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ABSTRACT

This thesis presents a matheuristic framework and a metaheuristic approach for solving a

Maritime Inventory Routing Problem (MIRP). The problem combines two main compo-

nents: ship routing and inventory management at ports. Each port has a storage capac-

ity and variable production or consumption rates along with the planning horizon. The

vessels differ with respect to capacity, speed, and travel costs. The problem consists of

defining a route and schedule for each vessel, besides the amount of product loaded or

unloaded in each port visit, while keeping the ports’ inventory between lower and upper

limits. Constraints on ports inventory and vessel capacity are accounted for the problem,

besides side constraints based on a real world scenario. The objective is to maximize the

revenue of delivering the product at discharging ports, deducted traveling, and operational

costs.

The matheuristic framework is composed of a relax-and-fix algorithm and a fix-and-

optimize algorithm. The relax-and-fix algorithm builds an initial solution and consists of

dividing the original problem into subproblems solved iteratively. The fix-and-optimize

algorithm is responsible for improving the solution, solving partially fixed subproblems

derived from a starting solution. The matheuristic framework was tested in two discrete-

time formulations, and several formulations components such as additional constraints,

preprocessing phase, restriction strategies, and valid inequalities were proposed.

The metaheuristic approach is composed of a multi-start algorithm and a large neighbor-

hood search, being the first proposed method for the MIRP variant considered in this work

independent of a mathematical solver.

Tests were carried out on instances from the literature and on modified instances. We

evaluated the contribution of the different formulation components of the matheuristc

framework, besides different parameter values of the metaheuristic approach, consider-

ing the solution quality and processing time. We considered tests with a priori parameter

setting and also using an automatic configuration tool. The computational results demon-

strated that the proposed methods are potentially effective for solving the MIRP when

applied to a public dataset, obtaining new best-known solutions, and providing solutions

for instances in which no attempts to solve them were presented in the literature.

Keywords: Maritime Inventory Routing Problem. Matheuristics. Metaheuristics. For-

mulations.



Métodos de Solução para um Problema de Roteamento de Inventário Marítimo

RESUMO

Esta tese de doutorado apresenta matheuristicas e metaheuristicas para resolver um Pro-

blema de Roteamento de Inventário Marítimo (MIRP - Maritime Inventory Routing Pro-

blem) de produto único. O problema combina dois componentes chave: o roteamento de

navios e a gestão de estoque nos portos. Cada porto possui uma capacidade de estoca-

gem e produz ou consome determinada quantidade de produto ao longo do horizonte de

planejamento. A frota de navios é heterogênea, sendo que os navios diferem entre si por

capacidade, velocidade, e custos de navegação. O problema consiste em definir uma rota

e um escalonamento para cada navio, que é composto por uma sequência de visitas a por-

tos de carregamento e descarregamento em períodos de tempo específicos. Além disso,

é necessário definir em cada visita a quantidade a ser carregada/descarregada pelo navio.

São consideradas restrições de capacidade de estoque nos portos e capacidade dos navios,

além de restrições auxiliares baseadas em cenários do mundo real. O objetivo é maxi-

mizar a receita através da entrega de produto nos portos de descarregamento, subtraindo

os custos operacionais e de viagem dos navios. A estrutura matheurística é composta

por um algoritmo relax-and-fix e por um algoritmo fix-and-optimize. O primeiro constrói

uma solução inicial e consiste em dividir o problema em subproblemas que são resol-

vidos de forma iterativa. O segundo é responsável por melhorar a solução obtida pelo

primeiro, resolvendo problemas inteiros mistos parcialmente fixados de forma iterativa.

A estrutura matheuristica foi testada em duas formulações de tempo discreto: um modelo

de rede espaço-tempo e um modelo de fluxo de carga fixa. Além disso, diversos compo-

nentes para foram propostos, tais como restrições adicionais, desigualdades válidas e pré

processamento.

A solução metaheuristica é composta de um algoritmo multi-start e algoritmo large neigh-

borhood search, sendo o primeiro método a ser proposto para a variante do MIRP consi-

derada neste trabalho que não depende de um resolvedor matemático para obter soluções.

Os testes computacionais foram executados sob instâncias da literatura e instâncias mo-

dificadas. Nós avaliamos a contribuição de diferentes componentes das formulações da

estrutura matheuristica, além de diferentes valores de parâmetros da abordagem metaheu-

ristica considerando a qualidade da solução obtida e o tempo de execução. Foram consi-

derados testes com a definição de parâmetros a priori e também utilizando uma ferramenta



de configuração automática de parâmetros. Os resultados demonstraram que os métodos

propostos são potencialmente efetivos para resolver o problema quando aplicados a um

conjunto de instâncias públicas, obtendo novas melhores soluções conhecidas, e forne-

cendo soluções para instâncias nas quais não foram apresentadas na literatura tentativas

de solução.

Palavras-chave: Problema de Roteamento de Inventário Marítimo, Matheuristica, Me-

taheuristica, Formulações.
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1 INTRODUCTION

Maritime transportation is the most significant transportation mode concerning

large volumes. It is responsible for over 80% of the total volume of world trade. Accord-

ing to UNCTAD (2019), the amount transported by this mode in 2018 was approximately

11 billion tons, a figure that has been growing over several years, although it lost momen-

tum in the cited year. The world fleet capacity increased by 2.6% from the beginning of

2018 until the beginning of 2019. Considering the Brazilian scenario, the cargo move-

ment, including bulk, containers, and general cargo, had an increase of 8.3% from 2016

to 2017 (ANTAQ, 2017).

Maritime transportation’s growing perspectives lead to more challenging problems

concerning fleets, cargoes, and inventory management. Thus, the use of optimization

strategies is critical in this sector since maritime logistics is a capital-intensive industry,

where a relatively small improvement in its operations can provide a significant economy

(AGRA et al., 2013). The use of optimization tools can improve maritime transportation

in different aspects, such as cost reductions, profits, fleet utilization, and lower emissions

levels, among others.

This work studies the Maritime Inventory Routing Problem (MIRP), a challenging

problem that deals with routing and scheduling vessels and inventory management at

ports. It is a relatively recent problem that has gained attention in the last decade. The

MIRP is an extension of the Inventory Routing Problem (IRP), a road-based problem that

combines the well-known Vehicle Routing Problem (VRP) with inventory management.

Although there is no exact formal definition of the MIRP as diverse variations can be

found in the literature, a basic definition can be stated as follows: Given a finite planning

horizon, a fleet of vessels with different characteristics such as cargo capacity and speed,

and given a set of loading and discharging ports, each one with storage capacity and

production and discharging rates, one must decide for each vessel: i) the routing: a

sequence of ports visited; ii) the scheduling: times when it will travel between ports on

the route, and the time at which loading and unloading operations will take place; and

iii) the amount to be loaded and discharged in each port visit. Constraints on vessels’

capacity and ports’ inventory should be respected. The problem objective usually aims to

minimize transportation and operation costs.

Figure 1.1 illustrates an example of a solution for a MIRP with one loading port

and three discharging ports and two vessels for transporting one product type. The left
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side represents each vessel’s route, and the right side is the corresponding schedule, in-

forming the time at which each port is visited and the amount loaded or discharged in that

port.

Figure 1.1: Example of vessels route and schedule for a basic MIRP.

Source: From the author (2020).

Maritime transportation problems, such as the MIRP, involve different operations

modes and planning levels. According to Lawrence (1972), there are three operations

modes in maritime transportation: liner, tramp, and industrial shipping. In liner shipping,

vessels operate according to a published route and schedule, similar to a bus line. In this

case, the demand for vessel services depends on their schedules. Containers and general

cargo vessels belong to this mode. Tramp shipping is similar to a taxi cab, where vessel

owners follow available cargoes, engaging contracts of affreightment, which determines

periodic travels for pick up and deliver cargo between two or more ports, paying a defined

amount per ton carried. Tankers, dry bulks, and refrigerated vessels usually are operated

in this mode. In industrial shipping, the operator owns the cargo and controls the fleet that

can be own and chartered. This operation can be found in vertically integrated companies,

such as oil and gas, chemicals, and ores. While liner and tramp shipping’s objective usu-

ally aims to maximize the profit obtained by transporting the cargoes, industrial shipping

aims to minimize transportation costs.

Concerning the planning level, maritime transportation can be divided into strate-

gic, tactical, and operational levels (PAPAGEORGIOU et al., 2014b). Strategic planning

involves decisions that will be taken for a horizon of one to twenty years. Strategic prob-

lems can be related to renewing a fleet of vessels based on actual and future operations.

The tactical planning involves a time horizon of months, up to one year, where decisions

involve vessel routing and product distribution. The operational level concerns planning

of some weeks up to a few months, including problems with a minor time granularity,

such as allocating vessels to berths in a port.
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Figure 1.2: Continuous-time model illustration for a network with three ports and two
vessels

j, 1

k, 1

i, 1

j, 2

k, 2

Source node

Sink node

i,m port i mth visit Vessel 1 route

Vessel 2 route

Source: From the author (2020).

MIRP can be considered an industrial shipping problem with a strategic/tactical

level, where vertically integrated companies hold the cargo and the fleet. Also, this prob-

lem can be applied either in short-sea or deep sea-configurations. In short-sea, the time

spent by the vessels operating at ports is greater than the time sailing between them,

characterizing a regional problem. In contrast, in deep-sea, the traveling times are much

higher than operating times, describing intercontinental voyages.

1.1 Discrete and Continuous-time Formulations

The MIRP can be modeled considering continuous or discrete-time formulations.

In continuous-time models, the events (travels, loading, and discharging operations) can

occur at any moment of the time horizon. In discrete-time, the planning horizon is divided

into time periods with equal intervals, and events can only occur at such time periods.

Figures 1.2 and 1.3 illustrate a continuous and a discrete time models, respectively. They

show a possible solution for a MIRP with three ports (i, j, k) and two vessels.

In Figure 1.2, each vessel departs from the dummy source node, and vessel 1

performs the first visit to port j, while vessel 2 performs the first visit to port k. A port

visit can consider waiting time, preparation time, operation (loading/discharging) time,

among others. Vessel 1 then departs to port i, performing the first visit at this port, and

vessel 2 departs to port j, which received its second visit. Finally, vessel 1 finishes its

route arriving at the dummy sink node, while vessel 2 returns to port k in the second visit,
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Figure 1.3: Discrete-time model illustration for a network with three ports and two vessels
Time

Port i

Port j

Port k

t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

Source node

Sink node

Regular node

L/D operation

Vessel 1 route

Vessel 2 route

Source: From the author (2020).

and after, complete its route.

According to Figure 1.3, vessel 1 starts its route arriving at port j in time period

t = 1, performing an operation. Then, it takes two time periods to travel to port i, arriving

at time t = 3. After, vessel 1 waits one period before operating in two consecutive time

periods and ending its route reaching the sink node. Vessel 2 arrives at port k at time

period 2, operates, and departs in the direction to port j in the same time period. When

reaching port j, it operates immediately, and after waits one time period before departing

again to port k. After operating two consecutive times at port k, vessel 2 ends its route at

time t = 6.

The continuous-time formulations usually have fewer variables and constraints

than discrete-time models considering the same problem instance. On the other hand,

discrete-time formulations can easily accommodate different aspects, such as the vari-

able production/consumption rates at the ports or multiple berths in each port. It is also

possible to use hybrid models, combining both continuous and discrete models.

MIRP formulations can also differ mainly between arc and path flow models. In

an arc-flow model, the description of a vessel route is a sequence of variables representing

voyages between pairs of ports. While in path-flow models, a unique variable describes

the entire route of a vessel. There are also formulations based on patterns or duties (e.g.

ANDERSSON; CHRISTIANSEN; DESAULNIERS, 2016), where a variable is associ-

ated with a sequence of port visits, and the entire route can be described by the use of one

or more duties.
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1.2 Difference with Other Problems

MIRPs differs from the classical inventory routing problem in several aspects. As

inventory routing problems are road-based, the planning horizon usually consists of hours

up to a few days. MIRPs can consider time horizons up to one year, as traveling and

operation times are large. On the other hand, the time period’s granularity can be more

refined in IRP than in MIRPs. In the classical IRP, vehicles start and end their routes

at a single central depot, while in MIRPs each vessel can start and end its route from

any place, either a port or a point in the sea. Unlike IRP, where the fleet of vehicles are

generally homogeneous, MIRPs consider heterogeneous fleets, with different capacities,

costs, speeds, and technologies. These differences occur because vessels have a long

lifetime (20-30 years). Also, vessels visit only a few ports when loading or discharging

since the operational cost and time tend to be higher. In IRPs, customers usually consume

small amounts of products, and thus the number of stops of vehicles can be higher before

returning to the depot.

A similar problem to MIRP is the cargo routing problem. Unlike MIRPs, where

the ports visit and amounts operated by a vessel should be defined, they are given as input

data by cargoes in cargo routing problems. Cargo consists of a determined amount of

product to be loaded and discharged at specific ports. The inventory management part

of the problem establishes time windows for pickup and delivery of each cargo. The

problem consists of defining which vessels will carry each cargo and when they will be

collected and delivered. Cargo routing problems that not consider split deliveries are more

constrained than MIRPs as the number of port visits is known in advance, making MIRPs

more challenging than the cargo routing problem (PAPAGEORGIOU et al., 2014b).

1.3 Literature Reviews

Literature surveys on maritime transportation that covers maritime inventory rout-

ing problems are available. Reviews on maritime transportation were presented about

every decade by Ronen (1983), Ronen (1993), Christiansen, Fagerholt and Ronen (2004),

Christiansen et al. (2013). They state that the number of works on maritime transportation

optimization has doubled in each decade, following the sector, which is experiencing a

continuous increase. A dedicated book chapter of Christiansen et al. (2007) describes

a broad investigation and classification among the maritime problems. A revision of
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routing and inventory management problems considering road and maritime transporta-

tion is presented in Andersson et al. (2010) and Coelho, Cordeau and Laporte (2013).

The review of Christiansen and Fagerholt (2014) presents different industrial and tramp

shipping problems, including a basic formulation and illustrative examples. A review of

single-product deterministic MIRPs with a core model is presented by Papageorgiou et al.

(2014b). Psaraftis and Kontovas (2013) present an exclusive study on speed optimization

for maritime transportation problems. Psaraftis (2019) discusses the increase of studies in

theoretical maritime transportation problems focused only on the solution approach than

its practical application in a real-world scenario.

1.4 MIRP Variants

Each MIRP variant can consider several characteristics and constraints. These

characteristics are combined and form a specific variant. The most common characteris-

tics are:

• Production and consumption rates at ports: They can be variable or constant along

the planning horizon, usually inducing the use of discrete or continuous-time for-

mulations, respectively.

• Single or multi products: In the single-product version, only one product type is

considered, and a port is exclusive a production or a consumption port. While in

multi-product MIRPs, a port can consume a subset PC of products, and a at the

same time produces subset of products PP, such that PC ∩ PP = ∅.

• Draft limits: The vertical distance between the waterline and the bottom of the keel

of a vessel is known as the draft. It can vary according to the amount of cargo

loaded at the vessel. Thus, this restriction can impose that some vessels can only

enter or leave a specific port if the cargo amount is less than a given value.

• Soft inventory bounds: Due to the more uncertainty in maritime transportation

than other transportation modes, the inventory at ports can be considered soft con-

strained, paying a penalty amount when the inventory constraints are violated.

• Number of sequential loading or discharging operations: In most of the real sce-

narios, a vessel must pay a port fee to dock in a port for operating. The operation

also takes a relatively long time at berth. Thus, vessels usually are restricted to visit
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only a sequence of few ports of the same type during its route to minimize cost and

prevent a possible deviation of the schedule due to unpredictable events.

Uncertainty is also present in MIRPs. The change in weather conditions can in-

fluence the navigation time between ports. Simultaneously, variations on the market can

affect either production and consumption rates, as well as the sailing and operation costs

due to the fuel prices. For dealing with uncertainty, some works consider soft constraints

(AGRA; CHRISTIANSEN; DELGADO, 2013; PAPAGEORGIOU et al., 2014b), use

stochastic programming strategies, where different scenarios are considered (AGRA et

al., 2016; AGRA et al., 2015), or use robust optimization techniques (ZHANG et al.,

2015; AGRA et al., 2018).

A particular class of MIRPs known as liquefied natural gas inventory routing prob-

lem (LNG-IRP) differs from the standard MIRP due to specific constraints. The problem

deals with the supply chain of natural gas, and the loading ports correspond to liquefaction

plants, where the gas is cooled to reach the liquid state. Then, vessels with special tanks

transport the LNG to the regasification terminals (discharging ports). However, the lique-

fied gas evaporates at a specific rate during the voyages (boil-off). This boil-off is used as

fuel to keep the tanks refrigerated. Thus, the LNG amount loaded into the vessel at a load-

ing port is not the same that the quantity unloaded in the discharging ports (GRØNHAUG;

CHRISTIANSEN, 2009). Another difference to the MIRP is that the production and

consumption rates can be considered variables instead of input parameters (e.g. GRØN-

HAUG; CHRISTIANSEN, 2009; ANDERSSON; CHRISTIANSEN; DESAULNIERS,

2016). Additionally, LNG companies usually work with long-term contracts that must

be fulfilled, where pre-specified LNG quantities should be delivered during the planning

horizon. It is also possible to sell LNG for spot markets for improving the profit (e.g.

GOEL et al., 2012).

1.5 Solution Methods

According to Andersson et al. (2010), Song and Furman (2013), most of the

MIRPs discussed in the literature are particular variations of the problem, and tailor-made

methods are used to solve them, sometimes taking advantage of the problem structure.

Thus, different solving approaches can be found in the literature.

Exact methods usually combine formulation improvements such as valid inequal-
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ities and constraints tightening. Methods such as branch-and-cut, branch-and-price, and

branch-and-cut-and-price algorithms can usually solve to optimality small real-sized in-

stances. Some examples are Christiansen (1999), Andersson (2011), Engineer et al.

(2012), Hewitt et al. (2013).

Pure heuristic or metaheuristic methods are less frequently presented since ob-

taining even a feasible solution is a challenge for MIRPs. Some proposed methods are

constructive heuristics combined with genetic algorithm (CHRISTIANSEN et al., 2011),

tailor-made heuristics (SISWANTO; ESSAM; SARKER, 2011), and particle swarm opti-

mization (DE et al., 2017).

Matheuristic methods combine exact methods in a heuristic framework. Their

use for solving different MIRPs is relatively common, as they demonstrate that high-

quality solutions can be found in relatively short processing time. Some matheuristics

used for solving different MIRP variations are rolling horizon heuristics (RHH) (RAKKE

et al., 2011; AGRA et al., 2014), tailor-made decompositions (PAPAGEORGIOU et

al., 2014a; HEMMATI et al., 2016) and relax-and-fix algorithms (UGGEN; FODSTAD;

NØRSTEBØ, 2013).

1.6 Literature on MIRP

Although the study on MIRPs and maritime transportation, in general, has grown,

it is less established than similar problems such as the classical IRP. A possible reason

is that the maritime industry tends to be more conservative. There are few organizations

operating vessels compared to those that operate vehicles, which can justify the lower

attention in this kind of problem (RONEN, 1983). The lack of available instances for

testing algorithms are another reason that can limit the research. Most of the works on

MIRP are based on real scenarios, and the data are not publicly available, sometimes

because of confidentially terms. Thus, different works that use the same instance sets

usually are from the same research group, rare in maritime transportation. To provide

a public set of benchmark instances, Papageorgiou et al. (2014b) proposed a library for

the problem, named MIRPLIB (PAPAGEORGIOU, 2013), providing instances for three

classes of MIRPs, making possible their use for testing different solution approaches.
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1.7 Thesis Contribution

This thesis presents and analyzes matheuristic and metaheuristic methods for solv-

ing the Maritime Inventory Routing Problem proposed by Papageorgiou et al. (2014a).

The matheuristic framework is composed of a relax-and-fix algorithm to build a solution

and a fix-and-optimize algorithm with different strategies to improve it. The metaheuristic

method consists of a multi-start algorithm and a large neighborhood search.

The main contributions of this work can be listed below:

• We present a survey on the main works on MIRPs, classifying them according to

specific characteristics;

• A matheuristic framework was proposed for the presented MIRP variant;

• Different formulations components are proposed, such as additional constraints,

preprocessing phase, restriction strategies, and valid inequalities;

• We present an individual analysis of each formulation component and F&O strategy

considering processing time and solution quality;

• We proposed a metaheuristic approach for the presented MIRP variant;

• The metaheuristic method can solve long planning horizon instances, in which no

attempts to solve them were presented in the literature;

• We tested the algorithms with a priori parameters settings and also with an auto-

matic configuration tool;

• Both solutions methods obtained new best-known solutions for the tested instances.

The work along this thesis originated the following papers:

• Friske and Buriol (2017) - Proposed the R&F and F&O for solving the MIRP

time-space network formulation (conference paper);

• Friske and Buriol (2018) - Proposed the R&F and F&O for solving the MIRP

fixed-charge network flow formulation (conference paper);

• Friske and Buriol (2020) - Proposed the metaheuristic approach for solving the

MIRP (conference paper);
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• Friske, Buriol and Camponogara (2020) - Proposed new formulation and algo-

rithmic improvements for the matheuristic framework, comparing the performance

of both TS and FCNF models (journal paper - submitted for review).

1.8 Thesis Content

The remainder of this thesis is organized as follows. The literature review on

the Maritime Inventory Routing Problem and its variations are presented in Chapter 2.

Chapter 3 presents the problem description and two mathematical formulations. The pro-

posed solutions methods are presented in Chapter 4. Computational results are reported

in Chapter 5. Finally, Chapter 6 presents the conclusions of this thesis, including possible

future research on the problem.
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2 RELATED WORK

Several works on MIRPs are dedicated to developing models for specific problem

variations, usually related to real cases. As a result, there are few comparisons between

solution strategies for each variation. This will be demonstrated in this chapter, which

discusses the literature on the MIRP, starting from a historical context, presenting some

pioneer works on maritime transportation. Next, a review of the works on the Maritime

Inventory Routing Problem is presented, being separated into two main characteristics:

constant and variable production and consumption rates, and single and multi-products

MIRPs. At the end of the chapter, the cited works are summarized in two tables.

2.1 Pioneering works on MIRP

Optimizing maritime transportation is accounted for since the fifties, starting in the

postwar. These works were simpler than the actual MIRP variations, as they considered

different assumptions, and that most of the information was given in advance. Thus, few

decision variables were needed to solve such problems. This section presents a temporal

evolution of maritime transportation works starting from the first works in the area until

the first work that can be classified as a MIRP.

The work of Dantzig and Fulkerson (1954) is one of the most known pioneers’

works accounting maritime logistics. They proposed a linear programming model to de-

fine the minimum number of oil tankers to meet a fixed schedule of the Navy. The model

assumes that each vessel performs a single loading and unloading operation, being solved

as a transportation problem. A similar work proposed by Flood (1954) also considered

the objective to minimize the ballast sailing leg, i.e., the total distance of voyages when a

vessel is empty. A fixed fleet size was assumed, and the problem is also solved as a trans-

portation problem. The US Navy ordered the works of Dantzig and Fulkerson (1954),

Flood (1954). Note that they deal only with the routing of vessels. One decade later, in

Briskin (1966), a Tanker Scheduling Problem was presented, where several discharging

ports can be visited in sequence, considering a cluster of ports, and allowing vessels to

perform partial discharging. The problem is to determine the best delivery dates and the

volume to be discharged in each port, such that the quantity delivered at the cluster is

equal to the vessel capacity operated in that cluster. The problem also considers the in-

ventory capacity at ports in each period, and the objective is minimizing voyage costs.
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Dynamic programming was used to determine the delivery dates and the discharged vol-

umes, and a transportation model determines the schedule of each tanker. In this problem,

it is possible to observe two aspects in common to the MIRP: the scheduling of vessels

and inventory management.

Appelgren (1969) proposed a Dantzig-Wolfe decomposition for a ship routing

problem related to tramp shipping. The problem consists of assigning contracted cargoes

to vessels to maximize the revenue. Optionally, spot cargoes can be carried to improve

profit. The cargoes have as parameters the loading and discharging ports and predeter-

mined times to be loaded and unloaded. A column generation algorithm was used to solve

the problem, while a dynamic programming algorithm solved the subproblems. Although

the column generation algorithm solves the linear relaxation of the model decomposition,

the algorithm’s solution is fractional in less than 1-2% of the cases. Computational exper-

iments were performed considering 40 ships, 50 cargoes, and a horizon of four months.

Just two percent of the solutions were fractional, and for dealing with them, a subsequent

work proposed a branch-and-bound technique (APPELGREN, 1971). These works orig-

inated what is known today as Cargo Routing Problem, a similar problem to the MIRP,

in which it is not necessary to decide the amounts to be loaded and unloaded. Bellmore,

Bennington and Lubore (1971) extended the work of Appelgren (1969) by considering

different types of tankers that can be partially loaded. The problem consists of scheduling

and routing the fleet to maximize the total utility, which is related to desirability and deliv-

ery cost. Although no results were presented, suggestions of decomposition using branch-

and-bound and network subproblems were made. McKay and Hartley (1974) considered

a more general tanker scheduling problem with multiple products for the Defense Fuel

Supply Center and the Military Sealift Command. The problem is to define a route for

each vessel, in which cargoes are assigned to obtain a minimum cost delivery to meet the

schedules. Differently from Dantzig and Fulkerson (1954), multiple deliveries and load-

ings were allowed, and the cargoes are not pre-specified, but demand at consuming ports

is given to determine calendar dates. There were different buying costs for the cargoes

in the loading ports, and constraints on vessel capacity and weights are imposed. They

proposed an arc-flow formulation and a restructured path-flow formulation where routes

are decision variables. The solution method consists of building feasible routes based on

specific rules, solving the problem in a relaxed form, and applying a special rounding

scheme.

A ship routing problem with a planning horizon of up to two weeks was proposed
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by Ronen (1979). The problem aims to assign cargoes available from a single origin

to a heterogeneous vessel fleet, to minimize shipping and demurrage costs. The problem

was formulated as a non-linear mixed-integer program. Three different routing algorithms

were tested to solve the problem, a heuristic, an exact method, and a biased random routes

generation. The last one obtained the best results.

A decision support system for scheduling bulk vessels was described in Stott and

Douglas (1981), where the problem was treated as a linear programming model. In such

a model, specified voyages with backhauls and vessels chartering are allowed, and the

objective aims to minimize the operating costs while meeting loading quantities.

To the best of our knowledge, the work of Miller (1987) was the first one that

deals with the routing and scheduling of vessels while keeping control of the inventories

at the ports, characterizing it as a MIRP. The proposed MILP flow model minimizes the

operating and traveling costs. The problem involves defining each vessel’s route between

a loading plant and several discharging terminals, ensuring that the inventory of different

products in each terminal lies between minimum safety stock and a maximum capacity.

Only one vessel can operate in the loading port and the terminals in each time period. Due

to the problem size (4 vessels, approximately 30 terminals, 20 products, and a planning

horizon of 18 months with a day granularity), a heuristic creates a solution selecting a pre-

defined set of candidates routes. For improving the solution, a try-and-error approach was

used, swapping among the candidate routes. Also, automatic and manual routines were

used to improve the schedules. The automatic routine consists of fixing routing variables

and optimizing delivery quantities and vice-versa, while the manual routine possibilities

the scheduler to make some changes in the solution, but the system is not able to verify

the feasibility of these changes. No computational results were presented. However, the

authors conclude that the generated schedules proved to be satisfactory.

Another well-known pioneer work on MIRP is the work of Christiansen (1999),

named “Inventory Pickup and Delivery Problem with Time Windows". She combined

inventory management with ship routing for the transportation of ammonia between pro-

duction and consumption ports. The problem considers a heterogeneous fleet of vessels

for transportation, while each port has different production/consumption constant rates

and storage capacities. Vessels can visit just a subset of ports, and the operation amounts

must lie between lower and upper limits in each port visit. The ports have time windows

in which they can receive a vessel, and the time to load or unload depends on the amount

of product and the port. A dummy ship is considered when a vessel cannot arrive at a port
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in a specified time window. Also, it is assumed that each port has one berth. The problem

objective is to minimize transportation costs, including port fees, canals passing, and fuel

consumption. An arc-flow model was presented, followed by a Dantzig-Wolfe decompo-

sition, which is used in a column generation algorithm. A subproblem is accounted for

each vessel, being solved as the shortest path problem by a dynamic programming algo-

rithm described in Christiansen and Nygreen (1998b). For obtaining optimal solutions,

a branch-and-price algorithm was proposed with branching on flow variables and time

windows intervals, which are described in Christiansen and Nygreen (1998a).

2.2 Problem Variants

Although the number of works on MIRP has grown, there is no clear name-

classification of such problem variants, such as in the Vehicle Routing Problem, where

variants are clearly defined, such as Vehicle Routing with Time Windows, multi-depot

vehicle routing problem, among others. This occurs because maritime problems are natu-

rally less structured, as there is more variety in the problem characteristics and operating

environments (RONEN, 1993). The first use of the term “Maritime Inventory Routing

Problem” was in the work of Al-Khayyal and Hwang (2007). However, the name “Marine

Inventory Routing Problem” was already defined by Ronen (2002) for the same problem.

Some recent works also use other names for defining the problem because of a specific

aspect. For example, in Agra, Christiansen and Delgado (2013), Agra et al. (2014) the

problem is called “Short-sea inventory routing problem” (SSIRP) as it deals with the

transportation of cargoes in an archipelago. When the transported product is the lique-

fied natural gas (LNG), the problem usually is called “LNG inventory routing problem”

(GRØNHAUG et al., 2010; ANDERSSON; CHRISTIANSEN; DESAULNIERS, 2016).

These problems deal with a specific constraint that accounts for the evaporating of the nat-

ural gas in the vessel tanks. However, the routing, scheduling, and inventory management

are substantially the same as in other MIRPs.

This section discusses the different MIRPs variations that are available in the lit-

erature and the solutions methods used. Tables 2.1 and 2.2 summarize the main charac-

teristic of each work.

The works are classified into two disjoint sets: the problems where the produc-

tion/consumption rates are constant along the planning horizon, and the problems where

these rates are variable. Each set is partitioned into two subsets: the works which con-
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sider single product and those which consider multi-product MIRPs.

2.2.1 Constant Production/Consumption Rates at Ports

This section’s works present MIRPs that production and consumption rates at

loading and discharging ports are constant along the planning horizon. They can con-

sider long-term problems. The variation in the production and consumption rates along

the planning horizon is harder to estimate due to the problem’s uncertain nature. Thus, a

constant rate can be used based on previous average values.

2.2.1.1 Single-product MIRPs

The work of Jiang and Grossmann (2015) explored continuous and discrete for-

mulations for a basic version of a MIRP. The problem considers sailing costs as a fixed

part plus a variable part, which depends on loads of the vessels, and the same occurs for

the operating costs and the time to operate. The vessels cannot wait at a port for longer

than a time limit. Each vessel has a loading/discharging rate at each port, including a

preparation time between the arrival and the start of the port’s operation. It considers a

simplification where a binary parameter predetermines the route of each vessel. Two con-

tinuous models were presented: one based on time slots, which allows only a single berth

at ports, and the other based on event points to handle two parallel berths. The compu-

tational experiments were performed on randomly generated instances with the CPLEX

solver for comparing the formulations. In the instances with one berth in each port, the

continuous-time models performed better in CPU time and objective value. When paral-

lel docks instances were considered, the continuous model based on event points obtained

significantly better objective functions than the discrete model. However, the CPU time

required depends on the particularity of the instances.

A case of study for a vertically integrated company in Norway is presented by

Agra et al. (2017) for introducing vendor-managed inventory (VMI) policies. They con-

sider a MIRP for transporting feed from factories to salmon farmings on the Norwegian

coast. Although the real case constitutes one feed factory and several products, the prob-

lem is assumed to have more than one factory and a unique product. The capacity of the

ship is assumed to be greater or equal to the feed factories. Thus, when a vessel visits a

factory, it will load all the inventory of the factory. Also, a minimum time between the
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visits of vessels is considered at the fish farms and feed factories. As the factories have

no sufficient capacity to deliver feed to the farms, it is possible to buy feed externally.

The continuous-time model is reformulated for improving branch-and-bound efficiency

using the special ordered set of variables of type 1 and tightening the bounds by valid

inequalities. Additionally, two matheuristics based on practical aspects of the problem

were proposed to obtain feasible solutions and improve the current solution.

Zhang et al. (2015) studied a robust MIRP with time windows and stochastic travel

and port times. The inventory management was accounted only for loading ports, while at

discharging ports, a contracted quantity should be delivered fairly evenly over the entire

planning horizon. A simplification assumes that vessels always perform full loads and

unloads. A difference from other MIRPs is that the length and placement of the time

windows are decision variables. The problem was formulated as a two-stage stochastic,

while a two-phase heuristic approach was used to solve it.

Agra et al. (2016) considered a continuous-time model with random traveling

times between ports due to the high level of uncertainty of weather conditions. For each

visit, a time window is defined such that a vessel can only operate between the start and

the end of the time windows. Also, a minimum interval between visits is considered,

and a penalization cost is paid for violating the ports’ inventory limits. The problem was

modeled with a two-stage stochastic programming problem with recourse. The proposed

solution method is a MIP-based local search heuristic based on the local branching tech-

nique, compared with a decomposition algorithm based on the L-shaped algorithm. A

study on the variation of the penalty costs showed that the integrality gaps increase when

they are high, turning the decomposition algorithm more unstable.

A general optimization procedure immune to a certain number of delays due to

variable sailing times is proposed by Agra et al. (2018). A mandatory number of port visits

is given as input, and each visit considers a time window. After the uncertainty is revealed

in the model, only the start time of service (load or unload operation) and inventory levels

can be adjusted. The solution method consists of decomposing the problem into a master

problem, where each robust constraint is considered for a small subset of scenarios. When

a feasible solution is found, an adversarial separation problem is solved to verify if a

scenario leads to infeasibility. Several improvements in the decomposition strategy are

proposed, and an iterated local search based on a local branching scheme is used to obtain

solutions for all instances tested.

The work proposed by Rodrigues et al. (2019) compared static and conservative
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formulation approaches for MIRP. The static model tends to present a lower cost but is

not failure tolerant due to weather conditions or congestion in the ports. On the other

hand, a conservative plan has failure tolerance but higher costs. The main objective was

to compare different techniques to handle uncertainty in the MIRP, such as inventory

buffer (in a deterministic model), robust optimization (AGRA et al., 2018), and stochastic

optimization with recourse (AGRA et al., 2015). They also proposed two formulations

using the concept of conditional value-at-risk to measure the risk of violating inventory

bounds.

2.2.1.2 Multi-product MIRPs

Al-Khayyal and Hwang (2007) extended the work of Christiansen (1999) by con-

sidering multi-products and dedicated product compartments in the ships. Tests on ran-

dom instances demonstrated the need for specialized algorithms to efficiently solve the

problem, mainly when allowing multiple berth capacities. The problem of different fuel

oil product distribution on the Cape Verde archipelago was presented in Agra, Chris-

tiansen and Delgado (2013). In this variation, inventory management is taken into account

only in the discharging ports, as the inventory at the loading port is assumed to be suffi-

ciently large. The model combines continuous and discrete-time formulations for dealing

with multiple time windows at ports. As the problem considers short-sea, more details are

accounted for port operating times, which vary according to each product and the quan-

tity loaded/discharged. Several formulation improvements are considered for solving the

real instances to optimality, such that tightening constraints, extending formulations, and

valid inequalities. Also, a study was conducted on modeling dedicated compartments in

vessels and ports for each product.

Differently from Al-Khayyal and Hwang (2007), Li, Karimi and Srinivasan (2010)

proposed a continuous-time model in which more than one vessel can operate simultane-

ously at a port. The problem is related to the transport of chemicals of a multinational

company, where ports consume and produce different products. External suppliers meet

the demand of products that are not produced by their company ports, but inventory con-

straints are not considered at these supplier ports. The model was evaluated with four

examples, and the solutions and processing times are compared with the works of Al-

Khayyal and Hwang (2007), Christiansen (1999).

The work of Siswanto, Essam and Sarker (2011) introduced the use of undedicated

compartments into the vessels, meaning that a compartment can carry different products
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along the planning horizon. Since the products are non-mixable, only one product can be

carried in the compartment at a time. Because ships’ capacity compartments are larger

than the unloaded demands, partial unloading is allowed, and a ship can only be loaded

again after becoming empty. Due to the higher computational time for solving the model,

a multiple-heuristic approach was used. In this method, the problem is divided into four

sub-problems, and different selection rules for each subproblem are used to build the

solution. The heuristic solved until optimality 67% of instances that the MILP solver

proved optimality. Also, no combination of rules was dominant over all instances.

Agra et al. (2014) proposed a hybrid heuristic for the continuous time arc load flow

formulation presented in Agra, Christiansen and Delgado (2017). Improvements on the

problem formulation by valid inequalities and tightening constraints were proposed. The

solution method consists of a rolling horizon framework, where feasibility pump heuris-

tic was used to find integer solutions, and local branching was used for improving such

solutions. The feasibility pump heuristic consists of a rounding scheme of the problem

relaxation, while local branching consists in finding a different solution from a previous

feasible solution by allowing a limited number of variables to change their value. The

computational results showed the method’s effectiveness, which is capable of solving in-

stances with six months planning horizon, besides obtaining better solutions than a default

rolling horizon heuristic.

The work of Agra, Christiansen and Delgado (2017) studied continuous and discrete-

time models for short-sea inventory routing problem, similar to the problem presented in

Agra, Christiansen and Delgado (2013), considering dedicated compartments for each

product. They first present a discrete formulation based on the model of Agra, Chris-

tiansen and Delgado (2013) where consumption rates vary. This model was adapted

for constant consumption rates, and two sets of constraints were added to ensure that

inventory bounds within the time period are preserved, making it more similar to the

continuous-time model after described. Either the discrete and continuous-time formu-

lations are extended (arc load flow and multi-commodity reformulation). The formula-

tions were improved using valid inequalities to impose a minimum number of visits and

tightening constraints on time linking and maximum amounts to be loaded. Compar-

isons between the models were made considering size, duality gap, and processing time.

Results demonstrated that discrete-time formulations have better integrality gaps, while

continuous-time formulations usually are solved faster.

Hemmati et al. (2016) presented a MIRP focused on short-sea applications with a
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continuous-time formulation. In the problem, each product can be consumed or produced

in any port, and their inventories are considered separately, where each port has different

storage capacities for each product type. Also, different inventories’ limits are considered

at the end of the time horizon. On the other hand, vessels can carry any product, and

load/unload in any order, but the allocation of products to compartments was not con-

sidered. The problem assumes that vessels start and end their routes empty. A two-phase

matheuristic called Hybrid Cargo Generating and Routing (HCGR) was proposed to solve

the problem. It is based on the idea of Hemmati et al. (2015) to convert an inventory rout-

ing problem to a ship routing problem. In the first phase, cargoes are created based on

demand, production, consumption rates of the ports, defining time windows based on the

inventory capacities. After, an adaptive large neighborhood search was used to solve the

ship routing problem. The HCGR iteratively changes the generated cargoes based on the

information obtained in solving the second phase. They compare the HCGR with the

CPLEX solver on a small instance set and evaluate the HCGR on the set with large and

more realistic instances.

The work of Stanzani et al. (2018) extended the works of Al-Khayyal and Hwang

(2007), Christiansen (1999) by modeling a MIRP for pickup and delivery of different

types of oil from offshore platforms to onshore terminals of the Brazilian company Petro-

bras. The inventory management was considered only in the pickup points (platforms),

which produces a unique and specific oil type. For the terminals, it was assumed that they

have a large capacity within the planning horizon. Specific constraints were considered,

such as the use of dynamic positioning systems that allow vessels to dock at platforms

with higher levels of load onboard. A multi-start heuristic was used for building feasi-

ble solutions of pickup and delivery routes, followed by local search procedures that aim

to reduce the number of docks at the platform/terminal. The computational experiments

were carried out on real-based instances and demonstrated that the proposed approach is

suitable for the company’s real operations.

In Agra et al. (2015), a stochastic version of the problem described by Agra, Chris-

tiansen and Delgado (2013), Agra et al. (2014) was presented. They considered uncer-

tainty in sailing and port times. Inventory constraints were only accounted for consump-

tion tanks at ports. The problem is formulated as a two-stage stochastic programming

with recourse and solved by decomposition on a master problem and one subproblem for

each scenario, which derives optimality cuts. Computational results were carried out on

ten real-world instances, showing the method’s effectiveness and the importance of using
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stochastic programming instead of a deterministic scenario.

2.2.2 Variable Production/Consumption Rates at Ports

The works presented in this section have variable production and consumption

rates along the time horizon.

2.2.2.1 Single-product

A MILP integrated into a decision support tool was proposed by Furman et al.

(2011) for the transportation of vacuum gas oil from Europe to the United States. The

problem considers several side constraints, such as draft limits in a subset of ports and

minimum transport cargo for each vessel. Also, additional vessels can be chartered for

performing a unique voyage (from a loading port to a discharging port) if necessary. The

work presented a description of instances and how the costs were calculated. The problem

was solved using a mathematical solver, which takes on average 10 to 15 minutes to obtain

a solution. However, no specific computational results were presented.

In a later work, Song and Furman (2013) proposed a modeling framework for the

inventory routing problem, which can accommodate practical features. The model was an

enhancement of the system introduced by Furman et al. (2011). A study case on a MIRP

was made to evaluate the model efficiency. The solution method applies a preprocessing

phase to reduce the search space, followed by a branch-and-cut with branching strategies

and valid inequalities. A large neighborhood search was used to improve the solution by

fixing variables from a feasible solution and solving subproblems iteratively. Ten real-

based generated instances were solved until optimality, ensuring the effectiveness of the

proposed framework.

Engineer et al. (2012) proposed a branch-and-cut-and-price algorithm for the prob-

lem described in Furman et al. (2011), Song and Furman (2013). The master prob-

lem considers the inventory balance on ports, while the subproblem is the fixed-charge

shortest-path problem, which can be solved to optimality by dynamic programming la-

beling algorithm. Three families of cuts and four branching strategies were proposed.

The computational experiments used nine instance classes varying the number of vessels

and the number of supply/demand ports. They analyze the impact of the cuts on the mas-

ter problem. The BCP was compared with the compact arc-flow formulation of Song and
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Furman (2013), showing the approach’s superiority considering either time, bounds, and

solution quality. For the same problem of Song and Furman (2013), a branch-and-price

guided search (BPGS) is presented in Hewitt et al. (2013). The BPGS uses an extended

formulation which restricts the original problem through a set of constraints obtained by a

pricing problem. Six local search schemes based on the problem structure were proposed

for improving the solution, being solved in parallel. The algorithm was compared with

the CPLEX solver, producing high-quality solutions in a short processing time.

The problem of transportation of crude oil from a central supplier with unlimited

capacity to several customers was presented by Shen, Chu and Chen (2011). The transport

can be directed from the supplier to the customer harbor only using tankers through a

general route or canals, or it can be intermediated by input and output ports, which are

connected by pipelines. Then the oil from the output port is transported to the customer

by tankers. A Lagrangian relaxation with valid inequalities was proposed to find near-

optimal solutions. It was compared to a previously proposed metaheuristic and a MILP

solver. The efficiency of the method was also evaluated with a problem variant allowing

partially loaded tankers.

Rocha, Grossmann and Aragão (2013) considered a MIRP where tankers trans-

port oil from offshore platforms to an onshore terminal. They assume that tankers must

be loaded to the full capacity at platforms, performing only direct voyages. Also, an

unlimited fleet of vessels is given, as they considered that vessels could be chartered.

The initial model was reformulated through the inventory constraints, and new cascading

knapsack inequalities were proposed for solving instances where only the initial formula-

tion is not sufficient. Using the same problem of Rocha, Grossmann and Aragão (2013),

Aizemberg et al. (2014) devised six formulations of the problem, including a Dantzig-

Wolfe decomposition, which was solved by a column generation based heuristic. The

computational analysis demonstrated that the new accumulated rounded cascading formu-

lation performed better on obtaining optimal solutions against the other models. Also, the

Dantzig-Wolfe model provided tighter bounds. Finally, tests allowing limited inventory

violations demonstrated that better solutions (originally infeasible) could be obtained.

The work of Agra et al. (2013) considered a short-sea MIRP, which assumes that

a vessel cannot wait in a port after finished its operation, i.e., it can wait before starting to

operate. However, once it began to load or discharge the product, the operation needs to be

continuous, and after finished, the vessel must travel to another port or complete its route.

A demurrage cost is paid while a vessel waits in a port before operating, and vessels can
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be idle along the entire planning horizon. A port can have one or more berths that vessels

can operate simultaneously. Finally, a maximum amount can be loaded or discharged at

a port by a vessel. If a vessel wants to load/discharge more than this maximum amount,

it will need to operate two time periods consecutively. They proposed a discrete-time

fixed-charge network flow model (FCNF), and new valid inequalities generalized from

the lot-sizing problem were developed with branching priorities. The proposed model

obtained tighter bounds and solved the problem instances faster than the standard time-

space network.

Papageorgiou et al. (2014a) proposed an iterative algorithm with two phases. They

considered a realistic assumption that one vessel must visit at most two ports of the same

type and geographical region sequentially. A special time-space network was built to

incorporate the assumption indirectly. The model was improved with valid inequalities,

and an improvement phase with a MIP-based local search was applied. The proposed

approach provided high-quality solutions in a reasonable processing time.

Papageorgiou et al. (2015) proposed an Approximate Dynamic Programming (ADP)

framework for solving a simple MIRP with long planning horizons (up to 360 days). The

ports’ inventory was considered soft constraints, while vessel inventory was not tracked.

The model assumes that a vessel only performs voyages from a loading port to a dis-

charging port at full capacity and from discharging ports to a loading port only if it is

empty. The ADP approach was able to find good solutions faster than a commercial

solver with emphasis on feasible solutions with local search procedures. For the same

problem, Papageorgiou et al. (2018) presented different matheuristic and hybrid solution

approaches. They investigated constructive methods such as the rolling horizon heuristic

combined with different problem-specific assumptions and improvement methods, such

as k-opt local search. Several computational experiments were performed, comparing

different solvers’ parametrization to the various algorithms presented. The matheuristic

approaches found new best know solutions for 26 instances.

The work of Diz, Oliveira and Hamacher (2017) used the model proposed by Agra

et al. (2013) for solving a crude oil and supply problem faced by the vertically integrated

oil and gas company Petrobras. In this problem, the vessels are responsible for collect oil

from offshore platforms and transport it to onshore terminals. Six different scenarios were

generated from one reference instance for testing purposes. The model was compared

with the manual routing and schedule performed at the company, obtaining, on average,

20% of cost reductions.
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Munguía et al. (2019) explored the use of the parallel alternating criteria search

(PACS) for solving the MIRP instances proposed by Papageorgiou et al. (2014b). PACS

is a general-purpose algorithm that consists of a parallel primal heuristic based on a large

neighborhood search, which solves restricted sub-MIPs of the original problem. The

work demonstrated the PACS effectiveness for solving MIRPs, whose performance was

improved when specific problem domain of the MIRP was prototyped into the algorithm

framework, such as specific objective penalizations and variable fixing schemas.

Works concerning the MIRP variation in which the transported product is the liq-

uefied natural gas usually consider either variable production and a single product. The

first work in the liquefied natural gas inventory routing problem was proposed by Grøn-

haug and Christiansen (2009). They considered that vessels must be fully loaded but can

unload a variable number of tanks at each discharging terminal, such that at most two

consecutive visits at discharging ports can be performed. In this problem, the production

and demand at ports are bounded variables that should be defined. Arc and path flow for-

mulations were presented and compared. A path generator is proposed for enumerating

all possible columns in the second model. However, only small instances were solved to

optimality.

A branch-and-price algorithm was proposed in Grønhaug et al. (2010) for the

LNG-IRP presented in Grønhaug and Christiansen (2009). An ad hoc dynamic program-

ming algorithm solves the subproblems while branching strategies and accelerating tech-

niques were proposed for the column generator and B&P algorithm. The computational

results demonstrated that the B&P algorithm was quite faster than the enumeration al-

gorithm of Grønhaug and Christiansen (2009). However, the optimality of the solutions

could not be proved in the specified time limit. The work of Andersson, Christiansen and

Desaulniers (2016) proposed a new formulation for the LNG-IRP model of Grønhaug et

al. (2010). It consists of splitting the vessel path in duties, defined as a sequence of ports

starting in a liquefaction plant (loading port) and one or two regasification terminals, end-

ing again at a liquefaction plant. Vessels paths are pre-generated as the number of duties

is limited, and a branch-and-bound algorithm solves the model. The new model provided

a tight formulation and could be improved using problem-specific valid inequalities, out-

performing previous results obtaining optimal and new best-known solutions.

A planning level for designing a supply chain of LNG is presented in Goel et

al. (2012). In this problem, the production rates are given as data, while the consump-

tion (also called regasification) rates at discharging ports are decision variables. Besides
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considering seasonal traveling times, the problem ensures that vessels can only navigate

at full capacity or empty, i.e., no split pickup or deliveries are allowed. The inventory

level constraints consider lost production and stock-out by using slack variables penal-

ized in the objective function. A constructive greedy heuristic was used for building an

initial solution, which was improved by two large neighborhood search methods. The first

method was based on delaying departure voyages, and the second consist of improving the

routes of only two vessels iteratively, like a 2-opt neighborhood. Computational results

compared the algorithm’s performance against the CPLEX solver, considering different

selection strategies for the two vessel improvement routine.

The work of Fodstad et al. (2010) proposed a rich LNG-IRP, extending the prob-

lem presented in Grønhaug et al. (2010) by addressing a larger part of the LNG supply

chain, considering importation and exportation of LNG, natural gas hub, among others.

Vessels can become unavailable due to maintenance, and additional vessels can be char-

tered. The model was evaluated with new proposed instances, presenting the benefits of

considering rich formulations for the LNG planning problem. An extended fix-and-relax

matheuristic was used in Uggen, Fodstad and Nørstebø (2013) for solving the rich model

of Fodstad et al. (2010). The method divides the planning horizon into subproblems with

short time horizons, solving them iteratively. For reducing the size of the subproblems,

a horizon cut and light model strategies were used. A fix and optimize algorithm that

also divided the planning horizon into intervals was used for improving the solution. Sev-

eral computational tests were performed to compare the standard fix and relax with the

extended version and the contribution of the MIP-based local search.

For dealing with larger instances, Goel et al. (2015) developed two constraint

programming strategies for the problem proposed in Goel et al. (2012), considering sim-

plifications such as no seasonal traveling times and variable consumption rate. The com-

putational results demonstrated the method’s superiority against the large neighborhood

search proposed in Goel et al. (2012). Mutlu et al. (2016) developed a model for an annual

delivery program for liquefied natural gas where the problem should define the produc-

tion rate. It allows split delivery and soft time windows constraints, which were ignored

in other works. A vessel routing heuristic builds multiple solutions that were used for

a warming start of the mathematical solver. Computational tests performed on available

author instances demonstrated that allowing split deliveries may lead to significant cost

reductions.
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2.2.2.2 Multi-products MIRPs

A MIRP involving the transportation of several liquid bulks was proposed in Ro-

nen (2002). The problem considers that vessels are homogeneous and chartered and as-

sumes that a vessel only visits one loading port before visiting a discharging port and

vice-versa. Also, penalization costs by shortfalls of safety stock were incurred. Data

derived from the distribution of products from refineries was used to evaluate the model,

which solved small instances to optimality. For large instances, more processing time was

needed, and the solutions’ optimality was not proved. Thus, a heuristic approach based on

the logic of the planner was proposed with an improvement phase. Although obtained a

solution usually less than a second, the heuristic performance was inferior to the CPLEX

running within five minutes limit.

A problem faced by the shipment planning of a refinery company in Sweden was

presented in Persson and Göthe-Lundgren (2005), where bitumen products are transported

from refineries to depots. They considered that ships only visit at most two depots after

departing from a refinery and assume that the products can be mixable. The objective

aims to minimize different costs associated with the production, transportation, inventory

holding, deviation from inventories target, and violation of inventories constraints. Arc-

flow and path flow models were proposed with valid inequalities to ensure a minimum

number of visits at each port. A column generation algorithm with a restricted tree search

and fixing strategies was used for finding integer solutions in the path flow formulation.

Computational experiments carried out on instances based on real company operations

evaluate the linear relaxation and integer solution quality of the two formulations.

The work of Andersson (2011) presented a pulp distribution problem, where dif-

ferent products are transported from pulp mills to terminals. No capacity at terminals

was considered, but limited operation quantities per time period should be respected. If

necessary, spot vessels can be chartered for a single trip, i.e., pulp transport from one pulp

mill to one terminal. A path flow model was proposed with a branch-and-price algorithm

used as a decision support tool.

A decision support tool for the distribution of calcium carbonate slurry was pre-

sented in Dauzère-Pérès et al. (2007). One production port is responsible for supplying

several consumption ports in Europe. A MILP was proposed, where only small instances

could be solved. For dealing with large instances, a memetic algorithm was proposed, and

quantitative benefits were presented. The work of Rakke et al. (2011) proposed a rolling

horizon heuristic for an annual delivery program of LNG-IRP. Two types of liquefied nat-
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ural gas were considered, and the inventory is tracked only at the production port, while

long-term contracts dictate the amount of LNG to be delivered to clients every month or

in the entire year. Penalties were incurred for under and over-deliver of LNG at contracts.

The ships can only carry one type of LNG at a time, and they should be unavailable after

a certain period of activities for maintenance. Besides the rolling horizon strategy, a solu-

tion space reduction was developed to decrease the number of symmetrical solutions. A

heuristic improves the solution by using additional variables and constraints for limiting

the search space. The proposed algorithm found better solutions than a heuristic proposed

in earlier work, although being more time-consuming.

Bilgen and Ozkarahan (2007) described a distribution problem faced by a com-

pany that manages wheat distribution planning. In this MIRP variant, different products

are available at loading ports, and clients can demand pure products or a blend of prod-

ucts. An unlimited number of different vessels are available to load products on at most

two loading ports and discharges all cargo at one client. The problem assumes that ves-

sels have sufficient compartments for storage of the different products. In this particular

problem, the inventory at ports was not considered, but each customer’s demand must be

attended to in each time-period (month). The proposed MILP model aims to minimize

blending, loading, transportation, and inventory costs.

A study case on a cement industry in Norway was presented by Christiansen et al.

(2011). Different non-mixable cement products are transported in separate compartments

on vessels, while production and consumption ports have dedicated silos for each product

with lower and upper limits. As the fixed fleet is not sufficient to supply peak demand sea-

sons, priorities for each silo are given, and the problem should decide which demands to

supply. A constructive heuristic was proposed, while a genetic algorithm was responsible

for evaluating the heuristic parameters for obtaining better solutions.

A sustainable MIRP is described in De et al. (2017) for the transport of different

container types. The problem considers low-steaming policies, where the vessel’s speed

must be decided, given rise to a mixed-integer nonlinear programming model. They con-

sidered that vessels consume heavy fuel oil while they are sailing and marine diesel oil

while at a port. These fuels have different prices. Time windows are considered at ports

but can be violated if the vessel arrives before starting the time window, or the vessel

finishes its operation after the end of the time window. A particle swarm optimization for

composite particle (PSO-CP) was developed, and their results considering fuel costs were

compared with basic particle swarm optimization and genetic algorithm.
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A multi-product MIRP with undedicated compartments was proposed by Foss et

al. (2016). They extend the model of Agra et al. (2013), and valid inequalities based

on the problem structure and tightening constraints were proposed. Unlike Siswanto,

Essam and Sarker (2011), a ship was allowed to return to a loading port before becoming

empty. Computational experiments were carried out on instances containing vessels with

up to three compartments, comparing the model’s performance with and without the valid

inequalities. A solution analysis demonstrated that although undedicated compartments

increase the problem complexity, it can provide potential economic savings if compared

with problems that do not consider compartments or consider dedicated compartments.

2.3 Summary Tables

The works cited in Section 2.2 are summarized in Table 2.1 for the single-product

MIRPs, and in Table 2.2 for multi-products MIRPs. Column P/C rate refers to the pro-

duction or/and consumption rates at loading and discharging ports. Column Time informs

if the mathematical model consider continuous time (C) or discrete time (D) formula-

tions. Column Nav. type refers to the type of navigation considered: deep-sea (DS)

or short-sea (SS). Column Oper. bounds report if there is a lower (Min) or/and upper

(Max) limit on the amount of product(s) that can be loaded or unloaded at a port in each

visit or time period. The upper limit does not consider the implicit value of the vessel

capacity. Column Bert cap. informs the berth capacity at ports, which can be one (1)

or multiple (≥ 1). Column Soft constr. informs if the work considers soft constraints

with slack variables. They can be on the time windows (TW) or on the port inventories

(Port inv.). When slack variables on port inventories are bounded, the notation becomes

Port inv.. Column Draft limit indicates if draft limits of vessels are explicitly considered

on the model, i.e., by specific draft limit constraints. Column Method refers to the solving

method used. MIP-LS: MIP-based local search, ADP: Adaptive dynamic programming,

Path Gen.: path generation, LNS: large neighborhood search, CG: column generation,

CGH: column generation based heuristic, CP: constraint programming, BB: branch-and-

bound algorithm, BP: branch-and-price algorithm, BCP: branch-and-cut-and-price algo-

rithm, BPGS: branch-and-price guided search, GA: genetic algorithm, ILS: iterated local

search, LS: local search, RHH: rolling horizon heuristic, Memetic: memetic algorithm,

PSO-SP: Particle swarm optimization for composite particle. PACS: Paralellel Alternat-

ing Criteria Search. Columns B and VI indicate if the work proposed branching strategies
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and valid inequalities for the proposed model, respectively. The remaining columns refers

to the maximum size of the instances, where |V| is the number of vessels, |J | is the total

number of ports, and |T | refers to the size of the planning horizon, which is measured

according to the information in column Unit: Hour (h), day(d), month(m). Note that the

instance size considers the major number of each attribute, even if such an instance does

not exist. Especially for Table 2.2, column |K| refers to the number of products, while

column Port tank reports how the inventory of different products are considered at ports:

if each product has it own inventory with lower and upper limit (Dedicated), or if it is

not considered. Similarly, column Vessel compart. report if vessels compartment are con-

sidered, being them Dedicated or Undedicated for each product type. When a field is

empty for one or more columns, the information was not provided by the correspondent

work, or the feature was not considered in the specific problem.
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Table 2.1: Works on single-product Maritime Inventory Routing Problem.
Work P/C rate Time Nav.Type Oper. Bounds Berth cap Soft constr. Draft limits Method B VI |V| |J | |T | Unit

Grønhaug and Christiansen (2009) Variable D DS Min/Max ≥ 1 Path Gen. + BB 5 6 60 d
Grønhaug et al. (2010) Variable D DS Min/Max ≥ 1 BP 5 6 60 d
Fodstad et al. (2010) Variable D DS Min/Max ≥ 1 Solver 8 7 181 d
Furman et al. (2011) Variable D DS Min/Max 1 Port inv. • Solver d
Shen, Chu and Chen (2011) Variable D DS ≥ 1 Lagrangian relaxation • 11 12 m
Goel et al. (2012) Variable D DS Min/Max ≥ 1 Port inv. Heuristic + LNS 69 11 360 d
Engineer et al. (2012) Variable D DS Min/Max 1 • BCP • • 6 10 60 d
Agra et al. (2013) Variable D SS Max ≥ 1 Solver • • 5 6 60 12h
Song and Furman (2013) Variable D DS Min/Max 1 • BB + LNS • • 8 10 60 d
Hewitt et al. (2013) Variable D DS Min/Max 1 • BPGS 6 10 45 d
Uggen, Fodstad and Nørstebø (2013) Variable D DS Min/Max ≥ 1 Fix-and-relax 8 10 180 d
Rocha, Grossmann and Aragão (2013) Variable D SS Solver • 11 30 d
Papageorgiou et al. (2014a) Variable D DS Min/Max ≥ 1 Port inv. Two-stage decomposition • • 17 13 60 d
Papageorgiou et al. (2015) Variable D DS ≥ 1 Port inv. ADP 70 13 360 d
Aizemberg et al. (2014) Variable D SS Solver, CGH 11 30 d
Goel et al. (2015) Variable D DS Min/Max ≥ 1 Port inv. CP 69 11 360 d
Zhang et al. (2015) Constant D DS ≥ 1 Two-phase heuristic 8 12 60 d
Agra et al. (2015) Constant C SS Port inv. L-shaped like decomposition • 4 9 8 d
Agra et al. (2016) Constant C SS Min/Max 1 Port inv. MIP-LS 5 6 30 d
Agra et al. (2017) Constant D SS Min 1 Port inv. Matheuristic • 2 61 10 d
Andersson, Christiansen and Desaulniers (2016) Variable D DS Min ≥ 1 Path Gen + BB • 5 6 75 d
Mutlu et al. (2016) Variable D DS ≥ 1 Ports inv./TW Solver, Vessel Route Heuristic • 40 17 360 d
Diz, Oliveira and Hamacher (2017) Variable D SS Min/Max ≥ 1 Solver 11 11 15 d
Papageorgiou et al. (2018) Variable D DS ≥ 1 Port inv. RHH 70 13 360 d
Agra et al. (2018) Constant C SS Min/Max Decomposition, ILS • 5 6 30 d
Munguía et al. (2019) Variable D DS Min/Max ≥ 1 Port inv. PACS 70 13 360 d
Rodrigues et al. (2019) Constant C SS Min/Max Solver • 5 6 30 d
This Thesis Variable D DS Min/Max ≥ 1 Port inv. R&F, F&O, Multi-start, LNS • 17 13 60 d

Source: From the author (2020).
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Table 2.2: Works on multi-product Maritime Inventory Routing Problem.
Work P/C rate Time Nav. Type Oper. Bounds Berth cap Soft constr. Draft limits Method B VI |V| |J | |T | Unit |K| Port tank Vessel compart

Ronen (2002) Variable D Min/Max Port inv. Solver 7 30 d 5 Dedicated
Persson and Göthe-Lundgren (2005) Variable D SS Port inv. CG • 3 18 42 6h 4 Dedicated
Al-Khayyal and Hwang (2007) Constant D SS ≥ 1 Solver 4 4 10 d 3 Dedicated Dedicated
Bilgen and Ozkarahan (2007) D • Solver ∞ 6 3 m 8
Dauzère-Pérès et al. (2007) Variable D SS Min Memetic 17 11 84 d 16 Dedicated
Li, Karimi and Srinivasan (2010) Constant C DS ≥ 1 Solver 5 8 80 d 2 Dedicated Dedicated
Andersson (2011) Variable D SS Max BP +3 27 147 8h 30 Dedicated
Christiansen et al. (2011) Variable SS 1 • GA 5 61 14 d 5 Dedicated Undedicated
Siswanto, Essam and Sarker (2011) Constant C ≥ 1 Heuristic 3 4 15 d 2 Dedicated Undedicated
Rakke et al. (2011) Variable D DS ≥ 1 Port inv. RHH 46 366 d 2 Dedicated
Agra, Christiansen and Delgado (2013) Constant D+C SS 1 TW Solver • 2 7 12 d 4 Dedicated
Agra et al. (2014) Constant C SS Min/Max 1 RHH, matheuristics • 2 7 180 d 4 Dedicated Dedicated
Hemmati et al. (2016) Constant C SS Min/Max 1 Two-phase matheuristic 7 24 1440 h 3 Dedicated
Agra, Christiansen and Delgado (2017) Constant D,C SS Min/Max 1 Solver • 2 7 15 d 4 Dedicated Dedicated
Foss et al. (2016) Variable D SS Max ≥ 1 Solver • 4 8 d 4 Dedicated Undedicated
De et al. (2017) Variable D ≥ 1 TW PSO-CP 6 10 22 d 2 Dedicated
Stanzani et al. (2018) Constant C SS Min ≥ 1 • Multistart+LS 25 18 773 h 13

Source: From the author (2020).
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2.4 Solution Methods

In this section, some background on the proposed solution methods is presented.

2.4.1 Relax-and-Fix Algorithm

The relax-and-fix algorithm was first described in Dillenberger et al. (1994) for a

lot-sizing problem. In that work, it was named as a fix-and-relax algorithm, although it is

the same as the R&F framework, dividing the time horizon into stage periods or intervals.

At the first iteration, all integer variables are relaxed, except those belonging to the first

stage. The problem is then solved, followed by fixing the first-stage variables with the

obtained values, while the integrality constraint is reintroduced on variables of the next

stage. The new subproblem is then solved, and the procedure repeats until all stages have

the integrality constraints reintroduced. Wolsey (1998), Pochet and Wolsey (2006) defines

R&F in a generic form, splitting the integer variables into disjoint sets according to their

level of importance in the problem, such that the integrality constraint is re-inserted first

in the variables with more importance. The pseudo-code of the basic R&F is described in

Algorithm 1.

Algorithm 1: Relax-and-fix algorithm.
1: Q1, . . . , QR ← R disjoint sets containing the integer variables of the MIP
2: Remove the integrality constraints of all variables
3: i = 1
4: while i ≤ R do
5: Re-insert the integrality constraints of set Qi

6: Solve the MIP containing all sets
7: Fix the variables of set Qi with the obtained solution values
8: i = i+ 1
9: end while

Usually, the decomposition is made based on the time horizon as in Dillenberger

et al. (1994), where the “most important” variables are associated with the beginning

of the planning horizon. Such time decomposition is also refereed as rolling horizon

heuristic (RHH) (RAKKE et al., 2011; AGRA et al., 2014; PAPAGEORGIOU et al.,

2018). However, a difference between R&F and RHH is that R&F initially considers all

planning horizons, while RHH considers a part of the planning horizon, in which integer

variables are not relaxed.
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The R&F is usually used in production planning and scheduling problems. Stadtler

(2003), Federgruen, Meissner and Tzur (2007) used a time decomposition for multi-items

lot-sizing problems. Stadtler (2003) considered rolling schedules where the problem is

divided into lot-sizing time windows. These time windows have three parameters: num-

ber of periods, number of overlapping periods, and relaxed periods. Thus, the algorithm

consists of solving each time window iteratively. Federgruen, Meissner and Tzur (2007)

tested the algorithm called progressive interval heuristic with and without overlaps be-

tween the time intervals. Overlap defines that only a portion of the interval previously

solved with the integrality constraints is fixed. The fixing of variables is also accounted

for the original continuous variables. Results revealed that when overlaps were not con-

sidered, the algorithm tends to be faster. However, the solution quality is higher when

considering overlaps. Beraldi et al. (2008) used two rolling horizon heuristics for solv-

ing a lot-sizing problem with identical parallel machines. Also, fix-and-relax heuristics

based on time, product, and hybrid decompositions were proposed. The computational

studies showed that the fix and relax provided better solutions than the rolling horizon

heuristic because the RHH delays as much as possible the decisions to meet the demand

restrictions.

For a soft drink lot-sizing problem, Ferreira, Morabito and Rangel (2009) tested

three decomposition approaches with different fixing strategies. The decompositions were

based on machines, macro, and micro time periods. The work of Akartunalı and Miller

(2009) proposed a relax-and-fix algorithm and an LP and fix to generate several feasible

solutions in a heuristic framework for solving a production planning problem. LP-and-fix

consists of solving the problem relaxation and verify if some integer variables assume in-

teger values. These variables are then fixed, and the problem is solved again. They discuss

which binary variables should be fixed and observed no relevant difference between fixing

only those that take value 1 or only those that take value 0. In Mohammadi et al. (2010),

rolling horizon and fix and relax strategies were proposed for a multi-product and multi-

level capacitated lot-sizing problem. They differ from considering simplifications on the

relaxed interval, such as eliminating variables, simplifications on the integer interval to

give an upper bound for the original problem, and the use of additional constraints for

restricting the problem. Uggen, Fodstad and Nørstebø (2013) tested simplification strate-

gies and a horizon cut for the end of the planning horizon, reducing the computational

complexity and time-consuming.

Different approaches can be used for solving each subproblem in the R&F frame-
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work. In Pochet and Warichet (2008), if a solution becomes infeasible at some iteration

due to the variables fixing, a relaxation is solved by unfixing the previously fixed variables

and allowing just a limited number of them to change their value, like a local branching

strategy. Combining a rolling horizon model with the relax and fix, Araujo, Arenales

and Clark (2007) tested three heuristic methods for solving the first subproblem. They

vary between using a descent heuristic with and without a neighborhood diminishing and

a simulated annealing strategy. Agra et al. (2014) tested the use of local branching and

feasibility pump heuristic with a special rounding scheme for solving the subproblems in

their rolling horizon framework.

2.4.2 Fix-and-optimize algorithm

The fix-and-optimize algorithm (F&O) is used in improvement procedures, start-

ing from an integer solution. It consists of dividing the integer variables into L disjoint

sets according to some criteria, similar to the R&F. Such sets can be defined using dif-

ferent strategies. Initially, it fixes all integer variables with the feasible solution’s values

and iteratively allows a set of variables to be optimized. A pseudo-code of the F&O is

described in Algorithm 2.

Algorithm 2: Fix-and-optimize algorithm.
1: Q1, . . . , QL ← L disjoint sets containing the integer variables of the MIP
2: S ← feasible solution of the problem
3: Fix all integer variables according to the S values
4: i = 1
5: while <Some criteria> do
6: for i to L do
7: Unfix variables of set Qi

8: S ′ ← solve the MIP containing all sets
9: Fix the variables of set Qi with the values of S ′

10: i = i+ 1
11: end for
12: end while

In the MIRP literature, we can find different names for algorithms that are equiva-

lent to the F&O. For example, Goel et al. (2012), Song and Furman (2013) used the term

large neighborhood search for improving a MIRP solution by fixing the variables associ-

ated with all vessels, iteratively selecting two vessels to be optimized. Taillard and Voss

(2002) considered the name POPMUSIC (Partial Optimization Metaheuristic Under Spe-
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cial Intensifications and Conditions) for a general framework that divides the problem into

smaller parts. Starting from a feasible solution, it fixes the variables and selects a seed part

to be optimized at random. A second part is also selected according to a distance function

from the seed part. Hewitt et al. (2013) used the term local search schemes, assuming that

part of the solution is known, and the unknown part can be solved until optimality. Each

scheme consists of fixing a subset of variables while improving the remainder subsets.

The sets of variables are defined according to supply ports, demand ports, vessels, and

time windows. In Agra et al. (2017) the term considered was local search matheuristic

that solves a single-vessel route iteratively by using a branch-and-cut algorithm for short

processing time. Papageorgiou et al. (2014a) used the term a MIP-based local search

strategy, which is based on the named fixing supply and fixing demand strategy proposed

by Hewitt et al. (2013).

The F&O was also used on other problems, such as the lot-sizing problem. The

work of Lang and Shen (2011) proposed F&O strategies for a capacitated lot-sizing that

relies on time and product decompositions. Toledo et al. (2015) also used R&F and F&O

for solving a multi-level lot-sizing problem. They considered a matrix where each entry

corresponds to an integer variable of the problem associated with the time horizon. From

this matrix, three strategies were defined for the R&F: row-wise, column-wise, and value-

wise. The last one re-insert the integrality constraint at a limited number of variables that

have their fractional value closest to 0.5. For the F&O strategy, only row and column-wise

were used considering the overlap between the matrix entries, i.e., a certain percentage of

the variables are re-optimized in two consecutive iterations.

2.4.3 Multi-start Algorithm

Multi-start metaheuristics are useful in solving hard combinatorial optimization

problems where it is difficult to define an efficient and effective neighborhood structure for

using local search methods to improve a unique generated solution Martí, Moreno-Vega

and Duarte (2010). The basic algorithm consists of generating a set of solutions from

random starting points to obtain diversification. Optionally, improvement procedures can

be applied to each solution generated. For a comprehensive review of multi-start methods,

we recommend the work of Martí, Moreno-Vega and Duarte (2010).
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2.4.4 Large Neighborhood Search

The large neighborhood search (LNS) method improves one or more solutions ob-

tained by the multi-start algorithm. This method explores a sample of a solution neighbor-

hood, as exploring the whole neighborhood is not practical. The LNS iteratively uses de-

stroy and repair methods to improve the solution gradually. The destroy method removes

part of the solution (usually turning it infeasible), while the repair method is responsible

for rebuilding the solution in a different way. It is equivalent to the fix-and-optimize al-

gorithm, where the destroy method is equivalent to fixing a subset of the model variables,

while the repair method corresponds to solving the subproblem. The difference between

F&O and LNS is that the first solves the subproblems using a mathematical solver, while

the second solve them heuristically. For a survey on LNS, we refer to the work of Pisinger

and Ropke (2010).
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3 PROBLEM DESCRIPTION

This chapter describes a variant of the MIRP studied in this work. It is presented

a time-space network (TS) model followed by its reformulation in a fixed-charge network

flow (FCNF) model derived from the literature. Finally, formulations improvements such

as valid inequalities, additional constraints, and flow variables tightening are presented.

They are referred to as “formulation components" throughout the thesis.

The MIRP considered in this work is the same problem described in Papageor-

giou et al. (2014a), which is an extension of the core-model proposed by Papageorgiou

et al. (2014b). In this discrete-time problem, a single product is produced at different

production (or loading) ports and consumed at consumption (or discharging) ports. The

loading and discharging ports are grouped separately in one or more geographical regions.

The problem is considered a deep-sea MIRP, where the traveling times are much larger

than the operating times, characterizing intercontinental trips. The ports’ production and

consumption rates are variable along the planning horizon, and minimum and maximum

inventory bounds are imposed for each port and upper and lower limits on loading or dis-

charging quantities per time period. The number of available berths per port imposes the

maximum number of vessels that can operate in each port simultaneously. The product

is transported by different classes of vessels, which can differ in capacity, traveling costs,

and time. Each vessel starts its voyage from a dummy source node to its initial port.

The initial port and the time in which the vessel becomes available are given as input

parameters. When arriving at a port, a vessel can start to operate, occupying a berth, or

can wait outside the port without operating. After finishing the operation, it can depart

to another port or can end its route, arriving at a dummy sink node. Vessels must be at

full capacity when traveling from a loading port to a discharging port, and they can only

return to a loading port after discharging all cargo on board, being empty. The initial

inventory at ports and the initial load on board the vessel are known in advance. As mar-

itime transportation usually involves uncertainty on data, and inventory bounds at ports

are very conservative constraints, it is possible to consider penalizing the bound violation

at the ports’ inventory, using soft constraints. Their use allows a more robust solution

if it is impossible for any vessel to arrive at a port before its inventory violation (PAPA-

GEORGIOU et al., 2014b). Thus, the problem assumes that a limited quantity of product

can be bought from or sold to a simplified spot market along the planning horizon. The

problem consists of defining each vessel’s route and schedule, besides the amount loaded
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and discharged at ports to maximize the revenue obtained by the quantity discharged at

discharging ports, subtracting the traveling and operations costs and penalties from the

ports inventory violation.

The next sections present two discrete-time formulations for the MIRP. The first

is a time-space network presented by Papageorgiou et al. (2014b), Papageorgiou et al.

(2014a). The second reformulates the time-space network, transforming it in a fixed-

charge network flow model and is based on the work of Agra et al. (2013).

3.1 Time-space Network Model

The TS model for a MIRP was first introduced by Song and Furman (2013). Let

V be the set of vessels, J the set of ports, and T = {1, . . . , |T |} the set of time periods.

Ports are split into subsets J P for loading ports, and J C for discharging ports, where

J = J P ∪ J C, and J P ∩ J C = ∅. Ports are grouped in production regions RP and

discharging regionsRC, such thatR = RP ∪RC. Each vessel v ∈ V has its own arc set,

while the nodes set is shared by all vessels. Regular port-time nodes n = (j, t) ∈ N =

J × T , j ∈ J , t ∈ T define where the events (such as loading or discharging operations

by a vessel) take place. A dummy source node o(v) represents the starting of vessel v

route, while a dummy sink node d(v) denotes the end of its route. A vessel route is the

sequence of port visits along the planning horizon between the source node and the sink

node. Figure 3.1 illustrates the time-space network model and a possible route for a vessel

v between two ports i and j.

In Figure 3.1, vessel v starts its voyage departing from source node o(v) to port j,

arriving at time period t = 2. The arc linking the source node and the first port is fixed and

given as an instance parameter. At node (j, 2), the vessel starts to operate (represented by

o), and then takes the waiting arc, reaching node (j, 3), where no operation takes place.

After, it departs to port i, taking Tjiv = 2 time periods to travel between the ports. At port

i in time t = 5, vessel v operates and finally ends its route departing to sink node d(v).

Note that a vessel can operate in a port and depart to another port in the same time period.

The notation for the time-space model is presented in table 3.1.

In the TS model presented in Papageorgiou et al. (2014b), the minimum (maxi-

mum) amount of product operated are associated with a time index t, i.e., Fmin
it (Fmax

it ).

We omit the time index as the instances proposed by Papageorgiou et al. (2014b) consider

these parameters as constant values along the planning horizon.
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Table 3.1: Time-space network model notation.
Index and sets
t ∈ T set of time periods with T = |T |;
v ∈ V set of vessels;
i ∈ J P set of production or loading ports;
i ∈ J C set of consumption or discharging ports;
i ∈ J set of all ports: J = J P ∪ J C;
o(v) dummy source node for vessel v;
d(v) dummy sink node for vessel v;
Parameters
J0
v initial port of vessel v;
T 0
v first time avaiable of vessel v;
Bi number of berths (berth limit) at port i;
Tijv traveling time between port i and j for vessel v;
Cijv traveling cost between port i and j for vessel v;
Dit production (consumption) rate at port i in period t;
∆i +1 if i ∈ J P and -1 if i ∈ J C;
Fmin
i (Fmax

i ) minimum (maximum) amount that can be loaded or discharged at port i from
a single vessel in each time period;

Qv capacity of vessel v;
Rit the unit sales revenue for product discharged at port i in time period t;
Smin
it (Smax

it ) lower bound (capacity) at port i at time t;
S0
i initial inventory at port i;
L0
v initial load on board vessel v;

Pit penalization per unit of inventory violation at port i in time period t;
αmax
it maximum violation of the inventory at port i in time period t;
αmax
i maximum violation of the inventory at port i in the entire planning horizon;
ε nonnegative cost associated with attempting to load or discharge at a port;
Decision variables
f vit (continuous) amount loaded/discharged by vessel v in port i at period t;
sit (continuous) inventory at port i available at the end of period t;
svt (continuous) load on board vessel v available at end of period t;
αit (continuous) amount bought from of sold to a spot market by port i on time t;
xijvt (binary) 1 if vessel v travels from port i to port j departing at time t, 0 other-

wise;
wivt (binary) 1 if vessel v waits outside port i in time period t, 0 otherwise;
oivt (binary) 1 if vessel v operates at port i in time period t, 0 otherwise;

Source: From the author (2020).
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Figure 3.1: Example of a TS model for MIRP with two ports and one vessel.
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Source: From the author (2020).
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The TS model for the MIRP can be formulated as follows:

max

∑
i∈JC

∑
t∈T

∑
v∈V

Ritf
v
it −

∑
v∈V

∑
i∈J∪{o(v)}

∑
j∈J∪{d(v)}

∑
t∈T

Cijvxijvt

−
∑
i∈J

∑
t∈T

∑
v∈V

(tε)oivt −
∑
i∈J

∑
t∈T

Pitαit

(3.1)

s.t. xo(v)J0
vv0 = 1, ∀v ∈ V (3.2)∑

j∈J∪{o(v)}

xjiv,t−Tjiv + wiv,t−1 =

∑
j∈J∪{d(v)}

xijvt + wivt, ∀i ∈ J , v ∈ V , t ∈ T : t ≥ T 0
v

(3.3)

∑
i∈J

∑
t∈T

xid(v)vt = 1, ∀v ∈ V (3.4)

sit = si,t−1 + ∆i

(
Dit −

∑
v∈V

f vit − αit

)
, ∀ i ∈ J , t ∈ T (3.5)

si,0 = S0
i , ∀i ∈ J (3.6)

svt = svt−1 +
∑
i∈J

∆if
v
it, ∀ t ∈ T , v ∈ V (3.7)

sv1 = L0
v, ∀v ∈ V (3.8)∑

v∈V

oivt ≤ Bi ∀ i ∈ J , t ∈ T (3.9)

oivt ≤
∑
j∈J

xijvt, ∀ i ∈ J , t ∈ T , v ∈ V (3.10)

svt ≥ Qvxijvt, ∀ v ∈ V , i ∈ J P, j ∈ J C ∪ {d(v)}, t ∈ T (3.11)

svt ≤ Qv(1− xijvt), ∀ v ∈ V , i ∈ J C, j ∈ J P ∪ {d(v)}, t ∈ T (3.12)∑
t∈T

αit ≤ αmax
i , ∀ i ∈ J (3.13)

0 ≤ αit ≤ αmax
it , ∀ i ∈ J , t ∈ T (3.14)

Fmin
i oivt ≤ f vit ≤ Fmax

i oivt, ∀ i ∈ J , t ∈ T , v ∈ V (3.15)

Smin
it ≤ sit ≤ Smax

it , ∀ i ∈ J , t ∈ T (3.16)

0 ≤ svt ≤ Qv, ∀ t ∈ T , v ∈ V (3.17)

xijvt ∈ {0, 1}, ∀ i ∈ J ∪ {o(v)}, j ∈ J ∪ {d(v)}, t ∈ T , v ∈ V (3.18)

oivt, wivt ∈ {0, 1}, ∀i ∈ J , t ∈ T , v ∈ V (3.19)
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Objective function (3.1) maximizes the revenue obtained by unloading product at

discharging ports (first term), minus the traveling costs (second term), and the penaliza-

tion costs (third and fourth term). The third term is a negligible value accounted for when

an operation takes place. It induces vessels to operate as soon and few times as possible,

The fourth term is the penalization by using spot markets, i.e., violating port-time inven-

tory constraints. Constraints (3.2) fix the initial port-time node of each vessel, departing

from the source node o(v). The departing time from the source node is t = 0, and the trav-

eling time between o(v) and initial port J0
v is the first time in which vessel v is available

(T 0
v ). Constraints (3.3) are the vessels’ flow balance at the regular nodes, which consider

the traveling arcs and the waiting arc that enter and leave each node. Constraint (3.4) is

the flow balance at the sink node. Constraints (3.5) impose the port’s inventory balance

at the end of each time period. Constraints (3.6) and (3.8) define the initial inventory at

each port and the load on board each vessel, respectively. Constraints (3.7) define the ves-

sel load balance at the end of each time period. Constraints (3.9) impose the maximum

number of vessels that can operate simultaneously in each port. Constraints (3.10) require

that a vessel can only operate at a node if it is actually at that node. Constraints (3.11)

define that vessels must travel at the maximum capacity if sailing from a loading port

to a discharging port or the sink node, while constraints (3.12) require that vessels must

be empty if traveling from a discharging port to a loading port or the sink node. Con-

straints (3.13) limit a port’s cumulative amount sold to or bought from a spot market in

the entire planning horizon, and constraints (3.14) limit the amount in each time period.

Constraints (3.15) impose that once a vessel operates at a port, the operated amount must

lie between upper and lower limits. Constraints (3.16) and (3.17) assure that inventories at

ports and vessel loads are kept between their lower and upper limits in each time period,

respectively. Equations (3.18) and (3.19) ensure the integrality constraints on the binary

variables.

3.2 Fixed-Charge Network Flow Model

Agra et al. (2013) proposed a single-commodity fixed-charge network flow model

(FCNF) to derive a formulation with better linear relaxation than the corresponding time-

space network, considering another MIRP variation. In the FCNF, a commodity supplied

by loading ports flows along the arcs corresponding to the vessel routes until reaching dis-

charging ports to be consumed externally. Figure 3.2 illustrates the FCNF model structure
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for a discharging port i and a vessel v, highlighting a possible solution.

Figure 3.2: Example of a FCNF model for a discharging port i and vessel v.
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In Figure 3.2 each port-time (i, t), i ∈ J , t ∈ T is divided into three levels. The

top-level coordinates the vessels’ arrival at the port, while the middle level coordinates

the port’s operations and departures. The bottom layer is responsible for the inventory at

the port. The highlighted arcs represent a possible flow solution. When vessel v arrives at

specific node (i, t), it can wait for one time-period (wivt = 1), or it can operate (oivt = 1),

where the commodity flows to the middle level. At the middle level, the flow can be

divided between the discharging amount f vit, which flows to the bottom level, and the

remaining amount, which represents the load still on board the vessel. Then, vessel v can

wait one time period (using another set of waitng variables wB
ivt = 1), or can depart to

another port/finish its route through arc xijvt, j ∈ J ∪ d(v). Variables αit flow directly to

the bottom level as they work as slack variables.

The FCNF structure accommodates practical aspects of the real problem:

Assumption 1 a vessel cannot visit a port without operating at this port, since vessel

voyages are quite expensive;

Assumption 2 when a vessel ends its operation at the port, it must depart to another port

or end its route.

Besides assumptions 1 and 2 not being constraints in model (3.1)-(3.19), they do

not cut a possible optimal solution. The traveling arcs’ high cost suggests that a vessel
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will not travel to a port if it does not operate at such a port. It just increases the objective

function’s cost, considering that the triangular inequality is respected. Assumption 2

reduces the possibility of symmetric solutions. For example, after operated at port i,

the vessel travels to port j and waits l times before operating at j. Without Assumption 2,

the vessel can wait at port i for l times after operated and then departs to port j, operating

at j in the same time of the arrival, which is a symmetric solution for this MIRP.

It is possible to consider a more restrictive practical assumption on the FCNF

model by modifying the structure described in Figure 3.2. Such an assumption imposes

that once a vessel started to operate at a port, it cannot wait one or more time periods and

then operate again, i.e., if a vessel operates in two or more time periods at the same port

visit, such operations must be consecutive. The assumption is illustrated in Figure 3.3.

Figure 3.3: Example of a FCNF+ model for a discharging port i and vessel v.
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In the FCNF model ilustrated in Figure3.3, variable wB
ivt is replaced by variable

oB
ivt which indicates if vessel v continues to operate at port i after started to operate in a

time period before t, i.e. oA
ivt = 1.

Along with this thesis, we refer to the model in which structure is illustrated in

Figure 3.2 as just FCNF, while we refer to FCNF+ as the model in which the structure is

illustrated in Figure 3.3 to represent that it is more restrictive than the FCNF.

In the FCNF formulation the flow conservation constraints (3.3) are replaced by
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the following constraints:

∑
j∈J∪{o(v)}

xjiv,t−Tjiv + wiv,t−1 = wivt + oivt, ∀i ∈ J , v ∈ V , t ∈ T : t ≥ T 0
v (3.20)

oivt = wB
ivt +

∑
j∈J∪{d(v)}

xijvt, ∀i ∈ J ∪ {d(v)}, t ∈ T , v ∈ V (3.21)

wB
ivt ∈ {0, 1}, ∀i ∈ J , t ∈ T , v ∈ V . (3.22)

Constraints (3.20) and (3.21) are the flow balance at the top and middle level, respectively.

Constraints (3.22) define the waiting after operation variables’ scope. The following con-

straints represent the corresponding constraints for the FCNF+ model:

∑
j∈J∪{o(v)}

xjiv,t−Tjiv + wiv,t−1 = wivt + oA
ivt, ∀i ∈ J , t ∈ T , v ∈ V : t ≥ T 0

v (3.23)

oA
ivt + oB

iv,t−1 = oB
ivt +

∑
j∈J∪{d(v)}

xijvt, ∀i ∈ J , t ∈ T , v ∈ V (3.24)

oA
ivt + oB

iv,t−1 = oivt, ∀i ∈ J , t ∈ T , v ∈ V (3.25)

oA
ivt, o

B
ivt ∈ {0, 1}, ∀i ∈ J , t ∈ T , v ∈ V . (3.26)

Constraints (3.25) defines that if a vessel is operating, it started to operate in the current

time period, or it continues to operate from the previous time period.

Besides the additional binary variables, new continuous flow variables are associ-

ated with such variables. For the FCNF and FCNF+ models:

• fX
ijvt (associated with xijvt) is the load on board at vessel v when it travels from port

i to port j, starting at time t.

• fO
ivt (associated with oivt) corresponds to the load on board at vessel v when it

operates at port i in time period t.

• fW
ivt (associated with wivt) is the load on board at vessel v while waiting during time

period t at port i.

For the FCNF model:

• fWB
ivt (associated with wB

ivt) represents the load on board at vessel after it operated

at time t− 1 and continues at the same port.

For the FCNF+ model:
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• fOA
ivt (associated with variable oA

ivt.) corresponds to the load on board at vessel v

when it starts to operate at port i in time period t and it has not operated at time

t− 1.

• fOB
ivt (associated with variable oW

ivt) represents the load on board at vessel after it

operated at time t− 1, and before it continues operating at time t.

As the model considers the commodity flow, the vessel inventory variable svt is re-

moved and the commodity flow conservation is modeled as follows for the FCNF model:

∑
j∈J∪{o(v)}

fX
jiv,t−Tjiv + fW

iv,t−1 = fW
ivt + fO

ivt, ∀i ∈ J , t ∈ T , v ∈ V (3.27)

fO
ivt + ∆if

v
it = fWB

ivt +
∑

j∈J∪{d(v)}

fX
ijvt, ∀i ∈ J , t ∈ T , v ∈ V (3.28)

Constraints (3.26) and (3.27) define the flow conservation of the commodity on board

each vessel along the nodes. For the FCNF+ model, the corresponding constraints are:

∑
j∈J∪{o(v)}

fX
jiv,t−Tjiv + fW

iv,t−1 = fW
ivt + fOA

ivt , ∀i ∈ J , t ∈ T , v ∈ V (3.29)

fOA
ivt + fOB

iv,t−1 + ∆if
v
it = fOB

ivt +
∑

j∈J∪{d(v)}

fX
ijvt, ∀i ∈ J , t ∈ T , v ∈ V (3.30)

(3.31)

Constraints (3.31) define the initial load on board each vessel for both models.

fXo(v)jvt = L0
vxo(v)jvt, ∀j ∈ J ∪ {d(v)}, t ∈ T , v ∈ V (3.32)

The following constraints bound the variables of FCNF and FCNF+ models:

0 ≤ fXijvt ≤ Qvxijvt,∀v ∈ V , i ∈ J ∪ {o(v)}, j ∈ J ∪ {d(v)}, t ∈ T , (3.33)

0 ≤ fW
ivt ≤ Qvwivt,∀v ∈ V , i ∈ J , t ∈ T . (3.34)

Constraints (3.34)-(3.35) bounds the specific variables of the FCNF model:

0 ≤ fO
ivt ≤ Qvoivt,∀v ∈ V , i ∈ J , t ∈ T , (3.35)

0 ≤ fWB
ivt ≤ Qvw

B
ivt,∀v ∈ V , i ∈ J , t ∈ T (3.36)
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And the following constraints bounds the specific variables of the FCNF+ model:

0 ≤ fOA
ivt ≤ QvoA

ivt,∀v ∈ V , i ∈ J , t ∈ T , (3.37)

0 ≤ fOB
ivt ≤ QvoB

ivt,∀v ∈ V , i ∈ J , t ∈ T (3.38)

Finally, constraints (3.11) and (3.12) are reformulated as follows:

fX
ijvt ≥ Qvxijvt, ∀v ∈ V , t ∈ T , i ∈ J P , j ∈ J D ∪ {d(v)}, (3.39)

fX
ijvt ≤ Qv(1− xijvt), ∀v ∈ V , t ∈ T , i ∈ J D, j ∈ J P ∪ {d(v)}. (3.40)

The FCNF formulation is refereed by equations (3.1)–(3.4), (3.5)–(3.6), (3.9),

(3.13)–(3.16), (3.18)–(3.22), (3.26)–(3.27), (3.31)–(3.35), (3.39)–(3.40). The FCNF+

formulation is refereed by equations (3.1)–(3.4), (3.5)–(3.6), (3.9), (3.13)–(3.16), (3.18),

(3.23)–(3.26), (3.29)–(3.30), (3.31)–(3.33), (3.37)–(3.40).

3.2.1 Tightening Flow Variables Bounds

We can tighten the upper and lower limits of the flow variables based on the as-

sumptions 1 and 2, to also tighten the linear relaxation value and possibly improving

our algorithms’ performance. We present the tightening constraints for the FCNF model.

They were not considered in the FCNF+ model. We use the limits on flow variables fWB
ivt

that represents the load on board at vessel v after it operated at port i at time t − 1 to

explain the idea. Knowing that fWB
ivt must be positive if vessel v waits after operating at

port i, at least the value Fmin
i will be operated before and after waiting. Therefore, we can

affirm that fWB
ivt ≥ Fmin

i if i is a loading port, and fWB
ivt ≤ Qv − Fmin

i if i is a discharging

port. Consequently, vessel v must have a maximum load Qv −Fmin
i to be allowed to load

again at i ∈ J P, or must have a minimum load Fmin
i to be allowed to discharge again at

the port i ∈ J C. Thus, flow variable fWB
ivt can be bounded as follows:

wB
ivtF

min
i ≤ fWB

ivt ≤ wB
ivt(Qv − Fmin

i ), ∀v ∈ V , t ∈ T , i ∈ J . (3.41)
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For the other flow variables, the limits are different depending on the type of port. For the

loading ports, the new limits are defined as follows:

xijvtF
min
i ≤ fX

ijvt ≤ xijvt(Qv − Fmin
j ), ∀v ∈ V , t ∈ T , i, j ∈ J P , (3.42)

0 ≤ fW
ivt ≤ wvit(Qv − Fmin

i ), ∀v ∈ V , t ∈ T , i ∈ J P , (3.43)

0 ≤ fO
ivt ≤ oivt(Qv − Fmin

i ), ∀v ∈ V , t ∈ T , i ∈ J P . (3.44)

Considering the discharging ports, the new limits are:

xijvtF
min
j ≤ fX

ijvt ≤ xijvt(Qv − Fmin
i ), ∀v ∈ V , t ∈ T , i, j ∈ J D, (3.45)

wivtF
min
i ≤ fW

ivt ≤ wvitQv, ∀v ∈ V , t ∈ T , i ∈ J D, (3.46)

oivtF
min
i ≤ fO

ivt ≤ oivtQv, ∀v ∈ V , t ∈ T , i ∈ J D. (3.47)

The use of lower limits different from zero in the flow variables implies adding

O(|V||T ||J |2) new constraints to the FCNF model.

3.3 Models Size

The number of variables and constraints of both FCNF and TS models in order

terms is O(|V||T ||J |2). However, the FCNF model has more variables and constraints

than the TS model, as a new set of wait variables wB
ivt is created. Also, for each binary

variable (except oivt) is associated a linear variable for modeling the flow of vessel, thus

replacing the O(|V||T |) vessel invetory variables svt by O(|V||T ||J |2) flow variables.

For each linear flow variable, there is a new constraint for bounding it. Consequently,

the number of constraints in the FCNF model also grows compared to the time-space

model. Compared to the FCNF model, the FCNF+ model has additionally O(|V||J ||T |)

variables, and O(|V||J ||T |) constraints (due the constraints (3.25)).

3.4 Valid Inequalities

Valid inequalities are used for tightening the FCNF and TS formulations. Several

works proposed valid inequalities for different variations of the MIRP as observed in

Chapter 2. In this section, valid inequalities based on knapsack sets derived from the
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work of Agra et al. (2013) are presented. We present their construction based on the

FCNF+ model and adapt them for the FCNF and TS models.

3.4.1 Loading Ports

For each loading port i ∈ J P, the valid inequalities impose a minimum flow

out of the ports considering a specific time interval. Let T ′ = [l, k] ⊆ T be such time

interval. Also, let T ′v ⊆ T ′ be a subset of the time periods in T ′ in which vessel v ∈ V

is assumed to operate at port i. Additionaly, consider T ′+v = {t ∈ T ′v : t + 1 6∈ T ′v} as

the time periods in T ′ followed by the departure of vessel v from port i. Set T ′−v = {t ∈

T ′v : t − 1 6∈ T ′v} represents the time periods in T ′ in which vessel v starts to load at i.

Summing the flow conservation constraints (3.27) for loading port i over all vessels and

time periods t− 1 ∈ Tv we obtain

∑
v∈V

∑
t∈T ′v

f vit =
∑
v∈V

∑
t∈T ′v

(fOB
ivt − fOB

iv,t−1)

+
∑
v∈V

∑
j∈J∪{d(v)}

∑
t∈T ′v

fXijvt −
∑
v∈V

∑
t∈T ′v

fOA
ivt .

Considering

∑
v∈V

∑
t∈T ′v

(fOB
ivt − fOB

iv,t−1) =
∑
v∈V

∑
t∈T ′+v

fOB
ivt −

∑
v∈V

∑
t∈T ′−v

fOB
iv,t−1

and assuming that fOA
ivt and fOB

iv,t−1 are nonnegative gives

∑
v∈V

∑
t∈T ′

f vit ≤
∑
v∈V

∑
t∈T ′+v

fOB
ivt +

∑
j∈J∪{d(v)}

∑
t∈T ′v

fXijvt +
∑

t∈T ′\T ′v

f vit

 (3.48)

Summing the inventory constraints (3.5) over T ′ gives

∑
v∈V

∑
t∈T ′

f vit =
∑
t∈T ′

(−sit + si,t−1 +Dij − αit) (3.49)

Using Smin
it as an underestimator of sit and and αmax

i = min{αmax
i ,

∑
t∈T ′ α

max
it } as the

maximum amount that can be bought from or sold to a spot market by port i in time
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interval T ′, the combination with (3.48) and (3.49) results in

sik +
∑
v∈V

∑
t∈T ′+v

fOB
ivt +

∑
j∈J∪{d(v)}

∑
t∈T ′v

fXijvt +
∑

t∈T ′\T ′v

f vit

 ≥∑
i∈T ′

Dit + Smin
i,l−1 − αmax

i

(3.50)

Using upper bounds on flow variables given by constraints (3.15) and (3.32)-(3.33), con-

straint (3.50) becomes in:

sik +
∑
v∈V

∑
t∈T ′+v

Qvo
B
ivt +

∑
j∈J∪{d(v)}

∑
t∈T ′v

Qvxijvt +
∑

t∈T ′\T ′v

Fmax
it oivt


≥
∑
t∈T ′

Dit + Smin
i,l−1 − αmax

i

(3.51)

Replacing variable sik by its upper bound Smax
ik gives knapsack sets valid for the set of

feasible solutions of FCNF+. For an arbitrary Q > 0, we can construct the following

Chvatal-Gomory inequalities:

∑
v∈V

(∑
t∈T ′+v

⌈
Qv

Q

⌉
oB
ivt +

∑
j∈J∪{d(v)}

∑
t∈T ′v

⌈
Qv

Q

⌉
xijvt

+
∑

t∈T ′\T ′v

⌈
Fmax
i

Q

⌉
oivt

)
≥

⌈∑
t∈T ′ Dij + Smin

i,l−1 − Smax
ik − αmax

i

Q

⌉ (3.52)

There are two cases of inequality (3.52) that lead to more simple inequalities. For

the first case, consider that T ′v = T ′ implies in T ′+v = k, and T ′\T ′v = ∅. Defining

Q = max{Qv : v ∈ V } as the maximum vessel capacity gives:

∑
v∈V

oB
ivk +

∑
t∈T ′

∑
j∈J∪{d(v)}

xijvt

 ≥ ⌈∑t∈T ′ Dit + Smin
i − Smax

i − αmax
i

Q

⌉
(3.53)

The second case considers T ′v = ∅, implying in T ′+v = ∅ and T ′\T ′v = T ′. The

corresponding knapsack inequality is:

∑
v∈V

∑
t∈T ′

oivt ≥
⌈∑

t∈T ′ Dit + Smin
i − Smax

i − αmax
i

Fmax
i

⌉
(3.54)

Inequalities (3.53) impose a minimum number of vessel departures and operations in the

time interval T ′, while (3.54) impose a minimum number of operations (loading) at port i.
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3.4.2 Discharging Ports

In discharging ports, the valid inequalities should consider the subgraph entering

arcs, using the three levels of FCNF+ formulation, including the entering traveling arcs

and waiting arcs. Consider again the subset of time periods T ′ = [l, k].

The following disjoint sets can be defined in the subgraph for all t ∈ T ′: R0
v, R

1
v,

and R2
v. If t ∈ R0

v, only the bottom level node of time t is included in the subgraph. If

t ∈ R1
v, the bottom and middle-level nodes of t are included in the subgraph. If t ∈ R2

v,

the bottom, middle, and top-level nodes of t are included in the subgraph. Finally, define

T ′1v = {t ∈ R1
v ∪R2

v : t− 1 /∈ (R1
v ∪R2

v)}, and T ′2v = {t ∈ R2
v : t− 1 /∈ R2

v}.

Summing over constraints (3.5) for discharging ports (∆ = −1), and assuming

Smin
ik as the lower bound of sik gives

si,l−1 +
∑
t∈T ′

(∑
v∈V

f vit + αit

)
≥
∑
t∈T ′

Dit + Smin
ik (3.55)

writing in terms of the partition R0
v, R

1
v, R

2
v gives

si,l−1 +
∑
v∈V

∑
t∈R0

v

f vit +
∑
t∈R1

v

f vit +
∑
t∈R2

v

f vit

+
∑
t∈T ′

αit ≥
∑
t∈T ′

Dit + Smin
ik (3.56)

Summing constraints (3.26) and (3.27) over R2
v and R2

v ∪R1
v gives, respectively:

∑
t∈R2

v

fOA
ivt =

∑
t∈R2

v

 ∑
j∈J∪{o(v)}

fXjiv,t−Tjiv + fW
iv,t−1 − fW

ivt

 (3.57)

∑
t∈R2

v∪R1
v

(
fOA
ivt + fOB

iv,t−1 − f vit
)

=
∑

t∈R2
v∪R1

v

fOB
ivt +

∑
j∈J∪{d(v)}

fXijvt

 (3.58)

We can cancel fW
ivt (just considering the flow oAivt that will enter in a port) to sim-

plifly equation (3.57), while equation (3.58) is simplified by canceling fOB
ivt . Using the
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nonnegativity of variables fWivt, f
X
ijvt and fOB

ivt one can obtain from equation (3.56):

si,l−1 +
∑
v∈V

∑
t∈R0

v

f vit +
∑
t∈R1

v

fOA
ivt +

∑
t∈R2

v

∑
j∈J∪{o(v)}

fXjiv,t−Tjiv

+
∑
t∈T ′2v

(
fW
iv,t−1

)
+
∑
t∈T ′1v

fOB
iv,t−1

+
∑
t∈T ′

αit ≥
∑
t∈T ′

Dit + Smin
ik

(3.59)

Using the variable upper bound (3.15) and (3.32)-(3.33), and defining αmax
i =

min{αmax
i ,

∑
t∈T ′ α

max
it } as the maximum amount that can be bought from or sold to a

spot market by port i in time interval T ′, inequality (3.59) becomes:

si,l−1 +
∑
v∈V

∑
t∈R0

v

Fmax
i oivt +

∑
t∈R1

v

Qvo
A
ivt +

∑
t∈R2

v

∑
j∈J∪{o(v)}

Qvxjiv,t−Tjiv

+
∑
t∈T ′2v

(Qvwiv,t−1) +
∑
t∈T ′1v

Qvo
B
iv,t−1

 ≥∑
t∈T ′

Dit + Smin
ik − αmax

i

(3.60)

Replacing si,l−1 by its upper bound Smax
i,l−1 if l > 1, and by S0

i if l = 1), integer

knapsack constraints are obtained. For an arbitraryQ > 0, the following Chvatal-Gomory

inequalities are obtained:

∑
v∈V

∑
t∈R0

v

⌈
Fmax
i

Q
oivt

⌉
+
∑
t∈R1

v

⌈
Qv

Q

⌉
oAivt +

∑
t∈R2

v

∑
j∈J∪{o(v)}

⌈
Qv

Q

⌉
xjiv,t−Tijv

+
∑
t∈T ′2v

⌈
Qv

Q

⌉
wiv,t−1 +

∑
t∈T ′1v

⌈
Qv

Q

⌉
oBiv,t−1

 ≥ ⌈∑t∈T ′ Dit − Smax
i,l−1 + Smin

ik − αmax
i

Q

⌉
(3.61)

Three special cases can be derived from (3.61): Considering R2
v = T ′, R1

v = T ′,



63

and R0
v = T ′. Let Q = max{Qv : v ∈ V}. The special cases can be derived as follows:

∑
v∈V

 ∑
j∈J∪{o(v)}

∑
t∈T

xjiv,t−Tjiv + wiv,l−1 + oB
iv,l−1

 ≥ ⌈∑t∈T Dit − Smax
i + Smin

i − αmax
i

Q

⌉
(3.62)∑

v∈V

(∑
t∈T

oA
ivt + oB

iv,l−1

)
≥
⌈∑

t∈T Dit − Smax
i + Smin

i − αmax
i

Q

⌉
(3.63)∑

v∈V

∑
t∈T

oivt ≥
⌈∑

t∈T Dit − Smax
i + Smin

i − αmax
i

Fmax
i

⌉
(3.64)

Constraints (3.62) impose a minimum number of arrivals at discharging port i,

while Constraints (3.63) impose a minimum number of discharging operations. Finally,

Equation (3.64) impose a minimum number of operations at port i in the interval [l, k].

For considering the valid inequalities for the FCNF model, we replace variable

oB
ivk by variablewB

ivk in constraints (3.53), variable oB
iv,l−1 by variablewB

iv,l−1 in constraints

(3.62). The valid inequalities (3.54) and (3.64) remain the same, while constraint (3.63)

is not considered as it is specific for the FCNF+ model and is redundant for the FCNF.

For using the valid inequalities for the TS model, we replace variable oB
ivk by vari-

able wivk in constraints (3.53), and remove variable oB
iv,l−1 in constraints (3.62). The valid

inequalities (3.54) and (3.64) remain the same, while constraint (3.63) is not considered.

3.5 Additional Constraints

Two constraint sets for reducing the search space can be derived based on real-

istic assumptions. They can provide a tightening of the lower bounds depending on the

instance characteristic, also making it possible to obtain better integer solutions. The first

set is named as operate-and-depart constraints. It is based on the following assumption:

Let us consider a small vessel for which capacity Qv ≤ Fmax
i for some i ∈ J . There-

fore, this vessel can perform a full load or discharging operation at port i in just one time

period, and after can depart to another port (of a different type) or end its route. This
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assumption can be incorporated into the models by introducing the following constraints:

∑
j∈J∪d(v):∆i 6=∆j

xijvt = oivt, ∀i ∈ J , t ∈ T , v ∈ V : Qv ≤ Fmax
i . (3.65)

In TS, constraints (3.65) prevent a vessel from waiting at a port after finishing

its operation (already granted in FCNF) and ensure that the vessel operates in only one

time period for both formulations. These constraints may cut a possible optimal solution

where a small vessel may operate more than once in a port visit or split its load, operating

consecutively in two ports of the same region. However, it is not desirable to operate

small values as each operation has an additional value incurred in the objective function.

Also, fractioning a vessel inventory between two or more ports in a region implies that

more operations will be necessary at such ports by other vessels, which should be avoided

to reduce port congestion.

The second set of constraints named as Two-port-with-no-revisit constraints is

based on the assumption with the same name proposed in Papageorgiou et al. (2014a).

It assumes that when a vessel arrives in a port in some region, then: i) it will visit at

most one more port before leaving the region; ii) once it leaves the port, this port will

not be revisited by the vessel before leaving the region. Such constraints may cut an

optimal solution where a vessel needs to visit three or more ports in the same visit to a

determined geographical region. However, in the experiments reported by Papageorgiou

et al. (2014a), the two-port-with-no-revisit constraints are not violated in the solutions

even they are not considered in the mathematical model. To build the constraints, Papa-

georgiou et al. (2014a) developed an augmented time-space network that implements this

assumption. However, implementing the assumption directly on the time-space and FCNF

models requires additional sets of binary variables and side constraints that substantially

increase the model’s size, making it more challenging to solve. Thus, the following sim-

plified constraints set is used:

∑
i∈J :Ri=r

∑
j∈J :Ri=Rj

∑
t∈T

xijvt ≤
∑

i∈J :Ri=r

∑
j∈J :Ri 6=Rj

∑
t∈T

xijvt, ∀v ∈ V , r ∈ R (3.66)

In Eq. (3.66), Ri denotes the region that port i belongs. The constraints ensure that the

number of selected intra-regional arcs (representing the traveling arcs between ports of

the same region) of a vessel in a region will be less or equal to the number of entering

arcs in this region. Constraints (3.66) are effective when a unique visit of vessel v to
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region r ∈ R is performed along the entire planning horizon. However, suppose that

more than one visit to a region occurs by the same vessel. In this case, there may exist a

visit that uses no intra-regional arcs (a vessel arrives at some port in the region, operates,

and departs to another region), and a second visit that uses more than one intra-regional

arc, violating the assumption but not constraints (3.66).
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4 SOLUTION METHODS

This chapter discusses the proposed matheuristic and metaheuristic solution meth-

ods for solving the MIRP described in Chapter 3. Firstly, it presents a pre-processing and

simplification procedure to reduce the model’s total number of variables and constraints

in sections 4.1 and 4.2. Such procedures are also considered in the metaheuristic approach

indirectly.

The matheuristic framework consists of a relax-and-fix algorithm and a fix-and-

optimize algorithm, descirbed in sectionn 4.3 and 4.4. The metaheuristic approach is

composed by a multi-start algorithm, a large neighborhood search, and a reduced MIP

approach, described in sections 4.5, 4.6 and 4.7.

4.1 Preprocessing

Let us consider ports i and j of the same type, i.e. ∆i = ∆j . According to the

assumption incorporated in the FCNF and FCNF+ models, a vessel always operates at a

port before departing to another one. Since a minimum amount of product must be loaded

or discharged when an operation takes place on the port (constraints (3.15)), then a direct

voyage of vessel v ∈ V between ports i and j is impossible if Fmin
i + Fmin

j > Qv as it

implies in violating the minimum operation capacity constraints. Thus, we can remove

from the model the variables representing traveling arcs from i to j and vice-versa, as they

cannot be used in a feasible solution.

4.2 Instance Restrictions

The restriction procedure removes traveling arcs with a low chance of being used

in high-quality solutions. Consider ports i and j ∈ J with ∆i = ∆j belonging to different

geographical regions. We know that the vessel capacity will be divided between ports

i and j if a vessel travels directly from i to j and vice-versa. However, the traveling

costs between regions are high due to the problem characteristic (deep-sea). If just a

fraction of the vessel capacity will be used by i and j, the voyage has a higher cost

per product unit, and thus it is not desirable. Therefore, we can remove all variables

for each vessel representing traveling arcs between ports of the same type but belonging
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to different geographical regions. Although the simplification procedure may cut-off a

possible integer optimal solution for the problem, computational tests have shown that no

arc with the characteristics above are included in the solutions returned by our algorithms

when simplification is not considered.

4.3 The Relax-and-Fix Algorithm

The proposed relax-and-fix algorithm (R&F) is based on the solution method pro-

posed by Uggen, Fodstad and Nørstebø (2013). It consists of dividing the problem into p

smaller subproblems representing an interval of the time horizon with size |T |
p

. Figure 4.1

illustrates the R&F along the first three iterations.

Figure 4.1: Illustration of the relax and fix algorithm along the three first iterations.

1st iteration

2nd iteration

3rd iteration

Time Horizon

Interval 1 Interval 2 Interval 3 Interval 4 Interval 5

Fixed block Integer block Relaxed block End block

Source: from the author (2020).

According to Figure 4.1, at the first iteration the integrality constraints on all bi-

nary variables are relaxed (Relaxed block), except for the variables belonging to the “In-

terval 1”, which covers the planning horizon T = {1, . . . , |T |
p
}, and belongs to the Integer

block. When the original problem has a time horizon substantially large, a certain number

of intervals can be omitted from the model at the first iterations. These intervals belong to

the called End block. A mathematical solver then solves the problem. At the second itera-

tion, the blocks “move forward”: binary variables of the integer interval are fixed to their

obtained values and belong to the fixed block (original problem continuous variables are

kept unfixed). A part of the relaxed block belongs now to the integer block, and a part of

the model that was omitted is now considered in the model as relaxed block. The problem

is solved again by the MILP solver. The algorithm continues to iterate until all intervals
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have been removed from the end block, and integrality constraints are reintroduced to all

intervals’ variables. At this point, a solution to the original problem is obtained.

We also evaluated a R&F version in which the subproblems are associated with a

set composed of one or more vessels. Thus, the R&F iteratively re-insert the integrality

constraint on the variables corresponding to a vessel set. The end block can be composed

of a set of vessels that are not available at the beginning of the algorithm. However, with

such an approach, the infeasibility degree in the solutions was higher, demonstrating that

the time decomposition is most suitable for this MIRP variant.

4.3.1 Stop Criteria

In the R&F, solving each interval up to optimality does not necessarily lead to

a good solution for the original problem. Thus, we use MIP relative gap (between the

current integer solution and the linear relaxation at the current branch-and-bound tree

node) and the time limit as stopping criteria in each iteration. As proposed by Uggen,

Fodstad and Nørstebø (2013), the MIP relative gap is set initially to a positive value,

which decreases linearly along with the iterations such that its value is set in the last

one to 0.01%. With this strategy, the algorithm may obtain a good solution but with less

processing time. It can avoid exhaustively searching for high-quality solutions at the first

iteration while avoiding accepting the first feasible solution at the last iterations. The MIP

relative gap of the integer solutions tends to decrease along with the iterations due to the

variables fixing.

4.3.2 Avoiding Infeasibilities

During the R&F iterations, an infeasible solution can be produced due to the pre-

viously fixed decisions and the integrality constraints’ re-insertion. One strategy to avoid

such an infeasibility is to consider an overlap between the intervals, fixing only part of the

solved integer variables (POCHET; WOLSEY, 2006). The size of the overlap is defined

as a percentage value of the size of a time interval. Unlike what was done by Uggen,

Fodstad and Nørstebø (2013), which applies overlap only between the fixed and the in-

teger block, we consider it between all blocks types to keep the size of the subproblems

relatively equal. As the overlap percentage increases, the tendency to produce infeasi-
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ble solutions decreases. However, high overlap levels increase the processing time of the

algorithm.

Even using overlap, port-time inventory bounds (3.16) can be violated if no vessel

can operate at a port in specific times, and variables αit are insufficient to avoid stockout

or inventory overflow. To handle this issue, nonnegative auxiliary variables βit, θit, i ∈

J , t ∈ T are introduced to the model, as proposed by Friske and Buriol (2017), Friske and

Buriol (2018). They turn the port-time inventory constraints into soft constraints, being

their use penalized in the objective function. More precisely, these variables’ coefficient

is set to 1000, which is sufficiently larger for the tested instances. The coefficient value

can also be defined as 2 × maxi∈J ,j∈J ,v∈V{Cijv}. Constraints (3.5) are reformulated as

follows:

sit = si,t−1 + ∆i(Dit −
∑
v∈V

f vit − αit − βit + θit), ∀i ∈ J , t ∈ T (4.1)

The auxiliary variables on constraints (4.1) prevent the solver from stopping pre-

maturely during the iterations. However, if some auxiliary variable is positive at the end

of the R&F, the original problem’s solution remains infeasible.

Another kind of infeasibility can occur when flow balance constraints are inconsis-

tent with traveling at capacity and traveling empty constraints. An example is illustrated

in Fig. 4.2.

In Figure 4.2, it is fixed the decision of vessel v to travel from port h to port i, as

well as the decision to operate at node (i, t). The amount f vit discharged at node (i, t) is

sufficient to bring the inventory to its maximum capacity. Thus, there is still load onboard

at vessel v, and its unique option is to travel to the sink node or the loading port j, as the

decision variables associated with the waiting arcs and traveling arcs to ports of the same

type are fixed to zero. This is infeasible, as a vessel cannot travel from a discharging

port to a loading port (or end its route) with some load on board (equations (3.12) and

(3.40)). This infeasibility can be handled by θit variables, allowing vessel v to discharge

all its load without violating the port’s inventory capacity. However, if the amount to be

discharged by vessel v in one time period is larger than the operation capacity Fmax
i , the

solution will remain infeasible. Such infeasibility can also occur in cases where port i

is a loading port, violating the traveling at full capacity constraints (equations (3.11) and

(3.39)).

The higher probability of this infeasibility occurs when considering small-sized
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Figure 4.2: Example of infeasibility that may occur using the R&F by violating travel at
capacity and travel empty constraints.

Source: From the author (2020).

intervals combined with higher levels of overlap in the R&F algorithm and considering

the preprocessing strategy (Section 4.1).

4.3.3 Speeding up Computation

To avoid repeatedly solving the linear relaxation of the variables in the relaxed

block, saving up processing time, Uggen, Fodstad and Nørstebø (2013) introduced the

end block, which is derived from the last part of the relaxed block. The end block can

be a horizon cut or a so-called light model. The light model simplifies the subproblem

based on specific problem knowledge, while the horizon cut ignores part of the planning

horizon. Uggen, Fodstad and Nørstebø (2013) observed that there is no significant differ-

ence between the horizon cut and light model concerning objective value. However, the

horizon cut provides better processing times. On the other hand, the solution infeasibility

increases as the size of the end block increases.

We consider in our work to use the horizon cut strategy in the end block. We

propose two modifications to the subproblems’ parameters to reduce the drawback of

the horizon cut. The first one establishes a proportional value of αmax
i according to the



71

number of time periods in the current subproblem. Let e be the number of time periods in

the first iteration of R&F, i.e., not considering the time periods in the end block. We then

define αmax
i =

αmax
i

|T | · e. At each iteration, the value of αmax
i is updated proportionally to

the number of time periods considered in the subproblem until there is no interval in the

end block and the parameter is set to its original value. This modification tries to avoid

scenarios where variables αij reach their maximum cumulative limit before the whole

planning horizon is revealed. Therefore if new αit variables need to take positive values,

no feasible solution will be possible.

The second modification tries to prevent possible inventory violations in the ports

when part of the planning horizon is revealed to the subproblem. This behavior is similar

to the end of horizon effects described by Agra et al. (2017), where the inventories can

get close to their limits at the end of the planning horizon, resulting in a more difficult

problem in the next planning operation. For avoiding such situations, in the last time

period of the current subproblem, we reduce the total capacity of the loading ports by

10% and impose that the minimum inventory at the discharging ports is 10% of its total

capacity.

4.3.4 Updating Valid Inequalities

Valid inequalities (3.53)-(3.54),(3.62)-(3.62) use the initial inventory S0
i when l =

0, which provides strongest knapsack cuts. We can extend such cuts in the R&F algorithm

for other time periods when index l belongs to the fixed block. At each R&F iteration, the

inequalities in which l belongs to the fixed interval have their right-hand side parameter

Smin
il (loading ports) or Smax

il (discharging ports) updated to the current inventory sil.

4.4 Fix-and-optimize Algorithm

The fix-and-optimize algorithm (F&O) starts after a solution is obtained by the

R&F. It tries to improve parts of the current solution iteratively. The method consists of

fixing all integer variables from the solution obtained by the R&F, and iteratively a set of

these variables is unfixed to be optimized by the solver, generating different subproblems.

Continuous variables are always free to be optimized. Four rules or strategies for selecting

the set of variables to be optimized are defined:
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1. Time Intervals (TI): Consists of dividing the time horizon into m intervals, as in

the R&F. At each iteration, the integer variables of one interval are unfixed. After

optimized, these variables are fixed to the newly obtained values. This procedure

is repeated iteratively until no improvement is achieved by optimizing at least one

interval in m iterations. The strategy is used in the works of Uggen, Fodstad and

Nørstebø (2013), Lang and Shen (2011). We also consider an overlap value uTI

between the intervals defined as a parameter, based on the work of Uggen, Fodstad

and Nørstebø (2013).

2. Vessels Pairs (VP): This is strategy is the same proposed by Goel et al. (2012)

which explores the neighborhood between two vessels, this procedure consists of

iteratively selecting a pair of vessels to be optimized. Let v1 and v2 be the ves-

sels selected to be optimized at some iteration. Then, all binary variables indexed

by v ∈ V : v = {v1, v2} are unfixed, and the solver is started. The vessel pairs

can be selected at random with no repetitions, or in a lexicographic order, i.e.

(v1, v2), (v1, v3), . . . , (v|V|−1, v|V|). The search stops when no improvement on the

solution is obtained in the last
(|V|

2

)
iterations.

3. Interval Vessel (IV) This strategy is proposed in this work and can be considered

a combination of the two previous methods, iterating between time intervals and

vessels. The time horizon is divided into m intervals, allowing one interval to be

optimized at a time. Also, all integer variables associated with one vessel are al-

lowed to be optimized. After solving the subproblem, the optimized vessel’s integer

variables are fixed to the newly obtained values, except those belonging to the inter-

val which is being optimized, and a next vessel is selected to be optimized. When

all vessels were optimized, the current interval is fixed to their current solution, and

the next interval is selected. The algorithm iterates between all time intervals and

all vessels, corresponding to m|V| steps in a complete iteration. The search stops

when no improvement is achieved in one complete iteration. As in the time inter-

vals strategy, we can define a percentage overlap uVTI between the intervals, giving

a total of dm · (1 + uVTI

100
)e · |V| subproblems, assuming that an overlap of 100% is

not allowed.

4. Port Types (PT) This procedure is based on the work of Papageorgiou et al. (2014a).

First, all integer variables associated with the loading ports are fixed, while integer

variables associated with the discharging ports are optimized. Then, variables of
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the discharging ports are fixed to the new values, and the variables of the loading

ports are optimized. Variables that correspond to arcs that connect ports of differ-

ent types are kept unfixed in the whole procedure to allow a vessel to depart from

a region earlier if possible. According to Papageorgiou et al. (2014a), optimizing

first discharging ports is justified since the instances usually have more discharging

ports than loading ports. This procedure repeats until no improvement is achieved

in solving the two ports type consecutively.

Besides the stopping criteria of each improvement approach, each iteration/step

has a time limit and a MIP relative gap as stopping criteria.

In more recent experiments (described in Section 5.3.4-5.3.7)), before starting the

F&O, the operate-and-depart constraints, the valid inequalities, and the slack variables (if

not used) are removed from the model as they increase its size and are relevant to obtain

feasible integer solutions only. Also, since the operate-and-depart constraints (Section

3.5) can cut an optimal solution, it may be relevant to remove them to allow a better

exploration of the solution space by the F&O. The same applies to the modified valid

inequalities (Section 4.3.4) as they generate local cuts along with the R&F iterations.

4.5 The Multi-start Algorithm

The multi-start algorithm builds a set S of n solutions s using a constructive

greedy heuristic with randomness. For explaining the heuristic, the following notation

is adopted:

• Ri - Set of ports corresponding to the geographical region of port i.

• tviol
i - is the earlier time period t in which an inventory violation occurs at port

i, i.e. tviol
i = min{t ∈ T : sit < Smin

i , i ∈ J C}, and tviol
i = min{t ∈ T :

sit > Smax
i , i ∈ J P}. It is illustrated in Figure 4.3;

• Vessel voyage - Sequence of vessel actions starting by departing from port i ∈ J ,

and ending at port j ∈ J , such that i and j are different type ports. Optionally, a

port i′ ∈ Ri can be visited after port i, and a port j′ ∈ Rj can be visited after port

j. A vessel voyage ends after finishing its operation at port j (or j′), such that no

more operations can be performed, i.e., if j ∈ J P the vessel is at full capacity, and

if j ∈ J C the vessel is empty.
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Figure 4.3: Inventory violation time tviol
i .

Source: From the author (2020).

The constructive algorithm iteratively builds a concatenation of voyages for each vessel

until there is no inventory violation at the ports, i.e. tviol
i > |T |, i ∈ J .

The multi-start algorithm and its main components are presented in Algorithm

3 and detailed in the next sections. Parameters pCP and p2nd represent probabilities for

selecting ports at random along with the algorithm iterations.

Algorithm 3: Multi-Start Algorithm
1: Input: n, pCP, p2nd

2: Output: a set of solutions S
3: while |S| < n do
4: Init(s, p2nd)
5: while tviol

j ≤ |T |, i ∈ J do
6: j = urgentPort()
7: i = counterpartPort(j, pCP)
8: v = selectBestVessel(i, j, p2nd)
9: UpdadeSolution(s, v, i, j)

10: end while
11: CompleteSolution(s)
12: S = S ∪ s
13: end while

4.5.1 Initializing Solution s

This function presented in line 4 puts each vessel v ∈ V in its initial port j0
v and its

first time available t0v given as parameter input. We assume that vessels always operate at

the initial port, as they start at full capacity (sv0 = Qv) if j0
v ∈ J C and start empty (sv0 = 0)

if j0
v ∈ J P. The algorithm decides if vessel v will also operate at a port j′ ∈ Rj0v

after

operated at j0
v . In this case, it is necessary to split the vessel capacity between ports j0

v

and j′. This decision procedure is detailed in Section 4.5.6. For now, assume that after
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the end of the initialization function, all vessels v ∈ V operated at its initial port j0
v (and

possibly at a port j′ ∈ Rj0v
), completing its first vessel voyage.

Different vessels may start the route at the same port but in different time periods.

Thus, the order in which each vessel is initialized in the solution may affect either the

port inventory levels and the other vessels’ operations at the same port. For obtaining

more variability in the solutions, this order is randomly defined by the algorithm for each

solution s ∈ S.

After a vessel operation is implemented at port j ∈ J , the inventory violation

time tviol
j is updated, incresing its value.

4.5.2 Selecting the Urgent Port

After the solution was initialized, the urgent port j is selected (line 6) as the port

with the earliest inventory violation time, i.e., j = arg mini∈J {tviol
i }. It can be a loading

or a discharging port, and in case of a tie, the discharging port is selected. If the tie occurs

between ports of the same type, the one with the highest inventory capacity is selected.

4.5.3 Selecting the Counterpart Port

The counterpart port i is selected for supplying the demand of urgent port j (line

7). The candidate ports are always of a different type of port j, i.e., ∆i 6= ∆j . They are

ranked in increasing order considering tviol
i and the distance to the urgent port j. The port

with the minor sum of its position in the two ranks is selected as the counterpart port, and

in case of a tie, the port with the earliest inventory violation time is selected. This strategy

is the same as proposed by (CHRISTIANSEN et al., 2011). Additionally, we defined a

probability pCP of selecting a counterpart port at random between all candidate ports to

introduce more variability on the solutions generated.

4.5.4 Selecting the Best Vessel

The function in line 8 evaluates each vessel v ∈ V to perform the voyage between

counterpart port i and urgent port j. For the explanation, we assume that i is a loading

port, and j is a discharging port. If v is currently at a loading port l 6= i in the partial
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solution, it does not need to visit port i, as v will be already loaded and can travel directly

to port j. Otherwise, v needs to travel from its current position to the counterpart port i.

In such case, it is also evaluated if a port i′ ∈ Ri should be visited after port i and before

departing to urgent port j (see section 4.5.6). After visiting and operating at port i (and

possibly at port i′), vessel v travels at full capacity to urgent port j. It is also evaluated if a

port j′, such that Rj′ = Rj can be visited after j. Note that when evaluating each vessel,

the optional ports i′ and j′ can be different.

Sometimes a vessel can arrive at a port only after tviol
i . In such cases, spot market

variables αit are used to keep the inventory at the bound limits (sit ≤ Smax
i for loading

ports, sit ≥ Smin
i for discharging ports) until one time period before the vessel can arrive

and operate at the port. As the use of spot market variables is limited, if they are not suf-

ficient to keep the inventory of ports at the bound limits until the vessel arrives, auxiliary

variables βit, i ∈ J , t ∈ T are used. They are equivalent to αit, but not bounded and

highly penalized in the objective function as in the R&F (see section 4.3.2). The costs of

using αit and βit variables are considered penalization costs of the voyage.

After vessels were evaluated, the best one is selected according to one of the fol-

lowing criteria, chose at random:

1. Lowest cost: Considers the traveling, operations, and possible penalization costs

minus the profit obtained by the vessel in the voyage;

2. Highest cost: The opposite of the previous criteria;

3. Smallest number of waiting times: Considers the total number of time periods in

which a vessel needs to wait in the ports along the voyage;

4. Closest arrival time: Calculates the difference between the arrival time and the

inventory violation time at the urgent port. The lower the value, the better;

5. Earliest arrival time: Selects the vessel which can first arrive at urgent port j to

operate;

6. Smallest number of operations: Selects the vessel which needs the lowest number

of operations at the ports to finish the voyage;

7. Lowest cost/capacity ratio: considers the vessel voyage cost divided by its capac-

ity Qv;



77

8. Lowest penalization: in cases when no vessel can arrive at urgent port j before

inventory violation time, selects the vessel with the lowest penalization cost associ-

ated.

Criteria 1, 3, 4, 6–8 aims to improve solutions quality, while criteria 2 and 5 aims to

provide variability on the generated solutions.

While the constructive algorithm iterates, it is possible that a vessel is able to

operate in a port at a time period earlier than an already implemented operation. In such

cases, for defining a feasible operation, it is necessary to check the inventory of the port

at the last time period in which the operation took place. For example, consider that an

operation was implemented in port j ∈ J C at time t′ = 9, such that sjt′ = 250. The port

inventory capacity is Smax
j = 300. Now suppose that vessel v arrives in port j at time

t = 4 and sjt = 100. Considering only the inventory at time t, vessel v can discharge

200 units without violating the inventory capacity of port j. However, at time t′, the

maximum amount that can be discharged is only 50 units. Therefore, if some discharging

operation occurs before time t′, the value to be discharged must be at most the inventory

space available at time t′. The following variable parameter defines the maximum value

that can be operated at port i in time t without causing an inventory violation in future

time periods:

fmax
it =

mint′∈T :t′≥t{sit′} if i ∈ J P

mint′∈T :t′≥t{Smax
i − sit′} if i ∈ J C

(4.2)

4.5.5 Specific procedures

Two problem specific functions are used internally in Init and selectBestV essel

functions. For explaining them, we consider a discharging port i ∈ J C. The procedure

for a loading port is analogous.

4.5.6 Deciding between operating at one or two ports

When evaluating a vessel v to discharge at port i, the algorithm must decide be-

tween discharging all its cargo in port i or splitting the vessel load with a second port

i′ ∈ Ri.

Such a decision is used to handle two issues: i) no other vessel except v can arrive
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at port i′ before tviol
i′ . Therefore, it is preferable that v visits port i′ to avoid a major

probability of building an infeasible solution; ii) vessel v needs to wait too many time

periods to discharge in port i due to inventory constraints. Although there are no costs for

a vessel to wait at a port, such a situation should be avoided as it can compromise the next

voyages. Thus, it is possible that dividing a vessel load between two ports may result in

lesser waiting time periods, and the voyage can finish earlier.

The algorithm ranks all candidate ports i′ ∈ Ri (including port i) considering

three criteria: inventory violation, end time of the operation, and voyage cost. Firstly it

is evaluated if only vessel v can arrive at a candidate port i′ before tviol
i′ . If this is the

case, vessel v must visit port i′. If there is no candidate port in such a situation (or more

than one), the algorithm selects the port i′ in which vessel v ends its voyage earlier in the

planning horizon. If there is a tie between two or more candidate ports considering this

criterion, the port i′ that implies in the lowest voyage cost is selected.

If the best-ranked port is different from i, the vessel capacity is divided between

the ports such that the maximum amount is operated in port i at time t, and the remaining

is operated at port i′, respecting the minimum amount Fmin
i′ . Otherwise, if i′ = i, the total

vessel capacity is operated at port i. Besides the ranking, we defined a probability p2nd of

randomly selecting a port i′ ∈ Ri to provide more variability in the solutions.

4.5.7 Defining operation values and times

Supose that vessel v arrives in port i at time t, and needs discharge the amount f .

This operation is subject to several problem constraints, such as inventory, operation, and

berth limits. Firstly, if berth occupation in i at time t is equal to berth limit Bi, then vessel

v must wait at the port until a time t′ ≥ t in which a berth is available. There are three

options for a vessel to discharge in a port: the first and most preferable is to discharge

f in port i at time t without waiting at the port, i.e., f vit = f . This is possible only if i

has capacity to recieve the amount f , and there is sufficient inventory space at the time

t, i.e., f ≤ Fmax
i and f ≤ Smax

i − sit. In the second option, the vessel needs to wait

one or more times while f > Smax
i − sit before discharging f . The third option occurs

when f > Fmax
i . In such a case, a vessel must operate multiple time periods, splitting the

amount f .
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4.5.8 Updating Solution

This procedure (line 9 of Algorithm 3) implements in solution s the voyage of the

selected vessel v between ports i and j, updating their inventory according to the amount

operated and also the inventory violation time tviol
i and tviol

j . The port inventory is updated

for each time period, starting from the operation time until the end of the planning horizon.

Thus, the operation’s complexity time isO(|T |) for each port visited in the vessel voyage.

4.5.9 Complete the Solution

After the end of the while loop, there is no port with an inventory violation, and

a feasible solution is obtained (unless some auxiliary variable βit is positive). The Com-

pleteSolution function in the line 11 aims to obtain a better solution quality, verifying for

each discharging port if there is a vessel that can discharge in the port before the end of

the planning horizon. If such a case exists and the operation provides a revenue greater

than the voyage and operation costs, the voyage is performed.

4.6 The Large Neighborhood Search

The large neighborhood search is responsible for improving solutions given by

the multi-start algorithm and possibly remove the infeasibility when some variable βit

is positive. The LNS partially destroys a solution s by removing u% of the vessels at

random. Each removed vessel’s route is then rebuilt in a different way, generating a

candidate solution s′. If solution s′ is accepted, it becomes the current solution s. The

procedure is repeated until it reaches a maximum number of iterations maxItLNS, or the

candidate solution is not accepted for maxNA consecutive iterations. The best solution

found is returned at the end of the LNS.

The route of vessels is rebuilt with the same constructive heuristic of the multi-

start algorithm, given in lines 5-11 of Algorithm 3. The unique difference is that the

constructive heuristic in the LNS considers only the vessels removed from the solution.

The LNS is performed on a set SLNS ⊆ S which is composed of m solutions, such that

dm
2
e are the best solutions obtained by the multi-start algorithm (considering different

objective function values) and bm
2
c are solutions chosen at random from set S. This
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configuration is chosen as we observed that a significant part of the multi-start algorithm’s

infeasible solutions could be turned feasible, besides obtaining a lower objective function

value than the best multi-start solutions improved by the LNS.

4.6.1 Acceptance Criteria

A candidate solution s′ is accepted if its objective value is better than the objec-

tive value of the current solution s. The algorithm also accepts worse solutions than the

current one under some conditions. To do this, we use the temperature parameter used

in simulated annealing in a similar way as (ROPKE; PISINGER, 2006), in which the

probability of a worse solution being selected decreases as the temperature downs. More

precisely, the probability is given by p(S) = e−
f(S′)−f(S)

T where T is the temperature. The

initial temperature is defined by the objective value of the initial solution (provided by

the multi-start algorithm) multiplied by a factor 0 < f start < 1, and decreased at each

iteration by a cool rate 0 < c < 1, until reaching the final temperature defined based on

the initial solution objective and a constant 0 < f end < 1, such that f end < f start.

4.6.2 Backtracking

To avoid the LNS getting stuck in local minima and intensify the search in promis-

ing solution spaces, if a new best-solution is not found aftermaxreset iterations, the current

solution is set to the best solution found so far. The current temperature is set to half of

the starting temperature to provide more exploration of the search space from the best

solution.

4.7 The reduced MIP

After LNS was performed on the m solutions of set SLNS, such solutions are

converted to a reduced mixed-integer program, based on the FCNF model. In the reduced

MIP only the variables (and respective constraints) that assume a positive value in the

corresponding metaheuristic solution are inserted in the model. The exceptions are port

inventory variables sit, spot market variables αit, and auxiliary variables βit, which are

added for all i ∈ J , t ∈ T . A mathematical solver then solves the reduced model for



81

Figure 4.4: Example of a solution in the FCFN model and the corresponding adjacent
variables.
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tRMIP seconds for trying to obtain a better solution than the best one provided by the

LNS. As the size of the reduced model (number of columns and rows) is smaller than the

original model, it can be solved to optimality in a short processing time depending on the

value of parameter m.

Although solving RMIP is usually quick, adding only the variables and constraints

corresponding to the LNS solutions can be restrictive so that the solution found by the

solver is the same found by the LNS. Thus, we defined “adjacent" variables of the so-

lution that are also included in the model. They cover the binary variables oivt, wivt,

and wB
ivt, besides their corresponding continuous flow variables f vit, f

O
ivt, and fWB

ivt , respec-

tively. Figure 4.4 illustrates the adjacent variables according to a vessel v route solution

visiting a port i.

In the example of Fig. 4.4, vessel v arrives in port i at time t = 1, wait for three

time periods, and then operates at time t = 3, finally departing to another port. The

adjacent variables correspond to the waiting (w) and operation (o) variables between the

arrival time t = 1 of vessel v in port i until the departing time t = 3. They enable the

solver to decide if a vessel can improve its route by changing possible time periods in

which the operation(s) take(s) place and the value which is operated. Note that in the

example of Fig. 4.4, vessel v still must operate at the time period t = 3, as the traveling

arcs variables xijvt representing the depart from port i in time periods with t < 3 are not

included in the model.
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5 COMPUTATIONAL RESULTS

This chapter presents the computational results obtained by solving the MIRP us-

ing the matheruistic framework and the metaheuristic approach. Firstly, the benchmark

instances used in the experiments are presented in Section 5.1. After, a lower bound

analysis to compare the TS and FCNF models is presented in Section 5.2. Finally, Sec-

tion 5.3 presents the results and analysis of the matheuristic framework, followed by the

metaheuristic results presented in Section 5.4.

The integer solutions were compared with the state-of-the-art algorithm for the

presented MIRP, proposed by Papageorgiou et al. (2014a). For comparison purposes, the

models were solved as minimization problems, inverting the objective function coeffi-

cients’ signal.

The algorithms were implemented in C++ and compiled with the optimization

parameter −O3. The experiments were carried out in different computer configurations,

and different versions of the CPLEX solver were used. We detail them in each section.

The valid inequalities presented in section 3.4 were added to the models a priori

for all combinations of T , where T ′ includes either the first period or the last period, i.e.,

T ′ = {1, . . . , t} , or T ′ = {t, . . . , T}, t ∈ T . Thus, each set of valid inequalities adds to

the model Θ(2J (T−2)) constraints. Depending on the problem instance, some cuts may

be redundant. We let the solver handle this issue.

5.1 Benchmark Instances

The computational experiments used the “Group 1” instances available in the

MIRPLIB (PAPAGEORGIOU, 2013). The instances name present their characteristics.

For example, in instance “LR2_11_DR2_33_VC5_V12a” there are 2 loading regions

(LR), and in each region, there is one loading port, two discharging regions (DR), each

of them with three ports. There are five classes (VC), with a total of twelve available

vessels (V), at least one for each vessel class. The letter at the end of the name is used

for differentiating instances of the same size. The benchmark set consists of 14 instances,

such that the planning horizon of each instance can be changed and set up to |T | = 360

days. The tests were performed with planning horizons of 45 and 60 time-periods for the

matheuristic framework (Section 5.3). In the experiments with the proposed metaheuristic

(Section 5.4), instances with 120, 180, and 360 time periods were also considered.
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5.1.1 Modified Instances

A simple modification on the MIRPLIB instances is proposed for evaluating the

quality of the matheuristic framework to solve more general instance cases where ports

are not grouped in regions. Let xi and yi be the coordinates (in a Euclidean plane) of

each port i ∈ J in the original instance. Also, let x = maxi∈J {xi}, y = maxi∈J {yi},

x = mini∈J {xi}, and y = mini∈J {yi} be the extreme coordinates of the instance. Then,

new coordinates for each port i are defined at random as follows: xi = rand(x, x) and

yi = rand(y, y), where rand(a, b) is a function that generates a random value between

a and b. The seed value used for each instance was x. The distances between ports and

cost of arcs are recalculated according to (PAPAGEORGIOU et al., 2014b). Instance

“LR2_22_DR2_22_VC3_V10a” becomes infeasible due to the new ports’ positions. For

this case, the values of Dit, i ∈ J , t ∈ T were reduced in 10%. The modified instances

are available on the author’s web page1. The tests with the modified instances were carried

out only on the TS model results of Section 5.3.1. Observe that such modification in the

instances may turn the two-port-with-no-revisit constraints described in section 3.5 not

valid, as they are based on scenarios that ports are grouped in geographic regions.

5.2 Lower Bounds

This section presents an evaluation of the quality of the formulations presented in

Chapter 3 considering the lower bounds obtained by solving the models’ linear relaxation

and presenting the contribution of the valid inequalities to tight the lower bound.

The average results considering instances with |T | = {45, 60} are presented in

Table 5.1, including the lower bounds obtained by the Optimistic SystemModel and the

SystemModel-2Port obtained by Papageorgiou et al. (2014a). The detailed table, including

individual instance results, is available in Table A.1 in the appendix. The Optimistic

SystemModel is a simplified version of the TS, which groups ports per region and vessel

per class. The SystemModel-2Port is a tailor-made formulation adapted from the TS,

and the results reported are obtained by solving the model for up two hours. Column

Avg. Obj. presents the average values of the models’ linear relaxation considering all

instances. The lines are ordered in increasing order according to the value in column

Avg. Obj., i.e., from the loose to the tighter lower bound. Column Improv. presents the
1<http://inf.ufrgs.br/$\sim$mwfriske>

http://inf.ufrgs.br/$\sim $mwfriske
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Table 5.1: Average lower bound values considering different formulations.
Model Avg. LB. Improv.
TS -38,915.6 -
TS+VI -30,260.4 22.2%
Optimitistic SystemModel -16,895.6 56.6%
FCNF -16,633.0 57.3%
FCNF + VI -16,564.2 57.4%
SystemModel-2Port -15,684.9 59.7%

Source: From the author (2020).

percentage improvement of the model against the base case (TS) given by |LBTS

LB
−1| ·100,

where LB is the linear relaxation of the current model, and LBTS is the lower bound of

the base case. Note that we present only the lower bound of the FCNF model, as the lower

bounds obtained by the FCNF+ model are the same.

According to the results shown in Table 5.1, we observed that:

• As expected, the lower bounds obtained by the FCNF model are much better than

those obtained by the TS formulation;

• The use of valid inequalities contributed significantly to tight the TS model lower

bounds, but they were not expressive for the FCNF model.

• The OptimisticSystem Model lower bounds are slightly worse than those produced

by the FCNF model, while the lower bounds of the SystemModel-2Port improved

the FCNF lower bounds by 5.6%. It is important to note that the lower bounds

produced by the SystemModel-2Port were obtained from a tailor-made model con-

sidering practical problem assumptions. The FCNF model’s lower bound quality is

due to the formulation itself.

Although not reported in Table 5.1, the processing time for obtaining the lower

bounds for the FCNF model when adding all valid inequalities a priori grown consider-

ably. For example, for obtaining the lower bound of instance LR2_22_DR3_333_VC4_V17a

with T = 60, the FCNF model took approximately 17 hours, and when adding the valid

inequalities, it took nearly 40 hours. An alternative for reducing the computational time

is adding valid inequalities to the model on-demand, using a separation problem. How-

ever, solving the linear relaxation of the pure FCNF is also time-consuming for several

instances, and since the separation problem needs to solve the linear relaxation frequently,

the gain in processing time may be small. Another point is that adding all valid inequal-

ities a priori when solving the problem with the relax-and-fix algorithm does not affect
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the processing time. On the contrary, it reduces the total computation time, as can be

observed in sections 5.3.2 and 5.3.5.

5.3 Matheuristic Results

This section presents the results obtained by the R&F and the F&O using the TS

and FCNF models. It is organized as follows:

• Section 5.3.1 presents the results obtained by solving the TS model with the pro-

posed framework and a priori parameter setting.

• Section 5.3.2 presents the results by solving the FCNF model with the proposed

framework and a priori parameter setting.

• Section 5.3.4 presents the algorithms’ parameter callibration using the irace pack-

age.

• Section 5.3.5 presents an individual analysis of the different formulation compo-

nents used in the solution strategy.

• Section 5.3.6 presents the evaluation of each F&O strategy individually.

• Section 5.3.7 presents the framework results obtained with the parameter calibration

for both TS and FCNF model.

Since this thesis summarizes the research along the Ph.D. period, some features of

the MIRP formulations, R&F, and F&O were not considered in part of the computational

experiments as they were proposed after such experiments. Table 5.2 lists the features

proposed for the algorithm and formulations to summarize such differences, pointing out

which of them were used in the experiments according to the section, including the pub-

lication in which the results were presented.

5.3.1 Time-space Network Model Results

The results presented in this section were obtained using the CPLEX 12.5 solver,

running in an AMD-FX-8150 computer running at 3.6 GHz on a single core, with 32 GB

RAM.
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Table 5.2: Models, formulations features, and matheuristic features considered in the
experiments.

Model TS FCNF+ TS FCNF
Section 5.3.1 5.3.2 5.3.4,5.3.5, 5.3.6, 5.3.7
Correspondent publication Friske and Buriol (2017) Friske and Buriol (2018) Friske, Buriol and Camponogara (2020)

Formulation

Tight Flow Variables Bounds (Sec. 3.2.1) •
Valid Inequalities (Sec. 3.4) • • •
Operate-and-depart constraints (Eq. (3.65)) • • • •
Two-port-with-no-revisit constraints (Eq. (3.66)) •
Preprocessing (Sec. 4.1) • •
Instance Restrictions (Sec. 4.2) • •

R&F

Use of auxiliary βit variables • • • •
Use of auxiliary θit variables • • •
Proportional αmax

i (Sec. 4.3.3) • •
Tight Inventory (Sec. 4.3.3) • •
Updating Valid Inequalities (Sec. 4.3.4) • •

F&O

Overlap uTI between intervals (TI) • •
Overlap uVTI between intervals (IV) • •
Remove valid inequalities and additional constraints before start • •
Remove auxiliary variables βit,θit before start • •
Random selection of vessels in VP strategy • •
Lexicographic selection of vessels in VP strategy • •

Parameter setting A priori A priori irace irace

Source: From the author (2020).

For defining the parameters of the matheuristic framework using the time-space

network model, the instances were divided into two sets according to the number of load-

ing regions. Set-1 corresponds to the instances with one loading region (LR1), while set-2

corresponds to the instances with two loading regions (LR2). There is no distinction be-

tween the time horizons of the same instance, i.e., the same parameters used for T = 45

are also used for T = 60. The exception occurs with the number of intervals p that the

time horizon is divided into the relax-and-fix algorithm. Parameters and possible values

tested for each set are described in Table 5.3.

Table 5.3: Parameters values used in for the time-space model
Parameter Acronym

Value
Set-1 Set-2

R&F
Number of intervals p

{5,9} Case T = 45
{6,10} Case T = 60

Overlap (%) o {15,30,50}
Time limit for solving each subproblem (s) titRF {50,100,200} {100,200,400}

F&O
Time limit per iteration (s) titFO

25 50 Not using βit
35 75

Using βit70 150
140 300

F&O time limit (s) tmax
FO 7200 10800

Source: From the author (2020).

According to Table 5.3, each instance set can have more than one value for each

parameter. The combination with the smallest value for each parameter is first tested, and

when necessary, some of them are increased. For example, consider an instance from

Set-1 with T = 45, the first test uses p = 5, o = 15, titRF = 50. If the solution becomes

infeasible during a R&F iteration, the overlap is increased from 15% to 30%, and the test

is restarted. On the other hand, if R&F cannot find an integer solution in some iteration

due to the time limit per iteration titRF, it is increased from 50 to 100 seconds. Even if with
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the maximum values of o and titRF no integer solution was found, or solutions remained

infeasible, the value of p is changed from 5 to 9, and the other parameters are reset to the

minimum values, increasing them if necessary. If no solution has been found by varying

the previous parameters, only the auxiliary variables βit (see section 4.3) are added to

the model, again resetting p, o and titRF to its minimum values. When using auxiliary

variables, titFO is also increased. If a solution remains infeasible during R&F or at the

end of the local search, o, titRF and titFO are increased together. At this point, the tests are

stopped even if no feasible solution is found.

The number of intervals belonging to the end block when starting the R&F algo-

rithm was set to p− 2 in all tests, which is the maximum value allowed for the algorithm.

The initial optimality gap was set to 50%. The F&O strategies used were IV and PT

(see Section 4.4). For the first strategy, which divides the planning horizon into m inter-

vals, the parameter m was set to 3. For all F&O strategies, the optimality gap was set to

0.1%. The time limit tmax
FO of the improvement phase is equally divided between the local

searches used in each test. If some local search finishes before reaching the time limit,

the remaining time is available for the next local search.

The chosen parameters and results of the time-space network model are presented

in Table 5.4. Column Parameters presents the parameters’ values, columns R&F presents

the results considering only the relax-and-fix algorithm, while columns F&O present the

results concerning the fix-and-optimize algorithm performed over the solution obtained by

the R&F. Column Obj corresponds to the objective value, and column Time corresponds to

each algorithms’ processing time (in seconds). Column GapLB presents the gap deviation

of the objective function value Obj in relation to the lower bound LB obtained by the

TS model linear relaxation with the additional constraints described in Section 3.5, being

calculated as (Obj−LB−LB ) · 100. When the row is singed with a “-”, no feasible solution was

found for the corresponding instance. Finally, column Total Time presents the total time

spent by the algorithm.

According to Table 5.4, The F&O algorithm improved the objective function on

average 11.4%, considering only the cases where R&F provided a feasible solution, i.e.,

without using the auxiliary variables βit. Considering the instance where R&F has not

provided a feasible solution, F&O could remove the infeasibility in five instances. On

the other hand, on average, 85.4% of the total time was spent in the improvement phase.

The algorithms could not obtain even a feasible solution for eight instances, six with time

horizon T = 60.
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Table 5.4: Results for the time-space model with MIRPLIB instances
Instance

Parameters R&F F&O Total
Timeβi,t p o titRF titFO Time Obj Time Obj GapLB

T = 45
LR1_1_DR1_3_VC1_V7a 5 15 50 25 55 -13,178 454 -13,272 23.3% 509
LR1_1_DR1_4_VC3_V11a 5 15 50 25 159 -10,682 822 -10,910 35.0% 981
LR1_1_DR1_4_VC3_V12a 5 15 50 25 38 -8,540 624 -10,372 35.0% 662
LR1_1_DR1_4_VC3_V12b 5 15 50 25 179 -7,999 1,611 -9,057 46.5% 1,790
LR1_1_DR1_4_VC3_V8a 9 30 50 25 26 -4,688 86 -5,106 31.7% 112
LR1_1_DR1_4_VC3_V9a 5 15 50 25 29 -5,419 649 -6,629 36.2% 678
LR1_2_DR1_3_VC2_V6a 5 30 50 25 256 -9,511 1,797 -10,577 45.8% 2,053
LR1_2_DR1_3_VC3_V8a 5 15 50 25 188 -10,133 1,255 -11,680 39.5% 1,443
LR2_11_DR2_22_VC3_V6a • 5 50 400 300 1,610 94,720 5,401 -9,550 50.0% 7,011
LR2_11_DR2_33_VC4_V11a • 5 15 100 75 395 565,310 5,475 -13,218 62.5% 5,870
LR2_11_DR2_33_VC5_V12a • 5 15 100 75 435 747,441 5,551 -15,125 64.1% 5,986
LR2_22_DR2_22_VC3_V10a • 5 50 400 300 2,035 1,374,400 5,436 -21,957 43.6% 7,471
LR2_22_DR3_333_VC4_V14a • 5 15 100 75 585 1,825,910 6,183 25,843 - 6,768
LR2_22_DR3_333_VC4_V17a • 5 50 400 300 2,392 6,723,570 9,047 2,033 - 11,439
Average 599 3,171 42.8% 3,769
T = 60
LR1 1 DR1 3 VC1 V7a 6 50 50 25 176 -16,326 776 -16,675 18.9% 952
LR1_1_DR1_4_VC3_v11a 6 15 50 25 214 -11,113 2,312 -11,516 40.0% 2,526
LR1_1_DR1_4_VC3_V12a • 6 15 50 25 190 -10,012 1,584 -11,223 35.2% 1,773
LR1_1_DR1_4_VC3_V12b 6 15 100 25 481 -8,018 2,960 -9,958 44.7% 3,441
LR1_1_DR1_4_VC3_V8a • 6 15 50 35 115 325,680 865 -4,578 34.9% 980
LR1_1_DR1_4_VC3_V9a 6 15 50 25 178 -6,746 757 -6,904 38.6% 935
LR1_2_DR1_3_VC2_V6a 10 15 30 25 172 -10,514 1,869 -12,639 47.9% 2,040
LR1_2_DR1_3_VC3_V8a 6 15 200 25 495 -12,857 1,573 -14,329 42.8% 2,068
LR2_11_DR2_22_VC3_V6a • 6 15 100 75 245 195,984 5,403 39,102 - 5,648
LR2_11_DR2_33_VC4_V11a • 6 15 100 75 560 1,523,420 5,702 181,868 - 6,262
LR2_11_DR2_33_VC5_V12a • 6 15 100 75 601 906,791 5,702 176,226 - 6,304
LR2_22_DR2_22_VC3_V10a • 6 15 100 75 639 2,685,950 5,823 826,372 - 6,462
LR2_22_DR3_333_VC4_V14a • 6 15 100 75 1,094 7,925,830 6,222 2,218,890 - 7,316
LR2_22_DR3_333_VC4_V17a • 6 30 200 150 2,134 4,228,370 5,732 1,110,680 - 7,866
Average 521 3,377 37.9% 3,898

Source: From the author (2020).

One can observe that for the smaller instances (those with one loading region -

LR1), the algorithms performed better, using smaller values for the parameters, which

contributed to the short processing times (mainly for the R&F). Another aspect observed

is that in most cases, it was not necessary the use auxiliary variables βit, demonstrating

that the R&F can obtain easily feasible solutions for such instances. If it is preferable to

obtain a better objective value than a short processing time for the small instances, the

parameters’ values can be increased (except p).

For the larger instances (those with two loading regions - LR2), we can observe

that, as expected, it was necessary to increase the parameter values for obtaining the

solutions. As a consequence, the processing time of the F&O increased considerably.

It was also more difficult for the R&F to obtain feasible solutions, as even the use of

βit variables is not sufficient to guarantee it. Preliminary tests obtained new best-known

values for two instances with T = 45, presented in Table 5.5. Column CPU presents

the computer where the experiments were carried out, where “AMD” corresponds to the
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previously described computer, while “Core i5” corresponds to an Intel Core i5-2300

running at 2.8 GHz, with 16 GB. Both experiments used the F&O strategies IV and PT

described in Section 4.4. Also, they did not use auxiliary variables βit. Column GapBKV

presents the relative deviation (Obj−BKV−BKV ) · 100 from the best-known value, where BKV

corresponds to the objective value found by Papageorgiou et al. (2014a).

Table 5.5: New best-known values found in preliminary experiments with the TS model
Instance

Parameters R&F F&O
BKVLB GapBKV

CPU p o titRF titFO Time Obj Time Obj
LR1_1_DR1_4_VC3_V11a Core i5 5 20 50 50 161 -10,448 1,578 -11,243 33.1% -0.03%
LR1_1_DR1_4_VC3_V12b AMD 5 15 50 20 182 -6,606 1,942 -9,085 46.4% -0.17%

Source: From the author (2020).

From the new best-known values found, the improvement on the solution by the

R&F was on average 22.6%. Notice that GapLB is higher for the solutions obtained, as

the linear relaxation of the model is weak.

5.3.1.1 Modified Instances Results

For solving the modified instances, the same parameters and methodology of the

tests with the MIRPLIB instances were used. The parameters used for each instance and

the obtained results are presented in Table 5.6.

Considering the results presented in Table 5.6, the relative gap to the lower bounds

was, on average smaller than the gap in the tests with MIRPLIB instances. This informa-

tion does not necessarily mean that the proposed algorithm is better considering these

instances, as the model’s linear relaxation can be tighter in randomly distributed ports.

The solution approach also found feasible solutions for a significant number of instances

compared to the number of feasible solutions found for the MIRPLIB instances. However,

there are still instances that no feasible solution was found. The average improvement of

the objective function with the improvement phase was 9.7%, while the time spent in this

phase was, on average, 87.6%.

5.3.2 FCNF+ Model Results

The results presented in this section were obtained using the CPLEX 12.5 solver,

running in a Core i7-3632QM computer running at 2.2 GHz on a single core, with 8 GB

RAM.

The parameters for solving the FCNF+ model with R&F and F&O are different
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Table 5.6: Results for the TS model with the modified instances.
Instance

Parameters Relax and Fix Fix and Optimize Total
Timeβit p o titrf titls Time Obj Time Obj GapLB

T = 45
LR1_1_DR1_3_VC1_V7a 5 15 50 25 12 -19,547 986 -21,491 5.5% 999
LR1_1_DR1_4_VC3_V11a 5 15 50 25 65 -22,164 2,556 -24,617 8.0% 2,621
LR1_1_DR1_4_VC3_V12a 9 30 50 25 136 -22,263 1,618 -23,062 6.1% 1,754
LR1_1_DR1_4_VC3_V12b 5 15 50 25 129 -23,883 3,625 -26,842 5.9% 3,754
LR1_1_DR1_4_VC3_V8a 5 15 50 25 79 -15,731 2,797 -17,342 13.0% 2,876
LR1_1_DR1_4_VC3_V9a 5 15 100 25 123 -16,196 2,101 -17,324 14.1% 2,224
LR1_2_DR1_3_VC2_V6a 5 15 50 25 43 -17,896 1,451 -19,597 8.8% 1,494
LR1_2_DR1_3_VC3_V8a 5 15 100 25 125 -19,138 1,827 -20,568 14.8% 1,952
LR2_11_DR2_22_VC3_V6a 5 15 100 50 171 -14,017 5,410 -15,064 27.2% 5,581
LR2_11_DR2_33_VC4_V11a 9 15 30 50 144 -24,328 5,450 -27,728 21.6% 5,594
LR2_11_DR2_33_VC5_V12a • 5 15 100 75 441 925,516 5,852 -22,581 46.4% 6,293
LR2_22_DR2_22_VC3_V10a • 5 50 400 300 2,041 1,397,820 6,002 -23,326 33.9% 8,043
LR2_22_DR3_333_VC4_V14a • 5 15 100 75 597 891,797 5,706 -28,232 41.4% 6,303
LR2_22_DR3_333_VC4_V17a • 5 15 100 75 756 8,208,870 5,941 62,221 - 6,697
Average 347 3,666 19.0% 4,013
T = 60
LR1 1 DR1 3 VC1 V7a 6 15 50 25 69 -24,995 1,584 -27,275 6.2% 1,653
LR1_1_DR1_4_VC3_v11a 6 15 50 25 148 -26,952 3,625 -31,455 7.9% 3,774
LR1_1_DR1_4_VC3_V12a • 6 30 50 25 198 -27,495 3,564 -29,613 2.9% 3,762
LR1_1_DR1_4_VC3_V12b 6 15 50 25 165 -33,163 3,625 -34,264 6.4% 3,790
LR1_1_DR1_4_VC3_V8a 6 15 100 25 214 -19,355 2,552 -20,905 17.9% 2,765
LR1_1_DR1_4_VC3_V9a 6 15 100 25 172 -18,922 3,701 -21,640 17.0% 3,873
LR1_2_DR1_3_VC2_V6a 6 15 50 25 165 -22,908 2,377 -25,324 9.8% 2,542
LR1_2_DR1_3_VC3_V8a 6 15 100 25 277 -23,370 1,827 -25,687 17.3% 2,104
LR2_11_DR2_22_VC3_V6a • 6 15 100 75 432 625,009 5,701 -19,230 27.7% 6,133
LR2_11_DR2_33_VC4_V11a • 6 15 100 75 660 504,184 5,551 -32,807 29.5% 6,212
LR2_11_DR2_33_VC5_V12a • 6 50 400 300 2,554 2,632,490 7,204 173,385 - 9,758
LR2_22_DR2_22_VC3_V10a • 6 15 100 50 604 1,514,310 5,787 92,707 - 6,392
LR2_22_DR3_333_VC4_V14a • 6 30 200 150 2,030 2,728,360 5,863 517,543 - 7,893
LR2_22_DR3_333_VC4_V17a • 6 30 200 150 2,526 8,152,140 6,653 3,014,670 - 9,179
Average 730 4,258 14.3% 4,988

Source: From the author (2020).

from those used for the TS model. To provide more robustness to the proposed solution

approach, we defined at most two possible values for each parameter, independently of

the instance and the planning horizon’s size. Table 5.7 presents the parameters values

tested for the FCNF+ model.

The improvement phase used the F&O strategies described in Section 4.4 in the

following order: IV, VP, and TI. As in the TS model, the improvement phase’s total time

limit was divided equally for each strategy. The MIP relative gap was set as the default

value of the CPLEX solver in the improvement phase.

For evaluating the contribution of the valid inequalities in the matheuristic ap-

proach, Table 5.8 presents the computational results using the FCNF+ model without and

with the use of valid inequalities. Column GapLB presents the relative deviation gap of

the integer solution to the linear relaxation of the FCNF model with the valid inequalities,

and column GapBKVpresents the relative deviation from the best-known value found by

Papageorgiou et al. (2014a). This value is negative when a new best-known value was
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Table 5.7: Parameters and values used for the FCNF model
Parameter Value

R&F

Number of time periods per
interval (T/p)

15

Size of model (in time
periods) at the first iteration

45 Instances prefix “LR1_1”
30 Instances prefix “LR1_2” or “LR2”

Overlap (%) 50

Time limit (s) per iteration
600 Instances prefix “LR1” or “LR2_11”

1200 Instances prefix “LR2_22”
Initial MIP GAP (%) 5

F&O
Time limit (s) per iteration 120
Total time limit (s) 7200
Number of time intervals m 3

Source: from the author (2020).

found by the proposed method. The best results concerning the value of the objective

function are highlighted in bold.
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Instance
FCNF+ FCNF+ with valid inequalities

Relax and fix Fix and optimize
Total time GapLB GapBKV Relax and fix Fix and optimize

Total time GapLB GapBKV

Time Obj Time Obj Time Obj Time Obj
T = 45
LR1_1_DR1_3_VC1_V7a 88 -13,155 2,597 -13,191 2,685 7.5% 0.6% 101 -13,271 375 -13,272 476 6.9% 0.0%
LR1_1_DR1_4_VC3_V11a 949 -10,961 4,377 -11,094 5,326 5.0% 1.3% 912 -10,537 1,879 -11,009 2,792 5.7% 2.1%
LR1_1_DR1_4_VC3_V12a 1,366 -10,578 2,854 -10,715 4,220 4.1% 0.2% 1,421 -10,492 2,721 -10,709 4,142 4.2% 0.2%
LR1_1_DR1_4_VC3_V12b 799 -9,057 382 -9,057 1,182 5.3% 0.3% 1,234 -9,023 2,469 -9,028 3,703 5.6% 0.6%
LR1_1_DR1_4_VC3_V8a 795 -5,019 2,095 -5,071 2,890 7.0% 0.7% 296 -5,060 2,039 -5,060 2,335 7.2% 0.9%
LR1_1_DR1_4_VC3_V9a 767 -6,904 2,632 -6,921 3,399 4.5% -0.4% 728 -6,921 492 -6,921 1,220 4.5% -0.4%
LR1_2_DR1_3_VC2_V6a 88 -10,965 1,280 -10,966 1,368 4.6% 1.5% 729 -10,455 1,652 -10,717 2,380 6.8% 3.7%
LR1_2_DR1_3_VC3_V8a 252 -11,587 2,966 -11,938 3,218 1.1% 0.6% 296 -10,658 906 -11,889 1,202 1.5% 1.0%
LR2_11_DR2_22_VC2_V6a 1,304 -8,720 2,322 -9,620 3,626 20.5% 1.0% 225 149,598 1,775 -8,510 2,000 29.7% 12.4%
LR2_11_DR2_33_VC4_V11a 2,054 29,467 3,330 -13,340 5,384 14.0% 4.8% 2,465 22,761 2,875 -11,651 5,340 24.9% 16.9%
LR2_11_DR2_33_VC5_V12a 1,694 -17,900 4,613 -18,208 6,307 6.9% 1.2% 1,418 -18,083 3,232 -18,395 4,650 5.9% 0.2%
LR2_22_DR2_22_VC3_V10a 3,498 -23,810 5,041 -24,784 8,539 10.7% 0.0% 1,742 -23,905 4,148 -24,855 5,890 10.5% -0.3%
LR2_22_DR3_333_VC4_V14a 5,845 15,699 4,922 -22,005 10,767 13.2% -0.2% 5,242 -20,013 5,043 -21,925 10,285 13.5% 0.1%
LR2_22_DR3_333_VC4_V17a 6,565 -4,038 5,239 -21,569 11,804 14.3% 0.7% 5,748 -21,253 5,045 -22,294 10,793 11.4% -2.7%
AVG 1,862 3,189 5,051 8.5% 0.9% 1,611 2,475 4,086 9.9% 2.5%
T = 60
LR1_1_DR1_3_VC1_V7a 799 -16,328 4,843 -16,522 5,642 6.2% 0.9% 732 -16,673 2,190 -16,675 2,922 5.4% 0.0%
LR1_1_DR1_4_VC3_V11a 2,009 -12,126 5,042 -12,134 7,051 11.0% 8.5% 2,211 -11,249 4,806 -12,155 7,018 10.9% 8.3%
LR1_1_DR1_4_VC3_V12a 1,359 -10,870 2,942 -11,125 4,301 4.1% -0.8% 1,348 -10,907 4,419 -11,022 5,768 5.0% 0.2%
LR1_1_DR1_4_VC3_V12b 1,216 -9,883 4,580 -10,009 5,796 4.6% 0.4% 2,122 -9,785 4,735 -9,830 6,857 6.3% 2.2%
LR1_1_DR1_4_VC3_V8a 724 -4,372 4,469 -5,182 5,193 9.7% 0.2% 1,684 -4,410 2,829 -4,502 4,513 21.6% 13.3%
LR1_1_DR1_4_VC3_V9a 1,848 -7,288 3,484 -7,335 5,332 8.8% 2.9% 2,032 -7,278 4,494 -7,328 6,526 8.8% 3.0%
LR1_2_DR1_3_VC2_V6a 1,566 -12,533 4,921 -12,807 6,487 10.1% 6.0% 1,192 -12,406 3,162 -12,843 4,354 9.9% 5.8%
LR1_2_DR1_3_VC3_V8a 1,840 -12,199 5,043 -13,945 6,883 7.8% 4.8% 1,114 -13,817 3,752 -14,152 4,866 6.4% 3.4%
LR2_11_DR2_22_VC2_V6a 1,866 175,037 4,230 15,523 6,097 - - 420 223,498 4,373 42,126 4,793 - -
LR2_11_DR2_33_VC4_V11a 3,820 79,086 5,164 -15,865 8,984 14.0% -3.1% 3,552 39,783 5,043 -14,379 8,595 22.1% 6.6%
LR2_11_DR2_33_VC5_V12a 2,492 -20,171 5,043 -20,717 7,536 15.2% 8.9% 2,453 59,566 3,882 -22,948 6,335 6.1% -1.0%
LR2_22_DR2_22_VC3_V10a 3,812 -31,862 4,997 -32,529 8,809 7.7% 0.3% 4,143 -5,356 5,043 -31,598 9,186 10.4% 3.2%
LR2_22_DR3_333_VC4_V14a 8,687 170,058 5,589 20,479 14,277 - - 7,669 -23,307 5,047 -25,069 12,716 18.6% 6.7%
LR2_22_DR3_333_VC4_V17a - - - - - - - 9,558 6,874 5,461 -25,236 15,020 18.7% 6.5%
AVG 2,465 4,642 7,107 9.0% 2.6% 2,874 4,231 7,105 11.5% 4.5%

Source: from the author (2020).
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One can observe, according to Table 5.8, that the use of valid inequalities speed-up

the solution approach on average. For T = 45, the time required for solving the instances

when using the valid inequalities was, on average, 23% lower than without using them.

For T = 60, this value was 9.4%, disregarding instance “LR2_22_DR3_333_VC4_V17a”,

in which the time for solving each interval (1200 s) was not sufficient to obtain even an

integer solution during some iteration of the relax and fix. Without valid inequalities,

the model provided better solutions on average, considering the deviation gap from the

best-known values. However, there are three instances in which no feasible solution was

found using only the FCNF+ model, while when considering valid inequalities, there is

only one instance. The number of new best-known values found in the model with and

without valid inequalities was the same (4). As both tests found new BKVs for instance

“LR1_1_DR1_4_VC3_V9a" with T = 45, a total of seven new BKVs was found.

In the FCNF+ model with valid inequalities, the improvement phase consumed,

on average, 62% of the total processing time and removed the infeasibility in the solution

provided by the R&F for six instances. When no valid inequalities were considered, the

F&O consumed on average 64% of the total time, and the infeasibility was removed from

four instances. Excluding the cases where the R&F provided infeasible solutions, the

average improvement on the solution was approximately 3.1%. For some instances no

improvement was obtained by the F&O algorithm.

Previous tests were performed using a small number of time periods per interval

for the R&F (9 time periods for instances with T = 45 and 10 time periods for instances

with T = 60). Although not presented here, these results showed that the approach can be

faster for small instances and still provide good solutions, sometimes equal to the BKV.

However, for large instances, the approach becomes very myopic, and the solution quality

decreases considerably. This phenomenon was already observed by Stadtler (2003) for

solving the multi-stage lot-sizing problem. For comparison purposes with the TS model

results of Section 5.3.1, the results of FCNF+ with valid inequalities will be used.

5.3.3 Comparison with the Best-known Values

This section presents a comparative between the results of the TS model (Section

5.3.1) and FCNF+ model (Section 5.3.2) using the matheuristic framework proposed. The

results were also compared with the work of Papageorgiou et al. (2014a), which holds

the best-known values for the tested MIRPLIB instances. For providing results more



94

Table 5.9: Time coefficients values for normalizing the CPU processing times.
Processor Time coefficient

Intel Core i7-3632QM (Reference - FCNF+ model tests) 1.00
Intel Xeon E5520[Dual] (PAPAGEORGIOU et al., 2014a) 1.07
Intel Core i5-2300 (TS model tests) 0.77
AMD-FX-8150 (TS model tests) 0.91

Source: from the author (2020).

comparable, the CPU times were normalized using the PassMark Software2. Table 5.9

shows the time normalization coefficients for each processor.

Table 5.10 presents the final objective value and the total computational time of

each approach. Column Time-space refers to the results presented in Section 5.3.1, while

column FCNF+ corresponds to the results presented in Section 5.3.2, and column BKV

corresponds to the results of Papageorgiou et al. (2014a). For the results of the TS model,

Table 5.10 presents the two best-known values shown in Table 5.5. Column Gap is related

to the relative deviation (Obj−BKV−BKV ) · 100 from the best-known value BKV . The best

objective value for each instance is highlighted in bold.

According to Table 5.10, the matheuristic framework applied to the FCNF model

performed on average better than the time-space model considering solution quality and

the number of instances in which a feasible solution was found. Considering the average

processing time, the difference between the models for T = 45 is almost negligible, while

for T = 60, the FCNF model is more time-consuming. One possible explanation is that

the FCNF+ model has a larger number of constraints and variables, taking more time for

solving each MIP. However, this is not a rule as it can be observed that less processing

time is needed for the FCNF model in some cases.

Comparing the proposed approaches with the results of Papageorgiou et al. (2014a),

one can note that for both formulations, the matheuristic framework takes on average less

processing time. Also, new best-known values were found for a total of nine instances:

two when using the TS model and seven when using the FCNF+ model, for which three

BKVs were obtained without the use of valid inequalities. Except for three instances in

which the deviation gap from the BKV was greater than 10%, the average gap deviation

was 0.5% for T = 45 and 3.73% for T = 60 using the FCNF+ model, which can be

considered very satisfactory as the proposed framework is relatively simple if compared

with the two-stage algorithm proposed by Papageorgiou et al. (2014a). Such observations

demonstrate no dominance between the proposed solution approach and the method of

2<http://www.cpubenchmark.net/>

http://www.cpubenchmark.net/
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Table 5.10: Comparison between TS and FCNF+ model considering the matheuristic
framework.

Instance
TS FCNF+ BKV

Time Obj Gap Time Obj Gap Time Obj
T = 45
LR1_1_DR1_3_VC1_V7a 559 -13,272 0.0% 476 -13,272 0.0% 190 -13,272
LR1_1_DR1_4_VC3_V11a 1,436 -11,243 0.0% 2,792 -11,009 2.0% 9,151 -11,239
LR1_1_DR1_4_VC3_V12a 727 -10,372 3.4% 4,142 -10,709 0.2% 8,566 -10,732
LR1_1_DR1_4_VC3_V12b 1,768 -9,085 -0.2% 3,703 -9,028 0.4% 1,906 -9,069
LR1_1_DR1_4_VC3_V8a 123 -5,106 0.0% 2,335 -5,060 0.9% 4,943 -5,106
LR1_1_DR1_4_VC3_V9a 744 -6,629 3.8% 1,220 -6,921 -0.4% 549 -6,891
LR1_2_DR1_3_VC2_V6a 2,255 -10,577 5.0% 2,380 -10,717 3.7% 6,396 -11,134
LR1_2_DR1_3_VC3_V8a 1,585 -11,680 2.8% 1,202 -11,889 1.0% 8,188 -12,010
LR2_11_DR2_22_VC2_V6a 7,702 -9,550 1.7% 2,000 -8,510 12.4% 8,740 -9,718
LR2_11_DR2_33_VC4_V11a 6,449 -13,218 5.7% 5,340 -11,651 16.9% 9,559 -14,017
LR2_11_DR2_33_VC5_V12a 6,576 -15,125 17.9% 4,650 -18,395 0.2% 9,582 -18,423
LR2_22_DR2_22_VC3_V10a 8,208 -21,957 11.4% 5,890 -24,855 -0.3% 9,359 -24,789
LR2_22_DR3_333_VC4_V14a 7,436 25,843 - 10,285 -21,925 0.1% 10,088 -21,952
LR2_22_DR3_333_VC4_V17a 12,567 2,033 - 10,793 -22,294 -2.7% 10,218 -21,713
AVG 4,153 4.3% 4,086 2.5% 6,399
T = 60
LR1_1_DR1_3_VC1_V7a 1,046 -16,675 0.0% 2,922 -16,675 0.0% 476 -16,675
LR1_1_DR1_4_VC3_V11a 2,775 -11,516 13.1% 7,018 -12,155 8.3% 7,657 -13,257
LR1_1_DR1_4_VC3_V12a 1,948 -11,223 0.4% 5,768 -11,022 0.2% 8,566 -11,269
LR1_1_DR1_4_VC3_V12b 3,780 -9,958 0.9% 6,857 -9,830 2.2% 9,342 -10,053
LR1_1_DR1_4_VC3_V8a 1,077 -4,578 11.8% 4,513 -4,502 13.3% 8,245 -5,191
LR1_1_DR1_4_VC3_V9a 1,027 -6,904 8.6% 6,526 -7,328 3.0% 8,886 -7,552
LR1_2_DR1_3_VC2_V6a 2,241 -12,639 7.3% 4,354 -12,843 5.8% 8,902 -13,631
LR1_2_DR1_3_VC3_V8a 2,272 -14,329 4.0% 4,866 -14,152 3.4% 8,613 -14,931
LR2_11_DR2_22_VC2_V6a 6,205 39,102 - 4,793 42,126 - 9,014 -13,351
LR2_11_DR2_33_VC4_V11a 6,880 181,868 - 8,595 -14,379 6.6% 9,592 -17,008
LR2_11_DR2_33_VC5_V12a 6,925 176,226 - 6,335 -22,948 -1.0% 9,656 -22,730
LR2_22_DR2_22_VC3_V10a 7,100 826,372 - 9,186 -31,598 3.2% 9,441 -32,627
LR2_22_DR3_333_VC4_V14a 8,038 2,218,890 - 12,716 -25,069 6.7% 10,234 -26,873
LR2_22_DR3_333_VC4_V17a 8,642 1,110,680 - 15,020 -25,236 6.5% 10,312 -27,000
AVG 4,283 5.8% 7,105 4.5% 8,495

Source: from the author (2020).

Papageorgiou et al. (2014a) considering solution quality or processing time. For exam-

ple, for small instances, the R&F using the TS model can be the preferable approach to

obtain good solutions in a short processing time. If the objective is to achieve better solu-

tions, the R&F with the FCNF+ is preferable in some cases. If the objective is to obtain a

feasible solution for the instances, independently of their size, then it is preferable to use

the method of Papageorgiou et al. (2014a).

5.3.4 Parameter Calibration

The tests presented in this section were obtained using the CPLEX 12.9 solver

and carried out on an AMD Ryzen 7 3700X computer running at 2.2 GHz on a single

core, with 16 GB RAM. Different combinations involving the formulation components,
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Table 5.11: Formulation components and algorithms parameters evaluated by irace.
Parameter/Component Evaluated Values Chosen Values

TS FCNF

Formulation
Operate-and-depart constraints. (Eq. (3.65)) On/Off Off Off On
Valid inequalities (Sect. 3.4) On/Off Off On On
Tight flow variables (Sect. 3.2.1) On/Off - On Off

R&F

Size of each interval (in time periods) {5,10,15,20} 10 5 20
End-block initial size (in intervals) {0,1,2,3,4,5,6,7,8,9,10} 4 3 1
Proportional αmax

i (Sect. 4.3.3)* On/Off Off Off On
Tight Inventory (Sect. 4.3.3)* On/Off On On On
Initial gap (%) {0.01, 5, 25, 50} 5 0.01 0.01
Overlap (%) {0, 10, 25, 50} 50 50 10

F&O

Strategies and order All permutations {PT,TI,IV,VP} {VP,IV,PT,TI} {VP,IV,PT}
Number of time intervals (TI) {2,3} 2 2 2
Number of time intervals (IV) {2,3} 3 2 -
Overlap uTI between intervals (TI) {0,25,50} 50 25 50
Overlap uVTI between intervals (IV) {0,25,50} 50 50 -

Source: From the author (2020).

the R&F and F&O algorithms’ parameter values, and the F&O strategies’ order of execu-

tion can be used to solve the problem. Trying to define the best one to obtain high-quality

solutions with regards to the objective function value instead of using a priori parameter

setting (sections 5.3.1-5.3.2), we used the irace package (LÓPEZ-IBÁÑEZ et al., 2016),

an automatic algorithm configuration tool. We performed separated parameter calibra-

tions for TS and FCNF model. As training instances, we have chosen four instances

(< 15% of the total number of tested instances) considering different characteristics and

sizes. The instances were:

• LR1_2_DR1_3_VC3_V8a and LR2_22_DR3_333_VC4_V14a, for T = 45,

• LR1_1_DR1_3_VC1_V7a and LR2_11_DR2_33_VC4_V11a, for T = 60.

We limited our algorithm’s maximum total execution time to 1,728,000 seconds (20 days)

for each calibration. Considering that irace can test different configurations in parallel (we

used up to 14 cores), the calibration time was shorter, taking on average six days. We set a

fixed time limit of 600 and 1000 seconds to solve each R&F subproblem for the instances

with one loading region (LR1) and two loading regions (LR2), respectively. The time

limit for solving each F&O iteration and the total time for each strategy was set to 120

seconds and 1 hour, respectively.

Table 5.11 presents the formulation components, the R&F and F&O parameters,

and their evaluated values for the TS and FCNF models. Columns Selected Values present

the best parameter values defined by the best-ranked configuration of irace. We present

two configurations for the FCNF model: the first column presents the best-ranked config-

uration by the irace, while the second presents the parameter values used in the experi-

ments.
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Observe from Table 5.11 that not all combinations between R&F parameters are

compatible, depending on the instance. For example, if the interval size was set to 5 time

periods, for an instance of T = 45, then the end block’s maximum size is 7, not 10.

Such forbidden combinations are handled directly by irace. From the results presented in

Table 5.11, we remark that:

• A small value of the initial gap(%) was selected for the formulations. The value 0.01

means that the gap is the same for all iterations (as the value at the last iteration is

always 0.01 - see Section 4.3.1). This configuration implies in consuming more

processing time in the R&F algorithm.

• The maximum value of overlap was also selected, indicating that the highest the

overlap, the highest the solution quality. Such characteristic was already stated by

Uggen, Fodstad and Nørstebø (2013).

• An end block with a size greater than 0 is considered in both formulations and the

tight inventory is also adopted, while the proportional αmaxi does not seem to be

effective.

• In two cases, all F&O strategies were selected, but the order differs depending on

the formulation.

Due to the previous experiments using the R&F, we have observed that time in-

tervals with small sizes (≤ 10) combined with an end block size > 0 tend to decrease

the algorithm’s processing time. On the other hand, considering the FCNF model only,

the probability of not finding a feasible solution for some instances increases due to the

reasons reported in Section 4.3.2. This was the case of the first configuration of FCNF

model shown in column Selected values in Table 5.11. As the irace presents five best pa-

rameter calibrations that statistically have no difference considering the solution quality,

we decided to use another configuration given by irace in which the size of each time

period is larger than the one reported by the best-ranked configuration. This configuration

is shown in the last column of Table 5.11. Note that the overlap parameter of the R&F in

such configuration is 10%. Considering that the other four configurations given by irace

defined the overlap value to 50%, and preliminary tests demonstrated that an overlap of

10% increased the number of infeasible solutions considerably, we decided to adjust the

overlap value to 50%.
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Figure 5.1: Objective function’s improvement obtained by the formulation components in
comparison to the default case.

Source: From the author (2020).

5.3.5 Evaluating Formulation Components and R&F Features

We analyzed how much the formulation components and the end block features

contributed to the solution quality and affected the R&F processing time. We first run

the algorithm with the parameters defined in Table 5.11 with all components and features

disabled (default case). Then, several runs of the R&F were performed, each one with

only one formulation component activated. We also performed a run with all formula-

tion components activated. The boxplot in Figure 5.1 presents the improvement of the

default case objective function by each component, where VI = valid inequalities, ODC

= operate-and-depart constraints, TI = Tight Inventory, PA = Proportional αmax
i , irace =

irace configuration, TF = tight flow variables (only for FCFN model). The improvement

was calculated only for the instances in which a feasible solution was obtained by the

default case and by the configuration with the component/feature activated.

From Figure 5.1, we observe that there are negative improvements in most cases,

i.e., the solution quality, for some instances, decreases if one or more components are

considered. Also, the improvement usually varies more for the TS model than for the

FCNF model, depending on the instance. The irace configuration and the case with all

components activated provided the best results for the FCNF model, where the median

improvement was above 5% (indicated by the horizontal line in the middle of the box),
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indicating that it occurs for 50% of the instances. The same cannot be stated for the

TS model since the third quartile (superior limit of the box) indicate that 75% of the

instance obtained an improvement below to 4% approximately, besides larger negative

improvements. A possible reason is that the processing time of R&F using the TS model

is, on average, 94% greater than the FCNF model (considering the default case). Adding

components such as the valid inequalities increase the processing time, and possibly the

iterations stop prematurely (not by reaching the stipulated gap), not necessarily showing

the component’s real improvement.

Figure 5.2 presents the additional processing time required by the components.

Figure 5.2: Increase in the R&F processing time considering different formulation com-
ponents.

Source: From the author (2020).

From Figure 5.2, we observe that the operate-and-depart constraints contributed

significantly to reducing the processing time of the R&F in both formulations. Combining

all components and using the irace configuration (only for the FCNF model) induces the

fastest processing times for the R&F. In contrast, for the other components, the time

difference is negligible on average.

Figure 5.3 presents the number of instances with infeasible solutions due to the

use of auxiliary variables βit, θit (A), and due to a premature stop of the R&F algorithm

(explained in Section 4.3.2) or no feasible solution found in the stipulated processing time

(B).

Figure 5.3 contrasts with the results shown in Figure 5.1. While using all com-

ponents and the irace configuration provided in general better objective function values
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Figure 5.3: Number of instances with infeasible solutions using the R&F considering the
TS and FCNF models.

Source: From the author (2020).

and less processing times, they also provided the largest number of infeasible solutions of

type B.

The results on Figures 5.1–5.3 demonstrate that it is hard to define only one pa-

rameter configuration for obtaining good results for all tested instances and in all cases of

the R&F. It is necessary to identify instance features that can be used to choose the best

algorithm configuration for each instance. This can be done using algorithm selection

tools based on machine learning methods.

5.3.6 Fix-and-optimize Algorithm Results

We evaluated the improvement of the solution obtained by each F&O strategy over

the R&F solution, besides the capacity to recover the solutions that used the additional

variables βit and θit. For the tests, we considered the parameters defined by the irace for

both R&F and F&O. Table 5.12 presents the minimum, maximum, and average values

considering improvement percentage and time consumption in seconds for each F&O

strategy individually. It also presents the results from the irace configuration, considering

more than one strategy and its order of execution. The improvement was measured only

for the instances where R&F obtained a feasible solution. Column Infeasibility Removed

presents the number of instances in which the F&O strategy could repair the solution,

turning it feasible. The total number of infeasible solutions given by the R&F was 9 for
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Table 5.12: Performance of each F&O strategy and the irace configuration on improving
the solution obtained by the R&F.

Model F&O Strategy Improvement (%) Time (s) InfeasibilityA

RemovedMin Max Avg Min Max Avg

TS

Time Intervals 0.0 13.6 3.4 51.8 3,600.0 915.1 7/9
Vessel Pairs 0.0 14.6 5.3 3,600.0 3,600.0 3,600.0 2/9
Interval Vessel 0.0 15.9 4.1 2,069.6 3,600.0 3,516.0 3/9
Port Types 0.0 4.9 1.1 66.4 910.6 363.6 2/9
Irace 0.1 15.9 6.4 5,243.4 11,512.3 8,111.9 7/9

FCNF

Time Intervals 0.0 4.6 0.5 0.3 3,600.1 382.0 6/8
Vessel Pairs 0.0 4.0 0.9 28.8 3,600.0 1,649.5 6/8
Interval Vessel 0.0 5.7 1.2 550.8 3,600.0 2694.1 7/8
Port Types 0.0 0.0 0.0 0.1 40.3 6.0 0/8
Irace 0.0 8.5 1.5 629.4 7,222.1 4,125.7 7/8

Source: From the author (2020).

the TS model and 8 for the FCNF model.

As can be observed in Table 5.12, the improvement of the strategies varied con-

siderably depending on the instance: no improvement occurred for some cases, while for

other cases, the improvement was almost 16%. The minor variation was in the port types

strategy, which also provided the worse maximum and average improvement. Consid-

ering all F&O strategies, the average improvement is higher for the TS model than the

FCNF model. Note that higher improvement values of a F&O strategy for some formu-

lation do not necessarily lead to better solutions. It also depends on the quality of the

initial solution given by the R&F. Port types strategy was the exception concerning the

processing time. It did not reach the given time limit for all tests and provided the worse

performance on improving the solutions.

Concerning the number of solutions turned feasible, the TS model’s best strategy

was the Time Intervals strategy, considering the given time limit. The Vessel Pairs and

Interval Vessel strategies consume too much time on average for the TS, obtaining less

satisfactory results. For the FCNF, all strategies (except PT) turned feasible most of the

infeasible solutions.

5.3.7 Matheuristic Results from the Parameters Calibration

In this section, we present the detailed results after running the irace configuration

of the F&O. Table 5.13 presents the FCNF model results, while Table 5.14 presents the

TS model results, presenting for each instance the processing time and objective function

obtained by the R&F algorithm and the F&O strategies. Column Imp. (%) presents the
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Table 5.13: R&F and F&O results using the FCNF model and the parameter calibration
defined by the irace.

R&F F&O BKV|T | Instance Time Obj Time Obj Improv.
Total
Time Gap Obj Time

LR1_1_DR1_3_VC1_V7a 578.4 -13,272 1,506.9 -13,272 0.0% 2,085.2 0.0% -13,272a 177.0
LR1_1_DR1_4_VC3_V11a 652.2 -10,858 2,961.5 -11,156 2.7% 3,613.7 0.8% -11,243b 1,578.0
LR1_1_DR1_4_VC3_V12a 737.8 -10,653 2,130.8 -10,713 0.6% 2,868.7 0.3% -10,746d 7,107.9
LR1_1_DR1_4_VC3_V12b 1,543.5 -9,059 629.4 -9,060 0.0% 2,172.9 0.3% -9,085b 1,942.0
LR1_1_DR1_4_VC3_V8a 103.9 -4,936 1,415.9 -5,090 3.1% 1,519.8 0.3% -5,106a 4,609.0
LR1_1_DR1_4_VC3_V9a 391.3 -6,921 1,059.8 -6,921 0.0% 1,451.1 0.0% -6,921c 1,220.0
LR1_2_DR1_3_VC2_V6a 542.6 -10,042 1,401.2 -10,096 0.5% 1,943.8 10.3% -11,134a 5,963.0
LR1_2_DR1_3_VC3_V8a 152.6 -11,934 864.9 -12,009 0.6% 1,017.5 0.0% -12,010a 7,634.0
LR2_11_DR2_22_VC3_V6a 1,539.1 27,528 5,353.5 -9,621 - 6,892.7 1.0% -9,718a 8,149.0
LR2_11_DR2_33_VC4_V11a 3,068.1 -12,870 5,872.8 -13,390 4.0% 8,940.9 4.7% -14,017a 8,913.0
LR2_11_DR2_33_VC5_V12a 3,134.6 -18,385 4,290.9 -18,524 0.8% 7,425.5 -0.5% -18,423a 8,934.0
LR2_22_DR2_22_VC3_V10a 3,224.8 1,284 6,042.6 -24,985 - 9,267.5 -0.4% -24,874d 6,279.5
LR2_22_DR3_333_VC4_V14a 4,042.3 4,446 7,222.1 -20,066 - 11,264.4 9.4% -21,952a 9,406.0
LR2_22_DR3_333_VC4_V17a - - - - - - - -22,294c 10,793.0

45

Average 1,516.3 3,134.8 1.2% 4,651.1 2.0% 5,907.5
LR1_1_DR1_3_VC1_V7a 381.0 -16,675 2,753.8 -16,675 0.0% 3,134.7 0.0% -16,675a 444.0
LR1_1_DR1_4_VC3_V11a 2,795.8 -12,486 6,710.6 -12,863 3.0% 9,506.4 3.1% -13,257a 7,139.0
LR1_1_DR1_4_VC3_V12a 1,073.9 -10,991 4,239.3 -11,025 0.3% 5,313.2 0.8% -11,116d 7,731.6
LR1_1_DR1_4_VC3_V12b 2,583.3 -9,777 4,720.7 -9,796 0.2% 7,304.1 2.6% -10,053a 8,710.0
LR1_1_DR1_4_VC3_V8a 235.2 10,509 4,852.5 -5,192 - 5,087.7 0.0% -5,191a 7,687.0
LR1_1_DR1_4_VC3_V9a 234.2 -6,927 1,671.6 -6,927 0.0% 1,905.8 9.0% -7,552a 8,285.0
LR1_2_DR1_3_VC2_V6a 1,718.9 -12,539 4,743.2 -13,601 8.5% 6,462.1 0.2% -13,631a 8,300.0
LR1_2_DR1_3_VC3_V8a 520.9 -14,539 3,985.1 -14,606 0.5% 4,506.1 0.3% -14,652a 8,031.0
LR2_11_DR2_22_VC3_V6a 3,142.3 4,585 3,992.8 -12,745 - 7,135.1 -0.7% -12,655a 8,404.0
LR2_11_DR2_33_VC4_V11a 5,020.7 3,444 7,210.9 3,364 - 12,231.5 - -15,387a 8,943.0
LR2_11_DR2_33_VC5_V12a 5,027.1 -21,706 7,208.7 -22,107 1.8% 12,235.8 3.8% -22,948c 6,335.0
LR2_22_DR2_22_VC3_V10a 5,021.8 -9,441 7,208.4 -31,407 - 12,230.2 3.9% -32,627a 8,803.0
LR2_22_DR3_333_VC4_V14a - - - - - - - -26,873a 9,542.0
LR2_22_DR3_333_VC4_V17a 5,234.4 492,125 7,218.2 -24,942 - 12,452.6 8.3% -27,000a 9,615.0

60

Average 2,537.7 4,751.1 1.8% 7,107.5 2.6% 7,712.1
Average All 2,027.0 3,943.0 1.5% 5,879.3 2.3% 6,809.8

Source: From the author (2020).

percentage improvement on the objective function by the F&O when the solution of the

R&F is also feasible. Column Gap presents the relative gap deviation (BKV−Obj)
Obj

· 100,

where Obj is the final solution obtained by our algorithm and BKV corresponds to the

best-known values obtained by Papageorgiou et al. (2014a)a, Friske and Buriol (2017)b,

Friske and Buriol (2018)c, and Friske and Buriol (2020)d. It is also presented the pro-

cessing time reported by each cited work in columns BKV. When column Gap is marked

with “-” for some instance, no feasible solution was found without the use of auxiliary

variables βit, θit. If column Time is marked with “-” for the R&F algorithm, it could not

solve the instance due to abruptly stop in some iteration due to the infeasiblities described

in Section 4.3.2.

The final results presented in tables 5.13–5.14 show that the proposed solution

approach performs much better for the FCNF model, either in processing time, solution

quality, and the number of feasible solutions found. Nevertheless, some good results were

also obtained by using the TS model. From the results of Table 5.13, we can observe that:

• The objective function value obtained for the most instances with |T | = 45 was
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Table 5.14: R&F and F&O results using the TS model and the parameter calibration
defined by the irace.

R&F F&O BKV|T | Instance Time Obj Time Obj Improv.
Total
Time Gap Obj Time

LR1_1_DR1_3_VC1_V7a 3,235.4 22,728 5,956.9 -13,209 - 9,192.2 0.5% -13,272a 177.0
LR1_1_DR1_4_VC3_V11a 3,185.2 -10,123 7,925.8 -10,946 8.1% 11,111.0 2.7% -11,243b 1,578.0
LR1_1_DR1_4_VC3_V12a 3,448.2 -9,938 6,890.9 -10,766 8.3% 10,339.0 -0.2% -10,746d 7,107.9
LR1_1_DR1_4_VC3_V12b 4,213.1 -8,586 8,094.9 -8,653 0.8% 12,308.0 5.0% -9,085b 1,942.0
LR1_1_DR1_4_VC3_V8a 2,832.7 -4,403 6,946.5 -5,102 15.9% 9,779.2 0.1% -5,106a 4,609.0
LR1_1_DR1_4_VC3_V9a 3,218.9 -6,402 6,074.3 -6,558 2.4% 9,293.2 5.5% -6,921c 1,220.0
LR1_2_DR1_3_VC2_V6a 4,204.4 -8,556 7,691.1 -9,901 15.7% 11,895.5 12.5% -11,134a 5,963.0
LR1_2_DR1_3_VC3_V8a 4,206.9 -10,821 7,479.4 -11,157 3.1% 11,686.3 7.6% -12,010a 7,634.0
LR2_11_DR2_22_VC3_V6a - - - - - - - -9,718a 8,149.0
LR2_11_DR2_33_VC4_V11a 7,039.5 17,552 7,916.3 -12,369 - 14,955.8 13.3% -14,017a 8,913.0
LR2_11_DR2_33_VC5_V12a 7,140.9 -15,714 8,161.6 -17,287 10.0% 15,302.5 6.6% -18,423a 8,934.0
LR2_22_DR2_22_VC3_V10a 7,213.1 90,039 9,809.0 -23,350 - 17,022.1 6.5% -24,874d 6,279.5
LR2_22_DR3_333_VC4_V14a - - - - - - - -21,952a 9,406.0
LR2_22_DR3_333_VC4_V17a 8,079.8 26,452 10,428.3 -20,367 - - 9.5% -22,294c 10,793.0

45

Average 4,144.1 6,669.6 8.1% 10,221.9 5.5% 5,907.5
LR1_1_DR1_3_VC1_V7a 5,300.6 -16,577 5,243.4 -16,604 0.16% 10,544.0 0.4% -16,675a 444.0
LR1_1_DR1_4_VC3_V11a 5,135.8 -12,083 7,828.0 -12,101 0.14% 12,963.9 9.6% -13,257a 7,139.0
LR1_1_DR1_4_VC3_V12a 5,498.7 -10,059 7,521.9 -10,785 7.22% 13,020.6 3.1% -11,116d 7,731.6
LR1_1_DR1_4_VC3_V12b 6,028.1 -8,440 8,062.7 -9,008 6.73% 14,090.8 11.6% -10,053a 8,710.0
LR1_1_DR1_4_VC3_V8a 3,472.2 126,398 8,042.9 -4,299 - 11,515.1 20.8% -5,191a 7,687.0
LR1_1_DR1_4_VC3_V9a 5,343.7 -7,329 7,457.0 -7,338 0.12% 12,800.7 2.9% -7,552a 8,285.0
LR1_2_DR1_3_VC2_V6a 6,017.8 -11,306 6,524.1 -12,522 10.75% 12,541.8 8.9% -13,631a 8,300.0
LR1_2_DR1_3_VC3_V8a 6,019.8 20,174 9,278.3 -12,543 - 15,298.1 16.8% -14,652a 8,031.0
LR2_11_DR2_22_VC3_V6a - - - - - - - -12,655a 8,404.0
LR2_11_DR2_33_VC4_V11a - - - - - - - -15,387a 8,943.0
LR2_11_DR2_33_VC5_V12a 10,153.3 253,175 10,840.6 34,617 - 20,993.9 - -22,948c 6,335.0
LR2_22_DR2_22_VC3_V10a 11,024.0 -26,144 10,887.6 -27,071 - 21,911.6 - -32,627a 8,803.0
LR2_22_DR3_333_VC4_V14a 10,984.9 217,195 11,512.3 -23,522 - 22,497.2 14.2% -26,873a 9,542.0
LR2_22_DR3_333_VC4_V17a - - - - - - - -27,000a 9,615.0

60

Average 5,355.6 6,657.1 3.6% 12,012.7 9.8% 7,712.1
Average All 4,749.9 6,663.3 5.8% 11,117.3 7.6% 6,809.8

Source: From the author (2020).
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close to the best-known values (< 1.0%).

• For |T | = 60, there are still instances with good results considering the deviation

gap, but the tendency is the increase of such value, as well as the higher number of

infeasible solutions.

• The processing time for solving smaller instances is relatively higher if compared

(disregarding the computer configuration) with the time obtained by other works.

It happens mainly due to the lower value defined for the MIP gap as stop criteria

in the R&F, extending the processing time at each iteration. When removing the

operate-and-depart constraints before starting the F&O, the search space increases,

and the F&O iterations tend to increase its consuming time, not necessarily pre-

senting an improvement compared to the case when we keep the operate-and-depart

constraints in the F&O.

• Two new best-known values were obtained for |T | = 45 and one for |T | = 60

(gap< 0.0%);
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5.4 Metaheuristic Results

This section evaluates our metaheuristic performance and its three components:

the multi-start algorithm, the large neighborhood search, and the reduced mixed-integer

program model. The objective is to verify our algorithm’s capacity to produce good solu-

tions for the MIRP presented, either for instances with short and long planning horizons.

The experiments were carried out in an Intel Core i7 930 computer running at

2.8 GHz with 12 GB RAM. The CPLEX 12.7.1 solver was used to solve the reduced MIP

model using a single core. The number of repetitions per run of the algorithm was set

to 10, and the average values considering objective function and processing time were

considered.

5.4.1 Parameter Calibration

The multi-start algorithm and the LNS parameters must be defined. They were cal-

ibrated using the irace package3 for obtaining the best combination of its values. Some

parameters have not been calibrated, and a fixed value was set for them. We also study

the value variation of the fixed parameters individually. We modified six instances from

the test set for defining the training instances for irace.The planning horizon was set

to |T | = 30, and the x and y coordinates of the ports were changed at random. We selected

LR1_1_DR1_3_VC1_V7a, LR1_1_DR1_4_VC3_V11a, LR1_2_DR1_3_VC3_V8a,

LR2_22_DR2_22_VC3_V10a, and LR2_22_DR3_333_VC4_V14a as training the in-

stances. In the calibration test, we do not consider the results from the RMIP, i.e., the

output is the best solution found after solving the LNS for m solutions. The evaluated

parameter values, the best one defined by the calibration, and the parameters with a fixed

value are presented in Table 5.15.

The parameter tRMIP is defined according to two characteristics of the instance:

the number of loading regions (one or two) and the size of the planning horizon. For

the smallest instances corresponding to those with one loading region and |T | = 45,

tRMIP is set to 60 seconds. For the instances with two loading regions and the same

planning horizon, the value is doubled. For the remaining sizes of T , the time is increased

proportionally to the number of time periods.

3<http://iridia.ulb.ac.be/irace/>

http://iridia.ulb.ac.be/irace/
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Table 5.15: Metaheuristic parameter calibration results using the irace.
Parameter Evaluated values Choosen Value
p2nd {0%,10%,20%,30%,40%,50%} 0%
pCP {0%,10%,20%,30%,40%,50%} 50%
f start [0.9,0.9999] 0.95
f end [0.0001,0.1] 0.09
c [0.0001,0.1] 0.01
maxreset {500,1000,2500,5000} 500
n Fixed 500
m Fixed 4
maxItLNS Fixed 25000
maxNA Fixed 2(maxreset)
u Fixed 20%

Source: From the author (2020).

5.4.2 Individual Parameters Analysis

We study how varying separately parameters u, n, andm value affect the proposed

method’s solution quality and processing time. For these tests, we considered the 14

instances with |T | = 45.

5.4.2.1 Evaluating Parameter u

We first analyze how varying the percentage of vessels removed from the current

solution in each LNS iteration affects the solution quality. We performed tests with values

u = {20, 30, 40, 50, 60}. The remaining parameters are fixed to the values defined in

the last column of Table 5.15. Figure 5.4 presents the box plot corresponding to the

improvement percentage of the multi-start algorithm solutions by the LNS when varying

u. Thus, it considers only the instances in which the multi-start algorithm obtained a

feasible solution.

As observed in Figure 5.4, the improvement percentage slight varies as parameter

u increases considering the median value. The outliers correspond to two instances in

which there is a more significant improvement of the solution. Using a binomial statical

test with a confidence level of 0.95, we cannot affirm that increasing the value of param-

eter u provides better LNS solutions. The processing time increases proportionally to

the parameter u increase due to the higher number of evaluated vessels in each iteration.

Considering the runs in which the multi-start algorithm’s solution is infeasible, the LNS

was able to remove such infeasibility in 26.3, 28.9, 36.8, 42.1, 47.3 percent of the cases,

according to the value of u. Although the feasibility increases with the increase of u (the
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Figure 5.4: Improvement of the multi-start algorithm solutions by the LNS varying the
values of parameter u.

Source: From the author (2020).

larger parameter u, the larger the search space), it is not possible to confirm such a hy-

pothesis using the same previously mentioned statical test. We decided to use u = 40 for

the remaining tests, as it provided the best median value considering the improvement of

multi-start algorithm solutions.

5.4.2.2 Evaluating Parameter n

The next parameter evaluated was the number of solutions generated by the multi-

start algorithm. In this section and the subsequent ones, the results of the RMIP are also

considered. We tested the values n = {100, 250, 500, 1000, 2000, 5000, 10000} and the

results are presented in Figure 5.5, showing for each parameter value the average increase

of the solution quality in relation to the base case n = 100, considering the multi-start

algorithm, the large neighborhood search and the reduced MIP.

The results of Figure 5.5 confirm the tendency that the greater the number of

generated solutions, the greater the improvement of the solution quality in the multi-start

algorithm. Considering the LNS and the RMIP, we observed several runs of the algorithm

that provided worse solutions with n = 10000 than with n = 100, which contributed to

a smaller increase in the solution quality. Although not shown in Figure 5.5, the results

demonstrated an approximate increase of 10% in the number of feasible solutions between

the minimum and maximum value of n considering the multi-start algorithm and the LNS.

For the RMIP, this increase was below 4%, demonstrating that the final algorithm solution
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Figure 5.5: Average improvement of the solution quality by varying parameter n.

Source: From the author (2020)

is less affected when varying n value.

We have chosen the value parameter n = 1000 for the remainder experiments, as it

presented a good balance between solution quality and processing time with a reasonable

number of feasible solutions.

5.4.2.3 Evaluating Parameter m

The last evaluated parameter corresponds to the number of solutions of the multi-

start algorithm improved by the LNS and used to build the RMIP. The objective is to verify

whether it is valid to increase the m parameter to get a better solution, as it drastically

increases the processing time of the LNS. We evaluate the parameter with values m =

{1, 4, 8, 16, 32}. The results are shown in Figure 5.6, presenting for each parameter the

average deviation gap from the best-known value considering the feasible solutions found.

The lines in the figure represent the average number of instances in which no feasible

solution was found.

Figure 5.6 demonstrates a considerably average improvement in the RMIP solu-

tions varying m until value 8, while the average gap of the LNS solutions decreases less

than 0.5% as m is doubled. The time limit for running RMIP may explain the slight

difference between the average gap when varying the parameter m from 8 to 32.

The average number of infeasible solutions tends to decrease as m increases,

reaching no infeasible solutions with RMIP when m = 32. As the processing time in-

creases proportionally to the numberm, this parameter should be small. Otherwise, larger

instances will take a long time to be solved. Thus, we define m = 8 for the remaining
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Figure 5.6: Average gap deviation and number of instances with no feasible solution
found for different values of parameter m.

Source: From the author (2020).

tests.

5.4.3 Comparison with the Best-known values

We compare our algorithm to the best-known values presented by Papageorgiou et

al. (2014a), Friske and Buriol (2017), Friske and Buriol (2018), which provided solutions

for |T | = {45, 60}. We performed the tests using the parameter values defined in the

previous sections. Table 5.16 summarizes the results, presenting for each |T |, the average

gap deviation from the best-known value, the average number of instances with no feasible

solution found, the average processing time, and the average reduction in the processing

time. The detailed results are available in Table A.2 in the appendix. For calculating the

processing time reduction, the time was normalized using the PassMark Software. The

last line of the table presents the average results.

We can observe from Table 5.16 that our approach is not much robust considering

solution quality, as the average gap from the best-known value is high, varying from

0.0% to 25.1% depending on the instance. Although not shown in Table 5.16, no feasible

solution was found in the 10 repetitions of just one instance with |T | = 60. Our algorithm

provided the final solution in a shorter processing time than the other approaches. Thus,
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Table 5.16: Comparison between the proposed metaheuristic and the best-known solu-
tions.

|T | Gap(%) Inf. Time(s) Time reduction (%)
45 5.1 1.1/14 711.2 79.4%
60 8.0 3.3/14 936.4 91.7%
Avg 6.5 660.7 85.5%

Source: From the author (2020).

we then tested if the results can be improved by increasing the value of some parameters.

Thus, we set the parameters u, n,m with the highest values tested in Section 5.4.2 and

defined tRMIP = 3600 seconds. The results presented an average gap of 3.9% (varying

from -0.7% to 13.5%), while there is still one instance in which no feasible solution

was found in the ten runs of the algorithm. The algorithm could find new best-known

values for five instances considering the individual runs. Although the average processing

time was 38.4% faster than the average processing times reported by Papageorgiou et

al. (2014a), Friske and Buriol (2017), Friske and Buriol (2018), it is much higher for

the small instances, due to the LNS and the RMIP, in which the last usually reaches the

time limit of 3600 seconds. Such results are detailed in Table A.3 in the appendix. They

demonstrated that the algorithm’s performance tends to increase if the parameters u,n,m

values are also increased. However, as the processing time required is higher for small

instances, it may be more interesting to use higher parameter values to test larger instances

and still obtain a lower processing time than other approaches for solving this MIRP.

5.4.4 Long Planning Horizon Instance Results

We ran our metaheuristic in the instances with long planning horizon |T | =

{120, 180, 360}. For these tests, we perform five repetitions of the algorithm per instance.

As this is the first attempt to solve these instances, we evaluate the solution’s quality con-

sidering the average gap to the lower bound obtained by solving the linear relaxation of

the FCNF+ model.

Table 5.17 presents the average results for each size of the planning horizon, show-

ing the number of feasible solutions found and the gap (only for the feasible instances)

obtained at the end of the LNS and the end of RMIP. The last column presents the average

total time of the algorithm. The detailed results for the feasible solutions obtained are

available in Table A.4 in the appendix.

As expected, the difficulty of obtaining feasible solutions and the average gap in-
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Table 5.17: LNS and RMIP results for the long planning horizon instances.
LNS RMIP Total

time (s)#Feasible Gap(%) #Feasible Gap(%)
|T | = 120 7.0/14 16.4 6.0/14 21,2 1,353.4
|T | = 180 5.2/14 19.7 5.2/14 27.0 2,166.6
|T | = 360 2.2/14 13.5 2.4/14 13.2 9,512.4

Source: From the author (2020).

creases as the planning horizon’s size increases. The multi-start algorithm and the LNS

were responsible for 23% and 63% of the processing time on average. The remaining time

percentage corresponds to the RMIP processing time. Observe that the processing times

increased more than 430% between the tests with |T | = 180 and |T | = 360. This can

be explained due to the bottleneck in updating the port’s inventory. Every time a vessel

operates at a port, the port inventory needs to be updated in each time period from the time

of the operation until the end of the planning horizon. As the number of operations per-

formed increases with the planning horizon’s size, further inventory updates are required.

The RMIP presented worse results considering feasibility and solution quality in general,

as the number of variables grows proportionally to the planning horizon size. Thus, the

time limit defined for the CPLEX is too restrictive and may be increased to obtain better

results with RMIP.

It is important to say that we are not sure if there are feasible solutions for all

instances in all long planning horizons tested, in particular, the instances in which spot

market variables are necessary to build feasible solutions. This occurs because the value

αmax
i , i ∈ J representing the total amount of product that can be bought from or sold to a

spot market in the planning horizon is the same independently of the size of such planning

horizon. Thus, the higher the planning horizon, the more difficult it is to obtain a feasible

solution.

To close the chapter, Table 5.18 presents the results obtained by the matheuristic

and metaheuristic approaches, presenting the total processing time in seconds and the ob-

tained objective value for the instances with |T | = {45, 60}. Columns TS and FCNF+

presents the results obtained by the matheuristic approach using the TS and FCNF+ model

with the a priori parameter definition (Sections 5.3.1 and 5.3.2), respectively. Columns

TS-irace and FCNF-irace present the results obtained by the matheuristic approach using

the TS and FCNF model with the parameter calibration given by the irace, respectively

(Section 5.3.4). Column Metaheuristic presents the results of the proposed metaheuris-

tic approach, while column Metaheuristic+ presents the same approach results, with the
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highest parameter values tested. For the metaheuristic approaches, the results are the av-

erage value of ten runs per instance, considering the results in which a feasible solution

was obtained. For each instance, is assigned in bold the approach that obtained the best

objective value and the lowest processing time.
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Table 5.18: Comparison between the matheuristic and metaheuristic approaches proposed

|T | Instance TS FCNF+ TS-irace FCNF-irace Metaheuristic Metaheuristic+
Time Obj Time Obj Time Obj Time Obj Time Obj Time Obj

45

LR1_1_DR1_3_VC1_V7a 509 -13,272 476 -13,272 9,192.2 -13,209 2,085.2 -13,272 248.6 -13,272 2,285.6 -13,272
LR1_1_DR1_4_VC3_V11a 981 -11,243 2,792 -11,009 11,111.0 -10,946 3,613.7 -11,156 838.9 -11,202 5,497.2 -11,244
LR1_1_DR1_4_VC3_V12a 662 -10,372 4,142 -10,709 10,339.0 -10,766 2,868.7 -10,713 1,010.7 -10,732 7,107.9 -10,747
LR1_1_DR1_4_VC3_V12b 1,790 -9,085 3,703 -9,028 12,308.0 -8,653 2,172.9 -9,060 1,159.2 -9,001 6,650.9 -9,031
LR1_1_DR1_4_VC3_V8a 112 -5,106 2,335 -5,060 9,779.2 -5,102 1,519.8 -5,090 523.1 -5,021 2,901.3 -5,104
LR1_1_DR1_4_VC3_V9a 678 -6,629 1,220 -6,921 9,293.2 -6,558 1,451.1 -6,921 551.2 -6,633 2,278.1 -6,853
LR1_2_DR1_3_VC2_V6a 2,053 -10,577 2,380 -10,717 11,895.5 -9,901 1,943.8 -10,096 439.3 -9,748 5,148.0 -9,887
LR1_2_DR1_3_VC3_V8a 1,443 -11,680 1,202 -11,889 11,686.3 -11,157 1,017.5 -12,009 883.0 -11,953 9,031.7 -11,984
LR2_11_DR2_22_VC3_V6a 7,011 -9,550 2,000 -8,510 - - 6,892.7 -9,621 250.2 -9,301 1,545.5 -9,498
LR2_11_DR2_33_VC4_V11a 5,870 -13,218 5,340 -11,651 14,955.8 -12,369 8,940.9 -13,390 642.4 -12,879 5,524.6 -13,061
LR2_11_DR2_33_VC5_V12a 5,986 -15,125 4,650 -18,395 15,302.5 -17,287 7,425.5 -18,524 789.3 -17,788 7,845.6 -18,225
LR2_22_DR2_22_VC3_V10a 7,471 -21,957 5,890 -24,855 17,022.1 -23,350 9,267.5 -24,985 991.2 -24,496 6,279.5 -24,875
LR2_22_DR3_333_VC4_V14a 6,768 25,843 10,285 -21,925 - - 11,264.4 -20,066 639.6 -19,525 8,411.6 -20,744
LR2_22_DR3_333_VC4_V17a 11,439 2,033 10,793 -22,294 18,508.1 -20,367 - - 990.0 -18,946 14,060.4 -19,944

60

LR1_1_DR1_3_VC1_V7a 952 -16,675 2,922 -16,675 10,544.0 -16,604 3,134.7 -16,675 371.2 -16,675 4,588.2 -16,675
LR1_1_DR1_4_VC3_V11a 2,526 -11,516 7,018 -12,155 12,963.9 -12,101 9,506.4 -12,863 1,298.6 -12,650 5,676.3 -13,052
LR1_1_DR1_4_VC3_V12a 1,773 -11,223 5,768 -11,022 13,020.6 -10,785 5,313.2 -11,025 1,339.3 -11,026 7,731.6 -11,116
LR1_1_DR1_4_VC3_V12b 3,441 -9,958 6,857 -9,830 14,090.8 -9,008 7,304.1 -9,796 2,145.7 -10,016 7,714.7 -10,006
LR1_1_DR1_4_VC3_V8a 980 -4,578 4,513 -4,502 11,515.1 -4,299 5,087.7 -5,192 723.7 -4,150 6,093.7 -4,730
LR1_1_DR1_4_VC3_V9a 935 -6,904 6,526 -7,328 12,800.7 -7,338 1,905.8 -6,927 811.1 -7,092 6,671.5 -7,404
LR1_2_DR1_3_VC2_V6a 2,040 -12,639 4,354 -12,843 12,541.8 -12,522 6,462.1 -13,601 635.2 -13,085 7,039.7 -13,271
LR1_2_DR1_3_VC3_V8a 2,068 -14,329 4,866 -14,152 15,298.1 -12,543 4,506.1 -14,606 1,428.9 -14,424 8,937.9 -14,526
LR2_11_DR2_22_VC3_V6a 5,648 39,102 4,793 42,126 - - 7,135.1 -12,745 512.4 69,589 7,005.5 25,128
LR2_11_DR2_33_VC4_V11a 6,262 181,868 8,595 -14,379 - - 12,231.5 3,364 476.5 -7,883 7,196.1 -14,608
LR2_11_DR2_33_VC5_V12a 6,304 176,226 6,335 -22,948 20,993.9 34,617 12,235.8 -22,107 648.1 5,272 10,055.5 -22,039
LR2_22_DR2_22_VC3_V10a 6,462 826,372 9,186 -31,598 21,911.6 -27,071 12,230.2 -31,407 659.7 -26,048 8,098.5 -30,833
LR2_22_DR3_333_VC4_V14a 7,316 2,218,890 12,716 -25,069 22,497.2 -23,522 - - 829.0 2,900 10,754.8 -16,430
LR2_22_DR3_333_VC4_V17a 7,866 1,110,680 15,020 -25,236 - - 12,452.6 -24,942 1,230.7 -23,196 16,176.0 -23,717

Source: From the author (2020).
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From the Table 5.18 we can conclude the following:

• The approaches that obtained the major number of best solutions considering the

objective function value were the FCNF+, the FCNF and the Metaheuristic+. Note

that the other approaches still were able to obtain the best solution for some cases.

• The Metaheuristic is able to obtain solutions in shorter processing time in most

cases. However, if it is desired to obtain a better solution increasing the algorithm

parameter values, the processing time increases considerably.

• For the smaller instances (one loading region - LR1), it is preferable to use the

simplest version of the matheuristic (results of TS) and the metaheuristic (results of

Metaheuristic), as they provided good solutions in shorter processing times.

• For larger instances (two loading regions - LR2), it is preferable to use the matheuris-

tic approach with the FCNF+ model or the metaheuristic with the highest parameter

values, as they provided the major number of feasible solutions, besides the best re-

sults considering objective value.
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6 CONCLUDING REMARKS

This work proposed and explored different solutions approaches for a Maritime

Inventory Routing Problem variant proposed in the literature. The MIRP is a challenging

problem that has gained attention in the last decades and consists of routing and schedul-

ing a fleet of heterogeneous vessels for transporting products between production and

consumption ports, where inventory management is taken into consideration. Two main

solutions approaches were presented: a matheuristic framework that combines exact and

heuristic methods and a metaheuristic approach independent of a mathematical solver,

which to the best of our knowledge, was the first one proposed for the MIRP variant

studied here.

The matheuristic framework comprises a relax and fix algorithm for building an

initial solution and a fix and optimize algorithm as the improvement phase. They were

evaluated over two discrete-time formulations: a standard time-space network and a fixed-

charge network flow. Differents formulation components were proposed and evaluated to

demonstrate their contribution to the performance of the algorithms.

The metaheuristic method is composed of a multi-start algorithm to build initial

solutions and a large neighborhood search to improve them. Also, a reduced mixed-

integer program was proposed to work as a post-optimization strategy. The method could

provide solutions for large planning horizon instances in which no results were presented

in the literature.

Computational experiments were performed on public instances to analyze both

methods’ solution quality and processing times varying the parameter values. Besides test

with a priori definition of parameter values for the algorithms, we also used an automatic

configuration tool to define a more robust configuration to obtain better quality solutions

on average. The results demonstrated that both methods are useful for solving the problem

instances, as they could obtain good solutions in relatively short processing times, besides

new best-known values. The metaheuristic was able to obtain feasible solutions for large

problem instances, which considers long planning horizons. Nevertheless, obtaining even

feasible solutions for this problem is challenging due to the port inventory constraints.

Figure 6.1 summarizes through a Venn diagram the contribution of this thesis con-

sidering four key sets: MIRP, formulations, matheuristic, and metaheuristic. Each word

in the sets represents an entirely new contribution or an adapted for this work based on

other works. Also, observe that the intersection between the sets represents contributions
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Figure 6.1: Contributions of this thesis.

Source: From the author (2020).

that are related to the sets. For example, the Restrictions Strategies are applicable for both

matheuristics and metaheuristics.

6.1 Future Work

Several directions can be pointed out as future work considering the MIRP and

the solutions methods. For the problem formulation, a possible direction is to convert the

discrete-time model to a continuous-time model, which usually has a smaller number of

discrete variables for the MIRP. Thus, exact methods or matheuristics as the R&F and

F&O can be more effective in solving the problem. Nevertheless, some issues need to

be handled, such as the variable production and consumption rates at the loading and

discharging ports, presented to the best of our knowledge in discrete-time formulations

only.

Another possible study is to evaluate how the instance characteristics affect solv-

ing the problem, either directly by a mathematical solver or by the proposed methods.

For example, besides the problem allows multiple berths (parameter Bi), all MIRPLIB
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instances used in the computational experiments have Bi = 1, for all i ∈ J . Thus, if such

parameter value is increased (as expected, some ports have several berths), we can evalu-

ate how they affect the methods considering aspects as solution quality and feasibility.

Throughout this work, we observed that the algorithms’ performance depends on

the parameters’ suitable choice, which depends on the instance. A possible direction to

handle the parameter issues is instead of using irace to define one algorithm configura-

tion for all the instances, is to use an algorithm selection technique, such as the Autofolio

(LINDAUER et al., 2015), to define the best parameter configuration for each problem

instance. In such a technique, besides the algorithm parameters and the execution results,

instance features are evaluated by a machine learning model. After a training phase, the

model can define the best algorithm parameter configuration for solving not seen instances

according to their features. However, for this approach to be effective, an extensive train-

ing set should be necessary, not the case for the MIRPs in general, as the instances based

on real data usually are not publicly available.

A strategy that can be considered for the matheuristic approach is to use the feasi-

bility pump heuristic (FISCHETTI; GLOVER; LODI, 2005) at the R&F iterations to build

good initial solutions and possibly reducing the number of infeasible solutions. Such a

strategy was used in Agra et al. (2014) to solve the rolling horizon heuristic iterations. It

is also desirable to avoid the use of auxiliary variables βit and θit in the solution. When

some of the constructive algorithms need to use such variables, it is not guaranteed that the

improvement strategies will turn the solution feasible, i.e., setting all auxiliary variables

to zero. An alternative approach that can be considered in both matheuristic and meta-

heuristic approaches is after building a feasible solution that has some auxiliary variable

with a positive value, change the problem objective to exclusively minimize the number

of βit and θit variables. This problem can then be solved with a mathematical solver for a

limited time before starting the improvement phase.

For the metaheuristic approach, some improvements can be suggested: the first is

to improve the multi-start algorithm using memory mechanisms to guide the search based

on previously built solutions. Another improvement on the method is to use a small MIP

model to define the time and the best quantity of product to be operated in each port visit

by a vessel (Section 4.5.7). We can also evolve the LNS algorithm to an adaptive large

neighborhood search in which different neighborhoods can be explored, besides defining

more robust selection criteria based on specific rules instead of random selection. Finally,

combinations between the matheuristic and metaheuristic methods can be tested. We can
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consider using the multi-start algorithm to generate several solutions to warm starts each

R&F iteration. Such an approach can improve algorithm efficiency, leading to feasible

solutions faster. It may also be interesting to use more than one solution generated at

R&F iterations to provide several solutions at the end of the algorithm. Such an approach

can be parallelized using multiple processing cores. Another combination that can be

considered is to use the F&O strategies to improve a set of solutions generated by the

multi-start algorithm.
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Table A.1: Lower bound values considering different formulations.
|T | Instance TS TS+VI Optimistic System Model FCNF FCNF + VI SystemModel-2Port

45

LR1_1_DR1_3_VC1_V7a -25,646.6 -18,068.3 -14,410.0 -14,291.6 -14,205.6 -13,273.0
LR1_1_DR1_4_VC3_V11a -29,741.0 -21,766.9 -12,994.0 -11,821.3 -11,689.4 -11,289.0
LR1_1_DR1_4_VC3_V12a -33,397.4 -22,998.2 -12,329.0 -11,361.4 -11,315.3 -10,739.0
LR1_1_DR1_4_VC3_V12b -30,645.7 -21,412.8 -9,578.0 -9,752.2 -9,688.7 -9,073.0
LR1_1_DR1_4_VC3_V8a -24,312.8 -15,413.2 -6,153.0 -5,524.1 -5,468.9 -5,174.0
LR1_1_DR1_4_VC3_V9a -24,759.0 -16,953.4 -8,242.0 -7,469.6 -7,402.0 -6,959.0
LR1_2_DR1_3_VC2_V6a -23,225.0 -21,734.9 -12,763.0 -11,741.5 -11,729.7 -11,146.0
LR1_2_DR1_3_VC3_V8a -28,164.0 -26,088.2 -13,625.0 -12,184.9 -12,137.7 -12,012.0
LR2_11_DR2_22_VC3_V6a -23,744.2 -17,332.1 -10,802.0 -12,423.1 -12,417.3 -9,779.0
LR2_11_DR2_33_VC4_V11a -36,104.8 -26,617.9 -16,445.0 -15,793.2 -15,761.3 -15,137.0
LR2_11_DR2_33_VC5_V12a -42,973.1 -31,823.3 -20,668.0 -19,714.7 -19,634.7 -19,092.0
LR2_22_DR2_22_VC3_V10a -45,118.7 -42,000.2 -27,803.0 -28,032.6 -27,826.6 -25,576.0
LR2_22_DR3_333_VC4_V14a -49,052.2 -46,646.5 -27,216.0 -25,764.8 -25,637.1 -23,967.0
LR2_22_DR3_333_VC4_V17a -55,568.5 -51,574.4 -27,628.0 -25,856.2 -25,853.0 -23,553.0

60

LR1_1_DR1_3_VC1_V7a -33,347.6 -21,535.7 -17,847.0 -17,662.7 -17,556.4 -16,676.0
LR1_1_DR1_4_VC3_V11a -38,827.6 -25,103.8 -15,020.0 -13,749.1 -13,642.1 -13,383.0
LR1_1_DR1_4_VC3_V12a -43,537.5 -26,423.4 -12,832.0 -11,606.0 -11,601.4 -11,269.0
LR1_1_DR1_4_VC3_V12b -40,025.8 -23,250.7 -11,287.0 -10,578.2 -10,514.3 -10,085.0
LR1_1_DR1_4_VC3_V8a -31,827.2 -17,082.7 -6,691.0 -5,795.3 -5,740.5 -5,628.0
LR1_1_DR1_4_VC3_V9a -32,275.6 -18,656.8 -9,383.0 -8,190.1 -8,122.7 -7,696.0
LR1_2_DR1_3_VC2_V6a -30,560.5 -28,237.6 -15,841.0 -14,498.2 -14,490.9 -13,810.0
LR1_2_DR1_3_VC3_V8a -36,734.0 -33,683.6 -17,379.0 -15,414.3 -15,249.4 -14,931.0
LR2_11_DR2_22_VC3_V6a -30,989.4 -21,553.1 -14,198.0 -15,066.7 -15,063.1 -13,351.0
LR2_11_DR2_33_VC4_V11a -47,031.0 -32,146.6 -19,565.0 -18,735.6 -18,705.2 -17,008.0
LR2_11_DR2_33_VC5_V12a -56,561.9 -38,272.3 -25,988.0 -24,785.7 -24,704.3 -24,246.0
LR2_22_DR2_22_VC3_V10a -59,324.2 -54,495.2 -35,873.0 -35,455.3 -35,300.2 -34,167.0
LR2_22_DR3_333_VC4_V14a -63,355.4 -59,797.5 -33,503.0 -31,139.6 -31,030.4 -29,931.0
LR2_22_DR3_333_VC4_V17a -72,785.7 -66,622.3 -33,909.0 -31,316.8 -31,308.8 -30,227.0

Source: From the author (2020).

Table A.2: Metaheuristic results considering instances with |T | = {45, 60}.
|T | Instance Objective Value Time (s) Gap (BKV)

MS LNS RMIP MS LNS RMIP MS LNS RMIP

45

LR1_1_DR1_3_VC1_V7a -13,272 -13,272 -13,272 4.6 244.0 0.1 0.00 0.00 0.00
LR1_1_DR1_4_VC3_V11a -10,819 -11,167 -11,202 17.0 801.1 20.8 3.92 0.68 0.37
LR1_1_DR1_4_VC3_V12a -10,516 -10,699 -10,732 24.5 954.9 31.3 2.05 0.31 0.00
LR1_1_DR1_4_VC3_V12b -8,572 -9,001 -9,001 24.4 1,120.6 14.3 5.99 0.93 0.93
LR1_1_DR1_4_VC3_V8a -3,973 -4,934 -5,021 8.8 509.7 4.6 28.51 3.49 1.69
LR1_1_DR1_4_VC3_V9a -5,661 -6,540 -6,633 11.1 509.8 30.3 22.25 5.82 4.35
LR1_2_DR1_3_VC2_V6a -8,986 -9,422 -9,748 5.6 381.7 52.0 23.90 18.17 14.23
LR1_2_DR1_3_VC3_V8a -11,500 -11,894 -11,953 12.7 833.4 37.0 4.44 0.97 0.48
LR2_11_DR2_22_VC3_V6a 177,987 - -9,301 4.9 234.6 10.6 - - 4.57
LR2_11_DR2_33_VC4_V11a -11,899 -12,525 -12,879 37.1 485.2 120.0 17.80 11.91 8.90
LR2_11_DR2_33_VC5_V12a 214,147 -16,690 -17,788 48.3 621.0 120.0 - 10.39 3.59
LR2_22_DR2_22_VC3_V10a 21,805 -24,241 -24,496 37.1 834.1 120.0 - 2.53 1.47
LR2_22_DR3_333_VC4_V14a -18,633 -18,654 -19,525 143.9 375.8 120.0 17.81 17.68 12.84
LR2_22_DR3_333_VC4_V17a -18,419 -18,533 -18,946 259.4 610.6 120.0 21.04 20.30 17.73

60

LR1_1_DR1_3_VC1_V7a -16,606 -16,675 -16,675 7.5 359.2 4.5 0.42 0.00 0.00
LR1_1_DR1_4_VC3_V11a -12,397 -12,513 -12,650 40.2 1,183.2 75.2 6.94 5.95 4.81
LR1_1_DR1_4_VC3_V12a -10,850 -11,000 -11,026 59.6 1,199.7 80.0 1.75 0.36 0.13
LR1_1_DR1_4_VC3_V12b -9,727 -10,015 -10,016 58.5 2,007.2 80.0 3.35 0.38 0.37
LR1_1_DR1_4_VC3_V8a 133,056 19,397 -4,150 21.3 622.4 80.0 - - 25.18
LR1_1_DR1_4_VC3_V9a -6,522 -6,930 -7,092 26.9 704.2 80.0 15.79 8.97 6.51
LR1_2_DR1_3_VC2_V6a -12,488 -12,781 -13,085 12.9 542.3 80.0 9.16 6.65 4.17
LR1_2_DR1_3_VC3_V8a -13,706 -14,400 -14,424 26.7 1,322.3 80.0 6.90 1.75 1.59
LR2_11_DR2_22_VC3_V6a 476,348 163,109 69,589 10.6 405.4 96.3 - - -
LR2_11_DR2_33_VC4_V11a 436 -1,288 -7,883 77.9 238.7 160.0 - - 11.59
LR2_11_DR2_33_VC5_V12a 355,857 87,674 5,272 86.7 401.4 160.0 - - -
LR2_22_DR2_22_VC3_V10a 83,612 -23,930 -26,048 61.1 438.5 160.0 - 36.34 6.57
LR2_22_DR3_333_VC4_V14a 17,600 17,600 2,900 246.0 423.0 160.0 - - -
LR2_22_DR3_333_VC4_V17a -22,818 -22,818 -23,196 420.9 649.8 160.0 18.33 18.33 16.42

Source: From the author (2020).
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Table A.3: Metaheuristic results considering instances with |T | = {45, 60} and the high-
est parameter values tested.
|T | Instance Objective Value Time (s) Gap (BKV)

MS LNS RMIP MS LNS RMIP MS LNS RMIP

45

LR1_1_DR1_3_VC1_V7a -13,272 -13,272 -13,272 40.3 2,245.1 0.1 0.00 0.00 0.00
LR1_1_DR1_4_VC3_V11a -11,038 -11,101 -11,244 155.8 2,162.8 3,178.6 1.86 1.28 -0.01
LR1_1_DR1_4_VC3_V12a -10,540 -10,694 -10,747 224.4 4,516.9 2,366.6 1.83 0.36 -0.14
LR1_1_DR1_4_VC3_V12b -8,591 -8,995 -9,031 225.8 4,411.5 2,013.6 5.74 1.01 0.60
LR1_1_DR1_4_VC3_V8a -3,973 -5,032 -5,104 79.6 2,734.2 87.4 28.51 1.47 0.03
LR1_1_DR1_4_VC3_V9a -5,671 -6,548 -6,853 99.8 1,825.9 352.4 22.04 5.70 1.01
LR1_2_DR1_3_VC2_V6a -9,015 -9,524 -9,887 50.8 1,497.2 3,600.0 23.51 16.91 12.62
LR1_2_DR1_3_VC3_V8a -11,573 -11,908 -11,984 162.6 5,750.4 3,118.6 3.78 0.86 0.21
LR2_11_DR2_22_VC3_V6a 177,987 -9,354 -9,498 56.6 1,466.7 22.2 - 3.90 2.32
LR2_11_DR2_33_VC4_V11a -12,548 -12,646 -13,061 374.8 1,549.8 3,600.0 11.71 10.86 7.33
LR2_11_DR2_33_VC5_V12a 175,383 -16,733 -18,225 460.9 3,784.7 3,600.0 - 10.12 1.09
LR2_22_DR2_22_VC3_V10a 2,323 -24,057 -24,875 349.4 2,330.1 3,600.0 - 3.32 -0.08
LR2_22_DR3_333_VC4_V14a -19,529 -19,551 -20,744 1,394.5 3,417.0 3,600.0 12.43 12.30 5.86
LR2_22_DR3_333_VC4_V17a -18,824 -19,005 -19,944 2,582.5 7,877.8 3,600.0 18.44 17.32 11.82

60

LR1_1_DR1_3_VC1_V7a -16,610 -16,675 -16,675 74.6 3,738.8 774.7 0.39 0.00 0.00
LR1_1_DR1_4_VC3_V11a -12,514 -12,517 -13,052 281.8 1,794.5 3,600.0 5.94 5.91 1.60
LR1_1_DR1_4_VC3_V12a -10,924 -11,020 -11,116 392.5 3,739.1 3,600.0 1.06 0.19 -0.69
LR1_1_DR1_4_VC3_V12b -9,874 -9,938 -10,006 377.1 3,737.6 3,600.0 1.82 1.16 0.47
LR1_1_DR1_4_VC3_V8a 131,765 2,598 -4,730 165.7 2,328.0 3,600.0 - - 10.02
LR1_1_DR1_4_VC3_V9a -6,678 -7,084 -7,404 327.0 2,744.4 3,600.0 13.09 6.64 2.00
LR1_2_DR1_3_VC2_V6a -12,545 -12,875 -13,271 172.1 3,267.5 3,600.0 8.66 5.88 2.72
LR1_2_DR1_3_VC3_V8a -13,938 -14,350 -14,526 325.5 5,012.4 3,600.0 5.12 2.11 0.87
LR2_11_DR2_22_VC3_V6a 462,475 34,926 25,128 155.3 3,250.1 3,600.0 - - -
LR2_11_DR2_33_VC4_V11a -14,238 -14,240 -14,608 1,072.6 2,523.5 3,600.0 8.09 8.08 5.38
LR2_11_DR2_33_VC5_V12a 278,830 39,981 -22,039 1,243.4 5,212.1 3,600.0 - - 4.14
LR2_22_DR2_22_VC3_V10a 36,327 -26,984 -30,833 1,064.7 3,433.7 3,600.0 - 11.22 5.88
LR2_22_DR3_333_VC4_V14a -7,452 -7,653 -16,430 2,296.1 4,858.7 3,600.0 - - 14.13
LR2_22_DR3_333_VC4_V17a -23,349 -23,424 -23,717 3,873.9 8,702.1 3,600.0 15.64 15.28 13.86

Source: from the author (2020).

Table A.4: Metaheuristic results for the long planning horizon instances (considering only
the instances with feasible solutions).
|T | Instance Objective Value Time (s) Gap (LB)

MS LNS RMIP MS LNS RMIP MS LNS RMIP
120 LR1_1_DR1_3_VC1_V7a -29,929 -30,184 -30,198 35.2 1,220.2 160.0 4.02 3.14 3.09

LR1_1_DR1_4_VC3_V11a -18,375 -18,375 -18,602 147.8 376.9 160.0 15.07 15.07 13.69
LR1_1_DR1_4_VC3_V12a -15,287 -15,360 -15,503 197.3 624.6 160.0 17.72 17.18 16.10
LR1_1_DR1_4_VC3_V12b -12,147 -12,234 -12,263 196.3 877.7 160.0 18.48 17.64 17.36
LR1_1_DR1_4_VC3_V9a -7,771 -7,824 -8,038 97.6 367.0 160.0 31.84 30.97 27.46
LR1_2_DR1_3_VC2_V6a -21,287 -21,295 -21,785 47.98 551.59 160.00 19.69 19.64 17.01
LR1_2_DR1_3_VC3_V8a -22,796 -22,905 -22,959 89.7 393.6 160.0 11.80 11.28 11.02

180 LR1_1_DR1_3_VC1_V7a -43,041 -43,144 -43,223 97.8 901.1 240.0 3.57 3.32 3.13
LR1_1_DR1_4_VC3_V11a -23,998 -23,998 -24,000 341.2 698.1 240.0 17.05 17.05 17.04
LR1_1_DR1_4_VC3_V12b -14,399 -14,496 -14,501 474.6 702.3 240.2 21.79 20.99 20.95
LR1_1_DR1_4_VC3_V9a -8,870 -8,870 -9,478 230.3 508.5 240.0 18.10 18.10 17.43
LR1_2_DR1_3_VC2_V6a -30,830 -30,830 -31,013 121.9 566.3 240.0 18.10 18.10 17.43
LR1_2_DR1_3_VC3_V8a -31,497 -31,497 -31,652 222.9 643.2 240.0 14.94 14.94 14.38

360 LR1_1_DR1_3_VC1_V7a -81,675 -81,675 -81,815 646.1 986.6 480.0 3.78 3.78 3.60
LR1_1_DR1_4_VC3_V11a -39,489 -39,489 -39,625 2,013.7 2,989.0 480.0 23.30 23.30 22.86

Source: From the author (2020).
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APPENDIX B — MÉTODOS DE SOLUÇÃO PARA UM PROBLEMA DE

ROTEAMENTO DE INVENTÁRIO MARÍTIMO

O transporte marítimo é o meio de transporte mais utilizado quando considera-

dos o transporte de grandes volumes. De acordo com UNCTAD (2019), o total trans-

portado por esse meio foi de aproximadamente 11 bilhões de toneladas, um valor que

vem crescendo ao longo de vários anos. O mesmo vem ocorrendo com a frota mundial

de navios, que cresceu 2,6% entre o início de 2018 e o início de 2019. Tais perspecti-

vas de crescimento do setor levam a problemas mais desafiadores considerando frotas de

navios, cargas, e gerenciamento de estoque. O uso de estratégias de otimização acaba

sendo crítica para esse setor de capital intensivo, onde uma pequena melhora nas oper-

ações podem levar a uma economia significante de recursos (AGRA et al., 2013).

Esse trabalho explora métodos de solução para o Problema de Roteamento de

Inventário Marítimo (MIRP - Maritime Inventory Routing Problem), um problema desafi-

ador que envolve decisões relacionadas a definição de rotas e escalonamentos de navios

em portos de carga e descarga, bem como definir a quantidade de um produto que deve

ser carregada ou descarregada em cada visita de a um determinado porto, de modo que

os estoques de tais produtos fiquem entre limites inferiores e superiores ao longo de um

horizonte de planejamento.

Uma extensa revisão da literatura baseada no problema foi apresentada apresen-

tando duas tabelas que resumem o conteúdo dos trabalhos analisados, classificando-os em

diferentes grupos conforme a característica do PRIM estudado em cada trabalho.

O primeiro método proposto consiste em uma estrutura matheuristica, que com-

bina a utilização de técnicas heurísticas com programação linear inteira. A estrutura é

composta por dois métodos principais: o algoritmo relax-and-fix (R&F), e o algoritmo

fix-and-optimize (F&O). O algoritmo R&F é responsável por construir uma solução ini-

cial para o problema. Isso é feito dividindo-se o problema em subproblemas menores

através da relaxação de parte das variáveis inteiras do modelo original. Iterativamente

o algoritmo resolve os subproblemas e fixa as variáveis inteiras nos valores encontrados

em iterações anteriores. Já o algoritmo F&O é responsável por melhorar as soluções en-

contradas pelo R&F. Ele consiste em inicialmente fixar os valores das variáveis inteiras

e iterativamente permitir que parte dessas variáveis possam ser otimizadas (não-fixadas)

por um resolvedor matemático. A estratégia na qual as variáveis a serem otimizadas são

selecionadas define uma vizinhança na solução. Neste trabalho foram utilizadas quatro
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estratégias, três baseadas na literatura e uma originalmente proposta neste trabalho.

Foram realizados testes com a estrutura matheuristica considerando duas formu-

lações do problema: a formulação original que consiste em uma formulação de tempo-

espaço, proposta por (PAPAGEORGIOU et al., 2014b), e uma formulação de fluxo de

carga fixa, proposta por (AGRA et al., 2013) e adaptada para a variante do PRIM estu-

dado neste trabalho. Junto às formulações foram propostas diferentes melhorias como a

utilização de desigualdades válidas, restrições adicionais e pré-processamento.

O segundo método de solução proposto para o MIRP foi uma estrutura meta-

heuristica composta por um algoritmo multi-start, e por um algoritmo large neighborhood

search. O algoritmo multi-start é responsável por construir soluções iniciais ao prob-

lema. Para esse algoritmo foi proposta uma heurística gulosa específica para o MIRP, a

qual possui componentes aleatórios para que sejam criadas várias soluções que explorem

diferentes espaços de busca do problema. Uma das maiores vantagens dessa abordagem

é a sua rapidez na construção de soluções se comparada com um método que necessita de

um resolvedor matemático. O algoritmo large neighborhood search seleciona um subcon-

junto das soluções criadas pelo algoritmo de muitos-inícios e tenta melhorá-las a partir da

destruição parcial da solução e reconstrução dela de uma maneira diferente. O algoritmo

seleciona aleatoriamente um conjunto de navios para destruir as suas rotas e posterior-

mente usa a heurística gulosa do algoritmo de muito inícios para reconstruir a rota desses

navios de uma maneira diferente. Ainda, foi proposto um elemento de pós-melhoria do

método, o qual consiste em criar um modelo matemático reduzido considerando apenas

as variáveis que obtiveram um valor positivo correspondente na solução metaheuristica, e

após resolver o modelo reduzido com um resolvedor matemático.

Os testes computacionais foram realizados com instâncias de uma biblioteca pública

específica para o MIRP. Em ambos os métodos foram feitos testes com a parametrização

dos algoritmos utilizando valores definidos a priori e também utilizando a ferramenta de

configuração automática de parâmetros irace. Para a estrutura matheuristica foi avaliado

a contribuição de cada melhoria proposta para as formulações considerando a qualidade

da solução e o tempo de processamento Foi observado que a formulação de fluxo de carga

fixa possui uma performance superior ao modelo de tempo-espaço, tanto na obtenção de

soluções de melhor qualidade quanto no número de soluções factíveis encontradas e no

tempo de processamento. Já para o método metaheurístico os resultados demonstraram a

potencialidade do algoritmo em resolver instâncias do problema em um tempo de proces-

samento menor. Com isso foi possível prover soluções para instâncias do problema com
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longos horizontes de planejamento, as quais pelo nosso conhecimento, não houveram

tentativas de solução reportadas na literatura.

Ambos métodos de solução propostos demonstraram ser promissores para prover

soluções para o problema, sendo capazes de obter novas melhores soluções conhecidas

para as instâncias testadas.

A natureza do problema induz a uma grande dificuldade em obter soluções fac-

tíveis para o problema, sendo que isso foi observado em nossos métodos de solução.

Além disso, pode-se observar que a definição dos valores do parâmetros dos algoritmos é

muito dependente da instância testada. Com isso, uma melhoria a ser considerada provém

da utilização de ferramentas de seleção algorítmica para definir o melhor conjunto de

parâmetro para cada instância a partir de suas características. Tal abordagem utiliza técni-

cas de aprendizado de máquina para definir o melhor conjunto de parâmetros. Um desafio

a ser enfrentado nessa abordagem é a obtenção de um grande conjunto de instâncias, que

infelizmente ainda é limitado considerando instâncias públicas de teste. Outro tópico de

pesquisa consiste em utilizar técnicas mais aprimoradas para a abordagem metaheurís-

tica, como a adoção de mecanismos de memória no algoritmo multi-inícios para guiar a

construção de soluções, bem como a adoção de técnicas de busca em vizinhança grande

adaptativa, onde técnicas específicas (e não aleatórias) são utilizadas para direcionar a

busca.
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