UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
CURSO DE CIENCIA DA COMPUTACAO

LEONARDO SILVA ROSA

A visual approach for identification and
annotation of business process elements in
process descriptions

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Lucineia Heloisa Thom

Porto Alegre
November 2020

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos André Bulhdes Mendes

Vice-Reitora: Prof*. Patricia Helena Lucas Pranke

Pré-Reitora de Graduagdo: Prof?. Cintia Inés Boll

Diretora do Instituto de Informatica: Prof*. Carla Maria Dal Sasso Freitas
Coordenador do Curso de Ciéncia de Computagdo: Prof. Sérgio Luis Cechin
Bibliotecdria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

ABSTRACT

Business Process Management (BPM) has been proven to provide several benefits for or-
ganizations (e.g., efficiency, agility, governance). However, the effort required for adopt-
ing a process-centered approach can be a challenge in different aspects, including financial
concerns, organizational changes and time consumption. In particular, process modeling
is a complex, but crucial activity constantly performed during the process discovery and
redesign of the BPM life-cycle. Most companies already have their processes described
as text documents (process descriptions), which can be leveraged by business analysts as
one of the techniques to effectively build process models. In light of this, this study pro-
poses an approach to enhance process descriptions as complementary artifacts in which
BPMN 2.0 core process elements are identified and interactively annotated with visual-
ization features. Specifically, the presented approach is able to detect sequences of words
that indicate the presence of a process element and create a metadata structure which is
exposed through a consumable web service and further used for generating the annotated
process description. As means to demonstrate the approach applied in practice, a pro-
totype was developed, which is capable of annotating the identified process elements by
adding visual features such as colors and BPMN 2.0 symbols. In order to evaluate the
approach, two separate experiments were conducted, performing a user focused survey
and a business process model design case study, respectively. The first experiment shows
promising results in every category evaluated, specially concerning the usefulness of the
approach to assist the process modeling phase, for which 88% of the users indicated pos-
itive results. The second experiment shows a process description with a precision of 77%
of annotated process elements in comparison to its original process model. Additionally,
several possible use cases enabled by this study are presented as well as ideas for comple-

mentary future researches.

Keywords: Business process management. Natural language processing. Visually inter-

active process description.

Uma abordagem visual para identificacao e anotacao de elementos de processos de

negocio em descricoes de processos

RESUMO

Gerenciamento de Processos de Negécio (BPM) tem se provado capaz de oferecer diver-
sos beneficios para organizagdes (e.g., eficiéncia, agilidade, governanca). Entretanto, o
esfor¢o necessdrio para adotar uma abordagem centralizada em processos pode ser desa-
fiador em diversos aspectos, incluindo questdes financeiras, modificagdes organizacionais
e consumo de tempo. Particularmente, a modelagem de processos € uma tarefa complexa,
mas crucial, executada constantemente durante as fases de descoberta e redesenho de pro-
cessos no ciclo de vida de BPM. Grande parte das empresas ja possui seus processos
descritos em documentos de texto (descri¢des de processo), o que pode ser aproveitado
por analistas de negécio como uma das técnicas para de forma efetiva construir modelos
de processo. Diante deste contexto, este estudo propde uma abordagem para incremen-
tar descri¢Oes de processos, gerando artefatos auxilidres nos quais principais elementos
da BPMN 2.0 sdo identificados e interativamente anotados com caracteristicas visuais.
Especificamente, a abordagem apresentada € capaz detectar sequéncias de palavras que
indicam a presenca de um elemento de processo e criar uma estrutura de metadados que é
exposta através de um servigo da web a ser consumido e posteriormente usada para gerar
a descri¢do de processo anotada. Como forma de demonstrar a abordagem aplicada na
pratica, um protétipo foi desenvolvido, sendo capaz de anotar os elementos identifica-
dos a partir da utilizacdo de elementos visuais como cores e simbolos da BPMN 2.0. Para
avaliar a abordagem, dois experimentos separados foram conduzidos, realizando uma pes-
quisa focada em usudrios e um estudo de caso para construcdo de modelos de processo de
negdcio, respectivamente. O primeiro experimento mostrou resultados promissores em
todas as categorias avaliadas, especialmente se tratando da utilidade da abordagem para
auxiliar a fase de modelagem de processo, para a qual 88% dos usudrios indicaram re-
sultados positivos. O segundo experimento mostra uma descri¢do de processo com uma
precisdo de 77% de elementos de processo anotados em comparag¢do com o seu modelo
original. Além disso, diversos casos de uso possibilitados por este estudo sdo apresenta-

dos, assim como ideias para futuras pesquisas complementares.

Palavras-chave: Gerenciamento de processos de negécio. Processamento de linguagem

natural. Descri¢des de processo visualmente interativas.

LIST OF FIGURES

Figure 2.1 Subset of BPMN 2.0 €lements........cc.ceeeriiiiiiiiiieeeniieeeniiiee e 16
Figure 2.2 Restaurant Service process model according to the BPMN 2.0..................... 16
Figure 2.3 NLP PIPEINE.......cooiiiiiiiiiiiiiceecteeeeee et 18
Figure 2.4 Example of constituency parsing in COreNLPccoociiiiiiiiiiiiiieinen. 19
Figure 4.1 Approach to identify and annotate process elements in process descriptions32
Figure 5.1 Approach phases in a client-server modelcccoevvieriieeiieeniieerieeeiene 48
Figure 5.2 Class diagram of the server COmponent.............cceeveervueeenieennieeenieenneeenieene 52
Figure 5.3 Sequence diagram of the server COmponent...........cccceeveeveereercreeneeneennennn 54
Figure 5.4 Class diagram of the client COmMpPONeNt..........ccc.eeeviieriiieiniiieniiieeniee e 55
Figure 5.5 Sequence diagram of the client cOmponent............cceecueeevieeriiieeniieeenieenieenne 56
FAgUIE 5.0 INPUL tEXL...uiiiiiiiiiiieeiie et ettt ettt e et e e st e e ea e e s taeesnteesnsaeesnseesnsaeennneeens 57
Figure 5.7 OULPUL SCIEEMveeeiiiiiieeiiiieeeiiee ettt ettt e e et e e e e e e saaeeees 58
Figure 5.8 CuStOmizZe COLOTcoouuiiiiiiiiiiiiiieeite ettt 58
Figure 5.9 AnNOtated (EXT......ccuviriiriieiiiirienieeitee ettt 59
Figure 6.1 First section of the qUESHONNAITE.......cccueeeriiiiriiiiriiiriie et 61
Figure 6.2 First sentence in the second section of the questionnaire.............cccecuveevuneenn. 62
Figure 6.3 Third section of the qUESHIONNAITEccoviiiriiiiriieriieeieeeee e 63
Figure 6.4 Fourth section of the qUeStONNAITE..........cccveeriiieriieiiieeiieee e 65
Figure 6.5 Annotation COMPIreNeNSIONc...eeevuiieriieeriieeiieerteeeieeesreeeieeesaeeeeeeesieeens 68
Figure 6.6 Annotation comprehension per OCCUPAtIONcccveeervreerveeerieeeniueeesveeniaeeens 68
Figure 6.7 ANNOtation COITECINESSccutteruriiriiieeniiieeiiteentteerieeeeiteesieeeeieeesteeeieeeeaeeeas 70
Figure 6.8 Annotation correctness per BPMN eXPerience........c..ccceevveerviieeneeenniveenneenne 70
Figure 6.9 Annotation usefulness for model designccccceevviiieniiieniiiiniieeniieenee 73
Figure 6.10 Annotation usefulness for model design per modeling experience............. 73
Figure 6.11 Actors annotation COMPATISONcecueeruierierrieerienieeieenteestesreesieesseesaeeenne 75
Figure 6.12 Tasks annotation COrrelationcooueeeiieiniiianiiiniieereceiee e 76
Figure 6.13 Exclusive decisions annotation COMPArISONceeueeerureerrueeenueensineeniueenns 76
Figure 6.14 Parallel executions annotation COMPATiSON........cc..eerueeerreerrireerieeersireenineenns 77
Figure 7.1 Computer Repair annotatedcceeviiiriiiiniiiiniiiiieeeceiceee e 80
Figure 7.2 Hotel Service annotated...........ccocveevienienieniiiiieneeeieceeeeeee e 81
Figure 7.3 Computer Repair (original) annotated.............ceeevvieriiiiniiiennieenieenieeneene 83
Figure 7.4 Results of identified elements in the original teXtcccceevvveerieerrveenienne 84
Figure 7.5 Computer Repair process model...........coeovvieriiiieniiiiniieeniieeiieesiee e 86
Figure 7.6 Hotel Service process Mmodelccc.eeveeiiiiiiiiiiiiiniiiieeiieeeeeee e 86
Figure 7.7 Computer Repair original process modelc.ccoecviviieniiniinieenieniennennn. 87
Figure 7.8 Hotel Service original process model............cocceeveeriiiiieniinienieenienienenn 87
Figure A.1 Participant annotation 1ccccccooiiiiiiiiiiiiiniiieieee e 95
Figure A.2 Participant annotation 2coevuieeriieenieeniieenieeeieeesieee ettt e sieeesaee e 95
Figure A.3 Participant annotation 3coovieeriieeniieniieeiee et estee et e s ens 96
Figure A.4 Participant annotation 4coeoueeriieenieeniiieeneeenieeesieeeieeeseeesieeesaeeens 96
Figure A.5 Participant annotation 5ccc.eeeiieeriiieenieeniieenieeeieeesveeeieeesseeeseneesneeens 97
Figure A.6 Participant annotation 6c..ceeueeriieenieeniiieeneeeeieeesreeesieeesaeeeneneesneeens 97
Figure A.7 Participant annotation 7cc.eeoiieeriieenieeniieentee ettt e eiee e 97
Figure A.8 Participant annotation §coovuieiiiiieiiiiniieeieeeite et 97

LIST OF TABLES

Table 2.1 Main properties of the action data StrUCIUIe..........ccccveeeeriiiieeiiiiieeeiieeeeien 21
Table 3.1 Automated extraction of business process information..............ceeceeevuveennennn. 24
Table 3.2 Generation of business process deSCTIPtIONSecveeerieeeriveeerieerieeerireenaeeens 27

Table 3.3 Comparison of related works with the approach to be presented in this study31
Table 4.1 Adaptation of a process deSCTIPLIONeeeruvieriieeriieeiieeriee e eeieeeieeesaeeens 34
Table 5.1 Classes in relation to phases of the presented approach............ccccceeviiinnneen. 53

Table 7.1 Variable values for precision and recallccoccooiiiiiiiiiniiiiiiiiiieeee 82

O 0 9 N »n B~ WD =

LIST OF ALGORITHMS

Algorithm for detecting poSSIbIE EVENLScccvciiiiiiiiiiieiiiiiee e 37
Algorithm for generating the JSON metadatacccccoceevieniiiiieniiiniieceeeeee 39
Algorithm for filtering and classifying process elementsccoceevceervieeneennennennn 39
Algorithm for identifying the start index of elementscccceecueerviiiniiiinieenieennne 40
Algorithm for identifying the end index of elements...........ccccceveeniiniiniiiniicnicnneene. 41
Algorithm for identifying the indices of a split gateway branchc...ccccevienneenn 42
Algorithm for identifying the indices of join atewaysccceecvveeiriiieeeriiieeeriieeene 43
Algorithm for merging properties of the JSON metadata..........cccccceevieiniiiinieinnennne. 44
Algorithm for assigning each word to its process element typec.cccecveeeveervenenenne 45

10 Algorithm for adding visual features in a text StruCtUIEeevvueeerveerieeenieenieeene 46

BPM

BPMN

NLP

POS

PME

HTTP

DOM

SPA

API

JSON

SoC

CSS

CBSE

LIST OF ABBREVIATIONS AND ACRONYMS

Business Process Management
Business Process Model and Notation
Natural Language Processing
Part-of-speech

Process Model Extraction
Hypertext Transfer Protocol
Domain Object Model

Single Page Application
Application Programming Interface
JavaScript Object Notation
Separation of Concerns

Cascading Style Sheets

Component-based Software Engineering

CONTENTS

1 INTRODUCTION..... 10
2 BACKGROUND ..14
2.1 Business process concepts .. 14
2.2 Natural language processing...... . . w17
2.2.1 NLP PIPEIHNE ...ttt ettt e e s 17
2.2.2 Stanford COreNLP tOOIKIt........ccouiiiiiiiiieiiieeieee e 19
2.3 Extraction of business process elements .20
2.4 Human-computer interaction.... w22
3 RELATED WORKS.24
3.1 Automated extraction of business process information..... .24
3.2 Generation of business process descriptions 27
4 IDENTIFICATION AND ANNOTATION OF BUSINESS PROCESS ELE-
MENTS.... w32
4.1 Textual guidelines.. w32
4.2 Input handling w35
4.3 Elements extraction 35
4.4 Text identification.. 38
4.5 Text annotation...... .44
5 PROTOTYPE. .47
5.1 Architecture w47
5.2 Technologies .48
5.3 Server component . .50
5.4 Client component .. 54
5.5 Demonstration S7
6 EVALUATION OF THE APPROACH60
6.1 Questionnaire structure... .00
6.2 Result analysis .66
6.2.1 Comprehension of the annotated desCription..........ccceceereerieeriienieniienieeeereeene 67
6.2.2 ANNOLALION COTTECINESS. ceuuvvieutreeiteerireeriteeaiteenteeestteesseesssreesseeensseessseeessseesnseesnnne 69
6.2.3 Usefulness for modeling purpOSesccueeerveieriieerieeniieeieeeieeesieeeeieeeneeeseee e 72
6.2.4 Effectiveness of the approachcoooviiiiiiiiiiiiii e 74
6.3 Discussion78
7 CASE STUDY .79
8 CONCLUSION 88
REFERENCES.. 91

APPENDIX A — ANNOTATIONS SUBMITTED IN THE QUESTIONNAIRE ...

95

10

1 INTRODUCTION

To interact within itself or with customers and business partners, every organiza-
tion, profitable or not, has to manage a number of processes. A business process is a
collection of inter-related events, activities and decision points that involve a number of
actors and objects, and that collectively lead to an outcome that is of value to at least one
customer (DUMAS et al., 2018). In order to be competitive, companies aim to improve
the efficiency and quality of their business processes and adopt well established standards
of specifications and execution (THOM; REICHERT; IOCHPE, 2009). Thus, Business
Process Management (BPM) has increasingly being adopted by organizations due to its
capabilities of improving operational performance, enhancing service quality, ensuring
regulations and compliance as well as reducing costs (DUMAS et al., 2018). BPM en-
compasses the entire lifecycle of a business process, which means a continuous cycle
composed by several phases that are addressed throughout the existence of the process.

According to Dumas et al. (2018), the starting point of the BPM lifecycle is the
Process identification, with the purpose of delimiting which processes address certain
business problems. The Process discovery phase follows in order to document and detail
the identified processes. Successively, analysing the discovered processes based on a set
of predefined metrics and measures is the key phase for spotting bottlenecks and potential
points of improvement. The redesign and implementation are the subsequent phases in
which process changes addressing the identified issues are proposed and applied, respec-
tively. Finally, monitoring and controlling the redesigned process execution aims to detect
possible new issues or deviations to the intended behaviour, thus, restarting the cycle if
necessary. Although BPM encompasses the entire lifecycle of a business process, this
study focus on the Process Discovery phase.

There are different representation forms and notations with which an organiza-
tion can document its business processes (ZIMOCH et al., 2018). Process descriptions
are a common form which intends to describe a business process in the form of textual
representation. Researches have shown that 85% of the companies’ information are rep-
resented by non-structured formats, such as text documents (BLUMBERG; ATRE, 2003).
As textual descriptions may not be sufficient to represent every aspect of a process (ALL-
WEYER, 2009), organizations also adopt business process models as a representation of
their processes (KETTINGER; TENG; GUHA, 1997), which comprises visual elements

and syntactic rules. Further, current standardization efforts points to the Business Process

11

Model and Notation (BPMN) (OTTENSOOSER et al., 2012), in particular, BPMN 2.0
(COMMISSION et al., 2013), as the standard notation to follow.

Before creating a model, it must be discovered and understood how the process
is performed. During the Discovery phase of the BPM lifecycle, the process analyst
may use several methods to achieve this goal, such as: Evidence-Based, Interview-Based
and Workshop-Based methods (DUMAS et al., 2018). The Interview-Based discovery
uses techniques for the purpose of extracting information about the process execution by
interviewing the domain experts. Furthermore, the Workshop-Based discovery benefits
from the interaction and contribution of several participants belonging to different roles,
such as domain experts, process owner, process analyst. Finally, in the Evidence-Based
discovery, the analyst studies how a process works, using methods such as Document
Analysis, Observation and Automatic Process Discovery.

With regard to the latter, new techniques have progressively been proposed in re-
cent researches. Process Mining, for example, aims to discover, monitor and improve pro-
cesses extracting knowledge from event logs available in information systems (AALST,
2012). Such logs, however, are not always present in organizations with a simpler tech-
nological infrastructure. This study, on the other hand, proposes an approach based on a
Natural Language Processing (NLP) technique (LIDDY, 2001) applied to existing docu-
mented process descriptions. Nevertheless, regardless of which methods and techniques
are used, many challenges may be presented, for instance, different interpretations of the
process by the employees, ambiguous information in text documents, unclear or mislead-
ing material. Therefore, process modeling can become a complex, time consuming and
error prone activity (DUMAS et al., 2018).

In light of these challenges, many studies have shown promising results in au-
tomating or helping the modeling of processes (FRIEDRICH; MENDLING; PUHLMANN,
2011; HONKISZ; KLUZA; WISNIEWSKI, 2018; FERREIRA et al., 2017; SILVA et al.,
2019). In particular, the research of Silva et al. (2019) establishes a service-oriented ar-
chitecture for enabling sound process description generation from a process description
written in natural language and it is able to mark and annotate business process elements
(e.g., Tasks, Start and End Events, Gateways) in the generated process description. In the
context of this study, a complementary re-reading of Silva’s research is presented in this
study, focusing on a user-interactive visual approach for identification and annotation
of business process elements in process descriptions. As it stands, the text annotation

in Silva’s study is not applicable to the given original process description, but rather re-

12

stricted to the generated sound process description. Furthermore, whilst Silva’s approach
sets a starting point for visualization features in process descriptions, it is limited to mod-
ifying the font color of words in the text with a preselected set of colors. The approach
proposed in this study, on the other hand, aims to provide a user-interactive text anno-
tated by a variety of visual features (e.g., symbols, colors, highlighters) and based on the
original process description.

The main goal of the approach presented in this study is to provide a valuable
annotated process description based on flexible and customized visual features which in-
tends to be beneficial as an artefact for organizations and applicable for several use cases.
A study performed by Ottensooser et al. (2012) conducted an experiment in order to com-
pare the efficiency between textual, graphical and both notations for the understanding
of a process. The analysis of the experiment results suggests that all groups of partici-
pants benefited from leveraging both notations. According to the authors, while a pure
textual notation is limited to a linear order, the pure graphical notation causes a cognitive
overload. A previous study of Sweller, Merrienboer and Paas (1998) observed that, when
reading diagrams, the human brain memory is restricted to about 30 seconds of storage
duration and roughly seven matters.

The approach presented in this study basis itself on the fact that the textual notation
(i.e., process descriptions) is helpful for the comprehension of the process and hypothe-
sizes that a mixed notation based on the process description annotated by visual features
may assists even further on such task. Additionally, a use case is demonstrated on how the
annotated process description can help to build a process model. The use cases, however,
are not limited to building process models and comprehending the process. An annotated
process description may also be useful for teaching purposes, helping to track changes in
the process and others.

An additional key motivation for this study is due to the lack of functional im-
plementations of related approaches in this field. In a study performed by Riefer, Ternis
and Thaler (2016), several approaches for mining process models from natural language
texts are analyzed and compared. According to the authors, however, this comparison
was restricted to a theoretical basis, due to the absence of available implementations. The
approach proposed in this study is complemented by a prototype which enables a number
of use cases for end-users. Furthermore, this prototype was designed with the goals of
being reproducible and extended by future researches.

This study is organized as follows. Chapter 2 presents key definitions and con-

13

cepts related to the approach proposed in this study. Chapter 3 introduces and discusses
related works regarding the process discovery phase. Chapter 4 presents the proposed
approach and key algorithms adopted in this study. Chapter 5, shows the presented ap-
proach in practice, detailing the development of the tool. The evaluation of the approach
is performed and analyzed in Chapter 6, in which a first experiment is conducted. Fol-
lowing, the second experiment in Chapter 7 demonstrates an use case of the approach
in the context of creating a process model. Finally, Chapter 8 concludes this study, dis-
cussing positive and improvement points as well as presenting ideas for possible future

complementary researches.

14

2 BACKGROUND

This chapter presents the key theoretical background referenced in further chapters
of this study. First, it defines basic business process concepts required for the construction
of a process description, introduced in Chapter 1. Second, it introduces NLP concepts,
the NLP pipeline and the toolkit used in the context of this study. Finally, this chapter
presents a state of the art study used as basis for the extraction of process elements phase

of this study.

2.1 Business process concepts

A business process encompasses a number of activities, events and decision points.
Furthermore, it involves a number of actors (i.e., human actors, organizations or software
systems) (DUMAS et al., 2018). Understanding the definitions of those terms is crucial
for representing a business process, regardless of the form or notation used. To exemplify
these definitions, a hypothetical business process of a restaurant interacting with a cus-

tomer is introduced below in the form of a process description.

Restaurante Service

When a customer arrives at the restaurant, the host verifies the number of tables avail-
able. If one or more tables are available, the host calls the waiter to guide the customer
to one table. Otherwise, the host informs the customer to wait. Once a table has been
cleared, the waiter guides the customer and gives the menu. After five minutes, the
waiter returns and asks for the order. The customer may order food and/or drinks.
While the kitchen prepares the order, the waiter prepares the table. As soon as the

order is ready, the waiter brings it to the table. When the customer finishes his meal,

he pays for the order and leaves the restaurant.

As part of a subset of activities, tasks are considered actions that have a time
duration and represent units of work. They are generally performed by human actors
involved in the business process, defined as process participants (DUMAS et al., 2018).
In a study performed by Ferreira et al. (2017), in a process description, tasks are mostly
described by verbal sentences in the present or in the future tense. As such, sentences

representing tasks are usually comprised by verbs, objects and subjects. In the presented

15

process description, examples of tasks are: “verifies the number of tables available” (lines
1-2), “prepares the order” (line 6) and “pays for the order” (line 8).

Events correspond to things that happen atomically, meaning that they have no
duration. They are generally used to specify the occurrence of a certain action that may
trigger the execution of a series of following activities (DUMAS et al., 2018). Usually,
they are represented in sentences by using verbs in the past or present perfect tense, for
example: “Once a table has been cleared” (lines 3-4). In some cases, however, the verb
may also appear in other verbal tenses: “When a customer arrives at the restaurant” (line
1). Additionally, events may also represent the occurrence of a specific temporal event
(DUMAS et al., 2018), for example: “After five minutes” (line 4). Though there are a
number of further usages for events, such details go beyond the scope of this study.

Decision points are points in time when a decision is made such that the execution
flow of the business process is affected (DUMAS et al., 2018). For the context of this
study, three types of decision points are introduced. Exclusive decisions model the relation
between two or more alternative activities, meaning that only one resulting alternative
must be executed. For example: “If one or more tables are available (...).Otherwise (...)”
(lines 2-3). Parallel executions occur when two or more activities do not have any order
dependencies on each other, meaning that one does not require or exclude the other, thus,
being able to be executed concurrently. For example: “While the kitchen prepares the
order, the waiter prepares the table” (line 6). Finally, inclusive decisions model situations
when the result of a decision may lead to one or more outcomes executed, i.e., multiple
cases can be true at the same time, but not necessarily all of them. For example: “The
customer may order food and/or drinks” (line 5).

According to the modeling notation followed in this study, the BPMN 2.0 (COM-
MISSION et al., 2013), an activity is a work that is performed within a business process.
It can be categorized in three different types: task, sub-process and call activity. An event,
on the other hand, is something that happens during the course of the process, hence, it
has a cause and usually a consequence, which requires or enables a certain reaction. Fur-
thermore, in the BPMN 2.0, a decision point is represented as a gateway and is used to
control the flow of execution of the process. The execution flow may either diverge, creat-
ing branches of different flows or converge to a same flow of execution. Finally, the actors
of the process are represented as lanes which are often used to delimit a sub-partition of
the process performed by the respective actor. Figure 2.1 shows the subset of consid-

ered BPMN 2.0 elements in the approach proposed in this study. Additionally, Figure 2.2

16

Figure 2.1: Subset of BPMN 2.0 elements

Exclusive Gateway Parallel Gateway Inclusive Gateway
Start Event End Event Intermediate Event Timer Event
| /\\
E @ :
' c
H ©
: u
Conditional Event Message Event

Source: The Authors

Figure 2.2: Restaurant Service process model according to the BPMN 2.0

g Customer informed Table cleared Waiter called Order asked
Call the 2\ F=Y Pay for

‘E waiter Q @ &/ the order
3 inished Payment performed

]

g O—

Customer arrived | available
Call the
Tables available | "Iter i
o ;
c H
L :
|
al g Bring
o= Prepare
£ls the tabe orderfo ——+()
Customer served

c Prepare

g the food

2 Order is ready

X

Source: The Authors

shows the process description introduced in this section in the form of a process model
according to BPMN 2.0.

Although process descriptions can be a simple form of representing a business
process, there are issues which may be present, jeopardizing the comprehension of the
process. One common difficulty faced by business analysts when analyzing process de-
scriptions is the presence of ambiguity (SILVA et al., 2018). It can be manifested in
several forms, such as the usage of pronouns (e.g., “he”, “she”, “this’) which do not clar-
ify the referenced word, or unclear subject and/or objects in the sentence. Nevertheless,

the type of ambiguity emphasized for the context of this study is regarding part of speech.

17

In many cases, words can have multiple classifications, when taken out of context. For
example, the following words can be classified as nouns or verbs: “check”, “fix”, “ac-
2 [13

cess”, “control”, “cut”. Such cases may disrupt the intended meaning of the sentence and

are particularly problematic for NLP based approaches.

2.2 Natural language processing

In order to introduce NLP, first, it is necessary to address the concept of a natural
language. According to Lyons (1991), a natural language is defined as any kind of human
language emerged with no prior planning and which has evolved through its own usage.
Every Latin, Greek, Arabic based languages are examples of natural languages, and the
variety of existing languages and dialects in the present days is a proof that natural lan-
guages are in constant transformation. On the other hand, artificial languages, such as
programming languages, are premeditated, constructed and formalized before they are
used in practice, thus differentiating themselves from the definition of natural languages.

The aim of a linguistic science is to characterize and explain observations such
as the cognitive side of how humans acquire, understand and produce language as well
as the linguistic structures used in language communication (MANNING; SCHUTZE,
1999). In the context of NLP, scientists struggle to agree upon a single definition. How-
ever, a simplified definition from Liddy (2001) describes NLP as a motivated range of
computational techniques for analyzing and representing naturally occurring texts (i.e.,
natural language), in different levels of linguistic analysis with the goal of achieving a

human-level understanding.

2.2.1 NLP pipeline

In the recent years, several studies, technologies and implementations have emerged
in the field of NLP. It is a consensus that extracting meaningful information from text re-
sources tends to be decomposed into a number of stages, each of which accomplishes a
single goal and is based on the result of the previous stage (INDURKHYA; DAMERAU,
2010). The sequential combination of those stages is defined as the NLP pipeline and can
be split into three general categories: syntactic analysis, semantic analysis and pragmatic

analysis. A deeper level of granularity of each category leads to one or more sequential

18

Figure 2.3: NLP pipeline

Sentence split

v v

Morphological .
[analysis] [POS tagging]

v v

[Constituency parsing] [Dependency parsing]

Y

Raw text

Source: The Authors

stages, those of which can vary between different approaches of NLP. Figure 2.3 shows
the stages of the pipeline which are used as ground for the NLP phase of this study.

As the first step of every NLP approach, the tokenization is responsible for split-
ting the text into a sequence of words (i.e., tokens) and must be able to handle apostrophes,
hyphens and further edge cases which may appear in texts. Next in the pipeline, punc-
tuation tokens generated in the previous step are identified in order to split the text into
individual sentences. As soon as both stages have been performed, each generated to-
ken can be classified in regard to its respective part-of-speech (POS), which indicates the
syntactical role in the text. Similarly dependent of the first two steps, the morphological
analysis provides the base form of each token, which means identifying plurals and verbal
conjugations and retrieve the base words that originate them.

After the POS categorization, a syntactic analysis of each sentence of the text can
be performed in order to obtain the relation between the tokens. The sentence is parsed in
accordance with a predefined model, which dictates how a token is related to another in a
certain situation. A sentence can be syntactically analyzed based on two different parsing
methods. The constituency parsing represents the sentence in the form of tree-like nested
sub-phrases, defined as phrase structures (CHOMSKY; LIGHTFOOT, 2002), in which
each non-terminal node contains a phrase level label, while each terminal node contains
a word level label. The dependency parsing, on the other hand, provides the grammatical
relation between each token (MARNEFEFE et al., 2006) based on the predefined model.
As such, different models can generate different labels and grammatical relations between

tokens.

19

2.2.2 Stanford CoreNLP toolkit

The Stanford CoreNLP is a widely used implementation of the NLP pipeline
(MANNING et al., 2014). Designed as framework in the JAVA programming language,
the toolkit provides the core stages necessary for text analysis. In the context of the
CoreNLP, each stage of the pipeline is referred as an annotator and can be included
or omitted from the pipeline depending on the goal desired. As the toolkit follows the
pipeline concept, some annotators require the presence of previous annotators in order to
be executed.

Built based on the Stanford Parser, the Stanford CoreNLP toolkit allows the flex-
ibility of choosing the parsing models for the constituency parsing and the dependency
parsing. Such models may have different techniques on how to parse a given text. Those
techniques include rule-based parsing, statistical parsing, neural-networking parsing and
others which are available for the English language. Furthermore, some models are avail-
able for a number of languages.

One of the key contributions of the Stanford CoreNLP evolution is the capability

Figure 2.4: Example of constituency parsing in CoreNLP

ﬂ
.E =]
S

)) y

5 0w -0
@ o) [(o]
)
3 (] o] [0]

Wl [(e]) [

(o] [rmen] (e

)

Source: The Authors. Created with the Stanford CoreNLP Client (MANNING et al., 2014)

20

of establishing a web server with web services which facilitates the integration with other
technologies. This interaction is further detailed in Chapter 5. Additionally, it also pro-
vides a web client interface in order to select and execute a NLP pipeline on a given input
text. As example, Figure 2.4 shows the constituency parsing of the first sentence of the

business process presented in Section 2.1 using the web interface available.

2.3 Extraction of business process elements

Driven by the observation that strictly manual process discovery methods can be-
come a time-consuming task for large scale organizations (DUMAS et al., 2018), many
authors have addressed this issue by introducing automated, or semi-automated, approaches
for business process discovery. The input and output of the designed approaches vary
from one research to another, however, this section aims to provide a background of a
particular study used as basis for the approach presented in this study.

In the field of automated generation of business process models (i.e., output) from
natural language text (i.e., input), the approach proposed by Friedrich, Mendling and
Puhlmann (2011) is considered the state of the art by recent studies (RIEFER; TERNIS;
THALER, 2016). Despite having a distinct end goal, this study adapts and uses the tech-
nique for extraction of process elements from process descriptions. While Friedrich’s
approach seeks to generate a business process model following the BPMN, the approach
presented in this study is focused on visually enhancing the process description as an
artefact for further consumption.

A successful automated identification of process elements in natural language text

1s complex and relies on a well written text (i.e., grammatically correct) process descrip-

Listing 1: Input text rules

e The text actually describes a process and not, e.g., data objects or organizational
structure.

e The text contains no questions.
e The text describes the process as perceived by an involved Actor and not on a meta

level (“the next task is ...”, “then the process...”).

e The Process is described sequentially, meaning that the actions in adjacent sen-
tences are related to each other.

e If a non sequential description is needed, the textual jump is made explicit in the

text.
Source: (FRIEDRICH; MENDLING; PUHLMANN, 2011)

21

tion. Friedrich’s approach relies on base assumptions that should be respected in order to
achieve a proper identification of process elements. Listing 1 shows the rules defined in
the authors’ work.

Friedrich’s natural language analysis technique is divided in two levels: a Sentence
Level Analysis and a Text Level Analysis (FRIEDRICH; MENDLING; PUHLMANN,
2011). In the first level, the analysis is performed separately on each individual sentence
of the text. Using the Stanford Parser - a predecessor of the Stanford CoreNLP described
in Section 2.2.2 -, the NLP pipeline is processed, resulting in split sentences along with
their respective syntactical analysis (i.e., constituency and dependency parsing). Several
algorithms are then applied, in order to extract sentence relevant information (e.g., actors,
verbs and objects) and store in a data structure defined as Action. Every action instance
relates to a verb identified in the sentence and additionally contains a set of properties
encompassing a number of word dependencies, partially shown in Table 2.1. In some

cases, a word dependency property might also be set to specific keywords.

Table 2.1: Main properties of the action data structure

Property Description Type
Name Describes the verb as it appears on the text String
Word index Index of the verb in the sentence Integer
Base form Describes the verb’s plain form String
Actor Actor involved in the action Actor data structure
Object Object involved in the action Object data structure
Specifiers Complementary information in the sentence Array of Specifier
data structure
Determiner of the head of a noun phrase
Det (e.g., “the”, “which”) Stanford dependency
Cop Describes the co“pu,l’ar‘ ‘VerE of a clause (e.g., Stanford dependency
is”, “are
Aux Describes the IlOEl‘—n’lqu‘l‘ VCI:E) of a clause Stanford dependency
(e.g., “be”, “has”)
Introduces a clause subordinate to another Stanford dependenc
Mark clause (e.g., “wheter”, “although”) p y
Condition indicators (“while” or “if”’) String
PreAdvMod Modifies the meaning of an adverb Stanford dependency
Sequence indicators (e.g., “then”, “after’) String

Source: The Authors

22

In the second level, the remaining unset properties of the actions previously cre-
ated are filled with the information that could only be obtained by a holistic analysis of
the text. Then, a link between the decoupled actions is created through a data structure de-
fined as Flow. The flow also contains an indicator of which type of link was derived from
the respective connected actions. In essence, a flow is responsible for connecting two
or more actions and is categorized by one of five types: sequential flow, containing two
actions performed in sequence; choice flow, containing actions included in an exclusive
decision; concurrency flow, containing actions included in a parallel execution; multiple
choice flow, containing actions included in an inclusive decision; jump flow, representing
an explicit non sequential execution.

In Friedrich’s approach, the steps mentioned above are succeeded by a Process
Model Generation technique, which diverges from the goal of the approach designed in

this study and, thus, not exploited.

2.4 Human-computer interaction

One key standout contribution of the approach presented in this study is regard-
ing visualization and user-interactive features applied to process descriptions. According
to Sears and Jacko (2009), the study of human-computer interaction (HCI) concerns the
interaction with systems which are capable of displaying, storing, processing and con-
trolling information. When interacting with a computer, the user has specific goals and
subgoals in mind. In order to accomplish these goals, the user initiates the interaction by
giving commands (e.g., mouse clicks, text typing) for which the computer must handle,
process and output an appropriate response.

Furthermore, the authors state that vision is the dominant modality of information
transfer in HCI, which leads to an emphasis of researches in the stream of visual selec-
tive attention. Most importantly, the attention is the collection of processes which allow
humans to dedicate their limited information processing capacity to a subset of informa-
tion, through cognitive manipulation. As such, the information enters into the working
memory and achieves the level of consciousness (SEARS; JACKO, 2009).

Therefore, capturing a human’s attention through visualization features is a form
of guiding the focus towards specific parts of information which are most important in a
given context. In the context of this study, visualization features are used for highlighting

a subset of BPMN 2.0 process elements present in a given process description, such that

23

the user’s information processing emphasizes on specific chunks of texts which indicate
relevant business process information.

While visualization features are a relevant factor for capturing a user’s attention, a
dynamic change in the environment is an effective manner of causing a shift of attention.
Techniques such as the sudden and abrupt appearance or disappearance of a stimulus
or a change in the color of a stimulus cause a shift of attention which can be used to
quickly guide the user’s attention towards the location of a specific important information
(SEARS; JACKO, 2009). In the context of the approach present in this study, the shifts
of attention are triggered by user initiated clicks, meaning that they fall in the category of
action-centered attention.

The approach presented in this study is flexible and does not limit to any specific
techniques for capturing the user’s attention. However, Chapter 5 demonstrates a practi-
cal application of the approach, using colors and icons as visualization features applied in
given process descriptions. The shifts of attention are triggered by mouse clicks on but-
tons and mouse hovering over chunks of texts. As such, the user initiates the interaction
by clicking on buttons and the system handles the action by changing the color and adding
BPMN 2.0 icons to the outputted process description, according to the selected process
element type. This system response is defined as the annotation of a process element.

As per Shneiderman et al. (2016), the human visual system responds differently
to various colors and different people may prefer or struggle with different spectrum of
colors, either due to deficiencies or personal preference. According to the authors, as part
of the principles of designing an effective HCI interface, blending interaction styles may
be appropriate for natural language based interfaces when users are diverse. As such, the
prototype developed in this study also covers the user interaction of modifying the colors
of each process element type. Furthermore, a second interaction occurs when the user
hovers the mouse through an annotated chunk of text, the system responds with a popup

containing additional information about the respective process element.

24

3 RELATED WORKS

In order to reduce the effort required to discover and understand existing business
processes in organizations, several authors have contributed in the field of facilitating
the process discovery phase. Considering the wide range of contributions in this field,
the related works were divided into two categories. The first category is the automated
extraction of business process information, for which the relevant approaches are based
on textual resources and may present different final goals. The second category focuses
on the generation of business process descriptions, with emphasis on approaches having

the similar goal as the approach presented in this study.

3.1 Automated extraction of business process information

This section discusses the related works in the category of automated - or semi-
automated - extraction of relevant business process information. The approaches included
in this stream focus on analyzing existing textual resources in the organization with the
purpose of helping in the discovery of processes. Table 3.1 shows recent related studies

which fit in such category.

Table 3.1: Automated extraction of business process information

Authors Approach
(FRIEDRICH; MENDLING; Generate process model from natural
PUHLMANN, 2011) language

(FERREIRA et al., 2017) Identify process elements in natural

language
(HONKISZ; KLUZA; Generate process model from natural
WISNIEWSKI, 2018) language
(LEOPOLD et al., 2019) Search textual and model descriptions
(QIAN et al., 2020) Generate process model from process texts
(IVANCHIKIJ; SERBOUT; Generate process model from domain
PAUTASSO, 2020) specific language

Source: The Authors

In particular, process model extraction (PME) has been a focus topic addressed
by many authors over the years. A number of studies which extract process information

from textual resources share a common goal of automating the process model generation.

25

These approaches identify the process elements contained in a given text resource through
the usage of NLP techniques and each author presents its own methodology for generating
the process model. For instance, the work of Friedrich, Mendling and Puhlmann (2011),
detailed in Section 2.3, is an example of a study in this research topic and its approach for
extracting business process information is used as basis for this study.

The study of Ferreira et al. (2017) aims to identify business process elements in
natural language texts. First, a syntactic analysis parsing is performed to tag each sentence
of the input text in relation to their part of speech (e.g., verb, subject, object etc.). After-
wards, each sentence is matched to one of 32 mapping rules, in which different syntactic
structures are represented. The mapping rules are categorized and grouped in relation to a
sub-set of BPMN 2.0 elements: activities, events, gateways and swimlanes. The last step
is the output of the text mapped by the rules. In comparison to Ferreira’s approach, this
study also contains a phase for the identification of process elements, however, it does not
rely on predefined syntactic structures, but rather on the detection of key words on the
process description. As such, it is possible to detect the presence of process elements in
any syntactic structure, including those not predicted by Ferreira’s approach. In addition,
this study goes beyond the scope of identification, by also annotating the process elements
on the text with interactive visual features.

In the process model extraction research topic, the study of Honkisz, Kluza and
Wisniewski (2018) proposes an approach based on the syntactic analysis of natural lan-
guage texts by extracting Subject-Verb-Object (SVO) constructs, which are later trans-
formed into process activities. The authors divide the approach into five steps, in which
the three initial steps are focused on the actual extraction of the business process infor-
mation and the last two aim to generate an intermediate spreadsheet-based model and
a BPMN model, respectively. In the context of information extraction, the initial step
is to identify the possible process participants in each sentence. Following, the second
step searches each sentence for the presence of Subject-Verb-Object constructs. In the
last step, the text is further analyzed in the search of keywords indicating the presence of
decision and parallel gateways. In comparison to the extraction phase of this study, both
present a similar approach for identifying possible indicators of process elements based on
the dependencies between each word in the text, obtained by the NLP dependency pars-
ing. Unlike Honkisz’s approach, however, the extraction phase in this study also accounts
for the NLP constituency parsing, enabling a split of the sentence into sub-sentences in

order to achieve a more granular analysis. As such, word dependencies between different

26

sub-sentences are inspected in a later step, during the holistic analysis of the text.

Leopold et al. (2019) proposes a structured and unified manner of extracting exist-
ing business process information from both process descriptions and process models. In
order to achieve this, the authors define an unified data format which can store information
from either process representation. The extraction is based on two different parsers: the
text parser, for process descriptions; and the model parser, for process models. The text
parser is particularly relevant as it is comparable to the extraction approach of this study.
In terms of NLP techniques, both approaches are based on the pipeline of the Stanford
Parser, using the dependency parsing to obtain the relation between words in the sentence.
The approach to be presented in this study, however, uses the evolved Stanford CoreNLP
version, introduced in Section 2.2.2. Regarding the actual analysis of text information,
Leopold’s approach also extracts information surrounding the verbs of the sentence, in-
cluding subjects, objects and adverbs in order to create Activity records, similarly to the
Action data structure presented in Section 2.3. The end goal of the information extrac-
tion in Leopold’s approach, however, differs from this study, as it focuses on mapping
verbs found in sentences to activity records following the RDF specification, rather than
identifying the business process elements present in the sentences.

A recent study from Qian et al. (2020) contributing to the topic of process model
extraction splits the text identification problem in three main steps: sentence classifica-
tion, sentence semantics analysis and semantic role labeling. The first is responsible for
identifying whether a sentence describes an action or a statement. Following, the second
analyses the semantics of the sentence in order to identify the control of execution, such
as successive relation, optional relation, concurrency relation. This step is conceptually
similar to the creation of Flows presented in Section 2.3. Last, each word or phrase is
assigned to a semantic role. In order to perform these steps, the authors propose a multi-
grained text classifier leveraging neural networks trained for each specific step. In this
paper, the authors focus on the machine learning technique rather than the extraction of
the process elements. In that regard, their approach is considerably distinct, as a neural
network classifier is used, while the approach to be presented uses a statistical classifier.

The study of Ivanchikj, Serbout and Pautasso (2020) proposes a framework to
assist the process modeling phase by using a domain specific language as input and pro-
ducing a BPMN model as the output. The authors introduce a strict language syntax for
expressing the process description, facilitating the parsing technique to extract the process

elements. Furthermore, no machine learning based techniques are mentioned. While the

27

approach presented in this study also contains a manual phase for preprocessing the nat-
ural language text, it does not define an entire new syntax but rather introduces keywords
in the process description, which in several cases, are already present in the unprocessed
text. Therefore, the manual effort required to create the domain specific language text is
a considerable drawback factor in the analyzed study.

Even though the studies presented in this section achieve the purpose of automat-
ically extracting relevant business process information, a number of them use such infor-
mation to generate business process models. The remaining studies outside of the process
model extraction topic, on the other hand, aim to identify the process elements either for
unifying business process information or to be used as input for further approaches. In
the context of this study, the extraction of process information is used to enhance exist-
ing organizational documentation in the form of process descriptions, providing a visual

interactive usage which can be leveraged to accomplish different end goals.

3.2 Generation of business process descriptions

This section discussed the related works in the category of generation of business
process descriptions. While a number of those studies accomplish this goal for different
purposes, all of them present an automated generation of business process descriptions as
an output. Furthermore, the approaches considered for this analysis are based on process
models and natural language texts as inputs. Table 3.2 shows recent related studies which

fit in this category.

Table 3.2: Generation of business process descriptions

e From process models

— (MALIK; BAJWA, 2012)

— (LEOPOLD; MENDLING; POLYVYANYY, 2012)
— (MEITZ; LEOPOLD; MENDLING, 2013)

— (RODRIGUES; AZEVEDO; REVOREDO, 2016)
— (AYSOLMAZ et al., 2018)

e From process models and natural language text

— (SILVA et al., 2019)
— (ZENG et al., 2020)

Source: The Authors

Approaches in the stream of generation of business process descriptions based

28

exclusively on the process model create an output text depending on labels set for the
process elements in the process model. Even though this can generate a more objective
process description, it may also lack detailed information required for business analysts to
understand the complete process and for employees to perform their activities. In general,
studies in this stream aim to use the generated process description in order to perform an
additional task, such as validating the business process model.

The study of Malik and Bajwa (2012) presents an approach to transform BPMN
based models to business rules, which are represented by natural language texts. The
approach is consisted of several steps, including the mapping of Flow Objects to prede-
fined sentence templates for each process element type. Once identified, the connectors
are used in order to establish an order to the previously created sentences. Additionally,
Swim lanes and artefacts are also identified for grouping and adding additional infor-
mation to sentences, respectively. The final steps focus on resolving dependencies and
optimizing the natural language representation. As the approach to be presented is based
on the original process description rather than predefined sentence templates, the gener-
ated process description includes more details, while still indicating the presence of the
process elements.

Since the definition of the pipeline concept from natural language generation sys-
tems by Reiter and Dale (2000), text generation approaches have emerged following a
common architecture. While the approach proposed by Leopold, Mendling and Polyvyanyy
(2012) uses process models following the BPMN, a similar approach is presented by
Meitz, Leopold and Mendling (2013), using process models in the form of Petri Nets.
The natural language generation architecture approach is composed by three stages: text
planning, sentence planning and realization. While these approaches have presented suc-
cessful results regarding the completeness and structure of the generated process descrip-
tion, unlike the approach to be presented in this study, they do not propose any techniques
for linking the generated output with the originator model.

The work of Rodrigues, Azevedo and Revoredo (2016) aims towards a more prac-
tical approach, presenting a framework following the pipeline concept for natural lan-
guage generation systems. This particular tool stands out from previous approaches as it
introduces a generic language independent component which can be extended for different
language-specific implementations. The standard implementation is capable of generate
texts based on BPMN models written in Portuguese and English. A basis motivation men-

tioned by the authors is the fact that domain experts might now always have knowledge

29

about the BPMN, however, the generated text still includes a certain level of technical
terminology. In comparison, the approach to be presented is based on the original pro-
cess description and visually indicates the presence of process elements, facilitating the
understanding for readers not specialized with the modeling notation.

The study of Aysolmaz et al. (2018) defines a semi-automated approach for gener-
ating natural language requirements documents based on business process models. Unlike
the previous analyzed works, this approach focuses on identifying activities on the pro-
cess models which can either bet supported by a system or fully automated by one, defined
as “automatable activities”. The second step is to specify how the activities should be
executed following a four-part investigation. Once the automatable activities are speci-
fied, the generation phase takes place to actually create the natural language requirements.
Although text is indeed generated, this approach has an specific focus and does not aim
to represent the complete business process. Furthermore, no visualization features are
proposed, distinct to the approach to be proposed in this study.

Silva et al. (2019) proposes a service-oriented architecture for generating sound
process descriptions. A sound process description is defined as structured, unambiguous,
reveals possible quality and soundness problems related to BPMN 2.0, and contains clear
identifiers for all known process elements in the original text. The approach comprises
five services following the SOA principles (ERL, 2008). The Main Service is responsi-
ble for orchestrating the requests and responses between all the other services, while the
Service Registry serves as an indexer, maintaining the location of the available services.
The remaining three services: Text Reader Service, Process Verification Service and Text
Writer Service represent each step of the approach to generate the sound process descrip-
tion. By leveraging the previous works of Friedrich, Mendling and Puhlmann (2011),
Ferreira et al. (2017), Leopold, Mendling and Polyvyanyy (2012) and the guidelines of
process modeling (MENDLING; REIJERS; AALST, 2010), this approach combines each
of those studies, thus, being able to generate process models, sound process descriptions
and identify issues in process models, based on either a given natural language text or
process model.

In comparison to Silva’s study, the approach to be presented is also based on the
work of Friedrich, Mendling and Puhlmann (2011). The Text Reader Service leverages
from a very similar implementation in order to generate a process model from a process
description. In this study, however, a re-implementation of Friedrich’s approach is per-

formed and incremented with the purpose of identifying process elements in the original

30

process description. Moreover, the basis concept of snippets, introduced by Silva as a
structured format for representing process elements as sequences of words in the text,
is also adapted. In Section 4.4, a redesign of the snippet structure is presented. Unlike
Silva’s approach, however, the text annotation approach is performed on the given process
description, instead of the generated sound process description. Additionally, this study
is focused on the visual display of process elements on the text by not only adopting more
visual features but also providing more flexibility (e.g., selection of element type color)
and interaction (e.g., selection of annotated element types).

A recent study presented by Zeng et al. (2020) proposes an approach leveraging
both process models and activity description templates with the purpose of repairing miss-
ing procedural texts (i.e., a series of simple activity descriptions). The approach begins
processing the procedural text and the extracting information from the process model in
order to perform a diagnoses of the missing activities on the text. At a later stage, the
information extracted from the process model is used in order to select the templates for
activities, which is a file generated from multiple textual descriptions of the model. The
results of this stage are then used in order to repair the identified missing information in
the procedural text. This particular approach implicitly tackles the issue raised when gen-
erating text exclusively based on process models, which in general, is the lack of detailed
information. Although leveraging both existing process models and process descriptions,
no link is performed between process elements and the generated text, unlike the approach
presented in this study, which creates a visual representation of the process elements in
the generated text.

In order to summarize the comparison of every analyzed work with the approach
presented in this study, Table 3.3 presents each approach in respect to what it proposes to

achieve, following five categories.

31

Table 3.3: Comparison of related works with the approach to be presented in this study

Authors EPI | PME| TG | VAT | IGT
(FRIEDRICH; MENDLING; PUHLMANN,
X X
2011)
(MALIK; BAJWA, 2012) X X
(LEOPOLD; MENDLING; POLYVYANYY,
X X
2012)
(MEITZ; LEOPOLD; MENDLING, 2013) X X
(RODRIGUES; AZEVEDO; REVOREDO,
2016) X X

(FERREIRA et al., 2017)

(AYSOLMAZ et al., 2018)
(HONKISZ; KLUZA; WISNIEWSKI, 2018)
(LEOPOLD et al., 2019)

(SILVA et al., 2019)

(QIAN et al., 2020)

(ZENG et al., 2020)
(IVANCHIKJ; SERBOUT; PAUTASSO, 2020)

T I T B o B e e s
=
=
=

Approach to be presented in this study X X X X

Source: The Authors. Abbreviations: EPI - Extraction of Business Process Information, PME -
Process Model Extraction, TG - Text Generation, VAT - Visual Annotation of Process Elements in
Texts, IGT - User Interaction with Generated Texts

32

4 IDENTIFICATION AND ANNOTATION OF BUSINESS PROCESS ELEMENTS

This chapter details an user-interactive and visual approach for identification and
annotations of business process elements in process descriptions. Fig. 4.1 shows the
approach split into five phases. The first phase, Textual guidelines, defines a guide for
writing a process description based on a natural language text, such that it becomes best
suitable for the following phases. The Input handling serves as an intermediary phase re-
sponsible for preparing the data format of a given process description. Next, the Elements
extraction phase performs the NLP techniques and algorithms for creating BPMN 2.0 data
structures. Following, the Text identification phase searches for sequences of words which
define each extracted element in the previous phase. Finally, the Text annotation phase is
responsible for adding visual features in the process description. This approach focuses
on the subset of BPMN 2.0 elements shown in Fig. 2.1. This particular subset consists
of elements which are recurrently used in practice (e.g., Tasks, Start Events, Intermediate

Events, End Events, Gateways) (MUEHLEN; RECKER, 2013).

Figure 4.1: Approach to identify and annotate process elements in process descriptions
Input handling

Textual guidelines Elements extraction Text identification Text annotation

JSON

T

—_—

Text

~

Sentence
analyzer

metadata

@_

@

— source v
v Text Annotated
analyzer text
Natural Preprocessed
language text description File ¢ | = | Element

&

source

marking

Process
elements
builder T

l

Source: The Authors

4.1 Textual guidelines

As many sources of natural language documents describing business processes
are non-standardized and written with no prior knowledge of how to properly describe
it (SILVA et al., 2018), the first phase of the approach is a manual rewrite of the natural
language text. To effectively automate the extraction of BPMN 2.0 elements from text
sources, the process description should follow guidelines on how to express the tasks,

events and decision points that comprises the business process. The rewritten process

33

description following the guidelines in this section is defined as the preprocessed descrip-
tion.

In order to express a business process as a preprocessed description in a proper way
for the subsequent extraction phase, the first step is to define how to indicate the presence
of each business process ingredient (i.e., tasks, events and decision points) introduced
in Section 2.1. Tasks and events are generally detected in sentences with a syntactic
construction containing verbs. In the case of events and decision points, key words are
also used to explicitly evidentiate their existence in the preprocessed description. The
particular key words selected are based on the basis study of Friedrich, Mendling and
Puhlmann (2011) introduced in Section 2.3, as this approach leverages an adaption of its
technique for extracting the business process elements from the text.

Tasks should be expressed in the text using a verb that represents the action being
performed, a subject, indicating the actor of this action and, when applicable, an object.
Verbs in the process description must not be ambiguous in relation to its part of speech,
as it can mislead the NLP model to incorrectly classify these words and, thus, preventing
the algorithms in the extraction phase (sec. 4.3) from effectively identifying the necessary
words that, eventually, will form a process element. Hence, ambiguous words should be
replaced by synonyms which have a single part of speech class.

As tasks, events are also expressed through the presence of a verb in the sentence.
As shown in Section 2.1, events may appear in process description in different verb tenses.
Thus, in order to be distinguished from tasks, events should be preceded by conjunctions
that indicate the property of temporal atomicity of the action. For such reason, the fol-
lowing conjunctions were defined as indicators of events: “when”, “whenever”, “once”,
“as soon as”, “after”.

Decision points, on the other hand, do not require an specific syntactic construc-
tion in the sentences. Instead, they should be expressed by key words indicating a change
in the control flow of the business process. These words, when followed by tasks or
events, signalize a new branch of execution.

The following key words can be used in the process description preceding a task
or event in order to indicate an exclusive decision: “if”, “whether”, “in case of ”, “in the
case of ", “in case”, “for the case”, “whereas”, “otherwise”, “optionally”. In particu-
lar, the “while” key word can also be used between two tasks for the same purpose, as
exemplified in Table 4.1. Moreover, the conjunction “or” between two different subjects,

verbs or objects is also a form to indicate exclusive branches for them. Similarly, parallel

34

>

executions should be indicated by the presence of: “while”, “meanwhile”, “in parallel”,

“concurrently”, “meantime”, “in the meantime”. Additionally, the conjunction “and”

between two or more different subjects also indicates parallel branches of a number of

actors performing the same action. Finally, inclusive decisions should be expressed by

using the conjunction “and/or” between different subjects, verbs or objects.

Table 4.1 demonstrates how the presented textual guidelines are used in order to

adapt an existing unprocessed description to a preprocessed description. Each row of the

table represents a sentence in both descriptions and contains the adaptations performed.

Table 4.1: Adaptation of a process description

Unprocessed sentence

Preprocessed sentence

Adaptations

A customer brings in a defective
computer and the CRS eheeks
the defect and hands out a repair
cost calculation back.

When a customer brings in a
defective computer, the CRS
verifies the defect and hands out
a repair cost calculation back.

Event key word
Ambiguity removal

If the customer decides that the
costs are acceptable, the process
continues, otherwise she takes
her computer home unrepaired.

If the customer decides that the
costs are acceptable, the process
continues, otherwise she takes
her computer home unrepaired.

None

The ongoing repair consists of
two activities, which are
executed, in an arbitrary order.

The ongoing repair consists of
two activities, which are
executed, in an arbitrary order.

None, however,
sentence not
required

The first activity is to ekeek and
repatr the hardware, whereas the
second activity checks and
configures the software.

The first activity is to verify and
adjust the hardware while the
second activity verifies and
configures the software.

Ambiguity removal
Exclusive decision
key word

After each of these activities, the
proper system functionality is
tested.

After each of these activities, the
proper system functionality is
tested.

None

If an error is detected another
arbitrary repair activity is
executed, otherwise the repair is
finished.

If an error is detected another
arbitrary repair activity is
executed, otherwise the repair is
finished.

None

Source: The Authors

As further demonstrated in Chapter 6, the textual guidelines are not a mandatory
requirement for the next phases of the approach. The unprocessed description is never-
theless a valid input for the approach, however, the extraction of the process elements is

compromised, jeopardizing the subsequent phases, hence, providing a less accurate result.

35

4.2 Input handling

The next step is to use the preprocessed description as input for the further au-
tomated phases of the approach. This phase is responsible for establishing a web ser-
vice, enabling the transference of the preprocessed description using the Hypertext Trans-
fer Protocol (HTTP). This web service accepts HTTP requests using the POST method,
which should contain the preprocessed description in the body of the request, either as a
raw text content or as text file.

Additionally, this phase is responsible for handling the format of the content of the
incoming requests in alignment with the expected format of the next phase. When a text
file is received, its content is extracted and converted into a string format. The output of

this phase is a string containing the preprocessed description.

4.3 Elements extraction

To effectively identify the process elements in the preprocessed description, the
elements extraction phase adapts the approach proposed by Friedrich, Mendling and
Puhlmann (2011) of process model generation from NLP. As introduced in Section 2.3,
Friedrich’s approach can be divided in three main steps: sentence level analysis, text level
analysis and process model generation, for which the latter was redesigned as the process
elements builder. A number of modifications, however, have been performed based on
Friedrich’s prototype. Initially, deprecated technologies such as the Stanford Parser were
readjusted in order to recreate a modern prototype further detailed in Chapter 5. Further-
more, implementation details of the each step of Friedrich’s approach were also revised
and are further explained in this section.

At the first stage, the whole text is submitted to the Stanford CoreNLP pipeline for
the constituency parsing and the dependency parsing. The first uses a probabilistic trained
model (KLEIN; MANNING, 2003) to generate a tree-like structure for each sentence,
containing the part of speech of each token in it (e.g., subject, verb, adverb), while the
latter extracts the Stanford dependencies (MARNEFFE et al., 2006) between each token
of the sentence.

Next, each sentence is handled individually by the sentence analyzer, which is
responsible for extracting the respective actors, objects and further complementary in-

formation (i.e., specifiers) involved around each verb identified in the sentence in order

36

to create the data structure Action encompassing all this information. Additionally, an
action structure contains several properties derived from the dependency parse, meaning
that it also stores the relation of the main verb to other words in the sentence, such as: ad-
verbs, markers, prepositions, negations, auxiliaries and others. Furthermore, the sentence
analyzer detects conjunctions between tokens, creating the data structure ConjunctionEle-
ment structure linking actors or actions. Each output of the sentence analyzer is an object
of the class AnalyzedSentence, which contains all the actions and conjunctions extracted.

The main modifications performed in this step in comparison to the original ap-
proach are additions of properties in Action structure. The purpose of these properties
are to store necessary information for the process elements builder step as well as for the
further Text identification phase. Specifically, the properties markerPos and realMarker
were included in order to store the position and the original key word that specifies a
parallel or exclusive execution, respectively. These properties are useful to identify the
start index of branches. Moreover, the existing property preAdvMod is complemented
by an introduced boolean property preAdvModFromSpec. The former stores the adverb
that precedes the action’s verb, while the latter indicates whether the adverb is part of the
action itself or part of the specifier. With this information, it is possible to enhance the
logic of distinction between tasks and events.

After this step, the text analyzer consolidates the actions by resolving references,
identifying markers and creating the data structure Flow, as detailed in Section 2.3. The
flow type is defined based on the markers identified in each action as well as the con-
junctions previously extracted in the sentence analyzer. Therefore, a process description
following the guidelines presented in the previous phase is important because it enables a
more accurate detection of key words, which are translated into markers.

In terms of adjustments performed in this step, a number of edge cases not handled
by the original approach were covered. For example, when a split execution (i.e., decision
point) is detected, the general logic is to create a join whenever a flow indicating the
return to a sequential execution is analysed. However, if the text finishes during the split
execution, in the original logic, the join flow would not be created, hence, additional logic
had to be introduced to cover this. Furthermore, the possibility to detect the “while”
marker in-between two actions and create a concurrency flow is also covered. Finally,
the flow type jump was removed from the logic, as it is useful for the goal of Friedrich’s
approach of creating the process model, but not applicable for the goal of the approach in

this study.

37

The process elements builder is the last step of the elements extraction. Unlike
in Friedrich’s approach, this step does not generate a process model, but rather creates
data structures that represent BPMN 2.0 elements. In order to achieve that, first, each
flow is analysed and translated as one or more BPMN 2.0 element object (e.g., Tasks,
Intermediate events, Gateways). Then, the elements are linked through a data structure
representing sequence flows, enabling the graph-like representation of a process model.
Last, particular elements are further inspected, such as elements whose sequence flows
have no predecessor or successors, in order to identify Start or End events, as well as
elements originated from actions which are not relevant for process modeling, hence,
removable. The final output of the element extraction phase is a data structure, containing
all nodes (elements) and edges (sequence flows) created during the process.

Besides the distinct output, the main contributions in the process elements builder
in comparison to Friedrich’s approach is regarding the detection of process elements in the
action structures. In the original logic, the distinction between a task and an event is purely
based on the action’s marker property. Instead, the presented approach introduces a more
granular verification which searches for key words that indicate finished actions in order
to detect events. These key words are part of the textual guidelines defined in the previous
section. Algorithm 1 shows the high level additional logic introduced for detecting events
based on key words. This algorithm was developed to serve as a complementary logic
and it is not present in the original approach. Furthermore, it was observed that timer
events and tasks are recurrently present in the same action structure. Considering the
original implementation, it was not possible to detect a timer event and a task from the
same action, therefore, the logic for detecting timer events has been decoupled from the

distinction between tasks and events and performed as a separate step.

Algorithm 1: Algorithm for detecting possible events
input : Action
output: Boolean

1 if (action.preAdvMod A —action.preAdvModFromSpec) V action.marker then
sentenceText = action.sentence;
minindex = max (action.preAdvPos, action.markerPos);
for indicator in finishedIndicators do
indicatorindex = indexOf (sentenceText, indicator);
if minindex < indicatorindex < action.wordIndex then
L return true;

N B R W

8 return false;

38

4.4 Text identification

Once the process model data structure is formed, the next task is to identify the se-
quence of words in the text that represent each process element in the process description
and expose the results as a consumable web service. As the practical form of representing
these sequences, Listing 2 demonstrates the redesigned data structure of snippets, based
on the work of Silva et al. (2019). Each snippet contains the indices of the word that starts
the sequence and the word that finishes it, a process element unique identifier, the type of
the process element (e.g., Task, Conditional Event, XOR Gateway) and the identifier of

the actor corresponding to the element.

Listing 2: JSON snippet structure

{
"startIndex" : int,
"endIndex" : int,
"processElementId" : int,
"processElementType" : string,
"resourceId" : int

}

Algorithm 2 shows the method responsible for generating the output metadata
of this phase. First, each process element receives its own unique identifier in order to
facilitate the linking with their respective lanes. Second, the nodes of the process model
are set through a filtering logic to avoid duplicated and overlapping snippets as well as a
classification logic to categorize them as: decision nodes, gateway nodes or regular nodes.
The filtering logic is detailed in Algorithm 3 and is necessary due to the observation that
multiple process nodes can be extracted originating from the same chunk of text. For
example, in the following sentence: “Once the food, wine, and cart are ready, the waiter
delivers it to the guest’s room”, three different events can emerge from the first phrase,
while sharing the same action (i.e., “are ready”). So, to avoid the mentioned issue, a
single node is selected to represent the corresponding range of indices, while the others
are filtered out. The classification, on the other hand, is important for two reasons: it
separates the gateways from every other node, assisting in the next steps; it enables the
identification of the decision nodes of each exclusive split gateway.

After this preparatory phase, the creation of the snippets is performed by analyzing
the text element structure (i.e., action, actor, specifier, flow) that originated each process

element, searching for the start and end words of the snippet, based on the given element

39

Algorithm 2: Algorithm for generating the JSON metadata
input : Process model
output: Structured metadata

1 CreateIds (processModel);

decisionActions, gatewayNodes, regularNodes = FilterElements
(processModel);

resourcelist = CreateResourcelList (processModel);

text = CreateText (regularNodes);

gateways = CreateGateways (gatewayNodes, decisionActions);

return resourcelist, text, gateways;

(8

S U A W

Algorithm 3: Algorithm for filtering and classifying process elements
input : Process model
output: Decision nodes, Gateway nodes, Regular nodes

1 for node in processNodes do
2 if IsInstance (node, Lane) then
3 | regularNodes U node;

4 else if IsInstance (node, Task) V IsInstance (node, Event) then
L nodelndexMap [Get Index (node)] U node;

wn

else if IsInstance (node, Gateway) then
gatewayNodes U node;
if IsXor then
for branch in branches do
L | decisionActions U branch;

N

11 for nodelList in nodelndexMap do
12 L regularNodes U GetRepresentative (nodeList);

13 return regularNodes, gatewayNodes, decisionActions;

type. Algorithm 4 details how the start index is obtained using the properties stored in
the element. Similarly, Algorithm 5 details the logic for detecting the end index. Each
algorithm considers different types of word dependencies stored in the given element
and appends them to a list with the possible candidates for the corresponding index. In
particular, the detection of end indices must also account for the number of words in
the name of the text element. For example, a specifier might contain several words that
complement an action, therefore, the goal is to obtain the index of the last word, instead
of the first.

The identification of gateways, on the other hand, requires a more complex logic.
First, different algorithms have to be considered based on whether the process element is
a split or a join gateway. In a split gateway, all branches must be accounted for, therefore,

each position that contains a new branch must be identified. In a join gateway, on the

40

Algorithm 4: Algorithm for identifying the start index of elements
input : Element
output: Start Index

1 candidates = [];

2 if IsInstance (element, Actor) V IsInstance (element, Resource) then
3 if element.determiner then

4 | determiner = I;
5 else

6 | determiner = 0;

7 candidates U (element.wordIndex — determiner);
8 for specifier in element.specifiers do
9 | candidates U (specifier.worlndex — determiner);

10 else if IsInstance (element, Specifier) then
1 L candidates U element.worlndex;

12 else if IsInstance (element, Action) then
13 candidates U element.worlndex;

14 if element.auxiliar then

15 | candidates [0] — = 1;

16 return min (candidates, default=1);

other hand, only one position is relevant. A second important aspect of identifying a
gateway is whether it is explicitly written on the text using the key worlds described in
Section 4.1 or if it was implicitly detected. This information is also added to the metadata
and further consumed in the Text annotation phase. The position of implicit branches of
split gateways is detected by the presence of the conjunctions and, or, and/or, while the
position of implicit join gateways is inferred based on the last branch found in the text.

Algorithm 6 demonstrates the logic for identifying indices in a split gateway branch.
The first step is to check which type of gateway is being analyzed (i.e., exclusive, parallel
or inclusive). Following, the second step is to verify if the text element which originated
the branch contains any of the explicit indicators corresponding to the gateway type. In
such case, the start and end indices can be determined based on the indicator position and
by leveraging Algorithm 5, respectively. In case the text element does not contain any
explicit indicators, the fallback logic is to identify which part of the text element is being
connected by the conjunctions (i.e., and, or, and/or), which can be either the actor, the
object or the action itself. Afterwards, the algorithms 4 and 5 are used to determine the
start and end indices, respectively.

Similarly, Algorithm 7 shows the logic for determining indices in a join gateway.

Unlike the previous algorithm, however, identifying the indices of a join does not depend

41

Algorithm 5: Algorithm for identifying the end index of elements
input : Element
output: End Index

candidates = [];
if IsInstance (element, Actor) V IsInstance (element, Resource) then
candidates U (element.wordIndex);
for specifier in element.specifiers do
L candidates U (specifier.wordIndex);

N B W N =

else if IsInstance (element, Specifier) then
L candidates U (element.wordIndex + count (element.name, " "));

_

8 elseif IsInstance (element, Action) then
candidates U element.wordIndex;
10 if element.cop then

1 | candidates U element.copIndex;
12 for specifier in element.specifiers do
13 if specifier.wordIndex > element.wordIndex) then
14 L candidates U (specifier.wordIndex + count (specifier.name, " "));
15 if element.object then
16 if element.object.wordIndex > element.wordIndex) then
17 candidates U (element.object.wordIndex + count
(element.object.name, " "));
18 for specifier in element.specifiers do
19 if specifier.wordIndex > element.wordIndex) then
20 candidates U (specifier.wordIndex + count
L (specifier.name, " "));
21 if element.xcomp then
2 | candidates U getElementEndIndex (element.xcomp);

23 return max (candidates, default=1);

on the gateway type. Instead, the approach is to detect which is the process element that
succeeds the join and search for forward indicators in its corresponding sentence. In case
an indicator is found and it is located in-between the index of the next element and the end
index of the last branch of the gateway, then the indicator position is used for determining
the start and end indices. In case there are no explicit indicators, on the other hand, the
fallback logic is to utilize Algorithm 5 applied to the gateway’s last branch found in the
sentence in order to determine both the start and end indices.
Listing 3 shows the generated JSON structure containing the properties resourceList,

text and gateways. The resourceList is a simple array-like structure with all the extracted
lanes, containing their respective identifiers and labels. The text is a list of structures

that represent each sentence. Each sentence structure is comprised by its unique identi-

42

Algorithm 6: Algorithm for identifying the indices of a split gateway
branch

input : Gateway, Element

output: Start Index, End Index, Is Explicit

isExplicit = true;
if gateway.type == EXCLUSIVEGATEW AY then
if element.marker in conditionIndicators A element.markerPos > 0 then
startindex = element.markerPos;
if element in decisionActions then
L endIndex = getElementEndIndex (element);

S W A W N =

else if element.realMarker then
8 | endindex = startindex + count (element.realMarker, " ");

9 else
10 L endIndex = startindex;

11 else if element.preAdvMod in conditionindicators A
element.preAdvModPos > 0 then

12 startindex = element.preAdvModPos;

13 if element in decisionActions then

14 L endIindex = getElementEndIndex (element);
15 else

16 L endIndex = startindex;

17 else if gateway.type == PARALLELGATEW AY then
18 if element.marker in parallelindicators A element.markerPos > O then

19 startindex = element.markerPos;

20 if element.realMarker then

21 L endIndex = startindex + count (element.realMarker, " ");
22 else

23 L endIndex = startindex;

24 if —startindex vV —endIndex then

25 elementToMark = findBranchElement (gateway, element);
26 startindex = getElementStartIndex (elementToMark);

27 endIndex = getElementEndIndex (elementToMark);

28 isExplicit = false;

29 return startindex, endIndex, isExplicit;

fier, the original string and a snippet list containing the regular nodes’ information and
indices. Unlike the text property, the gateways cannot simply be grouped by sentences, as
it is possible that one or more branches of a gateway were originated from different sen-
tences. Thus, each gateway is set as an independent structure and encompasses a list of its
branches, containing their respective indices, similar to the sentence snippets, but with the
addition of its sentence identifier as well as a boolean property indicating if the branch

was detected based on an explicit indicator on the text. Finally, the completed JSON

43

Algorithm 7: Algorithm for identifying the indices of join gateways

O e N U AR W N =

10
11
12

13
14
15
16

17

input : Gateway
output: Next Element, Start Index, End Index, Is Explicit

isExplicit = false;
nextElement = getNextElement (gateway);
branches = sort (nextElement.multiples, reverse=true);
lastBranch = = branches [0];
if nextElement.index > lastBranch.index then
sentence = nextElement.sentence;
for indicator in WordNetWrapper.acceptedForwardLinks do
indicatorindex = indexOf (sentence, indicator);
if getElementEndIndex (lastBranch) < indicatorlndex <
nextElement.wordIndex then
startindex = indicatorindex;
endIndex = indicatorindex + count (indicator, " ");
isExplicit = true;

if misExplicit then

nextElement = lastBranch;

startindex = getElementEndIndex (nextElement) + 1;
endIndex = startindex;

return nextElement, startindex, endindex, isExplicit;

Listing 3: JSON metadata structure

Y1,
"text" : [{

Pl
"gateways" : [{

"resourceList": [{

"id" : int,

"name": string

"sentenceId" : int,
"value" : string,
"snippetList" : array<Snippet>

"processElementId" : int,
"orocessElementType" : string,
"resourceId" : int,

"branches" : array<Snippet>

structure is exposed as a web service, granting a flexibility for the identified elements to

be displayed by different types of visualization features.

44

4.5 Text annotation

The last phase of the approach is to visually indicate the sections of the text that
represent each of the process elements extracted and identified in the previous phases.
The proposed approach focuses on mapping each type of identifiable BPMN 2.0 elements
to a different color and to its respective symbol according to the official OMG specifica-
tion (COMMISSION et al., 2013). To do so, the JSON metadata generated in the Text
identification phase must be parsed in order to obtain the original text in addition to the
snippets of each process element and branch. The result of this phase is an annotated
process description.

Initially, the resourceList property is handled separately from the others. At this
step, the labels of the lanes are directly parsed and displayed with no dependencies to
the other properties of the metadata. Afterwards, the text and gateways properties of the
metadata are merged. As demonstrated by Algorithm 8, the fext property is iterated over,
creating a mapping structure, for which the key is the sentence identifier and the value
contains the original string of the sentence as well as the snippets of the process elements.
Then, each gateway in the gateways property is analyzed by iterating over its branches.
As each branch contains their respective sentence identifier, it is possible to append the
gateway data in the previously created mapping structure. Thus, for each branch con-
tained in the gateway, a snippet is added, including the boolean property isBranch, which
indicates that this is not a BPMN 2.0 element, but rather a branch of one. At the end of

this step, the mapping structure is a merge of the text and gateways properties.

Algorithm 8: Algorithm for merging properties of the JSON metadata

input : JSON metadata
output: Sentence Map

1 sentenceMap = {};

2 for sentence in text do

3 sentenceMap [sentenceld] U sentence.value;

4 sentenceMap [sentenceld] U sentence.snippetList;

for gateway in gateways do
for branch in gateway.branches do
L snippet = CreateSnippet (gateway, branch, isBranch = true);

[~ JNEN R]

sentenceMap [sentenceld].snippetList U snippet;

9 return sentenceMap;

The next step is to link each word of the text with its respective process element

type. Algorithm 9 shows a high level logic for creating a mapping structure between

45

each word index present in the range of every snippet and a structure which contains the
element type, resource id and, when applicable, the respective icon and preceding text.
In order to achieve this, every snippet present in sentence map created in the previous
step is iterated over. As this is an user-interactive approach, the first verification is to
check if the snippet’s element type is currently selected by the end user to be annotated.
If so, the indices of the respective snippet are iterated over, from the start index until the
end index. At this point, the structure is filled with a map between the word index and
information obtained from the snippet. In case the snippet represents a process element,
the respective process element type and resource id are mapped to the corresponding word
index. In addition, if the analyzed word index corresponds to the start index of the snippet,
the BPMN 2.0 symbol of the element type is also mapped. On the other hand, in case the
snippet represents a branch, only a complementary text containing the type of the gateway

is mapped.

Algorithm 9: Algorithm for assigning each word to its process element
type

input : Sentence Map
output: Word Map

1 wordMap = {};
2 for sentence in sentenceMap do

3 for snippet in sentence.snippetList do
4 markerData = selectedMarkers [snippet.processElementType];
5 if markerData.checked then
6 for wordIndex in (snippet.startIndex, shippet.endIndex) do
7 if —shippet.isBranch V snippet.isExplicit then
8 wordMap [wordIndex] = {
elementType: snippet.processElementType,
resourceld: snippet.resourceld };
9 if wordIndex == snippet.startIndex then
10 | wordMap [wordIndex].icon = markerData.icon;
11 if wordIndex == snippet.startIndex A snippet.isBranch then
12 wordMap [wordIndex].preText =
snippet.processElementType;

13 return wordMap

The previous step created a mapping structure for which the keys are all the word
indices obtained from the snippets created in Section 4.4. Such structure, however, still
does not contain every word index of the entire text, but rather the ones which represent
a process element. Therefore, in order to generate the entire original text in addition with

the visual features, it is necessary to iterate over the value property, as it contains the entire

46

inputted text of the sentence. Algorithm 10 demonstrates how this is performed in order
to generate an annotated text list. First, the original string of sentence is split into words,
whose indices are iterated over. The initial color of a word is defined by a previously set
default color. However, in case the analyzed word index is part of the mapping structure
created in the previous step, the color is redefined based on the color of the corresponding
word index process element type. Additionally, when applicable, the icon and preceding
text are appended to the annotated text list. At last, the actual word and its color are

appended to the list.

Algorithm 10: Algorithm for adding visual features in a text structure

input : Sentence, Word Map
output: Annotated Text

1 annotatedText = [];

2 sentenceWords = split (sentence.value, " ");

3 for wordIndex in sentenceWords do

4 color=DEFAULTCOLOR;

5 wordData = wordMap [wordIndex];

6 if wordData then

7 if wordData.icon then

8 L annotatedText U {icon: wordData.icon};

9 if wordData.preText then
10 L annotatedText U {preText: wordData.preText};
11 color = selectedMarkers [wordData.elementType];

12 annotatedText U {color: color, word : sentenceWords [wordIndex 1};

13 return annotatedText;

Finally, after the annotated text list is created, every word in the text has its own
color defined in addition to indicators of symbols - for the case of the first word which in-
dicates process elements - as well as preceding texts - for the case of words which indicate
branches. Based on such information, the actual user-interactive visual representation de-
pends on the technology used. Chapter 5 presents the prototype created, which includes

a possible implementation of the annotation approach presented in this section.

47

S PROTOTYPE

This chapter details the development of a practical application of the approach
presented in chapter 4. A prototype was developed in order to demonstrate the extend of
the capabilities of the approach in a number of use cases for which it could be used.

First, the architecture of the prototype is established, defining the architectural
pattern and the motivation behind it. Following on a more granular level, the fechnolo-
gies of each component of the prototype are defined, as well as the chosen programming
languages and the reason why they are suitable for this context. Next, the implementation
details of each component of the prototype are explained and additionally detailed lever-
aging UML class and sequence diagrams. Finally, the functioning prototype is demon-

strated, along with a set of its features.

5.1 Architecture

The first step for developing the prototype was the definition of the architecture.
Establishing a suitable architecture enables a better choice of technologies which are ca-
pable of integrate with crucial dependencies of the approach, such as the NLP techniques.
Furthermore, the chosen architecture must be able to support every automated phase of
the presented approach and still enable the flexibility of the user interactive visualization
approach.

A key motivation behind this prototype is to enable accessibility and reusability for
users, therefore, a network-based architectural style is particularly suitable for this con-
text. According to Alonso et al. (2004), web services are a way to expose the functionality
of an information system and make it available through standard web technologies. Fur-
thermore, Sheng et al. (2014) states that web services provide simple access to resources,
making them accessible via the internet, enabling applications to combine and reuse them.

Considering the advantages of web services and the motivation presented in Chap-
ter 1 to build an accessible prototype, this study presents a network client-server model
based on web services for requesting and providing functionalities. In accordance to
Fielding and Taylor (2000), in a client-server architecture, the client component sends re-
quests to the server and waits for a response back. The server may either reject or process
the requests.

Applying the client-server model to the approach presented in Section 4, the server

48

Figure 5.1: Approach phases in a client-server model

Server component

> Input handling >Elements extractio> Text identification>

HTTP
I@l Request

Client component HTTP HTTP HTTP
P Response Response Response
\ 4 \ 4 \ 4
‘ % ‘ % ‘ %

Source: The Authors

component is built in order to perform the phases between the Input handling until the
Text identification. The Input handling is triggered by a request from the client side, and
the Text identification exposes its output through the response of the request. The client
component, on the other hand, is responsible for the last phase of the presented approach,
the Text annotation. The communication and data transferring between the client and
the server components is performed using the HTTP protocol. Furthermore, the data
exchange format follows the widely used JSON format. Figure 5.1 shows the phases of

the presented approach in relation to the chosen architecture.

5.2 Technologies

A key motivation for developing a prototype for the presented approach is due
to the fact that many researches in the area of extracting process models and elements
from business process descriptions are not possible to be reproduced due to technological
incompatibilities or lack of proper documentation of their respective prototypes. Con-
sidering this reason, the technologies for the development of this prototype were chosen
with the intend of providing a reproducible and incremental study, while maintaining the
approaches used as basis for this study.

According to Oliphant (2007), the Python programming language excels as a plat-
form for scientific computing, due to reasons such as: an open source license to use,
distribute any Python-based applications; no concerns about portability, as it runs on sev-

eral platforms; clear syntax and sophisticated constructs enabling procedural or object-

49

oriented codes; ability to interact with a wide variety of other software components.
Furthermore, Millman and Aivazis (2011) states that Python has become the standard
language for exploratory, interactive and computation-driven research. Based on those
considerations, Python was chosen as the programming language for the server compo-
nent of our architecture. This implicates, however, that the code developed by Friedrich,
Mendling and Puhlmann (2011) and Silva et al. (2019) had to be adapted to a different
programming language, as they were originally developed in Java. In the next sections
of this chapter, it is shown how the previous researches code was adapted and further
expanded by our own methodology for identifying the business process elements in the
text.

Shifting towards a different programming language is also challenging in terms
of libraries and frameworks usage. The basis Java code allowed a simple interaction
with the also Java written software Stanford Parser for the NLP phase, while a Python
code must handle an integration between both programming languages. Additionally,
since the original study by Friedrich et. al., the Stanford Parser has evolved into the
Stanford CoreNLP software, introduced in section 2.2.2. Python enables the interaction
with several software components, specially when supported by its own libraries.

The NLP pipeline is a key functionality of the presented approach and is handled
by server component. Covered by the Stanford CoreNLP software, it enables the logic
that follows in the Elements extractions phase. The CoreNLP software, however, is a
Java based application, which requires a special handling on the server component’s side.
This cross programming language integration is assisted by Python’s Natural Language
Toolkit library suite (BIRD, 2009), which contains its own module and logic in order to
enable the interaction with the CoreNLP pipeline. The mentioned module leverages the
CoreNLP Server - embedded in the CoreNLP software -, which can be instantiated as a
local web server and provides a web API using the HTTP protocol, allowing the usage of
every functionality available in the toolkit.

The client component, on the other hand, has the responsibility of covering the
Text annotation phase of the presented approach in a web scenario, therefore, a manda-
tory requirement is enabling end-users to access, visualize, interact and analyse data. As
per Heineman and Councill (2001), JavaScript provides the ability to animate a web page
for user interaction (e.g., mouse click, keyboard entries), as well as the ability to access
programs running on a server. Furthermore, currently, the vast majority of browsers sup-

port JavaScript, hence, portability is not a concern. Also, according to Shute (2019),

50

JavaScript is one the backbones of web development and nearly every major website uses
it. Motivated by the requirements and the presented capabilities, JavaScript was chosen
as the programming language for the client component.

In order to achieve complex visual features on a web page, while maintaining a
clean code structure, a JavaScript based web application can be enhanced with the usage
of frameworks and libraries. The state of the art ReactJS library was used for building
modular user interfaces using a Single Page Application (SPA). As per Vipul and Son-
patki (2016), the SPA principle enables web applications which do not require a complete
reload of the page in order to perform a change in the display or perform a user interac-
tion. According to Aggarwal (2018), ReactJS shows a high performance in comparison
to other widely used frameworks and libraries mainly due to the modifications performed
first on a virtual Document Object Model (DOM), followed by an alignment with the
browser’s DOM, as opposed to the standard approach of directly modifying the browser’s
DOM.

In comparison, the study of Silva et al. (2019) combined Friedrich’s process model
extraction approach with the text generation approach of Leopold et al. Considering that
both Friedrich’s and Leopold’s prototypes were developed using the JAVA programming
language, it was suitable for Silva’s prototype to also use the same programming language,
as it enabled a straightforward integration between them. On the other hand, Silva’s
prototype already leveraged JavaScript for the visualization features.

Even though the approach presented in this study also leverages the text process-
ing techniques of Friedrich’s work, the prototype presented in this study shifts towards
modern technologies, both in the context of the text processing and in the context of dis-
play of information. The JAVA based text processing in Friedrich’s and Silva’s prototypes
was transposed and adapted to the Python programming language, enabling the flexibil-
ity to upgrade from the Stanford Parser to the Stanford CoreNLP. Furthermore, while the
visualization features in Silva’s prototype already leveraged web technologies, the proto-
type presented in this study introduces the usage of React]S, enabling the integration with

several existing modular components for visualization and interaction features.

5.3 Server component

The server component was structured in accordance with the object-oriented paradigm

following the Separation of Concerns (SoC) design principle. According to Laplante

51

(2007), a modular design encapsulates the software behaviour in software units and is a
requirement in order to achieve a clear Separation of Concerns in an object-oriented de-
sign. Additionally, Laplante also states that a modular design leads to a high cohesion,
where each module aims to solve a single part of the overall problem. As such, in order
to reduce the coupling between classes, data-centered classes were designed to store and
transfer data which are accessed and updated throughout multiple steps of the application.

In that sense, classes of the server component can be categorized either as a logic-
centered or as a data-centered classes. Logic-centered classes contain algorithms directly
connected with the approach described in Chapter 4. Essentially, these classes represent
either a phase, a step of a phase, or a core functionality of a step (e.g., CoreNLP com-
munication interface). Data structure level classes, on the other hand, contain methods
designed to maintain and manipulate data which is reused across multiple logic-centered
classes. Nevertheless, every class is composed by methods and properties relative to their
own behaviour, regardless of its category. Furthermore, a utility package was created in
order to store recurrently used functions and global constants.

Figure 5.2 shows the class diagram of the server component. The designed archi-
tecture establishes a Separation of Concerns between each step of the presented approach.
As such, the classes in the Extraction package were built in order to reflect the Elements
extraction phase and its logic is reinterpreted and adapted from the Java code of the basis
work of Friedrich et. al. to the Python programming language. The ProcessElements-
Builder class, however, is an exception, as its logic and goal is different from Friedrich’s
ProcessModelBuilder class. The former focuses on enhanced algorithms that leverage
extracted information from the process description in order to build objects that represent
process elements; the latter, on the other hand, has the goal of creating a visual represen-
tation in the form of a process model. Furthermore, the classes present in the Sentence
Elements and Data packages are reinterpreted data structures of Friedrich’s work and are
used throughout every step of this phase.

As the entry point of the server component, the TextReaderService serves as the or-
chestrator between the logic-centered classes responsible for the phases of the approach.
Therefore, it is directly connected with the SentenceAnalyzer, TextAnalyzer, ProcessE-
lementsBuilder and ProcessElementsldentifier classes. Table 5.1 shows how the server
component relates some of its classes with the phases of the presented approach. Funda-
mentally, the design is as such that each step of a phase is handled by a separate class.

The WorldModel and ProcessModel, on the other hand, are the main data-centered

52

Figure 5.2: Class diagram of the server component

Core

Serjtence EIem%nts

ProcessElementslidentifier

- TextAnalyzer : TextAnalyzer
- BPMNBuilder : ProcessElementsBuilder

Element

Conjunction

CoreNLPWrapper

+ Parselext(text): tuple<tree, array,

+ Sentence: StanfordSentence
+ Wordindex: int
+ Name: string

.. <<use>>

+ From : Element
+To : Element
+ Type : string

<<extend>> ﬁ

Specifier

+ Type : string
+ HeadWord : string

+—|+ Object : ExtractedObject

<<use>>

ExtractedObject

- Constituency : Tree

+ SubjectRole : boolean
+ Determiner: string
+ NeedsResolve: boolean

‘ e J

- Text : string
A

+ AnalyzeSentence(sentence) :
AnalyzedSentence

- ExtractElements(tree, dependencies) : none

- DetermineSubjects(tree, dependencies,
active) : array<Actor>

- DetermineVerbs(tree, dependencies, active) :
array<Action>

g

<use>>

array<AnalyzedSentence>

+ AnalyzeTex(text) : World
- ReferenceResolution() : none
- MarkerDetection() : none

- ProcessNodes : set<FlowObject> array> [. N
- ProcessGateways : set<Gateway> - CreateRawSentence (tokens) : string + Specifiers: array <Specifiers>
- DecisionActions : set<Task> - MakeDeps(dependencies) : array + GetSpecifiers(type) : array<Specifiers>
+ CreateMetadata(textAnalyzer, + Getindex() : tuple<int, int>
processElementsBuilder) : hashmap <<extend>>
- Createlds() : None TextReaderService » L 0.
- i . Action
chenilf_I\(Pr;)(cesslilemenf)s-():none +Route(httpRequest) : HttpResponse -
createRex senLt?rl(cjs' anay - StartCoreNLPServer() : none + BaseForm : string
reateResourcelist) : array - GenerateMetadata(text) : hashmap | <<use>> + ActorFrom : Actor
- CreateGateways() : array + Object : ExtractedObject ccusers
v
Actor
Extracti [<<extend>> ——B|
Xtraction : + Unreal: boolean
v + MetaActor : boolean
SentenceAnalyzer TextAnalyzer + Passive : boolean
- \rlorlld : WorldModel . - Parser : CoreNLPWrapper
- € € - World : WorldModel
- Dependences : array BPMN Elemeats

ProcessModel

+ Nodes: array<FlowObject>
+ Edges: array<SequenceFlow>

+ GetSuccessors(node) : array<SequenceFlow>

- DetermineObjects(tree, d
active) : array<ExtractedObject>
- CheckGlobalConjunctions () : none

ies, verb,

<<use>>

- World : WorldModel
+ Model : ProcessModel

>> - CombineActions() : none + GetPi (node) : array: low>
- BuildFlows() : none + RemoveNode(node) : none
ProcessElementsBuilder «u;w SequenceFlow
4 =]

Event

“~P|+ Source : FlowObject

+ Target : FlowObject

SentenceElementsBuilder

+ CreateActor(tree, nodelndex, dependencies)
: Actor

+ CreateAction(tree, nodelndex, dependencies,
active): Action

+ CreateObject(tree, nodelndex,
dependencies) : ExtractedObject
+ Determi ifiers(tree, nodelnd
dependencies, element) : none

+ CreateBPMNElements(world) : P
ProcessModel

- CreateActions() : none
- BuildSequenceFlows() : none
- ProcessMetaActivites() : none

- FinishDanglingEdges() : none

Data

<<use>>

+ EventType : string
+ EventSubType : string
+ EventSpecifier : string

<<extend>>

FlowObject

+ Element : Element

Gateway

+ Type : string

WorldModel

Flow

+ Actions : array<Action>

+ Actors: array<Actors>

+ Resources: array<Resources>
+ Flows: Array<Flow>

+ Single : Action

=o <<use>> - pf

+ Type: string

+ AddAction(action) : none
+ AddResource(resource) : none
+ AddActor (actor) : none

- AddSpecifiers (element) : none

+ GetActionsOfSentence(stanfordSentence): array<Action>
+ GetResourcesOfSentence (stanfordSentence) : array<Resource>
+ GetActorsOfSentence (stanfordSentence) : array<Actors>

+ Sentence : StanfordSentence
+ Multiples : array<Action>

+ Direction: string

StanfordSentence

+ Tree : NitkTree
-

<<use>>"""

+ RawSentence :
+1d:int

+ Dependencies :

array
string

&

<<use>>

AnalyzedSentence

+ Conjunctions :

+ Sentence : StanfordSentence
+ Root : NlktTree

array<Conjunction>
+ Actions: array<Action>

Source: The Authors

<<use>>

classes. During the Elements extraction phase, the core classes involved store data in the

WorldModel class, designed as the central point of information for this phase. At the first

step, the WorldModel instance contains the data generated by SentenceAnalyzer class,

which, following the presented phase in Section 4.3, refers to lists of Action, Actor and

Resource objects created based on retrieved information from the process description.

In the next step, the WorldModel is updated with lists of Flow class objects, created by

the logic of the TextAnalyzer. Consequently, the WorldModel instance contains all the

information from the process description properly extracted and joined.

53

Table 5.1: Classes in relation to phases of the presented approach

Approach phase Class Package
Input handling TextReaderService Core
SentenceAnalyzer Extraction
Elements extractions TextAnalyzer Extraction
ProcessElementsBuilder Extraction
Text indetification ProcessElementsldentifier Core

Source: The Authors

Finally, the ProcessModel class encapsulates the data created from the last step of
the Elements extraction. The ProcessElementsBuilder class builds objects corresponding
to the process elements identifiable by the approach, such as Tasks, Events and Gateways.
Once completed, the instances of the WorldModel and the ProcessModel serve as inputs
for the Text identification phase, which is the last phase covered by the server component.

Figure 5.3 shows the sequence diagram representing the complete flow of the
server component. Once the TextReaderService is initiated, the CoreNLP Server is started
in order to enable future requests to the CoreNLP pipeline. Once the initialization is ready,
every post request received by the TextReaderService is, first analyzed as described in the
Input handling phase, and then sent as input for the TextAnalyzer class. Next, the TextAn-
alyzer communicates with the CoreNLPWrapper sending the input (i.e., process descrip-
tion) which is then transferred via HTTP request to the CoreNLP Server along with the
required annotators (2.2.2) through a JSON data format. Internally, the CoreNLP Server
triggers its logic for handling the request and providing an output based on the specified
annotators and text. Finally, the output is returned via HTTP response to the CoreNLP-
Wrapper, which creates StanfordSentence class objects to encompass the constituency
parse, dependency parse and the raw sentence.

Following, each StanfordSentence object in sent to the Sentence Analyzer execut-
ing methods to extract information from the sentence based on the parses obtained from
the CoreNLP pipeline. During this iteration, several interactions between the Sentence-
Analyzer and the SentenceElementsBuilder occur, varying according to the execution
flow of the methods. Once every sentence is analyzed, the TextAnalyzer’s methods are
responsible joining the information of multiple sentences, resolving missing references,
completing the WorldModel instance and returning it to the TextReaderService.

Afterwards, the TextReaderService triggers the creation of the objects that repre-

sent process elements. This process is performed by the ProcessElementsBuilder class

54

Figure 5.3: Sequence diagram of the server component

ice | |r| i I | Pr i | | ly | | CoreNLPWrapper I | SentenceAnalyzer I ISentenceEIemenstsBuilder

validate_input(json)

analyze_text(text) create_stanford

sentences(text)

Array[Stanford
Loop sentences Sentence]

analyze_sentence

(stanford_sentence)
create_actor(...)

Actor
create_object(...)
Resource
create_action(...)
Action
AnalyzedSentence L

WorldModel

create_process_model r =
(world_model) H -~
ProcessModel
create_metadata
(world_model, process_model)

JSON

Source: The Authors

based on information gathered from the WorldModel instance. A ProcessModel class
instance is returned encapsulating all the identified process elements. Finally, the Proces-
sElementsldentifier class uses the information contained in both data-centered class in-
stances for generating a metadata that links a process element with its respective location
in the sentence. The output of this class is returned in a JSON format to the TextReader-

Service, which is responsible for sending the response back to the client component.

5.4 Client component

In comparison with the server component, the client component has a wider range
of possibilities of implementations that can still follow the approach proposed in this
study. The client component represents the whole Text Annotation phase, which impli-
cates that it must visually represent annotated process descriptions, through colors and
symbols and present to end-users. In terms of the approach, the specific techniques and
resources are flexible for different choices of implementations, meaning that it lies on
the prototype’s implementation the responsibility of deciding what specifically is used to
annotate the process description.

In the context of the developed prototype, the chosen web architecture, program-
ming language and library enabled a straightforward usage of colors and icons. ReactJS
provides two main advantages which are particularly suitable for the implementation of

the Text Annotation phase: a component-based software engineering (CBSE); and an ef-

Markers

- selectedMarkers: Object
- editMarker: string
- showAllElements: boolean

Dropzone

- setMarker(marker)

- onChangeColor(color, marker)
- handleShowAllElements

- useEffect()

Figure 5.4: Class diagram of the client component

Actors

InputSection

- text: string

- disabledButton: boolean
- inputTab: string

- textFile: File

App

55

- seftText(text)

- setDisabledButton(boolean)
- setInputTab(tabName)

- setTextFile(file)

+ selectedMarkers : Object
+ metada: Object

- activeTab: string

+ textResources: Array

OutputSection

- setTextResource(textResources)
- setMetadata(metadata)

+ setActiveTab(tabName)

+ setSelectedMarkers(markers)

- popoverOpen: boolean
- popoverData: Object

- markedText: Array

- showlcons: boolean

- setPopoverOpen(boolean)
- setPopoverData(data)

- setMarkedText(array)

- setShowlcons(boolean)

- handleDropAccepted(file) + handleMarkedTextResponse(json) - handlePopoverShow(snippet, id)
- onClickMarkText() - useEffect() - useEffect()

Source: The Authors

fortless integration with Cascading Style Sheets (CSS) and external components (e.g.,
icon components). Both aspects facilitate an extensible implementation. As per Hovland
et al. (2003), CBSE allows the development of independent pieces of functionality as en-
tities that can be composed. Additionally, when defined with clear interfaces, it promotes
reusability, as is the case with third-party external components.

Figure 5.4 shows the class diagram of the client component. As per detailed in
Fedosejev (2015), the App component is the entry point of a React]S application. Specif-
ically, this component acts as an instantiator of smaller modular components, splits and
orchestrates the application state as: input state or output state. The first is handled by
the InputSection component, which is responsible for supporting the entry of the process
descriptions through native HTML elements such as the TextArea or by the Dropzone
external component, enabling the drag-and-drop functionality of text files. Whenever the
end-user submits a process description in the InputSection, the App component triggers
a request to the server component (5.3), waits for a successful response and switches the
application to the output state.

The output state, on the other hand, is handled by the OutputSection, Markers and
Actors components. The first is responsible for annotating the text with colors and icons
according to the metadata received through a JSON format from the server component,
which is handled according to the approach presented in the Text Annotation phase. As
the technique for applying colors for each word in the output text, a CSS attribute is added

to the HTML element representing the respective word. As for the icons addition, an

56

Figure 5.5: Sequence diagram of the client component

Dropzone | | InputSection | App |0utputSection| | Markers | Actors
T H H

i 1 '
[i '
——

| onClickMarkText()

J handleResponse(json)

setMetadata(json)
setActiveTab("output”)

metadata r]—"' metadata.actors

handleChangeMarker() !

selectedMarkers

handleChangeText()

aB-

Source: The Authors

external library (ICONIFY, 2019) is used to fetch BPMN 2.0 icons as form of a React]S
component. The second is responsible for displaying a list with the identifiable process
elements names combined with user interactive components such as the ToggleButton
and ColorButton. The precise functionality of those components are further detailed in
Section 5.5. Finally, the Actors component is responsible for displaying a list of the Actors
involved in the input process description.

Unlike the server component, the client component supports a number of possible
sequence flows, depending on which action the end-user performs on the web application.
Figure 5.5 shows a high level sequence diagram representing the main use case of mark-
ing a text and changing which markers are selected. At the initial point of the diagram,
the App component is at the input state, meaning that the InputSection and the Dropzone
components are instantiated. When the onClickMarkText method is triggered and the re-
quest is properly handled by the server component, the handleResponse method is called
from the InputSection in order to store the received metadata payload and switch to the
output state, at which the OutputSection, Markers and Actors are instantiated. At this
point, the Markers component handles the interaction with the end-user regarding which
process elements are visually annotated on the text. Whenever the end-user switches on or
off a marker, the handleChangeMarker method is called in order to transfer the informa-
tion of which markers are currently selected, triggering a change in the visual annotation
performed internally in the OutputSection component. Finally, the handleChangeText
method is triggered on the occasion that the end-user decides to change the input process

description and restart the sequence.

57
5.5 Demonstration

This section presents a set of features of the prototype developed based on the
presented technologies, client and server components. This demonstration aims to dis-
play the functionalities available for the end-user of the application, therefore, the content
source originates from the client component, running on a web browser. For such pur-
poses, the sequence diagram shown in Figure 5.5 is visually presented with additional use
cases, considering the user interactive aspects of the prototype.

As detailed in the previous section, the client component switches between the
input and output states, each containing their own sub-components. Figure 5.6 shows the
initial input state of the application. At this point, the user has the option to type or paste
a process description in the TextArea component. Furthermore, in accordance with Input
handling phase of the presented approach in Section 4.2, the user is also allowed to switch
to a file input tab, enabling the selection and upload of a text file, through the Dropzone
component.

As soon as the Mark Text button is pressed, the process description is submitted via
HTTP request to the server component. Once the sequence flow of the server component
is finished, the client component receives the HTTP response and switches to the output
state. The response contains the JSON metadata linking every identified process element
with its respective location in the sentence which is handled according to the Text anno-
tation phase of the approach. At this point, the user is redirected to the output screen,

containing different sorts of information. In Figure 5.7, the output screen is divided in

Figure 5.6: Input text

Write a process description or upload a text file

Text Input File Input

Mark Text

Source: The Authors

58

Figure 5.7: Output Screen

Markers Block 1 Marked Text Block 3 @ Show icons
All When a customer brings in a defective computer, the CRS verifies the defect and hands out a repair cost

- Lane calculation back . If the customer decides that the costs are acceptable, the process continues , otherwise

- Task she takes her computer home unrepaired . The ongoing repair consists of two activities , which are executed ,

- Start Event in an arbitrary order . The first activity is to verify and adjust the hardware , while the second activity verifies

- End Event and configures the software . After each of these activities , the proper system functionality is tested . If an

= Intermediate Event error is detected another arbitrary repair activity is executed , otherwise the repair is finished .

- Conditional Event

- Timer Event

@ Message Event

= XOR Split

@ XOR Join

L AND Split

- AND Join

- OR Split

- OR Join

Actors Block 2

& customer
& crs

Source: The Authors

Figure 5.8: Customize color

Change Color

o
o000 | 255/ 0 | [o | 100

R oG 8 A
a spees
a asn

Source: The Authors

three main blocks of information.

Block 1 contains an interactive set of toggle buttons representing each type of
BPMN 2.0 element which is detectable by the approach. Toggling a button in this block
triggers the text annotation in block 3, resulting in a change of color in the sequences
of words that represent the respective BPMN 2.0 element. Furthermore, the process ele-
ment’s icon (COMMISSION et al., 2013) is also displayed before the first word of each
sequence. In addition, if the corresponding element is a split gateway, every identified
branch on the text will be preceded with a highlighted text indicating the gateway type.
Analogously, every identified join gateway is succeeded by a corresponding text indicator.

One of the extended use cases of the client component is the possibility of modi-
fying the color which represents an element type. Clicking on the color button next to the
toggle button pops up a dialog, allowing the user to choose the color that represents the
respective process element type, as illustrated in Figure 5.8. This functionality aims to en-

hance the interactivity with the user, allowing a personal customization of the annotated

Markers

59

Figure 5.9: Annotated text

(O Start Event
Marked Text @ Show icons

& customer

@ Al When & a customer O) , & the CRS () verifies the defect and hands
® @ Lane out a repair cost calculation back . ® [XORBRANCH] that the costs are
® @ Task acceptable , the process () continues, [XORBRANCH] she () takes her computer home
® @ start Event unrepaired & [XORJOIN]. The ongoing repair consists of two activities , which () are executed, in an
® @ End Event arbitrary order. ¢> [ANDBRANCH)] The first activity (] is to verify and adjust the hardware ,
@ @ Intermediate Event [ANDBRANCH] while the second activity () verifies and () configures the software < [ANDJOIN].
= @ Cconditional Event After each of these activities, the proper system functionality () is tested . & [XORBRANCH]
® @ Timer Event another arbitrary repair activity O is executed, [XORBRANCH] the repair Q is
@ @ Message Event finished
@ @ XOR Split
@ @ XOR Join
® @ AND Split
® @ AND Join
® @ OoRSplit
® @ ORJoin

Source: The Authors !

text, which enhances the operability of the application. For instance, it is particularly
helpful for users with color vision deficiency. Block 2, on the other hand, contains a list
of every actor extracted from the process description. Such information may be useful to
define the lanes and pools representing the process participants in a process model.
Following, block 3 displays the entry text and all the selected visual features.
Whenever the user hovers through an annotated sequence of words (i.e., a process el-
ement), its corresponding actor is displayed. This functionality is advantageous, for in-
stance, to assign the process element to its respective lane, during the creation of a process
model. In addition, a toggle button allows the user to show or hide icons, with the pur-
pose of avoiding a cognitive overload of graphical elements on the screen. Moreover, the
Change Text button triggers the application to return to the input state, where a different
process description can be entered. Finally, Figure 5.9 shows output screen with every
process element selected and a mouse hover through a sequence of words representing a

Start Event.

IThe prototype developed is available in: <https://github.com/Leosr6/TextAnnotator>

60

6 EVALUATION OF THE APPROACH

The evaluation of the approach presented in this study was performed by two sep-
arated experiments. This chapter details the first experiment, which is based on a user-
centered survey, through the means of applying a questionnaire in which participants were
presented with the original process description and afterwards, with the annotated process
description.

In order to evaluate the approach with no regional or language barriers, two on-
line questionnaires were created, one version with questions in Portuguese and another
version with questions in English. Both versions were published in social media plat-
forms and were available for any participants from the 4" of October of 2020 until the
13" of October of 2020. Despite the language, every question had the same meaning and
purpose. In the period of 10 days, a total of 32 answers were obtained, combining both

versions of the questionnaire.

6.1 Questionnaire structure

The questionnaire was created using the widely known Google Forms'application,
enabling a straightforward and flexible construction of questionnaires. Its overall structure
is composed of four sections. The first section, aims to gather information regarding the
experience of the participants. Figure 6.1 shows the corresponding section, for which the
questions are:

1. Occupation: aims to identify the current professional occupation of the participant.

The possible options were: “student”, “professor/lecturer”, “software development-

related job”, “business process-related job” and “others”.

2. Education level: aims to identify the education level of the participant. The pos-
sible options were: ‘“highschool completed”, “bachelor’s degree or equivalent in
progress”, “bachelor’s degree or equivalent completed”, “master’s degree in progress”,
“master’s degree completed”, “PhD degree in progress”, “PhD degree completed”

and “others”.

3. How long have you known about business process modeling: aims to identify the

time of experience of the participant with business process modeling. The possible

Thttps://www.google.com/forms/about/ - last access on 18" of October of 2020

61

Figure 6.1: First section of the questionnaire

About you
How long have you known about business process modeling? *

L"n‘ahvlsesdziuw‘ we will ask questions related lo your education, prefessional experience and BPM .::] I have no knowledge about business process modeling

() Lessthan 1 year
Occupation * (_J) Between 1 and 2 years
-) Between 2 and 3 years
) Student
) Professor/lecturer () More than 3 years

) Software development-related job

—~ oted ‘)))
_) Business processrelated job (analyst, engineer, etc) How long have you known about the Business Process Model and Notation

) outro: (BPMN)? *

() I'have no knowledge about BPMN

Education level * (_) Lessthan1year

~) Between 1 and 2 years
_J Highschool completed

—_ (_) Between 2 and 3 years
) Bachelor's degree or equivalent in progress ~

—, } More than 3 years
") Bachelor's degree or equivalent completed

) Master's degree in progress

Master's degree completed What is your level of knowledge about the English grammar? *

) PhD degree in progress

J PhD degree completed

Ty - - ™
:’ outro: Very little knowledge S py S S L High domain

Source: The Authors

29 ¢

options were: “no knowledge about business process modeling”, “less than 1 year”,

“between 1 and 2 years”, “between 3 and 4 years” and “more than 3 years”.

4. How long have you known about the Business Process Model and Notation (BPMN):
aims to identify the time of experience of the participant with the BPMN, consid-
ering that the approach uses BPMN 2.0 elements and icons to annotate the descrip-
tion. The possible options were: “no knowledge about BPMN™, “less than 1 year”,

“between 1 and 2 years”, “between 3 and 4 years” and “more than 3 years”.

5. What is your level of knowledge about the English grammar: aims to identify the
level of knowledge of the participant about the English grammar. The answer is
based on the Likert scale (LIKERT, 1932), composed of five points, varying from

“very little knowledge” up until “high domain”.

The following section of questionnaire presents a process description to the par-
ticipant, divided in three sentences. Then, for each sentence, the participant is asked to
select the amount of each process element type present in sentence. As illustrated by
Figure 6.2, the possible options for each question are the process elements identifiable by
the approach (fig. 2.1) varying from an amount of O up until more than 4. Every pro-
cess element in the list required a selection. The purpose of this section is to check how

effectively participants can identify process elements in a raw process description.

62

Figure 6.2: First sentence in the second section of the questionnaire

First part

When a customner brings in a defective computer, the CRS verifies the defect and hands out a repair cost
calculation back. If the customer decides that the costs are acceptable, the process continues,
otherwise, she takes her computer home unrepaired.

How many process elements do you consider to exist in this part? *

0 1 2 3 4 More than
4

Lane O O O O 0o O
Task O O O O 0o O
Start Event @) O O (@) O O
End Event @) @] O (@) @) @)
Conditional — — — — — —

@] @)))) @]
Event L () . - L L
Timer Event O @] O O O O
Message — — — — — —

@] @) @)) @] @]
Event et ot Ly ./ ./ ./
XOR Split O O @) O O O
XOR Join O O O O O O
AND Split O O O O O O
AND Join O O O O @] @]
OR Split @] O O O @] O
OR Join O O [®)] (@) O O
Others O O (@] (@) O O

Source: The Authors

Afterwards, the third section of questionnaire begins presenting the color legend
for each type of process element, as shown in Block 1 of Figure 5.7. This section explains
that the process description used in the previous section had its process elements anno-
tated by the prototype according to the color legend and, finally, displays the completely
annotated process description, as shown in Figure 5.9. Directly after the explanatory
phase, the participant is asked questions regarding the annotated text. Unlike the previous
section of questionnaire, these questions aim to implicitly identify whether the participant
improved the comprehension about the business process based on a process description
with annotated process elements. Figure 6.3 shows the third section of this questionnaire,

for which the questions are:

1. On a scale of ease, how do you consider understanding the annotated text: this

Figure 6.3: Third section of the questionnaire

Annotation of elements in process descriptions

In this section, we will present a visual annotation of the process elaments contained in the process

description shown in the previous section.

The description of the referred process had its process elements annotated with

colors according to the legend shown below:

Al

) Lane

) Task

) Start Event

) End Event

) Intermediate Event
) Conditional Event
) Timer Event

) Message Event

) XOR Split

) XOR Join

) AND Split

) AND Join

) OR Split

) OR Join

sssscooescegnng

More about the annotation

Becides the colors representad above, the sentences in the text below were annotated with symbols

according to BPMN.

Furthermore, each branch of a given “Split® is preceded by one of the following text annotations: ©

[XORBRANCH]", [ANDERANCHT' or [ORBRANCH]".

The *Joins®, in turn, are followed by a text annotation of one of the following types: [KORJOIN",*

[ANDJOIN]" or “[GRJOINT".

According to the annotated text below, answer the following questions:

When & acustomer () 35 in & defective iputer, A the CRS [verifies the defect and
hands out a repair cost calculation back . @ [XORBRANCH] that the costs
are acceptable , the process () continues , [XORBRANCH] ise she [takes her computer
home unrepaired & [XORIOIN] . The ongoing repair consists of two activities , which (] are
executed . in an arbitrary order . & |ANDBRANCH)] The first activity [s to verify and adjust the
hardware , [ANDBRANCH] while the second activity (] verifies and [] configures the software &
[ANDJOIN] . After each of these activities, the proper system functianality () is tested . &
[XORBRANCH) If v acted anather arbitrary repair actvity () is executed ,
[XORBRANCH| the repair Q) is finished .

On a scale of ease, how do you consider understanding the above text? *
1 2 3 4 5

It was extremely difficult O O O O O It was extremely easy

Who are the actors of the process? *

There are no actors in this process
“Customer®

“Customer” & "CRS’

*Customer” & "Computer"
“Computer”

Qutro:

OO0 COO0O0

How many "tasks" are annotated?

() There are no ‘tasks" annotated
) 4

(O]

[OR]

O 10

() outro:

Which combination will never occur during the process execution? *

[[] ‘*verifies the defect and hands out a repair calculation® & “configures the software"
[J ‘the process continues® & “she takes her computer home unrepaired"

[[] ‘system functionality is tested" & ‘the repair is finished"

[[] ranother arbitrary repair activity is executed" & “the repair is finished"

[*verify and adjust the hardware" & ‘configures the software’

] outre:

Which activities may occur in parallel during the process execution? *

() another arbitrary repair activity is executed" & ‘the repair is finished"

() *verifies the defect and hands out a repair calculation & “configures the software"
() *verify and adjust the hardware" & ‘configures the software'

() “system functionality is tested" & “the repair is finished"

() *the process continues’ & she ‘takes her computer home unrepaired"

() outre:

Source: The Authors

63

64

question aims to identify if the participant has any issues in reading the text, such
as: cognitive overload, recognition of the BPMN 2.0 symbols, etc. The answer is

based on the Likert scale, varying from “extremely difficult” to “extremely easy”.

. Who are the actors of the process: aims to identify who are the actors of the business

process according to the participant of the questionnaire. The possible options were:

29

“there are no actors in the process”, “customer”, “customer & CRS”, “customer &

29 <4<

computer”, “computer’ and “others”.

. How many tasks are annotated: a question directed towards the understanding of

the annotated in the process description, by asking the amount of fask elements
annotated. The possible options were: “there are no tasks annotated”, “4”, “6”, “8”,

“10”and “others”.

. Which combination will never occur during the process execution: a multiple choice

question which aims to identify if the participant can define tasks in branches be-
longing to the same exclusive decision point. The possible options were: “verifies
the defect and hands out a repair calculation & configures the software”, “the pro-
cess continues & she takes her computer home unrepaired”, “system functionality
is tested & the repair is finished”, “another arbitrary repair activity is executed &
the repair is finished”, “verify and adjust the hardware & configures the software”

and “others”.

. Which activities may occur in parallel during the process execution: this question

aims to identify if the participant can define tasks in branches belonging to the same
parallel execution. The possible options were: “another arbitrary repair activity is
executed & the repair is finished”, “verifies the defect and hands out a repair cal-

29 ¢

culation & configures the software”, “verify and adjust the hardware & configures

the software”, “system functionality is tested & the repair is finished”, “the process

continues & she takes her computer home unrepaired” and “others”.

Finally, the last section of the questionnaire contains feedback focused questions,

based on the participant’s point of view regarding the overall annotated text. Unlike the

previous sections, this particular section contains two qualitative questions which are op-

tional for the completion of the questionnaire. The purpose of this section is to evaluate

effectiveness and discover points of improvement for the annotation approach. As illus-

trated by Figure 6.4, this section begins by recalling the annotated process description

presented in the previous section and continues with the following questions:

65

Figure 6.4: Fourth section of the questionnaire

Feedback about the annotation in the process description

In this section, we will ask your opinion regarding the annotated text in the previous section

Recall the annotated process description of the previous section and answer the
questions below:

When & acustomer () & the CRS [verifies the defect and
hands out a repair cost calculation back . [XORBRAMCH

are acceptable the process () continues , [XORBRANCH]

that the costs
she [takes her computer
home unrepaired & [XORJOIN|. The ongoing repair consists of two activities , which [are
executed , in an arbitrary order . & |ANDBRANCH] The first act
hardware , [ANDBRANCH] while the second activity [] werifies and [] configures the software &

[s to verify and adjust the

ANDJOIN] . After each of these activities , the proper system functionality (] is tested . &
[XORBRANCH] another arbitrary repair activity () is executed
[XORBRANCH] the repair Q) is finished

In a scale of correctness, how much do you agree with the annotation in the
process description? *

Completely disagree Completely agree

How mueh would this annotated process description help you to build the
process madel in comparison with the original process deseription? *

Do you have any criticism, comments or suggestions regarding this annotation in
the process description?

If 50, we ask you to answer the following question as well.

Sua resposta

Process description used in this questionnaire

When a customer brings in a defective computer, the CRS verifies the defect and hands out a repair cost
calculation back. If the customer decides that the costs are acceptable, the process continues,
otherwise, she takes her computer home unrepaired. The angeing repair consists of two activities, which
are executed, in an arbitrary order. The first activity is to verify and adjust the hardware, while the second
activity verifies and configures the software. After each of these activities, the praper system
functionality is tested. If an error is detected another arbitrary repair activity is executed, otherwise, the
repair is finished

What would an ideal annotated process description look like in your opinion?

Annotate the process description (there is a copy above) using a text editor (Word, Google docs, etc)
Use the color legend indicated in previous section, export it as PDF and upload the file below.

X, Adicionar arguivo

Mot helpful at all | - -

L) L) L) L) L Extremely helpful

Source: The Authors

1. In a scale of correctness, how much do you agree with the annotation in the process

description: aims to gather a user based validation of the annotation approach on
the presented process description. The answer follows the Likert scale, varying

from “completely disagree” up until “completely agree”.

2. How much would this annotated process description help you to build the process

model in comparison with the original process description: a question directed
towards one possible use case of the presented approach, which is further demon-
strated in Chapter 7. The answer follows the Likert scale, varying from “not helpful

at all” up until “extremely helpful”.

3. Do you have any criticism, comments or suggestions regarding this annotation in

the process description: a qualitative free text based question with the purpose of
obtaining feedback about the annotation used throughout the questionnaire.

What would an ideal annotated process description look like in your opinion: a
qualitative question aiming to gather different possible annotations for the process
description based on the participant’s opinion. The answer is a file input allowing

the submission of a PDF file containing the annotated process description.

66

6.2 Result analysis

Based on the application of the questionnaire, the evaluation of the presented ap-
proach was performed by analyzing the results in a quantitative and qualitative manner.
As such, a set of four main points were addressed by the questions in the questionnaire
in order to achieve the overall evaluation of the approach. The first point is concerned to
the comprehension of the annotated text in comparison with the original text in terms of
readability. A second point relates to the correctness of the annotation approach on the
presented process description. Following, the third point is regarding the usefulness of
the annotation for the design of the process model. Finally, the fourth point reflects the
effectiveness of the approach for the interpretation of the business process.

As the process description presented in the questionnaire is written in English,
a minimum level of knowledge about the English grammar is required to understand it.
Therefore, submissions with values of 1 and 2 on the Likert scale regarding the English
grammar knowledge question could generate noise for evaluating the approach. As such,
the submissions were filtered for answers with a value equal or higher than 3 in the men-
tioned question. As a result, 1 submission was disconsidered and 31 remained.

According to Allen and Seaman (2007), the analysis of Likert scale based data
can be performed by collapsing the responses into condensed categories. In that regard,
answers in the scale were set as one of three categories: positive, neutral or negative
answers. The positive category encompasses answers between the range of 4 and 5 in the
scale. As oppositely, the negative category encompasses answers between the range of 1
and 2 in the scale. Last, the neutral category represents the value 3 in the scale.

In particular, answers following the Likert scale can provide straightforward in-
sights, however, an isolated analysis may indicate misleading results. On the other hand,
combining answers based on the Likert scale with the experience of the participants, ob-
tained in the first section of the questionnaire, leads to a more granular analysis. In spite
of the data combination, however, the results based on Likert scale questions are never-
theless dependent on the participant’s evaluation.

On the other hand, the second and third sections of the questionnaire were de-
signed to provide an unbiased insight of the effectiveness of the approach. In essence,
combining the results of questions regarding the original process description with results
of questions regarding the annotated process description lead to a clear insight of the dif-

ference between them in terms of the participant’s comprehension of the business process.

67

Such analysis is particularly useful to address the fourth point (i.e., approach effective-

ness) of the evaluation.

6.2.1 Comprehension of the annotated description

As means to cover the first point of the evaluation, i.e., the comprehension of the
annotated text, the analysis is performed based on the first question of the third section of
the questionnaire (Figure 6.3). Considering this Likert scale based question, a general in-
dicator can be achieved by plotting the answers of the question in an isolated manner. On
the other hand, a more valuable insight is to analyze the comprehension of the annotated
process description based on an occupation perspective. Based on this information, it is
possible to infer which occupation benefits the most from the annotated process descrip-
tion. Figures 6.5 and 6.6 show the isolated and combined results of the first point of the
evaluation, respectively.

As shown in Figure 6.5, the overall annotation comprehension tended towards
positive answers, comprising a total of 65% of the submissions. The negative answers
comprised a total of 22% of the submissions for which none represented the lowest value
in the scale (i.e., “extremely difficult”). Finally, 13% of the submissions were neutral
answers. The annotation comprehension based on the participant’s occupation, illustrated
in Figure 6.6, is best described by absolute values rather than percentages, as it also shows
the amount of participant’s in each occupation. In order to comprehend this result, it is
necessary to fallback to a qualitative analysis, based on the free text feedback provided in
the last section of the questionnaire.

The comprehension for students fits mostly into the positive category with 8 sub-
missions, however, 2 submissions had neutral answers and none had negative answers.
The related improvement feedback contains comments such as: “modify the background
color of the text, instead of the color text”, “the symbols complicate the reading” and
“add parenthesis/brackets/braces surrounding the branch sentences in order to clarify
the annotation”. All of which are possible to achieve following the presented approach,
with modifications in the client component of the prototype. Particularly, removing the
symbols is already a possibility in the prototype.

Professors and lecturers represent a minority in the total population of the exper-
iment. While 2 submissions leaned towards positive answers, 1 submission presented a

negative answer. The reason behind the difficult comprehension, however, is not stated in

68

Figure 6.5: Annotation comprehension

13% 0%
22%

i Extremely dificult
2
=3

13% 44
L Extremely easy

-

Source: The Authors

Figure 6.6: Annotation comprehension per occupation

o

o

IS

m Extremely dificult
2

u3

m4

@

2 m Extremely easy
:
0 A _— A -u
Student Professor/lecturer Software Business process- Others
development-related related job

job

Source: The Authors

the feedback.

Software development-related jobs, on the other hand, represent the majority of
participant’s of the experiment. The results for this category are scattered, although over-
all tending towards positive answers with 6 submissions, negative and neutral answers are
present in 3 and 2 submissions, respectively. The related improvement feedback contains

» €«

comments such as: “the amount of information at once is a bit illegible”, “the represen-
tation of gateways is confusing”, “visualize gateway branches either with indentation or
something similar”. Although reducing the amount of information is already covered in

the prototype, the representation of branches could be a point of improvement.

69

The business process-related job category comprises of 4 submissions equality
distributed as 2 positive and 2 negative answers. Even though no feedback related to the
comprehension of the text was provided, one key factor is that this category encompasses
multiple occupations, e.g., process analyst, process engineer. As such, either a bigger
sample or more granular occupation information is required to explain the results.

Additionally, 3 submissions contained occupations not covered by the preselected
categories, being “customer service manager”, “TIC project manager” and “consultant”,
with answers of values 4, 5 and 2, respectively. While the positive answers for these
occupations had no feedback related to the comprehension of the text, the negative answer
stated that “the annotation may have value for an automation tool, but for a human reader
the original descriptions seems a better choice”. It is unclear in the commentary, however,
the reason why the human reader would benefit more from the original description.

Finally, based on the analysis per occupation, the results point towards a particu-
larly easy comprehension of the annotated description for students, which indicates that
the presented approach could also be leveraged, for instance, as a facilitator for teach-
ing purposes. Furthermore, some points of improvements regarding the annotation of

gateways and its branches were also presented for improving the prototype.

6.2.2 Annotation correctness

The second point of the evaluation, i.e., correctness of the annotation in the process
description, is performed based on the first question of the fourth section of the question-
naire (Figure 6.4). Similarly to the previous point, the question is based on the Likert
scale, which can be individually analyzed, indicating the general correctness of the an-
notation. On the other hand, a more valuable analysis is achieved when also considering
the participant’s experience with the BPMN. Figures 6.7 and 6.8 show the isolated and
combined results of the second point of the evaluation, respectively.

As shown in Figure 6.7, the annotation correctness has also tended towards posi-
tive answers, comprising a total of 64% of the submissions. Negative answers comprised
a total of 16% of the submissions for which none represented the lowest value in the scale
(i.e., “completely disagree”). Finally, neutral answers corresponded to 20% of submis-
sions. The annotation correctness based on the participant’s BPMN experience, illustrated
in Figure 6.8, also demonstrates, in absolute values, that experienced BPMN participants

represent the largest sample in the population of the experiment. It is assumed that the

70

Figure 6.7: Annotation correctness

0,
19% - 16%

= Completely disagree
2

20% =3
wd

. Completely agree

S

45%

Source: The Authors

Figure 6.8: Annotation correctness per BPMN experience

3 = Completely disagree
2
2,5
u3
2 m4
m Completely agree
1,5
1
: .
— — —
0

No knowledge Less than 1 year Between 1 and 2 Between 2 and 3 More than 3 years
about BPMN years years

Source: The Authors

more experienced a participant is with the BPMN, the more qualified he/she is to judge
the correctness of the annotation.

Participants with no knowledge and less than 1 year of knowledge about BPMN
add to a total of 10 submissions, all which tending towards positive answers. Although
these answers are presumably not the most qualified for evaluating the correctness of the
annotation, the related feedback contains comments with some valuable insights. The first
topic noted is regarding the separation of the tasks “verifies and configures the software”,
while the tasks “is to verify and adjust the hardware” are annotated as a single task. This

is a point of improvement for the Elements extraction phase of the approach, in which the

71

statistical based model used in the Stanford CoreNLP identifies the “is” as the main verb
of the sentence, rather than “verify” and “adjust”.

A second topic noted concerns the task “takes her computer home unrepaired”,
which is followed by a join gateway. In terms of business process execution, however, the
process would also finish at this point, therefore, additional logic is required to detect an
end event at this point. Last, the third topic raised the discussion of whether the annotation
of the tasks “continues” and “are executed” may cause confusion as to which precise
action is to be performed during the execution of the process.

Participants which have between 1 and 2 years and between 2 and 3 years of
experience with the BPMN can provide a more qualified evaluation of the annotation
correctness. The submissions lean towards positive answers, adding to the amount of 4
combining both categories of experience. Negative answers add to the amount of 2, while
a single neutral answer was submitted. For both categories, no comment related to the
correctness of the annotation was provided.

Presumably being the most qualified sample of the experiment for the evaluation
of this point, submissions of participants having more than 3 years of experience with
the BPMN also tended towards positive answers, adding to the amount of 6 submissions.
Unlike in the previously analyzed categories, the neutral answers represent a considerable
amount of 5 submissions. Negative answers, on the other hand, represent the lowest
amount in this category, with 3 submissions.

The related feedback contains comments regarding the second and third topics
raised in the analysis of the previous categories, i.e., the lack of the end event after the
task “takes her computer home unrepaired” and the annotation of tasks which signal the
continuity of the process. An additional point was raised in two comments, concerning
the annotated task “verifies the defect and hands out a repair cost calculation”. Both
participants stated that this task would be best represented as two separate tasks, due to
the complexity of each action. One of the comments mentions that this would facilitate to
identify sub-processes for each of these tasks.

Although some improvement points regarding the annotation of tasks were iden-
tified, the analysis of the results indicate that the correctness of the annotated text is pos-
itive for every category of BPMN experience. Furthermore, the inconsistencies in the
annotation are focused on splitting aggregated tasks, rather than incorrect type of BPMN

elements being annotated.

72

6.2.3 Usefulness for modeling purposes

In order to cover the third point of the evaluation, i.e., usefulness of the annotated
text as an artefact for modeling purposes, the analysis is performed based on the second
question of the fourth section of the questionnaire (Figure 6.4). Following the same pat-
tern of the already discussed points, the answers to this question are analyzed individually
and combined with the participant’s experience with process modeling. Particularly, this
point is also further explored as an use case, in Chapter 7. Figures 6.9 and 6.10 show the
isolated and combined results of the third point of the evaluation, respectively.

As illustrated in Figure 6.9, the participant’s evaluation of the usefulness of the
annotation approach for a process model design use case is strongly inclined towards pos-
itive answers, comprising a total of 88%. Unlike the two previous points, the majority
of answers correspond to the highest value in the scale (i.e., “extremely helpful”), even
though a single submission contained the lowest value in the scale (i.e., “not helpful at
all”’). The annotation usefulness for model design based on the participant’s experience
with process modeling is shown with absolute values in Figure 6.10, which also demon-
strates that the largest sample in the population of the experiment have more than 3 years
of experience with process modeling. Similarly to the previous point, it is assumed that
the more experienced a participant is with process modeling, the more qualified he/she is
to judge the usefulness of the approach for such purpose.

Participants which have no knowledge about business process modeling comprise
a small sample of the population of the experiment, which is a positive factor for the
evaluation of this point. The amount of participants with no experience and less than
1 year of experience in process modeling adds to a total of 9 submissions, all of which
fitting in the category of positive answers. In particular, 7 of them represent the highest
value in the scale. For both categories, no comment related to the modeling usefulness
was provided.

The submissions of participants which have between 1 and 2 years and between
2 and 3 years of experience with process modeling also lean towards positive answers,
adding to the amount of 5 combining both categories of experience. Nevertheless, nega-
tive and neutral answers were accounted, at 1 submission each. For both categories, no
comment related to the modeling usefulness was provided.

A second positive factor for the analysis is the fact that the most experienced par-

ticipants with process modeling comprise the biggest sample of the experiment. As such,

73

Figure 6.9: Annotation usefulness for model design

3% 3%

6%

= Not helpful at all
2

m3

ud

. Extremely helpful

52%
36%

Source: The Authors

Figure 6.10: Annotation usefulness for model design per modeling experience

iJJJJ

o

= Not helpful at all
2

=3

4

u Extremely helpful

~

No knowledge about Less than 1 year Between 1 and 2 Between 2 and 3 More than 3 years
business process years years
modeling

Source: The Authors

the participant’s evaluation of this point is presumably more reliable and qualified. The
submissions in this category are strongly inclined towards positive answers, adding up to
a total of 14. Additionally, only a single neutral answer was accounted, for which the
related feedback indicated that providing a distinction between lanes and pools would be
important, as it is a recurrent question to be addressed during the process modeling. Also,
only a single negative answer was accounted, for which the related feedback was already
discussed in the comprehension of the annotated description, for which the participant
argued that the original description was a better fit for human readers.

Several feedback contained positive comments regarding the usefulness of the ap-

74

proach for process modeling, such as: “the annotation would help a lot in the identification
of the process steps”, “the annotation practically performs the modeling by it self”. Not
only the consolidate results, but also the most qualified category of participants strongly
indicate that the annotation approach is helpful for such use case. Finally, the already
discussed indentation of gateways could also be a point of improvement to assist in the

process modeling.

6.2.4 Effectiveness of the approach

The fourth point of the evaluation, i.e., effectiveness of the approach, is analyzed
based on the answers obtained in the third section (Figure 6.3) of the questionnaire, in
comparison with the answers obtained in the second section (Figure 6.2). Unlike the
previous points, this analysis indicate results which are not based on the participant’s
judgement, as such, it is possible to achieve an unbiased view of the effectiveness of the
approach. Specifically, the term effectiveness stands for the capability of the approach to
be similar - or better - compared to a human’s interpretation of the process description.

In the second question of the third section, the participants were asked to select
the actors of the process, based on the annotated text, between a number of options. As
explained in Section 2.1, in the BPMN 2.0, actors are later generally represented as lanes.
Therefore, in order to evaluate the identification and annotation of the actors in the process
description, a comparison is performed with the amount of lanes previously answered in
the second section of the questionnaire. Figure 6.11 shows the percentage of participants
in relation to the number of lanes selected and in relation to the options of actors in the
third section.

As illustrated, the first image shows that 77% of the participants selected an amount
of 2 lanes in the process description in the second section. In comparison, the second im-
age shows that 94% of the participants selected the option “Customer & CRS” as the
annotated actors in the process description. Considering that none of the participants an-
swered with the “Others” option, indicating different actors out of the available options,
it is possible to infer that the annotation of the actors improved the interpretation of some
participants concerning the actors in the process.

Unlike the previous question, the third question of the section can be directly com-
pared with the answers in the second question, as both lead to quantitative answers. As

such, it is possible to perform a correlation between the amount of tasks selected in both

75

Figure 6.11: Actors annotation comparison

109 3% __10%

=

7% 94%
B 2 m3 w4 m Customer ~ Customer & CRS
(a) In relation to amount of lanes (b) In relation to options of actors

Source: The Authors

sections for each submission, as demonstrated in Figure 6.12. However, due to the in-
consistencies of the annotation of tasks discussed in the evaluation of the annotation
correctness point, a binary comparison would be misleading, as participants may have
considered some tasks separately or aggregated.

In order to overcome this issue and still have value from the correlation of the
amount of tasks selected, the pooled standard deviation is calculated, combining the stan-
dard deviation of the amount of tasks in both sections of every submission. The pooled
standard deviation is calculated as per equation 6.1, where: k is the number of submis-
sions (i.e., 31); n is the number of questions considered in the standard deviation (i.e.,
2), which are the selection of tasks in the second and third section; and s° represents the

variance of the respective submission i.

Zk:1(ni —1) % 322 Op
_ 2 6.1 _ % 6.2
i \/ S oy oY V= ©2

As a result, the overall standard deviation between the amount of tasks selected
in the second and third section of the questionnaire is of value /,35. In order to further
analyze this value, a second metric is required, calculating the coefficient of variation
(CV), which is defined as the ratio of the standard deviation in relation to the mean. In
this case, it is the ratio between the pooled standard deviation and the mean of the amount
of tasks of both questions in every submission. The CV is calculated as per equation 6.2
and results in the value of 0,19. As rule of the thumb, values lower than 1 are considered

to be of low variance, which is an indicator that the difference between the amount of

76

Figure 6.12: Tasks annotation correlation

10 il M N

8 = @& A = a & & & = e — = o =

7
6
5
4
3
2
1
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

m Tasks (second section) Tasks (third section)

Source: The Authors

tasks selected in both sections is low, despite the already mentioned inconsistencies.

The fourth question of the section checked whether the participants could identify
the tasks which occur in different branches of a same exclusive decision point. In order
to evaluate the identification and annotation of XOR splits, a comparison in performed
between the answers for this question and the amount of XOR splits previously answered
in the second section of the questionnaire. As this is a multiple choice question, unlike
the previous questions, the analysis is based on the combinations of answers submitted.
Figure 6.13 shows the percentage of participants in relation to the number of XOR splits
selected and in relation to the combinations of exclusive tasks in the third section.

As illustrated, the first image shows that 58% of the participants selected an amount

of 2 XOR splits in the process description in the second section. However, as the second

Figure 6.13: Exclusive decisions annotation comparison

3% 0% 13%

20%

19%
58%

u the process continues & she takes her computer home unrepaired
the process continues & she takes her computer home unrepaired
another arbitrary repair activity is executed & the repair is finished

10 1 w2 w9 .
= other combinations
(a) In relation to amount of XOR splits (b) In relation to combinations of exclusive tasks

Source: The Authors

77

image shows, the majority of participants, representing 67%, selected a single annotated
exclusive decision in the third section, whereas 20% selected the set of both XOR splits
annotated in the process description. The expectation was that a higher percentage would
be able to identify both XOR gateways, specially considering that the majority of partic-
ipants selected 2 XOR splits in the second section. One possible assumption behind this
is that the question is not explicitly stating the more than one option can be selected. On
the other hand, it was not possible to confirm this assumption, therefore, the effectiveness
of the annotation of exclusive decision points remains uncertain. Finally, different com-
binations which were selected by a single participant were joined in a category defined as
“other combinations” and sum up to a total of 13%.

The last question of the section checked whether the participants could identify the
tasks which occur in different branches of a same parallel execution. In order to evaluate
the identification and annotation of AND splits, a comparison is performed between the
answers for this question and the amount of AND splits previously selected in the second
section of the questionnaire. Figure 6.14 shows the percentage of participants in relation

to the number of AND splits selected in relation to the options of parallel tasks in the third

section.
Figure 6.14: Parallel executions annotation comparison
0 3% 3%3%
1305 16% °
91%
manother arbitrary repair activity is executed &the repair is finished
verifies the defect and hands out a repair calculation & configures the
software
68% verify and adjust the hardware & configures the software
10 1 2 w9 i system functionality is tested & the repair is finished
(a) In relation to amount of AND splits (b) In relation to combinations of parallel tasks

Source: The Authors

As illustrated, the first image shows that 68% of the participants selected an amount
of 1 AND split in the in process description in the second section. In comparison, the
second image shows that 91% of the participants selected the option “verify and just the
hardware & configures the software” as the annotated parallel tasks in the process descrip-
tion. Similar to the case of the comparison of actors and lanes, none of the participants

answered with the “Others” option, as such, it is possible to infer that the annotation of the

78

AND splits improved the interpretation of some participants concerning the tasks which

can be executed in parallel in the process.

6.3 Discussion

In this chapter, the evaluation of the approach was performed through the means
of a questionnaire, for which the main goal was to determine whether a practical applica-
tion using the developed prototype would present positive results. As such, the presented
questionnaire was designed aiming to evaluate four points considered as crucial for an
assertive conclusion. The points covered by the analysis were in respect to the: com-
prehension of the annotated text, correctness of the annotation, usefulness for modeling
purposes and effectiveness for interpreting the business process.

More specifically, the analysis of the three first points indicated that the annota-
tion of business process descriptions presented in this study was well evaluated by the
participants, with emphasis in its usefulness for helping in the design of the business pro-
cess model. Furthermore, the evaluation of the last point has shown that, for most cases,
the annotation improves the interpretation of business elements contained in the process
description.

During the analysis of each of those points, valuable feedback comments were
gathered and presented, which could serve as points of improvements for future works.
Although this experiment has shown very promising results, it is important to note that this
evaluation is restricted to one annotated process description. A large scale experiment,
for instance, by using the prototype within the context of a whole organization and a
diversity of business process descriptions would have a high value and provide a complete
validation.

Finally, the last question of the questionnaire allowed the participants to upload
their own ideal version of annotation of the presented process description. The results of
the submitted documents can be seen in Appendix A and might have value for improving
the prototype, specially by allowing more user customization in terms of the visual ele-
ments. Amongst the different visualization features found in the submitted documents are:
underline certain annotated words and use colors in the background instead of changing

the color of the words.

79

7 CASE STUDY

In this chapter, a second experiment is conducted in order to complement the eval-
uation performed in Chapter 6. For the context of this experiment, no external participants
are involved, but rather focusing on a case study that covers one of the possible use cases
of the approach, using the developed prototype for designing a business process model.

As one of the purposes of the presented approach is to help the process modeler
by identifying a subset of BPMN 2.0 elements in the process description, the first part of
this chapter emphasizes how the user-interactive and visual features of the prototype can
lead to the creation of the process model. The second part of this chapter compares the
text annotation based on a preprocessed description, according to Section 4.1, and the text
annotation based on the original text description.

The demonstration of the process model design following the approach is di-
vided in two steps: submitting the preprocessed description in the developed prototype
and selecting the desired process element types to be annotated; manually creating the
model based on the annotated elements. As the test set, two process descriptions origi-
nated from the Humboldt University of Berlin and commonly used in related researches
(FRIEDRICH; MENDLING; PUHLMANN, 2011; HONKISZ; KLUZA; WISNIEWSKI,
2018; SILVA et al., 2019) were selected and preprocessed in accordance to the guidelines
presented in Section 4.1.

In the first step, both process descriptions were annotated using the prototype de-
veloped in Chapter 5, selecting the entire set of identifiable BPMN 2.0 element types and

their respective icons. Figures 7.1 and 7.2 show both process descriptions annotated.

Computer repair

When a customer brings in a defective computer, the CRS verifies the defect and
hands out a repair cost calculation back. If the customer decides that the costs are ac-
ceptable, the process continues, otherwise she takes her computer home unrepaired. The
ongoing repair consists of two activities, which are executed, in an arbitrary order. The
first activity is to verify and adjust the hardware, while the second activity verifies and
configures the software. After each of these activities, the proper system functionality is
tested. If an error is detected another arbitrary repair activity is executed, otherwise the

repair is finished.

80

Hotel Service

The Evanstonian is an upscale independent hotel. When a guest calls room service
at The Evanstonian, the room-service manager takes down the order. She then submits
an order ticket to the kitchen to begin preparing the food. She also gives an order to the
sommelier (i.e., the wine waiter) to fetch wine from the cellar and to prepare any other
alcoholic beverages. Eighty percent of room-service orders include wine or some other
alcoholic beverage. Finally, she assigns the order to the waiter. While the kitchen and
the sommelier are doing their tasks, the waiter readies a cart (i.e., puts a tablecloth on
the cart and gathers silverware). The waiter is also responsible for nonalcoholic drinks.
Once the food, wine, and cart are ready, the waiter delivers it to the guest’s room. After
returning to the room-service station, the waiter debits the guest’s account. The waiter

may wait to do the billing if he has another order to prepare or deliver.

The second step consists of using the annotated process descriptions in order to
help to design the process model. However, in the case of the two test samples used,
the process descriptions don’t explicitly contain all elements required to build a process
model. For example, Hotel Service lacks an explicitly defined End Event. For such reason,
the process models are built based on the identified elements, but not necessarily restricted
to them. Moreover, whether the actors of the process should be modeled as lanes or pools
is part of the process modeler’s interpretation. Furthermore, in order to maintain BPMN’s
2.0 guidelines, sequence flows and message flows must be included, and, for the latter,

additional message events may also be needed. As a result, Figures 7.5 and 7.6 show the

Figure 7.1: Computer Repair annotated

Marked Text @ Show icons
When & a customer () . & the CRS () verifies the defect and
hands out a repair cost calculation back . & [XORBRANCH] that the costs
are acceptable , the process () continues, [XORBRANCH] she (O takes her computer

home unrepaired &> [XORJOIN]. The ongoing repair consists of two activities , which (] are
executed , in an arbitrary order . &> [ANDBRANCH] The first activity (] is to verify and adjust the
hardware , [ANDBRANCH] while the second activity (] verifies and () configures the software &
[ANDJOIN] . After each of these activities , the proper system functionality (] is tested . &
[XORBRANCH] another arbitrary repair activity O is executed ,

[XORBRANCH] the repair Q) is finished .

(© Change Text

Source: The Authors

81

Figure 7.2: Hotel Service annotated

Marked Text @ Show icons

The Evanstonian is an upscale independent hotel . When & a guest () calls room service at The
Evanstonian, & the room-service manager (] takes down the order . She then (] submits an order
ticket to the kitchen to begin preparing the food . She also (] gives an order to the sommelier (i.e.,
the wine waiter) (] to fetch wine from the cellar and (] to prepare any other alcoholic beverages .
Eighty percent of room-service orders (] include & [XORBRANCH] wine or [XORBRANCH] some other
alcoholic beverage . & [XORJOIN] , she (] assigns the order to the waiter . >

[ANDBRANCH] While &, the kitchen and [ANDBRANCH] & the sommelier () are doing their tasks,
[ANDBRANCH] & the waiter () readies a cart (i.e., puts a tablecloth on the cart and gathers
silverware <> [ANDJOIN]) . The waiter is also responsible for nonalcoholic drinks . Once <
[ANDBRANCH] the food , [ANDBRANCH] wine , and [ANDBRANCH] cart Q) &> [ANDIJOIN], the
waiter (] delivers it to the guest 's room . After () returning to the room-service station , the waiter
(O debits the guest 's account . The waiter (] may wait to do the billing if he has another order to
prepare or deliver .

® Change Text

Source: The Authors

built process models.

In order to highlight the potential of this study, a comparison was performed be-
tween the set of process elements annotated by the approach with the set of process ele-
ments in the original process model (Figures 7.7 and 7.8). As these models were previ-
ously built by unknown modelers based on the original process descriptions, they contain
elements which are not covered by the presented approach. Therefore, such elements
are not considered for the purpose of comparison. As form of comparison, the standard

metrics of precision and recall are used and defined as:

PninP
precision = % (7.1)
||Pni N Pnol|
ll=——7—— 7.2
reca [Pro] (7.2)

where Pni represents the set of process elements annotated by the presented ap-
proach and Pno represents the set of process elements in the original process models,
disregarding BPMN 2.0 elements which are out of scope, hence, not comparable.

The calculated values of each variable for the Computer Repair and the Hotel
Service examples are shown in table 7.1. The first example resulted in a precision ~
0,77 and a recall =~ 0,60. This indicates that the approach provided a precision of 77%

of identified process elements that are also present in the original process model and

82

Table 7.1: Variable values for precision and recall

Computer Repair Hotel Service
|| Pni || 18 27
|| Pno || 23 28
|| Pni N Pno || 14 14

Source: The Authors

annotated 60% of the set of comparable process elements used in the original process
model. The second example resulted in a precision ~ 0,51 and a recall = 0.5. This
indicates that the precision of identified elements present in the original process model
1s 51% and that 50% of the model’s set of comparable elements were annotated by the
prototype.

It is important to note that these results depend on which process model is used
for comparison. Due to the representative capabilities of the BPMN 2.0, there are several
forms with which a process model can be designed, hence, the same business process can
be modeled using different elements, execution flows, labels etc. As the original models
were built by expert process modelers, it is expected that they contain considerably more
elements, hence, impacting the recall, and more complex execution flows, thus, impacting
the precision. In conclusion, it is presented how the approach can be used to build a
semantically similar process model, however, structurally different, due to the complexity
of the original process models.

Additionally, a second modeling experiment is performed, using the original (un-
processed) description, meaning that the input text is not preprocessed according to the
guidelines. As per Section 4.1, the input text should follow a certain structure in order to
have a better accuracy of annotated elements. Nevertheless, the developed prototype does
not oblige the user to utilize such structured text. As such, the purpose of this compari-
son is to demonstrate how effective is the presented annotation approach when using the
original process description, illustrated by Figure 7.3, in comparison to the preprocessed

description.

Computer Repair (Original)

#The workflow of a computer repair service (CRS) can be described as follows.
A customer brings in a defective computer and the CRS checks the defect and hands out
a repair cost calculation back. If the customer decides that the costs are acceptable, the

process continues, otherwise she takes her computer home unrepaired. The ongoing re-

83

pair consists of two activities, which are executed, in an arbitrary order. The first activity
is to check and repair the hardware, whereas the second activity checks and configures
the software. After each of these activities, the proper system functionality is tested. If
an error is detected another arbitrary repair activity is executed, otherwise the repair is

finished.

When comparing the preprocessed description illustrated in Figure 7.1, which fol-
lows the presented guidelines, with the original Computer Repair process description,

illustrated in Figure 7.3, some differences are notable:

e The first sentence is completely removed, as it does not contribute to the process

modeling.

e Signal word “When” is added in line 2 to indicate the absence of time duration of

the action.

e The verb “check” in lines 2 and 6 is replaced by the synonym “verify”, in order to

avoid ambiguous part of speech definitions.

e The signal word “whereas” in line 6 is replaced by the signal word “while”, as the

first indicates exclusivity and the second indicates concurrency.

The result of these changes are demonstrated by comparing the identified elements
in Figure 7.3 with respect to the identified elements in Figure 7.1 and directly reflects on

the importance of following the guidelines to create a preprocessed description. This

Figure 7.3: Computer Repair (original) annotated

Marked Text @ Show icons

#The workflow of a computer repair service (CRS) can () be described as () follows .

& A customer] brings in a defective computer and the CRS (] checks the defect
and hands out a repair cost calculation back . & [XORBRANCH]

that the costs are acceptable, the process (] continues, [XORBRANCH] she

(0 takes her computer home unrepaired & [XORJOIN]. The ongoing repair consists of
two activities , which () are executed , in an arbitrary order . The first activity (] is to
check and repair the hardware , whereas the second activity (] checks and configures the
software . After each of these activities , the proper system functionality (] is tested . &>
[XORBRANCH] another arbitrary repair activity () is executed ,
[XORBRANCH] the repair Q is finished .

(© Change Text

Source: The Authors

84

Figure 7.4: Results of identified elements in the original text

Computer repair

= Total marked ® Correctly marked ® Incorrectly marked = Partially marked = Unmarked

8
6
4
2
. wmao o0 0 W 4
) =) S N N (‘\\' N Q& N))
& & & &8 Q@Q IR
v X b @ > & @ 2 > >
S S O S <& <&
& & & O o)
(\\@g 00(\ N\ ¥
AN

Source: The Authors

comparison is performed on each element type of the identifiable BPMN 2.0 elements
and is split into five categories.

The Total marked category represents the amount of the respective process element
which was annotated in the original process description. Correctly marked stands for the
amount of the respective process element which was annotated both in the preprocessed
description and in the original description. Oppositely, Incorrectly marked stands for
the amount of the respective process element which was annotated exclusively in the
original process description. The Partially Marked category represents the amount of the
respective process element which was annotated in the original description, but missed
a complementary information in the text, such as an object. Finally, Unmakerd stands
the amount of the respective process element which was annotated exclusively in the
preprocessed description.

As illustrated in Figure 7.4, the Tasks show the highest discrepancy. The incor-
rectly marked tasks refer to the first line of the original process description, which was
removed in the preprocessed description. The partially marked and unmarked Tasks are
both consequences of the ambiguous verb “check”, which misleads the text processing al-
gorithms. The lack of the “When” conjunction causes both the unmarked Lanes and Start
Event. The unmarked AND Gateway is due to the “whereas” signal word in the original
description, which does not indicate a parallel execution.

Finally, the precision and recall are calculated based on equations 7.1 and 7.2. For
this context, Pni is defined as the set of annotated process elements in the original process
description and Pno is defined as the set of annotated process elements in the preprocessed

description. The correctly marked process elements are considered for the intersection of

85

both sets. The annotation of process elements in the original process description has
a precision of 55,5% and a recall of 62,5% in comparison with the annotated process
elements in the preprocessed description. While the precision is low, due to the removed
unnecessary information at the beginning of the original process description, the recall

indicates that most elements can still be correctly identified.

86

Figure 7.5: Computer Repair process model

the room-
service
station

Food isready

Debit the

account

- . . Costs are not
g Repair costs received acceptable
[=]
@
5] : Costs are
: acceptable
C.J Costs accepted
Defective computer ECOStS accepted Verify and
brought Verify the repair the
hardware
dﬁ;ﬁgéﬂf Continue Execute Q
repair process activities
P - Configure
costs Verify the the
software software
[%] .
o
o
Error is detected
Test the Other repair executed
system
Error is not detected Repair finished
Source: The Authors
Figure 7.6: Hotel Service process model
Q "
£y ROmENC e s _
b ng” down ordri]ar to 0‘:*3?'8’[‘0
- the the h
£ £ order kitchen Ir;c[hjge the waiter
& alcohalic
beverages
g /l
Prepare
% + tl’ﬁ'e
€ {_food J
E
ol @
I|= Fetc
T ; Prepare
E wing alcoholic
f h
g rggﬁ ;r & beverages
v
Reat’w_aw .__/+_
cart
E Another order is received
2 Return to =

Source: The Authors

87

Figure 7.7: Computer Repair original process model

7} -) o
£ Bring in Receive H
S " defective repair cost Acceptabile?
E computer calculation [
o
H Continue
yes process
Prepare
epair cost
calculation
L5
s Check
o and repair
b hardware
5
] Test
. = O_'® ®_.O system O
H] funcionality
2
£ Chec!
S and
configure
software
repair computer
Source: Humboldt University of Berlin
Figure 7.8: Hotel Service original process model
Alcoholic beverages ordered?
no
Give order
to
Sommelier
As:
order to
waiter
Y
=
4 Prepare
o meal
o
K
<]
T
e
o
g
g X>
ks
“ Preapre
alcoholic
beverages
Deliver to
> guest's service
o room station
g Non-alcoholic
drinks ordered?

Source: Humboldt University of Berlin

88

8 CONCLUSION

In this study, an approach to identify, extract and visually annotate process el-
ements in process descriptions was presented. The hypothesis proposed in Chapter 1,
questioned whether a mixed notation based on the process description annotated by vi-
sual features, including symbols of the BPMN 2.0, would assist in the comprehension of
the process. As demonstrated in Section 6.2, the annotated process description not only
assisted the interpretation of the participants in the questionnaire, but also improved it.

The presented approach combines NLP techniques, text analyzing algorithms and
a structured data format enhancing the flexibility for visual representation of extracted
business process elements. Although being technology independent, the secondary moti-
vation of building a functional implementation with extensible technologies was achieved
and detailed in Chapter 5. The shown prototype transposed and adapted the prototype cre-
ated in the state of the art study of Friedrich et. al. using integrated modern technologies
in order to fit in with the further phases of the approach.

In particular, Section 5.1 detailed how the prototype introduced a separation of
concerns between the processing and the displaying phases of the presented approach,
by using a client-server model. Additionally, Section 5.3 showed how the Python based
server component communicated with the Stanford CoreNLP, the successor implementa-
tion of the Stanford Parser, in order to leverage its NLP pipeline. Furthermore, the detailed
implementation of the client component in Section 5.4 showed how ReactJS can leverage
from several external modular components in order to achieve the user interactive visual
display of the annotated text.

As briefly mentioned throughout the study and further encouraged by the results
in Chapter 6, the presented approach can be useful for several use cases, such as: as-
sisting the design of process modeling, identification of the absence of certain process
elements in the process description, visualization of a restricted sub-set of elements (e.g.,
only Tasks and Events), auditing business processes, teaching and training purposes, and
others. Furthermore, to the best of the authors’ knowledge, this study is a pioneer on vi-
sually highlighting the original process descriptions of process models and, additionally,
allowing user-interactive annotations.

As it can be observed during the evaluation of the approach, the annotated text
can provide many insights on which elements should be present in a process model but

does not exclude the interpretation of the process modeler. Therefore, as a future exper-

89

iment, the approach will be evaluated with a variety of process modelers. Furthermore,
the presented guidelines to describe a business process improve the efficiency of the NLP
techniques, however, this is a procedure that is performed manually and can be time con-
suming depending on the size and complexity of the process description. In that regard,
extending this approach to automate the creation of a process description which follows
the guidelines can be a valuable contribution.

In addition, as mentioned in Section 6.2, the approach used for extracting the pro-
cess elements could be enhanced with more accurate text parsing models, replacing the
statistical based model for the current state of the art models based on neural networks
and shift-reduce methods. Such enhancement could help to avoid the inconsistencies of
the annotated tasks and may even mitigate some ambiguity issues, leading to less man-
ual preprocessing in the process description. During the testing phase of the presented
prototype, 4 different models were tested, however, it was noted that the structure of the
constituency and dependency parsing was significantly different, impacting the sentence
analysis algorithms. Therefore, such modification would require an extensive study to
adapt the whole elements extraction phase.

The feedback comments obtained in the evaluation of the approach also presented
valuable insights of improvements in the visual annotation. In particular, different visu-
alization features were suggested for the branches of gateways, for example, using in-
dentation or surrounding the respective sentences with special characters. Furthermore,
insights were also gathered concerning the interactivity of the prototype, for example,
allowing the end user to choose whether the colors are added in the text or in the back-
ground. In the same topic, a helpful improvement, although extensive, would be to allow
the user to directly edit the annotation metadata, providing the capability of changing the
start and end indices of the annotated element.

Besides the mentioned points of improvements, this study can be used as ground
for future researches, not restricted to the field of process discovery. As an example, the
monitoring of the execution of certain processes could be performed with the assistance
of the generated metadata containing the process elements. Furthermore, the annotation
could be particularly useful when combined with corporate documentation mining tools,
using information contained in wiki pages, backlogs, and others, in order to find gaps
regarding process alignment.

In conclusion, as it stands, the presented approach has shown promising results

and multiple use cases. Moreover, the encapsulation of the results of the extraction and

90

identification of process elements in the form of a widely used notation (i.e, JSON) pro-
vides the flexibility for further consumption of other automated tools which may have a
variety of different purposes. As such, the value of this approach is not restricted to the

scope of this study, but rather encourages the emergence of complementary researches.

91

REFERENCES

AALST, W. V. D. Process mining. Communications of the ACM, ACM New York, NY,
USA, v. 55, n. 8, p. 76-83, 2012.

AGGARWAL, S. Modern web-development using reactjs. International Journal of
Recent Research Aspects, v. 5, n. 1, p. 2349-7688, 2018.

ALLEN, I. E.; SEAMAN, C. A. Likert scales and data analyses. Quality progress, v. 40,
n. 7, p. 64-65, 2007.

ALLWEYER, T. Introduction to the Standard for Business Process Modeling. [S.1.]:
Germany: Herstellung und Verlag: Books on Demand GmbH, 2009.

ALONSO, G. et al. Web services. In: Web services. [S.1.]: Springer, 2004. p. 123-149.

AYSOLMAZ, B. et al. A semi-automated approach for generating natural language
requirements documents based on business process models. Information and Software
Technology, Elsevier, v. 93, p. 14-29, 2018.

BIRD, E. L. Steven and Ewan Klein. 2009. Natural Language Processing with
Python. [S.1.]: O’Reilly Media Inc, 2009.

BLUMBERG, R.; ATRE, S. The problem with unstructured data. Dm Review, POWELL
PUBLISHING INC, v. 13, n. 42-49, p. 62, 2003.

CHOMSKY, N.; LIGHTFOOQOT, D. W. Syntactic structures. [S.1.]: Walter de Gruyter,
2002.

COMMISSION, I. O. for S. E. et al. Iso/iec 19510: 2013. Information Technology—
Object Management Group Business Process Model and Notation, 2013.

DUMAS, M. et al. Fundamentals of Business Process Management. [S.1.]: Springer,
2018.

ERL, T. SOA Design Patterns (paperback). [S.1.]: Pearson Education, 2008.
FEDOSEIJEV, A. React. js essentials. [S.1.]: Packt Publishing Ltd, 2015.

FERREIRA, R. C. B. et al. Recognition of business process elements in natural language
texts. In: SPRINGER. International Conference on Enterprise Information Systems.
[S.1.], 2017. p. 591-610.

FIELDING, R. T.; TAYLOR, R. N. Architectural styles and the design of
network-based software architectures. [S.1.]: University of California, Irvine Irvine,
2000.

FRIEDRICH, F.; MENDLING, J.; PUHLMANN, F. Process model generation from
natural language text. In: SPRINGER. International Conference on Advanced
Information Systems Engineering. [S.1.], 2011. p. 482-496.

HEINEMAN, G. T.; COUNCILL, W. T. Component-based software engineering.
Putting the pieces together, addison-westley, Springer, p. 5, 2001.

92

HONKISZ, K.; KLUZA, K.; WISNIEWSKI, P. A concept for generating business
process models from natural language description. In: SPRINGER. International

Conference on Knowledge Science, Engineering and Management. [S.1.], 2018. p.
91-103.

HOVLAND, P. et al. A quality-of-service architecture for high-performance numerical
components. In: Proceedings of the Workshop on QoS in Component-Based
Software Engineering. [S.1.: s.n.], 2003.

ICONIFY. Iconify React Repository. 2019. Available from Internet: <https:
//github.com/iconify/iconify-react>. Accessed in: 22 sep. 2020.

INDURKHYA, N.; DAMERAU, F. J. Handbook of natural language processing.
[S.1.]: CRC Press, 2010.

IVANCHIKIJ, A.; SERBOUT, S.; PAUTASSO, C. From text to visual bpmn process
models: design and evaluation. In: Proceedings of the 23rd ACM/IEEE International

Conference on Model Driven Engineering LLanguages and Systems. [S.L.: s.n.], 2020.
p. 229-239.

KETTINGER, W. J.; TENG, J. T.; GUHA, S. Business process change: a study of
methodologies, techniques, and tools. MIS quarterly, JSTOR, p. 55-80, 1997.

KLEIN, D.; MANNING, C. D. Fast exact inference with a factored model for natural
language parsing. In: Advances in neural information processing systems. [S.l.: s.n.],
2003. p. 3-10.

LAPLANTE, P. A. What every engineer should know about software engineering.
[S.L.]: CRC Press, 2007.

LEOPOLD, H. et al. Searching textual and model-based process descriptions based on a
unified data format. Software & Systems Modeling, Springer, v. 18, n. 2, p. 1179-1194,
2019.

LEOPOLD, H.; MENDLING, J.; POLYVYANYY, A. Generating natural language
texts from business process models. In: SPRINGER. International Conference on
Advanced Information Systems Engineering. [S.1.], 2012. p. 64-79.

LIDDY, E. D. Natural language processing. 2001.

LIKERT, R. A technique for the measurement of attitudes. Archives of psychology,
1932.

LYONS, J. Natural Language and Universal Grammar: Volume 1: Essays in
Linguistic Theory. [S.1.]: Cambridge University Press, 1991.

MALIK, S.; BAJWA, 1. S. Back to origin: Transformation of business process models
to business rules. In: SPRINGER. International Conference on Business Process
Management. [S.1.], 2012. p. 611-622.

MANNING, C.; SCHUTZE, H. Foundations of statistical natural language
processing. [S.1.]: MIT press, 1999.

https://github.com/iconify/iconify-react
https://github.com/iconify/iconify-react

93

MANNING, C. D. et al. The stanford corenlp natural language processing toolkit. In:
Proceedings of 52nd annual meeting of the association for computational linguistics:
system demonstrations. [S.1.: s.n.], 2014. p. 55-60.

MARNEFFE, M.-C. D. et al. Generating typed dependency parses from phrase structure
parses. In: Lrec. [S.1.: s.n.], 2006. v. 6, p. 449-454.

MEITZ, M.; LEOPOLD, H.; MENDLING, J. An approach to support process model
validation based on text generation. In: EMISA Forum. [S.1.: s.n.], 2013. v. 33, n. 2, p.
7-20.

MENDLING, J.; REIJERS, H. A.; AALST, W. M. van der. Seven process modeling
guidelines (7pmg). Information and Software Technology, Elsevier, v. 52, n. 2, p.
127-136, 2010.

MILLMAN, K. J.; AIVAZIS, M. Python for scientists and engineers. Computing in
Science & Engineering, IEEE, v. 13, n. 2, p. 9-12, 2011.

MUEHLEN, M. Z.; RECKER, J. How much language is enough? theoretical and
practical use of the business process modeling notation. In: Seminal Contributions to
Information Systems Engineering. [S.1.]: Springer, 2013. p. 429-443.

OLIPHANT, T. E. Python for scientific computing. Computing in Science &
Engineering, IEEE, v. 9, n. 3, p. 10-20, 2007.

OTTENSOOSER, A. et al. Making sense of business process descriptions: An
experimental comparison of graphical and textual notations. Journal of Systems and
Software, Elsevier, v. 85, n. 3, p. 596-606, 2012.

QIAN, C. et al. An approach for process model extraction by multi-grained text
classification. In: SPRINGER. International Conference on Advanced Information
Systems Engineering. [S.1.], 2020. p. 268-282.

REITER, E.; DALE, R. Building natural language generation systems. [S.1.]:
Cambridge university press, 2000.

RIEFER, M.; TERNIS, S. E.; THALER, T. Mining process models from natural language
text: A state-of-the-art analysis. Multikonferenz Wirtschaftsinformatik (MKWI-16),
March, p. 9-11, 2016.

RODRIGUES, R. D. A.; AZEVEDO, L. G.; REVOREDO, K. C. Bpm2text: A
language independent framework for business process models to natural language text.
iSys-Revista Brasileira de Sistemas de Informacao, v. 9, n. 4, p. 38-56, 2016.

SEARS, A.; JACKO, J. A. Human-computer interaction fundamentals. [S.1.]: CRC
Press, 2009.

SHENG, Q. Z. et al. Web services composition: A decade’s overview. Information
Sciences, Elsevier, v. 280, p. 218-238, 2014.

SHNEIDERMAN, B. et al. Designing the user interface: strategies for effective
human-computer interaction. [S.1.]: Pearson, 2016.

94

SHUTE, Z. Advanced JavaScript: speed up web development with the powerful
features and benefits of JavaScript. [S.1.]: Packt Publishing Ltd, 2019.

SILVA, T. S. et al. A service-oriented architecture for generating sound process
descriptions. In: IEEE. 2019 IEEE 23rd International Enterprise Distributed Object
Computing Conference (EDOC). [S.1.], 2019. p. 1-10.

SILVA, T. S. et al. Empirical analysis of sentence templates and ambiguity issues for
business process descriptions. In: SPRINGER. OTM Confederated International
Conferences' On the Move to Meaningful Internet Systems''. [S.1.], 2018. p.
279-297.

SWELLER, J.; MERRIENBOER, J. J. V.; PAAS, F. G. Cognitive architecture and
instructional design. Educational psychology review, Springer, v. 10, n. 3, p. 251-296,
1998.

THOM, L. H.; REICHERT, M.; IOCHPE, C. Activity patterns in process-aware
information systems: Basic concepts and empirical evidence. International Journal of
Business Process Integration and Management, Inderscience Publishers, v. 4, n. 2, p.
93-110, 2009.

VIPUL, A.; SONPATKI, P. ReactJS by Example-Building Modern Web Applications
with React. [S.1.]: Packt Publishing Ltd, 2016.

ZENG, Q. et al. Missing procedural texts repairing based on process model and activity
description templates. IEEE Access, IEEE, v. 8, p. 12999-13010, 2020.

ZIMOCH, M. et al. The repercussions of business process modeling notations on mental
load and mental effort. In: SPRINGER. International Conference on Business Process
Management. [S.1.], 2018. p. 133-145.

95

APPENDIX A — ANNOTATIONS SUBMITTED IN THE QUESTIONNAIRE

Figure A.1: Participant annotation 1

When a customer , the CRS verifies the
defect and hands out a repair cost calculation back.

If the customer [XORSPLIT] decides that the costs are acceptable, the
process continues, [XORSPLIT] otherwise, she takes her computer
home unrepaired.

The consists of two activities, which are executed, in an
arbitrary order.

The first activity is [ANDSPLIT] to verify and adjust the hardware, while
the second activity [ANDSPLIT] verifies and configures the software
[ANDJOIN] finishing the “individual repair” (originally missing

information).

, the proper system functionality is tested.
[XORSPLIT] If an error is detected another arbitrary repair activity is
executed, [XORSPLIT] otherwise, the repair is finished.

Source: Anonymous Participant

Figure A.2: Participant annotation 2

When a customer r, the CRS verifies the defect and hands out a repair
cost calculation back. [XORBRANCH] If the customer decides that the costs are acceptable, the process
continues, [XORBRANCH)] otherwise, she takes her computer home unrepaired [XORJOIN]. The ongoing

repair consists of two activities, which are executed, in an arbitrary order. [ANDBRANCH]The first activity is to
verify and adjust the hardware, [ANDBRANCH] while the second activity verifies and configures the
software[ANDJOIN]. After each of these activities, the proper system functionality is tested.
[XORBRANCH] If an error is detected another arbitrary repair activity is executed, [XORBRANCH]
otherwise, [XORJOIN] the repair is finished

Source: Anonymous Participant

Ne)

6

Figure A.3: Participant annotation 3

.) .
O Whena " ' customer brings in a defective computer, the a

CRS [:] verifies the defect and [:] hands out a repair cost

calculation back. : [XORBRANCH] If the customer decides that the
costs are acceptable, the [j process continues, [XORBRANCH]

otherwise, she D takes her computer home unrepaired :
[XORJOIN] . The ongoing repair consists of two activities, which are

executed, in an arbitrary order. : [ANDBRANCH] The first activity
is to [:] verify and D adjust the hardware, [ANDBRANCH] while
the second activity [:] verifies and [:] configures the software.

: [ANDJOIN]. After each of these activities, the proper system

functionalityls[:] tested. : [XORBRANCH] If an error is detected
another arbitrary C] repair activity O is executed, [XORBRANCH]

otherwise, the repair O is finish.

Source: Anonymous Participant

Figure A.4: Participant annotation 4

When a customer FiliGSINUSISCIVSICOmputSE, the ERSNSHISSNNS
and _ [XORBRANCH]

[XORJOIN]. [ANDBRANCH]

[ANDJOIN] After each of these activities, [l
[XORBRANCH]

[ANDJOIN]

Source: Anonymous Participant

97

Figure A.5: Participant annotation 5
When a customer O , the CRS overifies the defect and ohands out
a repair cost calculation back. [XORBRANCH] If the customer decides that the costs are
acceptable, the process continues,[XORBRANCH] otherwise, she otakes her computer home
unrepaired. The ongoing repair consists of two activities, which are executed, in an arbitrary
order. [ANDBRACH]The first activity is to overify and oadjust the hardware, while [ANDBRACH)]
the second activity overifies and oconfigures the software [ANDJOIN]. After each of these
activities, the oproper system functionality is tested. XORBRANCH] If an error is detected
oanother arbitrary repair activity is executed, [XORBRANCH] otherwise, the repair is finished
[XORJOIN] [XORJOIN] @.

Source: Anonymous Participant

Figure A.6: Participant annotation 6
When a customer the CRS verifies the defect and hands out
a repair cost calculation back. If the customer decides that the costs are acceptable, the
process continues, otherwise, she takes her computer home unrepaired. The ongoing repair
consists of two activities, which are executed, in an arbitrary order. The first activity is to
verify and adjust the hardware, while the second activity verifies and configures the
software. After each of these activities, the proper system functionality is tested. If an error
is detected another arbitrary repair activity is executed, otherwise, the repair is finished

Source: Anonymous Participant

Figure A.7: Participant annotation 7

When a customer , the CRS verifies the defect and hands out a repair cost calculation
back. If the customer decides that the costs are acceptable, the process continues, otherwise, she takes her computer
home unrepaired. The ongoing repair consists of two activities, which are executed, in an arbitrary order. The first activity
is to verify and adjust the hardware, while the second activity verifies and configures the software. After each of these
activities, the proper system functionality is tested. If an error is detected another arbitrary repair activity is executed,

otherwise, the repair is finished

Source: Anonymous Participant

Figure A.8: Participant annotation 8

When a customer O brings in a defective computer, the CRS verifies the defect and hands out a
repair cost calculation back.[XORBRANCH] If the customer decides that the costs are acceptable, the
process continues, [XORBRANCH] otherwise, she takes her computer home unrepaired. The ongoing
repair consists of two activities, which are executed, in an arbitrary order. [ANDBRANCH] The first
activity is to verify and adjust the hardware, [ANDBRACH] while the second activity verifies and
configures the software [ANDJOIN]. After each of these activities, the proper system functionality is
tested. [XORBRANCH] If an error is detected another arbitrary repair activity is executed,
[XORBRANCH] otherwise, the repair is finished [XORJOIN] O.

Source: Anonymous Participant

	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Background
	2.1 Business process concepts
	2.2 Natural language processing
	2.2.1 NLP pipeline
	2.2.2 Stanford CoreNLP toolkit

	2.3 Extraction of business process elements
	2.4 Human-computer interaction

	3 Related works
	3.1 Automated extraction of business process information
	3.2 Generation of business process descriptions

	4 Identification and annotation of business process elements
	4.1 Textual guidelines
	4.2 Input handling
	4.3 Elements extraction
	4.4 Text identification
	4.5 Text annotation

	5 Prototype
	5.1 Architecture
	5.2 Technologies
	5.3 Server component
	5.4 Client component
	5.5 Demonstration

	6 Evaluation of the approach
	6.1 Questionnaire structure
	6.2 Result analysis
	6.2.1 Comprehension of the annotated description
	6.2.2 Annotation correctness
	6.2.3 Usefulness for modeling purposes
	6.2.4 Effectiveness of the approach

	6.3 Discussion

	7 Case study
	8 Conclusion
	References
	Appendix A — Annotations submitted in the questionnaire

