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Thermodynamic collapse in a lattice-gas model for a two-component system of penetrable particles
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We study a lattice-gas model of penetrable particles on a square-lattice substrate with same-site and nearest-
neighbor interactions. Penetrability implies that the number of particles occupying a single lattice site is
unlimited and the model itself is intended as a simple representation of penetrable particles encountered in
realistic soft-matter systems. Our specific focus is on a binary mixture, where particles of the same species
repel and those of the opposite species attract each other. As a consequence of penetrability and the unlimited
occupation of each site, the system exhibits thermodynamic collapse, which in simulations is manifested by
an emergence of extremely dense clusters scattered throughout the system with energy of a cluster E o< —n?,
where n is the number of particles in a cluster. After transforming a particle system into a spin system, in the
large density limit the Hamiltonian recovers a simple harmonic form, resulting in the discrete Gaussian model
used in the past to model the roughening transition of interfaces. For finite densities, due to the presence of a
nonharmonic term, the system is approximated using a variational Gaussian model.
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I. INTRODUCTION

In a recent article [1] we studied a one-dimensional lattice-
gas model of penetrable particles and demonstrated that a
two-component system (where particles of the same species
repel and those of opposite species attract each other) be-
comes thermodynamically unstable, where the collapsed state
is manifested by the presence of scattered and extremely
dense clusters, in which the occupation number of a site that
is part of the cluster is n > 1. This behavior is not unique
to lattice models and has been previously observed in more
realistic systems of penetrable particles such as a penetrable
sphere model [2—4]. Prior to these examples, the possibility of
thermodynamic collapse in a multicomponent system of soft
particles has been considered as early as 1966 by Ruelle and
Fisher [5-7], who also explored mathematical criteria for the
conditions in which such a collapse becomes plausible.

The renewed interest in penetrable particles has been trig-
gered by a growing number of synthesized and naturally
occurring nanoparticle whose pair interactions lack the usual
hard-core repulsion, resulting in ultrasoft particles that inter-
penetrate and, in principle, can occupy the same space [8].
Penetrability gives rise to different behaviors than those en-
countered in systems with hard-core repulsion. The type of
soft interactions, furthermore, plays a decisive role in deter-
mining a particular behavior of the system [9].

In a one-component system, thermodynamic collapse be-
comes possible for systems with pair interactions composed
of a short-range attractive tail and a repulsive soft-core. More
recent examples where such systems are studies in connec-
tion to thermodynamic collapse include Refs. [10-12], among
others. The most famous example of thermodynamic collapse,
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however, is that in gravitational system [13], whose pair in-
teraction consists of only attractive long-range part. When it
comes to two-component systems, a considerably less work
has been done to understand the mechanism of thermody-
namic collapse.

Thermodynamic collapse in a two-component system is
not self-evident, since attractive interactions occur between
particles of opposite species, and this implies that a col-
lapsed configuration, or a group of configurations, involves
a very specific arrangement of particles whose specific struc-
tures has been investigated in Ref. [1] for a one-dimensional
lattice-gas model.

Because one-dimensional models, as a general rule, pre-
clude the possibility of a phase transition [14] (interestingly
enough, this rule does not apply to thermodynamic collapse),
the investigation in the Ref. [1] is not entirely satisfactory. In
the present article we consider a binary system on a lattice-
square substrate with nearest neighbor interactions, as it is the
most standard model in two-dimensions. Because the occu-
pation number is unlimited, the system is closely related to
the discrete Gaussian model originally designed to capture
the structure and behavior of interfaces and the roughening
transition [15-17],

Our results are organized as follows. In Sec. II we in-
troduce the model and write down the corresponding grand
partition function. In this section we introduce two distinct
ways of counting particles, depending on whether particles
are considered as distinguishable or indistinguishable. Dif-
ferent ways of counting particles does not arise for a single
occupation lattice-gas models and is a consequence of multi-
ple occupation. In Sec. III we transform the original particle
system into spin ensemble. In the transformed ensemble spins
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can take on any integer value as a consequence of particle
penetrability. In Sec. IV we analyze thermodynamic collapse
in the infinite density limit. This limit is the consequence of
penetrability and implies that the average occupation of a site
isn — oo. In this limit the Hamiltonian reduces to a harmonic
function and the corresponding partition function transforms
into a discrete Gaussian model (DG). A similar model was
used to study roughening transition of interfaces. In Sec. V
we analyze the system at finite density. Due to a nonharmonic
term, the resulting partition function is no longer Gaussian and
we analyze the system using a Gaussian variational method.
Both approximate and exact models indicate the presence of
a metastable region, so that even though the global mini-
mum corresponds to a collapsed state, the system remains in
metastable equilibrium.

II. THE MODEL

The model consists of two types of particles on a
two-dimensional square-lattice substrate. As hard-core inter-
actions are not included, there is no restriction on the number
of particles that can occupy a single site. If the occupation
numbers for a given site are n;” and n;”, where the superscripts
“+” and “—” designates different species, then the Hamilto-

nian of the system is
1
H= KZ[—n+(n — 1)+ =n; (n] —1)—nn]

2 1
+akK Z[n;r

nn

+ - - -+
ny+nn; —nn; —n nj], @))

where the first line is for the interaction between particles
on the same site, and the second line is for the interaction
between particles on neighboring sites (the subscript nn in-
dicates the nearest-neighbor interaction). The dimensionless
coupling parameter « for interactions between neighbors is
positive in our model. This implies that particles of opposite
species attract and those of the same species repel each other.

The fact that each lattice site can be occupied by multiple
particles at one time results in two types of statistics. If par-
ticles are distinguishable as in classical fluids, then the grand
canonical partition function is

N B i +n7)

[e ] o0 o0 [e ]
SEDID 30 3 3 | B e

Hy = g 2:(njr — n;)2 + aK X:(n;r — n;)(n;r — n;)
3)

is the interaction Hamiltonian,

, K

wo=pn+ = 4)
2

is the effective chemical potential, and N = L? is the number

of lattice sites, where L is the size of the system. The factor

1/n;!, also referred to as the Gibbs correction, is a feature

of distinguishable particles, and indicates that statistics at a

single site follows a poisson rather than an exponential distri-
bution. A more detailed analysis of distinguishability versus
indistinguishability is provided in Ref. [1].

However, if particles are regarded as indistinguishable,
then a situation which in classical systems arises for example
in growth models, where particles do not change their location
on the lattice substrate but rather are added or removed from
it at each Monte Carlo step, in which case the particles of a
given site have no labels, then the grand partition function is

Ep = Z Z Z Z ¢~ BHn l_[e B (o +n;7) 5)

ny _On1 =0 nN_OnN_O

Based on the above discussion, even if the systems obey
the same Hamiltonian, they can be subject to different rules
of statistical mechanics which, in turn, can lead to differ-
ent behaviors. This difference can be particularly relevant in
characterizing thermodynamic collapse. As this issue does not
arise in a standard lattice-gas model with occupations limited
to one, it is important to emphasize it as well as consider it in
overall analysis.

III. TRANSFORMATION INTO A SPIN-ENSEMBLE

The system described above can be simplified by trans-
forming it into a spin ensemble with spins corresponding
to s; = n:r — n; . Because a single configuration in the spin-
ensemble corresponds to infinitely many configurations in the
particle-ensemble, these degeneracies need to be correctly
accounted for. The resulting transformed partition functions
are [1]

oo oo N
- - Sis: _BK Q2 /
g, =3 . et S T [ 91,2649, (6)
§|=—00 Sy=—00 i=1
and
S S —BKa ), sis; - — kg efl
ab:Z...Ze nnl/l_[|: 2 m} (7)
S|=—00 Sy=—00 i=1

for distinguishable and indistinguishable particles, respec-
tively. The terms inside square brackets can be regarded as
effective external field. Furthermore, as these terms are even
function in s;, the spin symmetry is never broken so that
(s;) = 0 under all conditions. The function I;(x) in Eq. (6) is
the modified Bessel function of the first kind.

Any quantity defined in the original ensemble can be calcu-
lated as another quantity in the spin-ensemble. For example,
the average number of particles at a single site 7, in the original
ensemble defined as

10lnE
+
i = R - , .
pi = (n;") + (n;7) T ©
in the spin-ensemble becomes
gy = b L1 ) + 112 ©)
i Is[(ZeISM') S,
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FIG. 1. The functions h(s) for distinguishable and indistinguish-
able particles for BK =5 and o = 1/4 and for two different
densities, see Eq. (14). For p =1 in (a), B’ = —0.27 and Bu’ =
—0.57, and for p =10 in (b), B’ = 1.66 and Bu’ = —0.09 for
distinguishable and indistinguishable particles, respectively.

for distinguishable particles, where the subscript s indicates
the average calculated in the spin ensemble, and

2281

62,‘3#/ )

= (10)

pi = (Isil)s +
for indistinguishable particles. For distinguishable particles,
the limit p; — oo is attained if 4’ — oo, and for indistin-
guishable particles if u' — 07. In the rest of the paper, we
use p = p;, to indicate the average number of particles on
any lattice site and refer to p as density. The limit p — oo
is a consequence of the fact that no limit is placed on the
occupation number. This is quite different from the standard
lattice-gas model where the maximum density is p = 1.

The spin-ensembles in Egs. (6) and (7) more generally can
be written as

o0 oo
E=58" ZZ e PH an
S|=—00 SN=—O
with the prefactors
N Io(2eﬂ“/), distinguishable,
B(w) = {j, indistinguishable, (12)
and the Hamiltonian is given by
K 2
H= aK%:s,-sj + 32 k), (13)
where the one-body potentials A(s;) are
IJ.(zeﬂ#’)] .. .
“—_< | distinguishable,
i = | e ¢ (14)
—Bulsil, indistinguishable.

Note that in the limit p — o0, A(s;) — 0 and both Hamil-
tonians become a simple harmonic function. The difference
between distinguishable and indistinguishable particles, there-
fore, becomes relevant at finite densities. For illustration and
to see how these differences might be manifested, in Fig. 1 we
plot h(s) for distinguishable and indistinguishable particles for
the parameters SK = 5 and o = 1/4. Based on the figure, one
may expect larger fluctuations for indistinguishable particles
due to the shape of the function A(s;).

A. Connection with other spin models

It might be of interest to place our spin model in the
context of other related models. The first difference to be
noted is that unlike the standard Ising model, our model
permits a spin s; = 0, which can be regarded as an empty
site. The class of Ising models that permit empty sites are
referred to as site-diluted Ising models with the Hamiltonian
H=—-J), pipjsisj, where s; = £1 and p; =0, 1 are ran-
dom (correlation free) occupation numbers such that (p;) = p
[18,19]. These models assume the presence of defects in the
lattice structure in a magnetic material and represent quenched
dilution. Models describing annealed dilution are possible and
have been studied in the past [20]. Our model can be regarded
as a version of a site-diluted (annealed) model, which would
be interesting to study in its own right by limiting spins to
s; = —1,0, 1, where the frequency of empty spins is deter-
mined by the function A(s;).

Our model bears the closest analogy to the discrete Gaus-
sian model (DG) [15,21] dubbed so by Chui and Weeks in
1976. The DG model belongs to a family of random surface
models and whose Hamiltonian is given by H = %J > (s —
s;)? +4hJ Y, s7. In the limit p — oo, where h(s) = 0, our
model corresponds to the DG model. For the parameter 4 = 0,
the DG model can be mapped onto a lattice Coulomb system,
and like the lattice Coulomb model, it exhibits the Kosterlitz-
Thouless transition. This corresponds to our parameter
o = 1/4. Appendix D shows the equivalence between the
Chui-Weeks and the present model.

B. Simulation details

In addition to analytical results, we study the transformed
spin ensemble using Monte Carlo simulation. The simulated
system consists of spins on a square-lattice substrate. A sim-
ulation box itself is a square of size L = 128 with periodic
boundary conditions. A Monte Carlo move consists of a ran-
dom selection of a lattice site followed by the trial change of
the spin by either 1 or —1 with equal probability. The move is
accepted if it lowers the energy, otherwise it is accepted with
the probability e ~#(#hev—Haa) Before calculating average quan-
tities, the system is equilibrated for half a million steps. The
average quantities are subsequently computed during another
2 million steps.

IV. THE LIMIT p — oo

In the limit p — o0, h(s;) as defined in Eq. (14) vanishes
and the Hamiltonian in Eq. (13) for both distinguishable and
indistinguishable particles attains a simple quadratic form

Hy Z(XKZSiSj-’_gZS?’

nn

15)

whose Boltzmann factor is a Gaussian function and, as the
spins are restricted to integers, the resulting system is a dis-
crete Gaussian model (DG). In the past, the DG model has
been used to model an interface [15-17]. Although the in-
terpretation and the parametrization of that DG model for
interfaces is different from ours (in the interface model spins
represent height of an interface and, as the heights of neigh-
boring spins tend to be the same, o < 0), the same general
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analysis applies to both. The analogy between the interface
model and the present binary lattice-gas system of penetrable
particles is also interesting.

Even though the partition function of the DG model has
a Gaussian form, it cannot be solved exactly. However, if we
neglect spin discreteness, then it may be possible to approxi-
mate the DG model with the continuous Gaussian model (CG)
which can be solved exactly [22,23].

A systematic way to carry this out is to write the partition
function for the DG model where the partition function of the
CG model is a contributing term. Any additional term would
then represent contributions due to spin discreteness. To see
if this can be done, we first reformulate the Hamiltonian in
Eq. (15) using matrix notation,

K K
Ho = > lzj:AijSisj = ESTAS’ (16)

where s = (51, ..., sy) is the N-dimensional vector, A is a
N x N matrix with elements

Ajj = 8ij + aeij, a7

where §;; is the Kronecker § function, and ¢€;; =1 if the
two spins are the nearest neighbors and zero otherwise. A
for an arbitrary dimension d is given in Appendix B. The
corresponding partition function is

oo (o]

Bao= 3 .y e (18)

Note that we ignore the pre-factor B defined in Eq. (12) which
in the limit p — oo diverges, however, regardless of its value,
it does not affect configurations.

If we rewrite the partition function in Eq. (18) as

N 00 00
Eoo = ]_[/ ds; Y S(si—n)e TN (19)
i=1Y "% nj=—00

and express the Dirac comb function as a Fourier series,

o0 o0
Z S(s—n)= Z &mks (20)
n=—o00 k=—o00
then we arrive at
o0 o0
Boo = Z
ky=—o00 ky=—00

*© *© ; BE (T p
X |:/ dsy-- / dsy ™ Se= 2 A“i|, 21
—00 —00

where the integral term in square brackets is a Gaussian inte-
gral with a linear term that can be evaluated exactly using the

identity
/dx ks g 35T As _ ,— kAT /@’ (22)
detA

where A~ is the inverse of the matrix A. The resulting parti-
tion function is composed of two subsystems,

L (23)

(1]
[1]
[x]

oo G

where Eg is the partition function of the CG model,

22 \"?* [ 1
EG=<—) = 24)
BK detA

and E; represents all the contributions due to spin discreet-
ness and is given by

ad > 1_ 1 T A-1
11 (Tl
L= E ce E e ? R/’ S’ (25)

§|=—00 Sy =—00

[1]

The dimensionless temperature of E; is kT’ = BK/(47?).

A. Continuous Gaussian model

From Eq. (23) it is seen that by approximating the DG
model as

(1]

IS

(1]

[09] G

the missing contributions due to the spin discreteness are con-

tained in the term E;. In this section we verify how accurate

this approximation is. To do this, we need to evaluate E.
The determinant in Eq. (24) is solved using the identity

N

detA = l_[)\.k, (26)
k=1

where X; are the eigenvalues of A. A is a circulant block
matrix with circulant blocks [24-26]. The eigenvalues of a
circulant matrix are Fourier modes. For a matrix A in d = 2
the eigenvalues are

Aq1,q2) = 1 4+ 2 cosqy + 2 cos gz, 27

where
2mn;

qi = 7 . I’l,':O,l,...

JL—1, (28)
so that in total there are N = L? eigenvalues. The determinant

of A now becomes

L1 L-1 2 2
detA = eZ"l o 2”2:0 In[142e cos(FF 11)+2e cos( 7 m2)] , (29)

which in the thermodynamic limit L — oo becomes

detA = 6(2’7‘!)2 f(]z” dq, j;)zn dgo In[14+2a cos g, +2a cosqz]. (30)

To complete the expression, it remains to evaluate the integral

1 2 2w
I = <_) / dq / dg> In[1 4 2 cos g1 + 2c cos g2 ].
2 0 0

€19
When evaluated, it corresponds to a hypergeometric function
which can also be expressed as a power series in «,

x 2k 2
o (2k)!
1= o 32

The interval of convergence of the above series is || < 1/4.
Atoa = 1/4, 1 remains finite with a value I ~ —0.220. For any
value outside the radius of convergence, the series diverges,
which in the present model implies thermodynamic instability.
We designate this value of « as «..
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FIG. 2. The internal energy u as a function of « for (a) K =1
and (b) BK = 5. The data points of a discrete Gaussian model are
obtained from Monte Carlo simulation with L = 128, and the dashed
lines correspond to Eq. (37).

Given the above results, the partition function in Eq. (24)

becomes
e\ [N & a2k
EG=< ) exp|:—Z—( M (33)

LK 4
BK 4k=1 k k!

It is interesting to consider at this point the partition
function of the Ising model that can be expressed as (see
Appendix C)

N a2 (2k)12
Ers = [2cosh(28)]" =Y —— ¢4
1s = [2cosh(28J)] exp|: 7L (34)
where « is a function of 8J according to

_ 1 s1nh2(2ﬂJ) ’ (35)
2 cosh*(2B8J)
and J is the interaction strength between nearest neighbor
sites. In both the DG and the Ising model the value o« = 1/4
has physical significance. In the Ising model it indicates a crit-
ical point of a continuous phase transition and in the Gaussian
model it is the last point before thermodynamic instability.
The Ising model, however, is prevented from leaving the con-
vergence region as a result of the parametrization in Eq. (35),
and thermodynamic instability never precipitates.
Going back to the partition function E¢, we point out that
even if Eg is finite at o, other quantities may diverge. The
internal energy defined as

a dlog Eg
pu= N O«

where (s;s;) are spin correlations between two nearest neigh-
bors, can be calculated exactly using Eq. (33), leading to

= 20K (si5;), (36)

1 1
Bu(a) = = — —K(16a?), (37)
2w
where K(x) is the complete elliptic integral of the first kind,
which contains logarithmic singularity at o,

sutey ~ Ly L (L= el
N4 —In[—).
=5 T or 8

In Fig. 2 we plot Bu. The data points are from the Monte
Carlo simulation for the system E., and the dashed line
corresponds to the expression in Eq. (37). For BK =1, the
data points follow closely the continuous Gaussian model. For
larger BK, the two results diverge, yet despite this the point of
thermodynamic instability is the same for both models.

(38)

FIG. 3. Configuration snapshot for a = 0.2499, for (a) K =1
and (b) BK = 5. The zero spins are regarded as empty sites and are
represented by unfilled squares. Red is for spins s; = =1, purple for
s; = &2, and black fors; = 3, +4, ....

In Fig. 3 we show configuration snapshots close to thermo-
dynamic collapse (at o = 0.2499) for different values of K.
The spin s; = 0 is regarded as an empty site, and the colored
squares are for s; # 0.

The same configurations are shown in Fig. 4 but in a way
as to emphasize their antiferromagnetic order. Red squares are
for positive and black squares for negative spins. In both cases,
configurations appear as islands of antiferromagnetic material
immersed in disordered low density phase. For BK = 1, the
islands are much larger and appear interconnected, while for
BK =5 the islands are separated, reminiscent of the liquid-
gas coexistence.

Another revealing quantity is the distribution of spins at a
single site p(s). For the continuous Gaussian model such a
distribution is expected to be Gaussian (see Appendix B for
details),

e—sz/Zo2
V2mwo?

The variance can be obtained by knowing that the total en-
ergy per particle for a harmonic system is Buy = 1/2. The
two contributions to the total energy are Buwpr = fu + Bext,
where Buey = ffooo ds p(s)Ks?/2 and Bu is given in Eq. (37).
This leads to the following result:

p(s) = (39)

a_ 2K(1602)

7BK 0

FIG. 4. Configuration snapshot as in Fig. 3 plotted to emphasize
“antiferromagnetic” order of the configurations. The empty sites
appear as unfilled squares. The remaining spins appear as red squares
if s; > 0 and as black squares if s; < 0.
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FIG. 5. Distributions p(s) for @ = 0.2499, and K = 1in (a) and
BK =5 in (b). The discrete points are from a simulation and the
continuous lines correspond to Eq. (39).

and in the limit @ — «, we have

s a1 1 — 4o
o2 = (s} ~ nﬂKln( : ) 41)

In Fig. 5 we plot the distributions p(s) for o = 0.2499,
for different values of SK, and compare the results with the
distribution in Eq. (39). For K = 1, the discrete data points
coincide with the continuous results.

B. Discrete subsystem E

In the previous section we approximated the Ey, sys-
tem by neglecting its spin discreteness, and the comparison
with the simulation showed that such approximation is gen-
erally correct for BK < 5, and even if not correct at every
point, the CG model correctly predicts the point of thermo-
dynamic collapse, suggesting that discreteness has no effect
on the thermodynamic collapse. The explanation for this is
that close to instability the variance of the distribution p(s)
diverges, and for large spin variations the spin discreteness
becomes irrelevant.

In this section we look more carefully into the neglected
contributions of spin discreteness by looking into the behavior
of E;. According to Ref. [15], the DG model at o = «, is
isomorphic with the lattice Coulomb model which exhibits
the Kosterlitz-Thouless (KT) transition. This means that at
precisely the point where our system is about to collapse, the
system also undergoes the KT transition along the parameter
BK [27]. This by itself cannot affect the collapse transition;
however, it can modify the manner of that collapse.

1. E; in one dimension

To establish the procedure in a clear manner, we consider
first a simpler case of a system in d = 1, for which the matrix
A is given in Eq. (B1) and the matrix A~ is
12 cos2mk(i — j)/L]

L &~ 1+ 2a cos(2rk/L)’

Al = 42)

Because the value of o, depends on dimensionality according
to . = 1/(2d), in d = 1 thermodynamic collapse occurs for

o = 1/2.
In the limit L — oo the summation in Eq. (42) becomes an

integral,
JE /2” 1 Coslati = )l
¢ 21 0 q

—_—, (43)
1 4+ 2 cos(q)

which evaluates to

. (=Dl (1 = T =402\
VU1 = da? 20 '
At a,, Al.;l diverges, but the divergence can be subtracted and
the system can be analyzed in terms of nondivergent interac-
tions. To do this, we introduce an alternating sign matrix,

(44)

Cj= (=D, 45)

then subtract from each element Al;' the divergent term

Cij/~'1 —4a?. The remaining elements constitute an inter-
action matrix U;; = Al.’j1 —Cij/~1 —4a?, which at o = a
reduces to

U; = —(=D"Ni = jI. (46)

The Hamiltonian of the system E; can now be written as

BH, —2”2[ gy S0 } @7)
= S S .
"7 OBk JT—4a?

Clearly, only configurations which suppress the divergence
are allowed. Such configurations satisfy s” C = 0, which is the

same as
Z 5= Z Sis (48)

odd even

where the subscripts “odd” and “even” refer to odd and even
numbered lattice sites. Taking this restriction into account, the
Hamiltonian can now be written as

BH, = ——s'Us, (49)

where the prime implies the restriction in Eq. (48).

Although not immediately clear, E;, is an even function of
o, and flipping the sign of o does not change the partition
function. [The sign change modifies Eq. (44), but as the sum-
mations in E; are over s; € (—00, 00), this does not effect
the value of E,]. Calculations then can equally be done for
o = —1/2. In such a case, the interaction potential becomes

U; = —li— Jjl, (50)

which is a Coulomb interaction in 1D. There are two dif-
ferences between the present system and the more usual
Coulomb model, however. First, the valance number of par-
ticles on a lattice site is unlimited. Second, the periodic
boundary conditions involve only particles in the simulation
box and do not include contributions due to images outside
the original simulation box.

2. Z in two dimensions

Based on the results of the previous section for d =1,
it is guessed that in d = 2 the interactions between lattice
sites are logarithmic at «,, since this is the functional form of
Coulomb interactions in this dimension. It is more convenient
to represent interactions between spins on a square-lattice, not
in terms of the matrix A~!, but in terms of a pair potential
between sites on the (x, y)-grid, and such a potential would
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X

FIG. 6. Approximate pair potential in Eq. (55) compared to the
exact results in Eq. (54) at discrete locations on a square-lattice.

have the followmg form [15]:

cos(gin + gam)
Uit = dt]l dCIZ s
_ 1 4+ 20 cos(q1) + 2c cos(qa)
(51)

where n = |x; — x| and m = |y; — y»| indicate a separa-
tion between two lattice sites on the discrete Cartesian grid,
where x;,y;, =0, 1, .... The expression is analogous to that
in Eq. (43) for d = 1 in the limit L — oo.

If we expand the integrand in powers of « and then evaluate
each term, then we find the following series expansion:

0 -1 m—+n ., 2k+m-+n 2 !2
Z( )" o 2k +m+n) (52)

UO ) = )
tor(m, 1) £ TG+ m)lk+ )k + m + )]

which constitutes a hypergeometric function. Uiy (m, n) di-
verges at o, = 1/4, and the divergent term is identified as

2K (16a?
Ui 0, 0) = (T“) (53)

where K(x) is the complete elliptic integral of the first kind.
Subtracting the divergence from Uy, the nondivergent pair
potential is

2K(1602)

U(m, n) = U(m, n) — (—1)'"+"T, (54)

where an accurate approximation to U (m, n) at ¢, is [28]

U@m,n) ~ —(=1)"t"= (ln\/n2+m2+y+ ln8>

(55)
which is valid for v/n> +m? > 1. For n=m =0 we use
U = 0. The approximate functional form in Eq. (55) com-
pared with the exact form in Eq. (54) is shown in Fig. 6.

Because the constant terms in U (m, n), together with the
divergent term, are irrelevant, the pair interaction can simply
be written as

2
= —(=D)""ZInv/n? + m2. (56)
T

The spin configurations are subject to the same restriction as
that in Eq. (48). In the square-lattice setting, this means that
the lattice is decomposed into two interpenetrating sublattices
and the restriction amounts to Y . §; = D (. Si

Mt )
4 22 T

-2 Foond
R W
ﬁ..;l " r-L-l-
R -
T
- -1 . .. .
(C)'F= - .F._ Vol A (d) 1 = =
add  m 1 -
=] = ||:" - ..
I i -, " .- .
s - ]
Lo - L a3
LN e P . '
[ | " -
o - =
- = el ra '_l'l _ "=
" - - L.
. 1 - -
= - n"n
Lo e - -
A I . - "
L5 wads - . '

FIG. 7. Configuration snapshots for E; at . for different values
of BK, BK = 12, 10, 8, 6. Red squares are for s = 1, black squares
for s = —1, and the white squares represent empty sites. Spins larger
than 1 are negligible for those values of SK that are plotted. The
system size is L = 64.

The Hamiltonian at o, can be written as

L

L
! 47[ m-rn
PHL = _/3_K Z Z (=D sy 38,0, In V02 +m?2,

x1,y1=1x2,y2=1

(57

with x; and y; indicating discrete locations on a lattice grid.

In Fig. 7 we show several configuration snapshots of &
for decreasing values of BK. One observes gradual decrease
of spin density with decreasing SK, and for 8K = 6 the con-
figuration consists of sparse isolated spins or spin pairs of the
same sign. This means that for BK < 6, Z; ~ | since most
likely value of a spin is s; = 0.

The distribution of spins p(s) is accurately repre-
sented using the continuous Gaussian approximation, see
Appendix A, given by

_ ampr | 2T
ps) =e 5K’ (58)
where the spin variance is given by (s?) = %. Figure 8
compares the above Gaussian distribution with the discrete
distributions obtained from simulation, showing a general
good agreement between the two.

The Gaussian distribution in Eq. (58), however, cannot be
a reliable approximation of the discrete system if p(0) > 1,
since this implies that the probability that a spin is zero is
greater than one. The Gaussian approximation in Eq. (58),
therefore, breaks down for 8K < 27.

032101-7



DEREK FRYDEL AND YAN LEVIN

PHYSICAL REVIEW E 102, 032101 (2020)

pK=10 BK=20
(@) (b)
0.4}
“» 0.5 1 @
N N
Q, o
0.2} /
03 0 5 03 0 5
S S

FIG. 8. Distributions p(s) for a system E; at « = «,, for
(a) BK = 10 and (b) BK = 20. The discrete points are from a simu-
lation and the continuous lines correspond to Eq. (58).

In Fig. 9 we plot p(0) as a function of SK obtained
from simulation for a discrete system and compare it to p(0)
calculated using Eq. (58).

Given the reliable performance of the approximation in the
range BK > 2m, it is safe to conclude that there is no phase
transition in this range. The distribution p(s) is monomodal
and its variance diverges only in the limit 8K — oo. If there is
any KT type of transition, then it must occur in the range 5 >
BK > 6 and can be associated with the emergence of the lone
pairs in Fig. 7, which could be interpreted as the emergence
of defects.

Because the MC simulations on the spin ensemble become
impossible for BK > 5, since the only possible spins are s; =
0, the KT transition along the SK parameter in the context of
the two-component model could imply a different mechanism
of the collapse transition.

V. FINITE p AND THE EMERGENCE OF A
METASTABLE REGION

In this section we consider a more realistic situation where
the average occupation number of a lattice site p is finite. This
also means that the quadratic Hamiltonian H, in Eq. (15) is
modified by an additional nonquadratic term A(s). A technical
difficulty is that the system is no longer Gaussian and addi-
tional methods are needed to analyze it.

The simulations show that the thermodynamic collapse for
finite p does not occur at « = 1/4, as for the case p — o0,
but is shifted to larger values of «. This indicates that the

p(0)

% 50 100
BK
FIG. 9. The probability that a lattice site is empty, p(0), as a func-

tion of BK. The data points are from simulation and the continuous
line corresponds to p(0) in Eq. (58).

thermodynamic collapse depends on density. This may be
somewhat surprising, since one expects the global minimum
of a system for « > 1/4 to be a collapsed state. This indicates
the presence of a metastable equilibrium.

In a two-component system, a collapsed configuration,
as it emerges in a simulation, is composed of numerous
clusters, each of which can, in principle, accommodate an
infinite number of particles. A sequence of such clusters for
a one-dimensional lattice model has been analyzed before [1].
Within a single cluster, a single site is occupied by one type
of particles. (Similar clusters have been observed in a two-
component system of penetrable spheres [3,4]). The energy of
each cluster scales like E o« —n?, where n is the number of
particles in a cluster.

If a collapsed configuration consists of a single cluster
composed of all the particles in a system, then the energy of
a collapsed state scales like E oc —n? where 7 is the number
of particles. The competing entropy of noncollapsed config-
urations, however, scales like —ST o kgTnlnn. This means
that as soon as a configuration with energy that scales like
E o —n?* appears (which for the present model occurs when
o > 1/4), the global minimum will always be a collapsed
state. The fact that the system does not collapse spontaneously
when o > 1/4 suggests that there is a local minimum that
produces metastable equilibrium.

For a better grasp of the collapse mechanism, we describe
a simple situation. We consider a finite system that roughly
corresponds to a size of a cluster that emerges in a collapsed
state. The system is in contact with a reservoir, so that a
number of particles in the system n fluctuates. The particles in
the reservoir do not interact with each other, while the energy
of the system itself is assumed to be BE = —an? so that the
system can achieve a collapsed configuration only if a > 0.
The grand potential of the system is

ﬂQ(n):nlng —n—an® - Bun, (59)

where n =n, 4+ n_ is the total number of particles and
5In 3 — 7 is the entropy —7'S due to each species. If a > 0,

then the global minimum of B<2(n) is for n = co. However,
dpQ

there is also a local minimum = 0, which yields
W (—4aeP?
ng = —% = 2ePH 4 8ae®PH + ... (60)
a

where n( corresponds to a metastable equilibrium. The local
minimum vanishes for a > ﬁ at which point the system
collapses. Since the reservoir density is p = e#*, we can
establish the dependence of the critical value of a where
the collapse occurs on the density as a, = #. We observe a
similar qualitative behavior in simulations.

To use a more rigorous approach to analyze a metastable
region, we start with a perturbation approximation. For a finite
0, the system Hamiltonian is

H=Hyg+ Y his). 61)

The partition function of this system can be written in terms
of the H,, ensemble as [29]

=
[

no{e T PRIEDY (62)
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FIG. 10. Internal energy (for indistinguishable particles) as a
function of « for BK =1, and B’ = 0 and S’ = —0.2. The data
points are from Monte Carlo simulation. The solid line is for Su in
Eq. (37). The dotted line incorporates the perturbative correction in
Eq. (66). The dashed line is for the variational approach.

If we expand the quantity In E, assuming & to be small,
and keep only the first order term, then a perturbative
expression is
InE ~InEx — BN(A(S))so- (63)
Finally, if we use the separation E,, = EgE; and ignore
discrete contributions, E., & Eg, then we have
In E ~ In Eg — BN {h(s))c, (64)
where the subscript G denotes the continuous Gaussian sys-
tem analyzed earlier.
For indistinguishable particles A(s;) = —u'|s;|, where the
average value of |s;| is related to A;!, see Eq. (A8), and the

i

value ofA;1 is given in Eq. (53) for A;l, we get

2N [K(16a2)

INME~InE — 65
n n G‘|‘,3Mn 5K (65)

The internal energy per particle can now be obtained using the
definition in Eq. (36). For Bu’ < 0, the expression in Eq. (37)
is corrected as u — u + Au, where the correction due to the
perturbation theory is given by

_ Bu [K(16a?) 1 E(16a?)
T x| BK [1_(1—16012)1((160(2)}’ (66)

where E(x) is the complete elliptic integral of the second kind.

Figure 10 plots the data points for Bu, for BK = 1 and two
values of the chemical potential, B’ = 0 and B’ = —0.2,
the former corresponding to infinite and the latter to a finite
density. The data points indicate that the reduced density
leads to higher internal energy. The perturbative correction
in Eq. (66) for the case S’ = —0.2 is shown as a dotted
line. It accurately represents the simulated results for o <
0.15, then for o > 0.15 it becomes increasingly less accurate,
and eventually diverges in the wrong direction as o« — 1/4.
Because the perturbation approach breaks down, it cannot tell
us anything about the value of Su in a metastable region.

BAu

e
)

R

ir/ N

20.7 8
[1]
=
! —0=0.38
— 0=0.40
[l—0=0.42 ‘ ‘
0.69 01 02 0.3

FIG. 11. —In E as a function of a variational parameter o’ for
BK =1 and gu' = —1 (for indistinguishable particles), for three
different values of «.

We next turn to a variational method. We start by postulat-
ing a quadratic auxiliary Hamiltonian,

K r
Hr = —s'I's,

2
where I' is a N x N matrix. To keep things simple, it is
assumed that I" has the same structure as the matrix A, and
the only difference is that the coupling constant does not
correspond to a physical value « but is used as a variational
parameter designated by «’. The partition function written in
terms of the auxiliary ensemble is

— KT (A-T)s— si)\ =
E = (e Asmp L)) g (67)
Then, using the Gibbs-Bogoliubov-Feynman inequality
(GBF) [29], we get
g > e (AT kG g (68)
and the quantity In E becomes
= = BK r
InE >In&r — TS (A—T)+ NBh(s)) . (69)
r

As the auxiliary system is Gaussian, the term in angular brack-
ets can be evaluated, leading to

- _ _ 2N [K(16a2)
lna}lnaeff=lnar+/3u7 IB—K
11 R o
+N(= - —k@a6e® ) [1-=).
2 T o

Figure 11 plots —In Ec/N, where In E. is given in
Eq. (70), as a function of a variational parameter «’. Because
the plots are for &« > 1/4, the local minima in those plots cor-
respond to metastable equilibriums. The minimum disappears
at around o & 0.42, in which case the system spontaneously
collapses.

The free energy of a metastable equilibrium corresponds to
the function — In E.¢ at a local minimum. The internal energy
is subsequently obtained from the definition in Eq. (36). Bu
obtained in this way is shown in Fig. 10 for the parameters
BK =1 and B’ = —0.2 as a dashed line. Comparison with
the exact results indicates high degree of accuracy of the
variational approach.

(70)
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FIG. 12. Boundaries of the metastable region as a function of
the particle density for indistinguishable particles. Global minimum
corresponds to o = 1/4 regardless of density. The metastable region
extends above this value and strongly depends on density.

If we take the value of o where the local minimum of the
function — In E.¢ disappears, see Fig. 11, to indicate the end
of the stability region, then we can use the variational method
to obtain precise contours of the stability region.

Figure 12 plots such a boundary of the metastable region.
To make contact with the original particle system, we plot the
results as a function of a particle density. The density has been
obtained from Eq. (10) and within the variational framework
is given by

26281

1= e

4K (16a'3)
BKr?

p = (71)
where o’( corresponds to «’ at a local minimum just as it is
about to disappear. The results show drastic broadening of the
metastable region as p < 1. This effect is even stronger for
smaller K.

For distinguishable particles we see the same type of gen-
eral behavior and the emergence of the metastable region.
However, the application of the variational procedure is more
complex as the function /A(s) is more difficult to handle.

VI. CONCLUSION

This work investigates thermodynamic collapse in a two-
component lattice-gas system of penetrable particles on a
square-lattice substrate. Because particles are penetrable,
there is no limit on how many particles occupy the same site,
and the multiple occupation of a single site gives rise to dif-
ferent statistical mechanics, depending whether particles are
regarded as distinguishable or indistinguishable. To facilitate
analysis of the system, we transform the relevant partition
function into the spin model with spins s; = 0, 1, 2, ....In
the limit p — oo, the system Hamiltonian recovers a simple
quardatic form, so that the partition function corresponds to a
discrete Gaussian model analyzed in the past in connection
to interfaces and the roughening transition. The difference
between the Gaussian model used to study interfaces and the
Gaussian model of penetrable particles lies in the sign of
interactions between spins. Because the Gaussian model at
the point of a collapse becomes isomorphic with the lattice
Coulomb system, we check for the existence of a KT phase
transition along the line of the thermodynamic instability. The

presence of the KT transition itself does not affect the collapse
transition, it might, however, affect the mechanism.

To analyze the system for finite p we employ a variational
approximation since for this situation the Hamiltonian is no
longer harmonic. Both simulations and the approximation in-
dicate the presence of a metastable equilibrium corresponding
to a local minimum in the free energy. The extent of the
metastable region furthermore strongly depends on density.
The metastable region vanishes at an infinite density and di-
verges as density goes to zero.
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APPENDIX A: SELECTED RELATIONS OF THE
GAUSSIAN INTEGRAL

The partition function of a continuous Gaussian model is a
Gaussian integral,

o0 o0 . 2V
E:f dsl.--/ dsNe_f"TB‘Yz‘/( ) . (A
oo 0o det B

where B is the N x N square and symmetric matrix and s =
(s1, ..., sy) is the N-dimensional vector.

The probability that a spin i has a value s; can be obtained
from the following definition:

ps;) = (8(si — s7)).-

Using the Fourier representation of a § function, the relation
above becomes

(A2)

1 o0 3 !
ps) = 5— / dg (107), (A3)
2 J_

o0

or, if we want to be more explicit,

0 e*iqx; 0 0 ) Ly
por= (] [ [Casomerion],
oo 2T E| J_ o
(A4)
where the integral inside the square brackets is the Gaussian

integral with the linear term which after evaluation leads to

, ') efiqsﬁ _lpp
p(s;) = dq LI (AS)
—0oQ0
which evaluates to
2 1
plsy=e M [o—, (A6)

where Bgl is the element of the inverse matrix B~!. Using the
distribution p(s;), the second moment of a spin s; is

(s7), = Bi"- (A7)
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We can also evaluate the average value of |s;],

2B;!
—

(Isil)g = (A8)

A similar procedure can be used to calculate a two-spin
distribution function,

/ /

p(si, s7) = (8(si — sp)8(s; — 57)), (A9)

for i # j. Using the Fourier representation of a § function
we get

1\2 [ o0 . o ,
p(s,’-,s}>=<z_)/ dqi f dgy (Ve =),
7 —00 —00
(A10)

If we follow similar steps taken to obtain p(s}), then we may
obtain the expression for p(s, s;) which then allows us to
calculate the spin-spin correlation function that evaluates to

(sisj)g = B (Al1)
Within the continuous Gaussian model, therefore, the in-

verse of the interaction matrix corresponds to the spin-spin
correlation function.

APPENDIX B: MATRIX A FOR THE CONTINUOUS
GAUSSIAN MODEL

In this section we obtain the matrix A of the continuous
Gaussian model for an arbitrary dimension d. For the sake
of concreteness, we assume the system size to be L = 4, and
in d = 1 the system configuration can be represented with a
vector

s [ 5o [ s3] sa]

and the interaction matrix A for the periodic boundary
conditions is

Ap , B

QRORKR ~
SR =R
R — R O
— R OR

where the subscript L denotes the matrix size L x L. The
matrix is circulant, symmetric, and real valued. Because only
three elements are nonzero, the matrix, furthermore, is circu-
lant tridiagonal.

In d = 2, the spins of the system with size L = 4 can be
represented on a square grid as

S1 A\ 53 S4
S5 S6 $7 53
S9 | S10 | S11 | S12
S13 | S14 | S15 | S16

and the resulting A matrix for the
tions is given by

nearest-neighbor interac-

l « 0 ¢jae O O OO O O Ol O O O

«a 1l o« 0|0 «a O 0O O O O|O0 o O O

0O ¢ 1 |0 O @« O[O0 O O O[O0 O a O

«a 0 ¢« 110 0 O |0 O O O|O0 O 0 «

«a 0 0 0|1 « 0 |l O O O|O O O O

0 ¢ 0 0l 1 « 0|0 o O O[O O O O

0 0 ¢ 0|0 ¢ I |0 O « OO0 O O O

0 0 0 ¢|jae O « 1|0 O O «f0O O O O

A== 0 0]a 0 0 0|1 « 0 ala 0 0 0 | (B2)

0 0 0 0|0 ¢ 0 Oja I o OO0 o O O

0 0 0 0|0 0 ¢ 0|0 1 |0 O o O

0 0 0 0|0 0 0 ajad 0 a 1|0 0 0 «

a 0 0 0|0 O O O|lad O O O|1l a 0 «

0O« 0 0|0 0 O 0|0 ¢ 0 Oflad 1 « O

0 0 « 0[O0 O O O|]0 O 0|0 o 1l «

0 0 0 «|O O O O|]O O O afla 0 o 1

[

where the size of the matrix is L? x L2. If we subdivide the L x L matrices,
matrix into equally sized square blocks, then we find three A, ol 0, ol
different submatrices. The diagonal blocks are identical to the al, A, al, 0
matrix in Eq. (B1). The blocks adjacent to it are diagonal ma- Ap = 0, al, A, al |’
trices with the diagonal element «, and the remaining blocks af, 0, al, A

are zero matrices. The matrix A;> can more conveniently be
represented as a L x L matrix whose elements in turn are

where [;, is an identity and O is a zero square matrix. The
block representation of the matrix A;- is a circulant matrix.
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The block representation of the matrix A;s ind = 3 is

ALZ (XILZ OLZ (XILZ
ol A alpp Op
OLZ O[ILZ ALZ OlILZ
aILZ OLZ C([LZ ALZ

AL3 =

APPENDIX C: ONSAGER’S EXACT SOLUTION OF THE
ISING MODEL

For an antiferromagnetic Ising model with the Hamiltonian

H=17Y ssj. (C1)
the free energy for a square-lattice geometry is given by [30]
F
'37 = —In[2 cosh(28J)]

1 2 2
- —2/ dqlf dgp In[1 4+ 2a cos gy + 2a cos g2 ],
872 Jo 0

where N = L? and
__ 1 sinh(28J)
%= 2 cosh2(287)
is the function of the interaction strength. In view of the
similarity of the integral term to that in Eq. (31), we may write

BF 1 o o (2k)12

(C3)

(C4

(recently, a similar expression, in terms of 4F3 hyper- geo-
metric function, has been obtained in [31]), and the partition
function can be written as

4 ko k!

0 2k 2
Zis = [2cosh(2p)1" exp [—]X y o B } (©3)
k=1

Knowing that the series in the above expression has a conver-
gence interval |o| < 1/4, the phase transition must occur at
o, = 1/4, on the edge of the stability region. Using Eq. (C3),
this corresponds to

1 sinh(2BJ;) 1

Ecoshz(ZﬁJC) T4 (€0

which yields 8J, = In(1 + +/2)/2. (A number of interesting
results for the Ising model in 2D based on series approach can
be found in [32]).

APPENDIX D: CONNECTION WITH THE CHUI-WEEKS
MODEL

The DG surface model of Chui and Weeks [15] can be
represented by the following Hamiltonian:

N N
J
H=3 Zeij(si -5 + 4hJ§Sizs (D1)

J#i
where ¢;; =1 if two spins are the nearest neighbors and
€;j = 0 otherwise. To connect the Chui-Weeks system to the

quadratic Hamiltonian in Eq. (16) corresponding to the limit
p g 003

K < K o
Hoo = E ZO[E,‘jS,‘Sj + 5 ;Siz, (D2)

JF#

we rewrite the above expression using 2s;s; =57 4 57 —
(s; — 5;)*. This leads to

K& K & K&
Hoo = —Z ZO[E,']'(S,' — Sj)2 + Ea Zeijsiz + E Zslz
JA# J# i=1
(D3)
Because in 2D there are four neighbors, this simplifies to

ak & K J
Ho = ==~ ;ei,(s,- =P+ 50 +4a)2s%~ (D4)
J# =

By comparing the parameters of the Chui-Weeks model with
the model governed by the Hamiltonian in Eq. (16) we get

K 1+4
J=_2 o1t
2 4o
For o = —1/4, our model corresponds to the case & = 0, for

which it becomes isomorphic with the lattice Coulomb model.
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