give prospects of possible future
studies.

II. DIS CROSS SECTION IN THE MOMENTUM
SPACE FRAMEWORK

A. DIS cross section with dipoles in momentum space

In electron-proton DIS, the ep interaction is dominated
by the exchange of a virtual photon γ� with virtualityQ2. In
the dipole model, this interaction can be seen in the
following way: the virtual photon has enough energy to
split into a quark-antiquark pair, a dipole, which then
interacts with the target proton via gluon exchanges. This
dipole has a fixed transverse size given by the vector r, the
quark carrying a fraction z, and the antiquark carrying a
fraction 1 − z, of the photon longitudinal momentum. The
total γ�p cross section is then given by

σγ
�p
T;LðQ2;YÞ¼

Z
d2r

Z
1

0

dzjΨT;Lðr;z;Q2Þj2σdipðr;YÞ; ð2Þ

where Y is the total rapidity interval of the γ�p system and
jΨT;Lðr; z;Q2Þj2 are the photon wave functions (well-
known from QED [26]), which give the probabilities for
the photon, with transverse (T) and longitudinal (L)
polarization, to split into the dipole. The quantity
σdipðr; YÞ is the total dipole-proton cross section which,
according to the optical theorem, is given by

σγ
�p
dipðr; YÞ ¼ 2

Z
d2bNðr; b; YÞ; ð3Þ

where Nðr; b; YÞ is the imaginary part of the dipole-proton
scattering amplitude in coordinate space. In the general
case, the amplitude depends not only on the dipole trans-
verse size, but also on the impact parameter vector, b, of the
dipole-proton interaction. If one neglects the b dependence
(which means considering the proton an homogeneous
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disk), the integration over the impact parameter is sim-
plified. Besides, the remaining angular dependence of r can
be integrated out and the dipole-proton cross section reads

σγ
�p
dipðr; YÞ ¼ 2πR2

pNðr; YÞ; ð4Þ

where Rp is the proton radius and now the amplitude
depends only on the dipole size r ¼ jrj.

The above picture of DIS yields a description of physical
observables in the coordinate (r-dependent) framework. An
alternative approach is to express σγ

�p in the momentum
space framework, where the quantities involved depend on
the relative transverse momentum of the dipole k. In this
picture, the dipole-target interaction is given by the dipole
scattering amplitude in momentum space, N ðk; YÞ,
which is related to Nðr; YÞ by the modified Fourier trans-
form [6,7],

N ðk; YÞ ¼ 1

2π

Z
d2r
r2

eik·rNðr; YÞ ¼
Z

∞

0

dr
r
J0ðkrÞNðr; YÞ:

ð5Þ
As a consequence, one has, for example, that the F2 proton structure function can be written as [25]

F2ðx;Q2Þ ¼ Q2

4π2αem
½σγ�pT ðQ2; YÞ þ σγ

�p
L ðQ2; YÞ�

¼ Q2R2
p

αem

Z
1

0

dz
Z

d2k½jΨ̃Tðk; z;Q2Þj2 þ jΨ̃Lðk; z;Q2Þj2�N ðk; YÞ; ð6Þ

where αem is the electromagnetic coupling constant. jΨ̃T;Lðk; z;Q2Þj2 now refer to the photon wave functions in momentum
space. Their explicit forms can be straightforwardly obtained by the relation,

jΨ̃T;Lðk; z;Q2Þj2 ¼
Z

d2r
ð2πÞ2 e

ik·rr2jΨ̃T;Lðr; z;Q2Þj2; ð7Þ

and are given by [25]

jΨ̃Tðk; z;Q2Þj2 ¼ Ncαem
4π3

X
f

e2q
16ϵ4q

2k2ðk2 þ 4ϵ2qÞ2
�
½z2 þ ð1 − zÞ2�

2
64 4ðk2 þ ϵ2qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2ðk2 þ ϵ2qÞ
q arcsinh

�
k
2ϵq

�375

þm2
f

ϵ2q

�
k2 þ ϵ2q

ϵ2q
−
4ϵ4q þ 2ϵ2qk2 þ k4

ϵ2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðk2 þ 4ϵ2qÞ

q arcsinh

�
k
2ϵq

���
; ð8Þ

and

jΨ̃Lðk; z;Q2Þj2 ¼ Ncαem
4π3

X
f

e2q
16ϵ4q

2k2ðk2 þ 4ϵ2qÞe
4Q2z2ð1 − zÞ2

ϵ2q

�
k2 þ ϵ2q

ϵ2q
−
4ϵ4q þ 2ϵ2qk2 þ k4

ϵ2q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ðk2 þ 4ϵ2qÞ

q arcsinh

�
k
2ϵq

��
; ð9Þ

where ϵ2q ¼ zð1 − zÞQ2 þm2
f and mf denotes the mass of the quark with flavor f.

Thus, with a model for N ðk; YÞ at hand, it is possible
to calculate, in a momentum space framework, not only
the F2 structure function, but other physical quantities
related to inclusive DIS, for example, the contributions

of different flavors (masses) of quarks to the F2 as
well as the longitudinal structure function, which
can be evaluated in this momentum space approach
by
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FLðx;Q2Þ ¼ Q2R2
p

αem

Z
1

0

dz
Z

d2kjΨ̃Lðk; z;Q2Þj2N ðk; YÞ:

ð10Þ

The ABGS saturation model for N ðk; YÞ, based on the
traveling wave solutions of fixed coupling BK equation, is
such a model and will be reviewed below.

B. Asymptotic behaviors of N ðk;YÞ and the
AGBS model

In the large-Nc limit, the dipole scattering amplitude
N ðk; YÞ is the solution of BK equation in momentum
space, which can be derived from the equation for Nðr; YÞ
by using relation (5). At leading order (fixed coupling) the
momentum space BK equation reads (for a detailed
derivation see Appendix A of Ref. [7])

∂YN ¼ ᾱsχð−∂LÞN − ᾱsN 2; ð11Þ

where ᾱs ¼ αsNc=π and L ¼ logðk2=k20Þ with k0 being an
infrared cutoff scale. The quantity χðγÞ ¼ 2ψð1Þ − ψðγÞ −
ψð1 − γÞ is the characteristic function of the BFKL kernel
[10–12]. After an appropriate change of variables, it has
been shown [2,3] that BK equation reduces to the FKPP
equation [8] for uðρ; tÞ ∝ N ðk; YÞ when its kernel is
approximated in the saddle point approximation, i.e., to
second order in the derivative ∂L, the so-called diffusive
approximation. In this case, the equation takes the form,
∂tuðρ; tÞ ¼ ∂2

ρuðρ; tÞ þ uðρ; tÞ − u2ðρ; tÞ, with t ∼ Y and
ρ ∼ L corresponding to the time and space variables,
respectively.
The FKKP equation presents asymptotic solutions

described by traveling waves, meaning that at large times
the function u takes the form uðρ; tÞ ¼ uðρ − vctÞ, i.e., of a
front traveling to large values of ρ at the speed vc without
deformation. In QCD, this is translated into the geometric
scaling property, which means that at very large rapidities
(very large energies) the dipole scattering amplitude
depends only on the quantity k2=Q2

s, i.e., N ðk; YÞ ¼
N ðτs ¼ k2=Q2

sÞ. At nonasymptotic rapidities geometric
scaling is violated, and the forward amplitude takes the
following form for k ≫ Qs [2–4]:

N ðk; YÞ ≈
k≫Qs

�
k2

Q2
sðYÞ

�−γc
log

�
k2

Q2
sðYÞ

�

× exp

�
−
log2ðk2=Q2

sðYÞÞ
2ᾱsχ

00ðγcÞY
�
; ð12Þ

where χ00 denotes the second derivative of the BFKL kernel
with respect to the anomalous dimension γ. The parameters
γc and vc are obtained uniquely from the BFKL kernel and

correspond to the selection of the slowest possible wave,
vc ¼ ᾱsχ

0ðγcÞ. For the leading-order (LO) BFKL kernel,
one obtains γc ¼ 0.6275…, vc ¼ 4.88ᾱs, χ0ðγcÞ ¼ 4.883…
and χ00ðγcÞ ¼ 48.518…. The rapidity dependence of the
saturation scale can be explicitly obtained and reads (for a
up-to-date discussion see [27])

log
Q2

sðYÞ
k20

¼ vcY −
3

2γc
logY −

3

γ2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π

ᾱsχ
00ðγcÞ

s
1ffiffiffiffi
Y

p Oð1=YÞ:

ð13Þ

From Eq. (12), it is possible to verity that the geometric
scaling is obtained for a kinematic range where k2 ≲
Q2

sðYÞeβ
ffiffiffi
Y

p
(the so-called geometric scaling window), with

β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2χ00ðγcÞᾱs

p
.

The results described above motivated the construction
of the AGBS saturation model [25], which explores the
implications of the traveling wave solutions of BK evolu-
tion equation to the γ�p scattering. It provides the following
phenomenological expression for N ðk; YÞ:

N AGBSðk; YÞ ¼
�
log

�
k
Qs

þQs

k

�
þ 1

�
ð1 − e−TdilÞ; ð14Þ

where

Tdil ¼ exp

�
−γc log

�
k2

Q2
sðYÞ

�
−
L2 − log2ð2Þ
2ᾱsχ

00ðγcÞY
�
; ð15Þ

L ¼ log

�
1þ k2

Q2
sðYÞ

�
; ð16Þ

and the saturation scale is given by only by the dominant
term of Eq. (13), i.e.,

QsðYÞ ≈ k20e
vcY: ð17Þ

The AGBS model, given by Eqs. (14)–(17), provides an
analytical interpolation between the dilute region, given by
Eq. (12), where k ≫ Qs (the tail of the wave front), the
region around the saturation scale, where k ≈Qs, and the
deep saturation region, where k ≪ Qs. In a rough approxi-
mation, the expression for the amplitude in the saturation
region has been proposed to be the Fourier transform (5) of
a Heaviside function N ðr; YÞ ¼ ΘðrQs − 1Þ, which yields
the following behavior of the amplitude in momentum
space, in the region k ≪ Qs [25]:

N
�

k
QsðYÞ

; Y

�
¼k≪Qsa − log

�
k

QsðYÞ
�
; ð18Þ
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with a being a constant to be determined by the boundary
conditions.1 An important comment is in order: as
explained in [25], the eikonal way of unitarization of
N AGBS, 1 − e−Tdil , is not physically motivated, it has been
chosen because of its simplicity [for example, the form
Tdil=ð1þ TdilÞ would work equally well].
In the paper where the model was proposed [25], the

AGBS model was used to fit measurements of the F2

proton structure function from H1 [31] and ZEUS
Collaborations [32,33] taking heavy-quark (charm) effects
into account. Afterwards, in [34], another fit to F2 has been
performed, considering only the contribution of light
quarks, but using (more recent) H1 and ZEUS combined
HERA data [35]. The model has also been also used to
investigate possible pomeron loop effects at HERA [36]
and to describe inclusive hadron and photon production at
the LHC [37]. Thus, besides being useful in the description
of DIS data, it also provides the fundamental tools to study
inclusive observables at RHIC and LHC energies. In all
these phenomenological applications, the AGBS model has
been shown to be successful in the description of the data.
This, together with the fundamental properties underlying
the construction of the model, makes its improvement an
interesting issue. This will be done in what follows.

III. DIS DATA AND FITTING PROCEDURE

In this paper, we make an improvement of the AGBS
model by updating its parameters with a fitting procedure to
recent high-precision HERA data [35], including heavy—
charm and bottom—quarks. In particular, we fit the
reduced cross section data [35], which reads

σrðx; y;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2 FLðx;Q2Þ; ð23Þ

where y ¼ Q2=ðsxÞ is the inelasticity variable,
ffiffiffi
s

p
denotes

the center of mass energy of the ep collision, and
FLðx;Q2Þ is the longitudinal structure function.
In fitting σr, a kinematic cut to HERA data is applied to

the Bjorken-x variable, namely x ≤ 0.01, since this
approach is conceived to describe high-energy amplitudes
(the small-x behavior). Two bins of the photon virtuality are
considered,

�
Q2 ∈ ½0.045; 45� GeV2 ðbin 1Þ and

Q2 ∈ ½0.045; 150� GeV2 ðbin 2Þ: ð24Þ

Both bins prevent us from the need to include Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) corrections,
which must be properly accounted for at too high values
of Q2. The choice of fitting data in the bin 1 range can be
regarded as a conservative one, with respect to traditional
approaches such as, e.g., GBW [38], for which an even
lower Q2

max (¼ 10 GeV2, as long as DGLAP corrections
are not included) is probed. Moreover, as we take into
account heavy quark contributions and since the exper-
imental range considered includes very small values of Q2,
we perform the usual kinematic shift in the definition of
Bjorken-x [9],

x → x̃f ¼ x

�
1þ 4m2

f

Q2

�
; ð25Þ

for charm and bottom, when the cut x̃f ≤ 0.1 is satisfied.
Otherwise, the contribution of heavy quarks is switched off.
Fits have been performed using the ROOT framework

[39,40], through the members of the TMINUIT class [41].
In specific, we use the MIGRAD algorithm throughout,
setting the confidence level (C.L.) to 95%.2 Goodness-of-fit
is evaluated using the standard chi-squared (χ2) per degrees
of freedom (d.o.f.) criterion, with

1This behavior can be also obtained from the explicit solution
of BK evolution equation inside the saturation region. Indeed, in
the region,Qs ≳ k ≫ ΛQCD, a similar expression forN ðk; YÞ can
be derived from the Levin-Tuchin (LT) formula [28,29] for the S
matrix valid for larger dipoles, r ≳ 1=Qs. Starting from the LT
solution,

Sðr; YÞ ¼ exp ð−τ ln2½r2Q2
s �Þ; ð19Þ

the corresponding UGD has been recently obtained in Ref. [30].
In the leading logarithmic approximation and for k2 ≪ Q2

s, it can
be approximated to [30]

F ðk; YÞ ≈ NcR2
pτ

παs
ln

�
k2

4Q2
s

�
exp

�
−τln2

�
k2

4Q2
s

��
; ð20Þ

where τ is a constant well determined. Using the relation (1), it is
straightforward to show that the dipole scattering amplitude in
momentum space is given by

N ðk; YÞ ≈
Qs≳k≫ΛQCD 1

4
ffiffiffi
τ

p
� ffiffiffi

π
p

erf

� ffiffiffi
τ

p
ln

k2

4Q2
s

�
þ 2

ffiffiffi
τ

p
ln

�
4Q2

s

k2

��
;

ð21Þ

≈
k≪Qs 1

4
ffiffiffi
τ

p
�
−

ffiffiffi
π

p þ 4
ffiffiffi
τ

p
ln

�
2Qs

k

��
; ð22Þ

which has exactly the same parametric form as the simple
asymptotic expression in Eq. (18).

2As it is widely known, the UP parameter in MINUIT may
vary according to the number of degrees of freedom and the
confidence level. In our case, with four or five fit parameters, one
uses 9.49 and 11.07, respectively.
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χ2 ¼
XNp

i¼1

1

σ2i
ðsiðxi; yi; Q2

i Þ − σrðx; y; Q2ÞÞ2; ð26Þ

si representing the reduced cross section data (Np ¼ 524

for bin 1 and Np ¼ 659 for bin 2), σi the total uncertainty
with respect to central values, si, and σrðx; y;Q2Þ our
model, according to Eqs. (6), (10), and (23). We also
provide the integrated probability, Pðχ2; d:o:f:Þ, the well-
known p-value, also as goodness-of -fit estimator, with due
care, namely limiting to interpret its results in the light of an
overall agreement with data sets for the various models
tested, specially when comparing fits to bin 1 and bin 2, and
not in the traditional sense, that is, as a test of hypothesis
used to discriminate good from bad models.
Concerning the model parameters, the one kept fixed in

this analysis is ᾱs ¼ 0.2. For the value of the critical slope
γc, two different scenarios were tested: γc ¼ 0.6275, which
as mentioned before comes from the LO BFKL kernel, and
γc considered as a free parameter, a case which was tested
in the fit performed in [42] using the Iancu-Itakura Munier
(IIM) saturation model for Nðr; YÞ including the heavy
quarks. The value obtained in [42] was γc ¼ 0.7376, in
agreement with what is expected from NLO BFKL
(γc ≳ 0.7). Thus, as in the previous studies using AGBS

model, we are left with at least four free parameters, vc, k20,
Rp, and χ00ðγcÞ. For the rapidity dependence of the
saturation scale Qs, we keep only the first (leading) term,
see Eq. (17), just as it was done in the original work and all
other studies which used AGBS model for data description.
Clearly, keeping only the leading term is a phenomeno-
logical choice, since the amplitude (14) is not a solution to
LO BK equation, but a model based on the behavior of its
solutions in asymptotic regimes.
For the quark masses, we consider two different sit-

uations: (i) with only light quarks and (ii) with light and
heavy (charm and bottom) quarks. In both situations, we
use two different values for the light quark masses: mq ¼
mu;d;s ¼ 0.14 and 0.05 GeV. The first value is the most used
in DIS phenomenology in the dipole framework, while the
second is the one which provided the best fit to previous
(not combined) HERA data in the original AGBS model
[25]. In the case where heavy quarks are taken into account,
charm and bottom quark masses are assumed to be mc ¼
1.3 GeV and mb ¼ 4.6 GeV, respectively. For the sake of
comparison, we show the values obtained in Refs. [25]
(light quarks and charm quarks) and [34] (only light
quarks) in Table I (we present only the main results).
The main results described above are presented in

Tables II and III, where we introduce labels for different

TABLE I. Parameters obtained from the fits in Refs. [25,34]. Only the results which provided the best fit quality are presented.

Work mq [GeV] mc [GeV] mb [GeV] k20 (10−3 GeV2) vc χ00ðγcÞ Rp (GeV−1) Fit quality a

Ref. [25] 0.05 1.3 � � � 7.155� 0.624 0.193� 0.003 2.196� 0.161 3.215� 0.065 χ2=n.o.p. ¼ 0.988
Ref. [34] 0.14 � � � � � � 1.13� 0.024 0.165� 0.002 7.488� 0.081 5.490� 0.039 χ2=d.o.f. ¼ 0.903

aχ2=n.o.p. ¼ χ2 per number of points.

TABLE II. Parameters obtained from the fits performed using only light quark masses. Only the results with best χ2=d:o:f. are shown.
Fit variants are indicated by ViBj, with i ¼ 1, 2 standing for different values of light quark masses, mq (fixed), while j ¼ 1, 2 indicates
which bin have been used to tune parameters of each model.

Bin Variant mq [GeV] k20 (10−3 GeV2) vc χ00ðγcÞ Rp (GeV−1) χ2=d:o:f: p-value

Q2∶½0.045; 150�GeV2 V1B2 0.14 1.19� 0.57 0.171� 0.012 7.4� 1.3 5.32� 0.74 608.269=655 ¼ 0.929 0.904
V2B2 0.05 1.99� 0.74 0.1978� 0.0093 6.4� 1.0 4.26� 0.42 606.922=655 ¼ 0.927 0.910

TABLE III. Best fit parameters of our model in the bins 1 and 2 taking into account all quark flavors. As before, fit variants are
indicated by ViBj, with i¼3, 4 standing for different values of light quark masses. The four free parameters are shown for the fit
variants, along with their dimensions. Uncertainties are given within 95% confidence level, along with χ2/d.o.f. and p-value in each
variant. In all cases presented, the parameter γc is kept fixed at the value γc¼0.6275.

Bin Variant
mq

[GeV]
mc

[GeV]
mb

[GeV]
k20 (×10−3)
[GeV2] vc χ00c

Rp
[GeV−1] χ2=d.o.f. p-value

Q2∶½0.045;45�GeV2 V3B1 0.14 1.3 4.6 2.6�2.0 0.136�0.024 3.40�1.3 5.1�1.2 459.429=520¼0.884 0.974
V4B1 0.05 1.3 4.6 4.12�0.59 0.1619�0.0071 2.91�0.26 4.04�0.18 453.791=520¼0.873 0.983

Q2∶½0.045;150�GeV2 V3B2 0.14 1.3 4.6 1.704�0.075 0.1380�0.0035 4.04�0.13 5.603�0.086 818.47=655¼1.25 1.30×10−5

V4B2 0.05 1.3 4.6 2.88�0.14 0.1697�0.0059 3.4378�0.0054 4.36�0.13 781.986=655¼1.19 4.46×10−4
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fit variants: ViBj, with i ¼ 1, 2, 3, 4 standing for the
different values of light quark masses in both situations
described above, while j ¼ 1, 2 indicates which bin has
been used to tune the model parameters.
In Table II, we show the best results (bin 2) of our fits to

the DESY-HERA data for the reduced cross section when
only light quarks considered. Although the two different
choices of quark masses lead to significant differences with

respect to the resulting values of the parameters of the
AGBS model, they provide fits with similar qualities. In
order to perform a cross-check, we can compare our results
with those obtained from the fits of [34] (see Table I). We
see that the results are quite similar (concerning both the
parameter values and the quality of the fit) to those obtained
in the present work, with the same value, mq ¼ 0.14 GeV,
for the light quark masses.

7−10 6−10 5−10 4−10 3−10 2−10
0

0.1

0.2

0.3

20.045 GeV

7−10 6−10 5−10 4−10 3−10 2−10
0

0.1

0.2

0.3

20.065 GeV

7−10 6−10 5−10 4−10 3−10 2−10
0

0.1

0.2

0.3

20.085 GeV

7−10 6−10 5−10 4−10 3−10 2−10
0

0.1

0.2

0.3

20.11 GeV

6−10 5−10 4−10 3−10 2−10

0.1

0.2

0.3

0.4

20.15 GeV

6−10 5−10 4−10 3−10 2−10

0.1

0.2

0.3

0.4

20.20 GeV

6−10 5−10 4−10 3−10 2−10

0.1

0.2

0.3

0.4

20.25 GeV

6−10 5−10 4−10 3−10 2−10
0.1

0.2

0.3

0.4

0.5

20.35 GeV

6−10 5−10 4−10 3−10 2−10

0.2

0.3

0.4

0.5

20.40 GeV

6−10 5−10 4−10 3−10 2−10

0.2

0.3

0.4

0.5

0.6

20.50 GeV

6−10 5−10 4−10 3−10 2−10

0.2

0.4

0.6

0.8

20.65 GeV

6−10 5−10 4−10 3−10 2−10
0.2

0.4

0.6

0.8 20.85 GeV

5−10 4−10 3−10 2−10
0.2

0.4

0.6

0.8
21.2 GeV

5−10 4−10 3−10 2−10
0.2

0.4

0.6

0.8

1

21.5 GeV

5−10 4−10 3−10 2−10

0.4

0.6

0.8

1
22.0 GeV

5−10 4−10 3−10 2−10

0.4

0.6

0.8

1

1.2

22.5 GeV

5−10 4−10 3−10 2−10

0.4

0.6

0.8

1

1.2

22.7 GeV

5−10 4−10 3−10 2−10
0.4

0.6

0.8

1

1.2

1.4

23.5 GeV

5−10 4−10 3−10 2−10

0.5

1

1.5

24.5 GeV

5−10 4−10 3−10 2−10

0.5

1

1.5
25.0 GeV

4−10 3−10 2−10

0.5

1

1.5 26.5 GeV

4−10 3−10 2−10

0.5

1

1.5 28.5 GeV

4−10 3−10 2−10
0.5

1

1.5 215 GeV

4−10 3−10 2−10
0.5

1

1.5 218 GeV

4−10 3−10 2−10
0.5

1

1.5 220 GeV

4−10 3−10 2−10
0.5

1

1.5

2

222 GeV

4−10 3−10 2−10
0.5

1

1.5

2

225 GeV

4−10 3−10 2−10
0.5

1

1.5

2

227 GeV

3−10 2−10
0.5

1

1.5

2

235 GeV

3−10 2−10
0.5

1

1.5

2

245 GeV

3−10 2−10
0.5

1

1.5

2

260 GeV

3−10 2−10
0.5

1

1.5

2

270 GeV

3−10 2−10
0.5

1

1.5

2

290 GeV

3−10 2−10
0.5

1

1.5

2

2120 GeV

3−10 2−10
0.5

1

1.5

2

2150 GeV

FIG. 1. Red circles: H1-ZEUS e�p combined F2ðx;Q2Þ data in the range x ≤ 0.01 and 0.045 GeV2 ≤ Q2 ≤ 150 GeV2 [35]. F2

uncertainties are estimated, considering δF2 ≈ δσr. Curves: black solid and blue dashed curves are the predictions of variants V1B2 and
V3B2, following from fits to σrðx; y; Q2Þ including heavy quarks and only with light ones. Fit parameters of these curves are given in
Table III.
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In Table III, we summarize the results of the fits to the
data on the reduced cross section data with light and heavy
quarks for the twoQ2 bins. A suited fit quality is found (see
variants V3B2 and V4B2), given the data precision and a
minimal number of fitted parameters. In the Table III, we
present only the results with the parameter γc fixed at the
value γc ¼ 0.6275, since it provided the best fits to the data.
As mentioned before, we have tested the case where γc is
left free and verified a good stability for this parameter,
with the fitted one being very close to the that coming from
BFKL dynamics. The updated parameters are close to the
original ones (Ref. [25], with only charm effects taken into
account, see Table I) with vc having lower values by around
15%. We clearly see that the inclusion of heavy quarks still
provide good fits to HERA data (see Tables II and III). The
bottom quark contribution plays a small role in the bin 1,
whereas in the bin 2 it is significant, although most of the
results present p-values larger than the confidence level
considered, α ¼ 0.05, which demonstrate good statistical
significance of the analysis. The variability in the fit quality
estimators, χ2=d:o:f. and p− values, between the fits
performed in bins 1 and 2 can be noticeable, even though
that does not compromise the goodness of fits by all means.
In fact, as we shall see in the following, fits and predictions
of models obtained by tuning our model parameters with
bin 1 essentially overlap with the ones from bin 2. Such
behavior, seems to evidence not only an important effect of
high-Q2 and high-x in our dipole amplitude, but also that
fitting a largerQ2 bin may not be required in order to obtain
reasonable predictions for heavy quarks structure functions.
For that reason, despite the low p-values shown in Table III
for bin 2 fits, we keep those results with χ2=d:o:f: ∼ 1, as

they still provide good fits (both visually and statistically)
for such a large number of degrees of freedom (∼650),
since this worsening with respect to bin 1 fits can be traced
to the effect of including heavy quarks in the amplitude in a
larger Q2 range.
In essence, these results demonstrate that the AGBS

model remains doing a good job even at large virtualities
and small-x, mimicking part of the typical DGLAP
evolution (driven by the extended geometric scaling behav-
ior present in large k tale of the dipole amplitude).
Parameter vc ¼ λ ≃ 0.15–0.17 is compatible with λ values
found in recent analyses using dipole models with extended
geometric scaling in coordinate space. For instance, IIM/
CGC model [42,43] gives λ ≃ 0.23 whereas b-CGC model
[43] found λ ¼ 0.2063. The value of the parameter
Rp ≃ 4.62–5.3 GeV−1, which is related to the black disc
limit of γ�p cross section, σ0 ¼ 2πR2

p ≃ 52–67 mb, pro-
duces larger values compared to corresponding models in
coordinate space where σ0 ∼ 30 mb [38,43,44].
In Fig. 1, a comparison between the variants V1B2 (solid

lines, only light quarks) and V3B2 (dashed lines, including
charm and bottom) is shown against the H1-ZEUS com-
bined F2 data at Q2 ∈ ½0.1; 150� GeV2 and x ≤ 10−2. A
very good agreement with data can be observed, and the
curves are practically the same at very low-Q2. Small
deviations appear only at large Q2 and very small x. The
results for light quarks are steeper (vc ≃ 0.17) than for those
including heavy quarks (vc ≃ 0.15). The resulting dipole
amplitude in momentum space obtained from present fits
can be used for the prediction of LHC cross sections along
the lines presented in Ref. [34]. In addition, by using of
Eq. (1), the proton unintegrated gluon distribution can be
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FIG. 2. Charm structure function, Fcc
2 ðx;Q2Þ, estimates from HERA in the range 2.5 GeV2 ≤ Q2 ≤ 120 GeV2 [45], assuming
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2 ≈ σccr . Predictions of variants V3B1 and V3B2 are given by blue dashed and black solid curves, respectively.
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easily obtained. This is important for the physics based
on calculations in the scope of TMD=k⊥-factorization
formalism.

As previously stated, the ABGS model nicely describes
HERA data for small and moderate photon virtualities,
including the transition of the DIS structure functions to
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FIG. 3. Bottom structure function, Fbb
2 ðx;Q2Þ, estimates from HERA in the range 2.5 GeV2 ≤ Q2 ≤ 120 GeV2 [45], assuming

Fbb
2 ≈ σbbr . Predictions of variants V3B1 and V3B2 are given by blue dashed and black solid curves, respectively.
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small values of Q2. It is known that this is achieved by the
parton saturation corrections to the BFKL formalism
embedded in the approach. This should be more evident
in the longitudinal structure function, which is strongly
affected by the screening corrections.
With the parameters given in Table III, we are able to

compute and make predictions for the charm and bottom
structure functions. The results are presented in Figs. 2
and 3, respectively, where both contributions for the F2

structure function are considered in the range 2.5 GeV2 ≤
Q2 ≤ 120 GeV2 [45], and we use the variants V3B1 and
V3B2. In the case of charm structure function, Fcc̄

2 , one sees
that AGBS model provides a good description of the data

within a wide range of the photon virtuality, up to 60 GeV2

and a reasonable description at Q2 ¼ 120 GeV2. We have
also made predictions for the bottom structure function,
Fbb̄
2 , finding a good agreement with the data, in particular

for Q2 ≥ 7 GeV2, where there is a larger number of
experimental points. Finally, we present our predictions
for the longitudinal structure function, FLðx;Q2Þ, which in
the present analysis can be evaluated using Eqs. (9)
and (10). The results are presented in Fig. 4, where we
show the behavior of FL as a function of x in the range
1.5 GeV2 ≤ Q2 ≤ 120 GeV2 of the photon virtuality, con-
sidering, as before, variants V3B1 and V3B2. In all the
ranges considered, we see that AGBS model provides a
good agreement with the data. Besides, as already men-
tioned, Figs. 2 and 3 reveal that bin 1 data are sufficient to
furnish accurate descriptions of both, Fcc̄

2 and Fbb̄
2 , even at

virtualities as large as Q2 ∼ 100 GeV2. Notwithstanding,
this effect is even more drastic for FLðx;Q2Þ, as one can see
from Fig. 4, in which V3B1 and V3B2 exactly overlap.
As a last analysis, based on V3B2 variant, we give

predictions for the Large Hadron Electron Collider
(LHeC) [47], which extends the kinematical range of ep
DIS to very low-x. It is proposed as a configuration with
electrons of 50–100 GeV colliding with 7 TeV protons in the
LHC accelerator. It is also planned high energy/luminosities
configuration in a long term period [48,49] (HE-LHeC,ffiffiffi
s

p
ep ≃ 1.7 TeV, and FCC-ep with

ffiffiffi
s

p
ep ≃ 3.5 TeV). This

allows us to explore Bjorken-x in DIS down to ∼10−6 with
high luminosity. Specifically, here we consider the LHeC
scenariowithEe ¼ 50GeVonEp ¼ 7 TeV,

ffiffiffi
s

p
ep≃1.3 TeV,

with a luminosity of 50 fb−1. This provides access to a
kinematic regionof2×10−6<x<0.8 and2<Q2<105GeV2.
Our predictions to F2 and FL are shown in Fig. 5 (fit

including c and b quarks) for F2 and FL compared to the
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simulated LHeC pseudodata electron-proton collisions at
Q2 ¼ 10 GeV2 and for10−6 ≤ x ≤ 10−2 [47]. The extension
of present model to very low-x is reasonably consistent with
simulated LHeC data, and it is expected that the real
measurements can be able to discriminate between the
models including saturation physics and constraints on the
small x QCD dynamics. Predictions are also shown for
the charm and bottom structure functions in Fig. 6. They are
compared to the pseudodata generated by RAPGAP
Monte Carlo for an LHeC scenario with electrons withEe ¼
100 GeV and protons with Ep ¼ 7 TeV for an integrated
luminosity ofLint ¼ 10 fb−1. We present the pseudodata for
the configuration, where the detector acceptance covers the
whole polar angle range as well as events where at least one
heavy quark (Q ¼ c, b) is found with polar angles θQ >
2ð10Þ degrees. The overall trend of simulated data indicates a
possible enhancement of the charm and bottom within the
proton at very low-x. For the time being, bearing in mind the
recent HERA results on Fcc̄

2 and Fbb̄
2 , it seems premature (if

not speculative) to take for granted such a behavior at LHeC,
reason for what our predictions are shown. Future, actual
data, shall shed light on this matter.

IV. CONCLUSIONS

In this work, we revisited and updated the AGBS color
dipole model in the momentum space framework. The
amplitude contains the BFKL dynamics at large k (dif-
fusion) and transition to saturation regime using the
traveling wave solutions of BK equation at leading order.
The parameters have been fitted to the reduced cross
section σr measured at DESY-HERA, taking into account
the heavy quark contributions in the theoretical prediction
for proton structure function F2. The investigation covered
data in the region x ≤ 10−2 and Q2 ≤ 150 GeV2. An
excellent quality of fit was found with χ2=d:o:f: ≈ 1 and
good statistical significance with p-value either large.
Using a confidence level of 95%ðα ¼ 0.05Þ, most of
analyzed cases obey p ≫ α. The fit quality of the original
results for the AGBS model with light (þ charm) quarks
remains preserved with heavy flavours included. The
parameters have not changed significantly in comparison
with previous versions of the model, with and without
heavy quarks with exception to the χ00ðγcÞ. Interestingly, the
model considering only light quarks still describes the
low-x=low-Q2 data in a nice way. The saturation scale,
Q2

sðxÞ ¼ k20x
−vc , presents a weaker growth on x for heavy

quarks than for only light ones.
By using the parameters of the dipole amplitude in

momentum space, N ðY; kÞ, determined from the fit to the
F2 data, we predicted other inclusive structure functions.
New predictions include the longitudinal, charm, and

beauty structure functions (FL; Fcc̄
2 ; Fbb̄

2 ). It is found
remarkable agreement with updated HERA data in all
Q2 bins. This means the model is able to emulate the
DGLAP evolution at very large Q2 and the correct parton
saturation effects at low Q2. Predictions for the LHeC
kinematic range were provided and compared to available
pseudodata for that TeV scale ep machine.
Here, we have only considered the simplest scenario of

LO expression for dipole amplitude, and an extension
addressing its NLO correction could certainly be done.
Recently, the first fit to HERA inclusive cross section data
using the full NLO impact factor combined with an
improved BK evolution has been done, and the predictions
are quite robust [50]. The numerical solution of the NLO
BK equation presents instabilities, and resummations of the
radiative corrections are needed [51,52]. These instabilities
comes from subleading double logarithms arising from the
incomplete cancellation between real and virtual correc-
tions which are Sudakov type ones. They can be resummed
to all orders and a Sudakov suppressed BK equation
(SSBK) is obtained. A fit of the reduced cross section
using SSBK was shown to be reasonable [53]. Thus, it is
timely to investigate the NLO evolution in a simpler
phenomenological model as the AGBS one. Moreover,
we envisage as future possibility to further explore the
impact parameter dependence of the amplitude at LO and
NLO. The numerical solution to the BK with impact
parameter dependence containing collinearly improved
kernel was analyzed in Ref. [54], and reasonable agreement
with HERA and LHC data has been found. Moreover, we
envisage as future possibility to further explore the impact
parameter dependence of the amplitude at LO and NLO.
This can shed light on the b dependence of the dipole
amplitude in an analytical QCD model. Such a study would
be complementary to the numerical solution to the BK
equation with an impact parameter dependence containing
collinearly improved kernel, which was analyzed in
Ref. [54], and where reasonable agreement with HERA
and LHC data has been found. Finally, the present approach
can be regarded as a starting point to study diffractive DIS
(DDIS) and exclusive particle production such as the
deeply virtual compton scattering (DVCS) and exclusive
vector meson production, which we intend to investigate in
a future work.
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