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and co-supervised by Prof. Dr. Ana Le-

onor Chies Santiago Santos

Porto Alegre, RS, Brasil

August, 2020

? Financed by CAPES and CNPq



“A pior das loucuras é, sem dúvida,
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Agradeço à minha namorada, Gabriella, que me fez ver que todos os obstáculos
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Resumo
Uma região nebular com fortes linhas de emissão foi encontrada próxima à galáxia

eĺıptica e quiescente Mrk 1172. Estudos extensivos foram realizados com o intuito

de determinar a natureza desse objeto, uma vez que, até onde sabemos, não existem

estudos prévios sobre este objeto na literatura. Os dados utilizados nesse trabalho

são provenientes do espectrógrafo Multi Unit Spectroscopic Explorer (MUSE), no

Very Large Telescope (VLT) do European Southern Observatory (ESO), cobrindo

o intervalo em comprimento de onda de 4650 – 9300 Å. Um estudo espacialmente

resolvido das populações estelares dominantes em cada sistema (chamamos este ob-

jeto de BCD-UFRGS-01) revela que, enquanto Mrk 1172 é dominada por populações

estelares velhas com t ∼ 1010 anos, BCD-UFRGS-01 apresenta duas populações es-

telares dominantes. A mais jovem delas, que possui menor contribuição (∼ 40 %),

é composta por estrelas jovens com idades ∼ 108 anos, enquanto a outra possui id-

ade da ordem de 109 anos. Determinamos a massa estelar de ambas, obtendo ∼
2 ×1011M� para Mrk 1172 e ∼ 4 ×109M� para BCD-UFRGS-01. Calculamos

também o limite inferior da massa do gás ionizado em BCD-UFRGS-01, obtendo

3.5 ×106M�. As abundâncias relativas dos ions associados às linhas de emissão

presentes no espectro de BCD-UFRGS-01, i.e., N, S e O, também foram determin-

adas. Esse cálculo foi reproduzido para todos os spaxels de BCD-UFRGS-01, onde

obtivemos uma média de N(O++) = 7.71, N(N+) = 6.91 e N(S+) = 6.56, em

unidades de log(X/H) + 12. Os valores de abundância de oxigênio (∼ 1/15Z�) e

massa estelar obtidos estão dentro do intervalo t́ıpico encontrado para Blue Com-

pact Dwarf Galaxies (BCDGs). O espectro de BCD-UFRGS-01 apresenta linhas de

emissão muito intensas, como [O iii] λ5007 Å, Hα, [N ii] λ6584 Å, and [Sii] λ6717 Å .

A partir da razão dessas linhas conclúımos que o gás de BCD-UFRGS-01 é ionizado

por estrelas jovens massivas. Medidas de SFR e
∑

SFR resultam em 0.71M� anos−1

e 1.4× 10−2M� anos−1 kpc−2, respectivamente. Estudos da dinâmica deste objeto

revelam também que o gás está rotando no sentido anti-horário em torno de um

eixo maior de BCD-UFRGS-01 e seu movimento é compat́ıvel com o movimento de

órbita circular no plano de um disco. Conclúımos, portanto, que BCD-UFRGS-01

é uma galáxia anã discoidal e é uma forte candidata a se encaixar na categoria de

Blue Compact Dwarf Galaxy.



Abstract
A nebular region with strong emission lines is found near the quiescent Early-

Type Galaxy (ETG) Mrk 1172. Extensive studies are performed in order to de-

termine the nature of this object, since to the best of our knowledge this object

has not been analysed in detail before. The data used in this work is from the

Multi Unit Spectroscopic Explorer (MUSE), at the Very Large Telescope (VLT)

from the European Southern Observatory (ESO), covering the spectral range 4650

– 9300 Å. An analysis of the spatially resolved stellar populations of Mrk 1172 and

its neighbour in projection (from now on we refer to the nebular region as BCD-

UFRGS-01) reveals that while Mrk 1172 is dominated by old stellar populations

with t ∼ 1010 yrs, BCD-UFRGS-01 presents two dominant stellar populations. The

youngest of both, which has the lowest contribution (∼ 40 %), is composed of young

stars with t ∼ 108 yrs, while the other has t ∼ 109 yrs. We determined the stellar

mass of both objects, obtaining ∼ 2× 1011M� for Mrk 1172 and ∼ 4× 109M� for

BCD-UFRGS-01. We also calculate a lower limit for the mass of the ionised gas

in BCD-UFRGS-01, obtaining 3.5 × 106M�. The relative abundances of the ions

associated with the emission lines present in the spectrum of BCD-UFRGS-01, i.e.,

N, S and O, are also determined. This calculation was performed for all spaxels of

BCD-UFRGS-01, where we have obtained the average values of N(O++) = 7.71,

N(N+) = 6.91 and N(S+) = 6.56, in units of log(X/H) + 12. The values obtained

for Oxygen abundance (∼ 1/15Z�) and stellar mass are within the typical range

of values found for other Blue Compact Dwarf Galaxies (BCDGs). The spectrum

of BCD-UFRGS-01 shows very intense emission lines, namely [O iii] λ5007 Å, Hα,

[N ii] λ6584 Å, and [Sii] λ6717 Å . From such emission line ratios we concluded that

the gas within BCD-UFRGS-01 is ionised by young massive stars. Measurements of

SFR and
∑

SFR result in 0.71M� yrs−1 and 1.4× 10−2M� yrs−1 kpc−2, respectively.

Dynamical analysis of this galaxy reveals that the gas is rotating in the counter-

clockwise direction along a major axis that crosses BCD-UFRGS-01 diagonally, and

its motion is compatible with the motion of circular orbits in the plane of a disk.

Thus, we conclude that BCD-UFRGS-01 is likely to be a dwarf disc galaxy that

belongs to the Blue Compact Dwarf Galaxy Category.
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Press Release: O misterioso colar

de pérolas extragaláctico
Há menos de um século que o ser humano descobriu que a Via Láctea não é o

Universo inteiro, senão uma em meio a centenas de bilhões de outras galáxias, cada

uma com suas peculiaridades. Algumas, como a Via Láctea, são espirais, outras são

eĺıpticas. Algumas possuem formatos tão distintos que não é posśıvel encaixá-las

em uma categoria bem definida, sendo chamadas portanto de galáxias irregulares.

Outro importante fator de diferenciação entre elas é o seu tamanho: observam-

se galáxias muito grandes no Universo, no entanto o tipo mais abundante são as

chamadas galáxias anãs.

Desde que o conhecimento da existência de inúmeras outras galáxias no Universo

veio à tona, os astrônomos se desdobram sob a fundamental e complexa tarefa de

compreender como o Universo evoluiu e formou as galáxias que observamos hoje.

Nessa busca, as galáxias anãs desempenham um papel chave, não apenas por serem

a classe mais abundante, mas também porque acreditamos hoje que a interação e

consequente fusão dos sistemas menores leva à formação dos sistemas maiores. Se

isto é verdade, é de se esperar também que as progenitoras das galáxias atuais,

denominadas primitivas, encontram-se no Universo distante. Infelizmente, com a

tecnologia e os instrumentos que possúımos hoje, encontrá-las e estudá-las com o

detalhe necessário ainda não é posśıvel. No entanto, diversas galáxias anãs relativa-

mente próximas a nós compartilham propriedades importantes com essas galáxias, de

forma que analisar os processos evolutivos nessas anãs permite estabelecer análogos

com os processos que ocorreram nas galáxias primitivas, ampliando assim o nosso

conhecimento sobre a evolução do Universo e a formação de galáxias.

Nesse trabalho descrevemos e caracterizamos um objeto misterioso próximo à

galáxia Mrk 1172 (o maior objeto da Figura 1) que relembra um colar de pérolas, e

que não possui relatos cient́ıficos prévios. A análise desse ”colar de pérolas” indica

que o seu tamanho e sua massa são da ordem de grandeza de uma galáxia anã. Além

disso, analisamos também a abundância qúımica dessa galáxia, isto é, determinamos

a quantidade de átomos de Oxigênio, Nitrogênio e Enxofre em relação à quantidade

de átomos de Hidrogênio no gás que circunda as pérolas do nosso colar de pérolas.

Com esses resultados somos capazes de estimar a fração de elementos pesados (em

astronomia, quaisquer elementos que sejam mais pesados que o Hélio são ditos ele-

mentos pesados), onde observamos que a metalicidade do colar de pérolas é muito

baixa compat́ıvel com a faixa de valores de metalicidade encontrados em estudos
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Figure 1: Campo de visão da galáxia Mrk 1172, situada no centro da imagem. A região
nebulosa que aparece ao lado de Mrk 1172 é, na verdade, a galáxia anã BCD-UFRGS-01.
O objeto brilhante no topo é uma estrela,a qual situa-se a uma distância diferente de
ambas galáxias. Definindo a localização de Mrk 1172 como o centro, as legendas nos eixos
x e y indicam o deslocamento em relação a esse centro (1 kpc ∼ 3×1016 km ).

cient́ıficos para as chamadas Blue Compact Dwarf Galaxies (BCDG, galáxias anãs

azuis e compactas), uma classe de galáxias anãs que estão entre as menos metálicas

no Universo. Essa é uma das caracteŕısticas marcantes das galáxias primitivas, um

dos aspectos que torna o estudo dessa classe de galáxias tão importante. Apesar do

colar de pérolas apresentar outras propriedades compat́ıveis com as BCDGs, con-

forme analisado neste trabalho, determinar a verdadeira natureza e a classificação

precisa desta galáxia requer estudos mais detalhados, uma vez que o sistema é com-

plexo, e também por se tratar de uma galáxia sem análise prévia, o que faz com que

existam muitas questões ainda necessitando de respostas.
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Chapter 1

Introduction

Historical records indicate that the study of astronomy was a recurrent practice

even in the older known civilisations. Monuments like the Stonehenge and the Cal-

lanish stones, for example, show that astronomy was important to produce calendars

to determine the cycle of time, using the most bright objects in the sky (Pearson,

2016, Higginbottom & Clay, 2016). While the solar and lunar cycles were dictating

the concepts of time, many punctual bright sources were present in the sky and their

fixed position in the sky led several civilisations to visualise independently positional

configurations in the sky, the constellations, which became fundamental elements of

each culture and religion.

The nature of these objects has remained a mystery for millennia, and their

beauty together with their complexity inspired poets and philosophers throughout

these years. Among the punctual objects in the sky such as stars and planets, there

were also extended sources of lights, as noticed and reported by Ptolemy in 150

A.D. in books VII–VIII of his Almagest and by Abd al-Rahman al-Sufi in his Book

of fixed stars, written around 964, where he describes the existence of a ”cloud”

where nowadays we know the Andromeda galaxy is located. These objects were

called nebula, including at the epoch thousands of objects, from the closer galaxies

to open clusters. In the first decades of 20th century, Edwin Hubble was dedicated

to study these nebular objects, when he discovered in 1923 that the distance of

the Andromeda galaxy is far greater than the dimensions of the Milky Way, thus

indicating that our Galaxy is not the entire Universe but one galaxy among many

others. Naturally questionings concerning the processes of galaxy formation and

evolution arose and the subject attracted many astronomers since then.

2
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1.1 Galaxy formation and evolution

Understanding how galaxies formed and evolved is fundamental to understand

the evolution of the Universe in itself. However, the physics involved in these evol-

utionary processes are complex and challenging, and the progress in this topic fre-

quently finds the edge of human knowledge as an obstacle. Since the discovery by

Hubble (Hubble, 1925) that galaxies are common structures in the Universe, astro-

nomers try to describe their properties such as morphologies, and look for clues in

their stellar populations to better understand the processes that shape their forma-

tion and evolution.

In the 1930’s it was already known that galaxies generally exhibit a spiral or

elliptical morphology, as evidenced by the Hubble tuning fork diagram, but it took

about thirty years for astronomers to build a scenario of galaxy formation that was

convincing and coherent at the epoch. In 1962 Eggen, Lynden-Bell and Sandage

published a seminal work in the topic of galaxy formation and evolution (Eggen

et al., 1962), where they performed a kinematical analysis of 221 dwarf stars in

the solar neighbourhood. In this work it was observed that the stars in the halo

of the Milky Way (MW, now the component known to contain the older stars in

the Galaxy), present a considerably high orbital eccentricity that could be caused

by a free fall motion, and in this case they argued that the formation of the MW

must have happened in a process of gravitational collapse. Considering this, the

authors introduced a model of galaxy formation known as the monolithic collapse

scenario, also known as Eggen-Lynden-Bell-Sandage model (ELS model). Since

the gas is originally metal-poor, so were the first formed stars that followed the

kinematical properties of the gas. These were the stars located in the bulge and in the

globular clusters, therefore the older stars in the Galaxy. During contraction of the

cloud, part of the energy was lost in the form of heat due to collisions (this process is

called dissipative collapse). Due to conservation of angular momentum the rotational

velocity was increased, and the collapse of the gas, before directed preferentially

towards the center, now happened along the rotational axis. In this picture, the gas

progressively flattens, and a disk is created. Since formed later, the stars formed

from this flattened gas will be younger and also more metallic in comparison to

their counterparts in the bulge (Chiappini, 2001). The scenario described above is

illustrated in figure 1.1. Though fundamental in the historical point of view, several

observations in the 1970’s and 1980’s indicated that the timescales of the collapse

involved in the formation of MW in the ELS model are too short, as evidenced
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Figure 1.1: In four steps, an illustrative image of the formation of MW in the ELS model.
The metal-poor protogalaxy collapses due to gravitational instabilities and the first stars
are formed. Due to dissipative collapse the gas flattens and a disk is formed, where younger
and metal enriched stars (in comparison to the stars in the bulge) are formed. The ELS
model does not take into account the role of Dark Matter, which has proven to be one
of the protagonists in the scenario of galaxy formation and evolution years later. Figure
taken from Chiappini (2001).

by the ages and metallicities of some globular clusters (Searle & Zinn, 1978). An

important aspect to mention is that the ELS model does not take into account

the role of Dark Matter (DM) and minor/major mergers in the context of galaxy

formation and evolution, and thus new models were proposed, as follows below.

One development important to be mentioned is the observation of rotation curves

of spiral galaxies beginning in the 1970’s (e.g., the canonical works of Rubin &

Ford Jr, 1970, Sofue et al., 1999, Sofue & Rubin, 2001). Such studies indicated that

the observed galaxies are embedded in dark matter halos, and many astronomers

argued then that dark matter plays an important role in the process that govern

galaxy formation (Mo et al., 2010). The seminal work of White & Rees (1978) and

the advance in the understanding of Cold Dark Matter (CDM) and application in
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models of galaxy formation (Efstathiou & Rees, 1988, Frenk et al., 1988) led to

the construction of a hierarchical scenario (at the epoch an alternative galaxy

formation model, now the most successful model), where dark matter is thought to

play a fundamental role in the early steps of galaxy assembly.

In the hierarchical merging scenario the baryonic matter1 does not have a crucial

role such as in the monolithic scenario, since dark matter is dominant. Instead

forming galaxies, the first formed structures in the hierarchical scenario

are low mass halos, due to the collapse of dark matter condensations (Longair

& Einasto, 2013, Harko, 2014). The baryonic matter is gravitationally bound to

the potential wells of the halos, and starts to collapse, warming up to partially cool

down later. Due to conservation of angular momentum the cold gas takes the shape

of a disk (Mo et al., 2010).

Besides dark matter, galaxy mergers also play a fundamental role in the hierarch-

ical scenario. When the ratio of the masses of the galaxies involved in the merging

process is lower than ∼1/3 it is called a minor merger, while for the case which the

galaxies involved have similar masses (∼1/1) the process is called major merger.

In the former the morphology of the larger galaxy remains unchanged in most of

the cases, simply accreting the whole minor galaxy. In the case of a major merger

the morphology of the systems can be harshly disrupted during the process. Stars

located on structures that are destroyed during the interaction, like the disks of the

interacting galaxies, for example, can acquire higher velocity dispersion, creating

a spheroidal component typical of a bulge. If the gas is ejected amid the violent

merger, this spheroidal component remains, and an elliptical galaxy can result from

this process (Schneider, 2014). In the case of disk galaxies the picture seems to be

more complex, since the presence of a thick disk is ubiquitous among edge-on disk

galaxies (Mo et al., 2010). For more details of the thin and thick disk components

of the disk galaxies and the theory of formation of both structures, see Yoachim &

Dalcanton (2006), Bournaud et al. (2009).

One might think that from a hierarchical point of view the more massive halos

are generally formed later than the less massive ones, i.e., minor systems merge

to build up larger ones. Since the behaviour of baryons follows the behaviour of

DM halos the same should be true for galaxies. However, this is in opposition to

what is observed, i.e., the more massive ellipticals show the presence of older stellar

populations in comparison to smaller systems, like dwarf galaxies for example (Cook

1The baryonic matter is the class of matter composed by baryons, and interacts with light, thus
being also called luminous matter. The dark matter, on the other hand, does not interact with
photons, and that is why it is called dark.
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et al., 2009). This phenomena is referred as archaeological downsizing (Neistein

et al., 2006, Fontanot et al., 2009, Bezanson et al., 2009, Oser, 2012). This is

thought to happen due to successive minor mergers, which have proven to be a

very efficient process in the sense of increasing the stellar mass of the larger system

without drastically changing its structure (Li et al., 2007, Bezanson et al., 2009,

Wang et al., 2020).

A two phase scenario for galaxy formation was proposed from the statistical

behaviour that showed that stars in z = 0 galaxies are originated in situ and ex situ.

Stars formed in situ are those formed within the galaxy, i.e., closer than r/rvir ∼
10−1, while stars formed ex situ are formed outside the galaxy, at r/rvir ∼ 100.5 and

are accreted later on via merging processes (Pillepich et al., 2015, Rodriguez-Gomez

et al., 2016). In the first of these two phases an early fast collapse happens with

a series of violent major mergers that are responsible for effectively gathering mass

and to reconfigure the potential wells (Lapi & Cavaliere, 2009). A simple spherical

collapse model indicates that the inner density profile is established in this fast-

accretion phase (Lu et al., 2006). The second phase is denoted by many minor

mergers and mass accretion happens smoothly and slowly, where the mass accreted

concentrates predominantly in the halo outskirts. As said before, this process barely

affects the inner structure of the system, though its mass re scales upwards (Cook

et al., 2009, Oser et al., 2010).

In the framework of the hierarchical scenario, the formation history of a dark

matter halo can be described by a merger tree that traces all its progenitors. Thus,

a galaxy should not be viewed as an object evolving in time, but as the ensemble

of its progenitors at a given time (De Lucia & Blaizot, 2007, Mo et al., 2010). In

figure 1.2 we present an example of a merger tree for the central galaxy of a DM

halo with a mass of 8.9× 1014M� at z = 0, which is the largest circle placed on the

top of the figure. The progenitors of this galaxy are shown below, i.e., going back

in time, where they are colour coded with respect to their rest-frame B − V colour.

The larger the symbol, the more massive the galaxy is, and only progenitors that

are more massive than 1× 1010h−1M� have symbols. The branch at the left is the

main branch, as detailed in De Lucia & Blaizot (2007), and the galaxies represented

by circles are those which are connected to the main branch via a Friends-of-Friends

(FOF) algorithm (for details of this algorithm, see Feng & Modi, 2017), while those

that did not join the FOF group are represented by triangles.

As described above, galaxy interactions are very common processes with funda-

mental importance to the understanding of the physics behind the formation and
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Figure 1.2: Merger tree for a central galaxy in a DM halo, represented by the largest circle
in the top (i.e., at z = 0) of the figures. The size of the symbols scale with the stellar mass
of each galaxy, and they are colour coded with respect to its rest-frame B−V colour. Only
galaxies more massive than 1010h−1M� have symbols. Circles are for galaxies within the
FOF group of the main branch, while triangles are for the galaxies that did not join the
FOF group. Figure taken from De Lucia & Blaizot (2007).

evolution of galaxies. The violent interaction in a major merger affects the structure

and the chemical abundance of the galaxies involved, and imprints on the evolution-

ary histories of each system can be found in the remaining gas and also in the stars

formed previous to the merging process, since the environment where these were

formed is very different in comparison to the older stars. Studying the gas also

offers the possibility to understand deeper the physical processes that

happened in the interestellar medium (ISM) of the progenitor galaxies.

The metallicity of the ISM is strongly sensitive to the processes involved in

the baryonic cycle within galaxies (Anglés-Alcázar et al., 2017, Curti et al., 2020).

The relation between the metallicity of the ISM and the stellar mass of a galaxy

is called mass-metallicity relation (MZR). The first indication of the existence of

such a relation was demonstrated in Lequeux et al. (1979) for dIs and BCDGs.

In the work of Tremonti et al. (2004) this correlation was extended by using a

sample of 54300 star-forming galaxies from SDSS in DR2. In Andrews & Martini

(2013) ∼ 200000 star-forming galaxies were stacked in bins of stellar mass and

SFR in order to enhance the signal of [O i] λ4363 and [O ii] λλ7320+7330 and

estimate the metallicity from the electron temperature, which is more accurate than

measuring the metallicity directly from strong emission lines. This work provides
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a MZR that covers a wider range of stellar masses and metallicities than previous

relations. This relation, which holds for a large range of masses (107M�–1012M�)

reveals that the most massive systems are the most chemically evolved stages of

galaxy formation, and also that the stronger gravitational potential wells make larger

galaxies more capable of maintaining their metal-rich content, since they are less

affected, in that sense, by winds and outflows than minor galaxies (Somerville &

Davé, 2015, Chisholm & Kingstone, 2015). In figure 1.3 we show the Andrews &

Martini (2013) mass-metallicity relation, represented by a black solid line, which was

obtained as described above. The circles represents the bins of stellar mass. The

coloured lines represent calibrations made using the strong emission lines (McGaugh,

1991, Zaritsky et al., 1994, Denicoló et al., 2002, Kewley & Dopita, 2002, Kobulnicky

& Kewley, 2004, Pettini & Pagel, 2004, Tremonti et al., 2004).

As shown in figure 1.3, the mass-metallicity relation is widely studied for high

and intermediate redshifts, where most of the studies focus on massive star-forming

galaxies (Erb et al., 2006, Kewley & Ellison, 2008), so that the low-metallicity and

low-mass end of the MZR are not explored as well as its counterparts. In 1.3, for

example, we observe that most of the empirical relations do not cover the regime

of log(O/H) + 12 log(O/H) + 12 / 8.5. Figure 1.4 presents the MZR at lower

stellar mass (and consequently metallicity) end, for intermediate-z and local BCDGs

(z ∼ 0.03 to z ∼ 0.3). Grey dots represent a sample of SDSS BCDGs, while the

red circles are BCDGs from the Cosmic Evolution Survey (COSMOS), where the

sample was analysed in Lian et al. (2016).

A large variety of structures can be formed and found close to galaxies, and they

provide important information about the past of these galaxies, as it is in the case

of giant ionised gas clouds (Hii regions), which will be discussed in more detail in

the next section.

1.2 The ionised interestellar medium

One of the most common structures of ionised gas in galaxies are the H ii regions,

which are composed mainly of ionised Hydrogen. Due to the self-gravitational well

these regions often show spherical symmetry, with electronic temperatures of the

order of 104 K, while its electronic density span orders of magnitude, lying in the

range of 102 ∼ 103 cm−3, though H ii regions with higher or lower electronic densities

are not rare (Reynolds et al., 2001, Hunt & Hirashita, 2009).
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Figure 1.3: The mass-metallicity relation obtained in Andrews & Martini (2013) using
the stacked spectra of ∼ 200000 star-forming galaxies to estimate the metallicity from the
electronic temperature of H ii regions within these galaxies. The relation is represented
by the black solid line, where the circles are the bins of mass. Coloured lines represent
calibrations made using the strong emission lines method (McGaugh, 1991, Zaritsky et al.,
1994, Denicoló et al., 2002, Kewley & Dopita, 2002, Kobulnicky & Kewley, 2004, Pettini
& Pagel, 2004, Tremonti et al., 2004).
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Figure 1.4: Low end of the mass-metallicity relation, including the Blue Compact Dwarf
Galaxies. While the grey dots represent a sample of BCDGs in SDSS, the red circles are
BCDGs from Cosmic Evolution Survey (COSMOS). Figure taken from Lian et al. (2016).
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These regions are surrounded by young hot stars (in figure 1.5 we present ex-

amples of large H ii regions.) of type O and B with effective temperatures in the

order of 30 000 ∼ 50 000 K, responsible for the production of the photons that ionise

the surrounding gas, presenting a variety of physical dimensions, like the Orion neb-

ula (D∼ 8 pc), or even smaller (Anderson et al., 2014), to hundreds of parsecs, such

as 30 Doradus (D∼ 200 pc), NGC 604 (D∼ 460 pc), or NGC 5471 (D∼ 1 kpc) as

reported by Oey et al. (2003) and Garćıa-Benito et al. (2011). These latter ones are

the prototypes of the extragalactic giant H ii regions frequently found in the disks

of spiral galaxies (Hodge & Kennicutt Jr, 1983, Dottori, 1987, Dottori & Copetti,

1989, Knapen, 1998). In some cases, the star formation is violent and extends over

the whole galaxy (e.g. starburst and Blue Compact Dwarf Galaxies, Kehrig et al.,

2008, Cairós et al., 2012).

Spectroscopically, these objects stand out due to their strong emission lines,

specially in the optical wavelength range (4000 ∼ 7000 Å). These arise mainly due

to the recombination of H and He, though there are other equally strong emission

lines called forbidden lines2. The environment of the H ii regions is perfect for these

lines to arise, since it has a density that is sufficiently low (usually with electronic

densities in the range of 102 ∼ 103 cm−3) and exhibits a radiation field with energy

enough to promote this process. Since such low density gas can not be reproduced

in laboratories, these lines were observed by the first time in H ii regions. Examples

of forbidden lines usually found in H ii regions are [O iii] λ5007, [N ii] λ6583 and [S

ii] λ6731. The square brackets enclosing the spectroscopic atomic notation indicate

that the line is forbidden.

Though similar in the sense of being a gaseous region with the presence of strong

emission lines in its spectrum, an H ii region shall not be confused with an Extended

Emission Line Region (EELR). The term EELR is usually associated to nebular

regions found lying next quasars, though too distant to be considered as part of

the Narrow-Line Region (NLR)3 Since these regions are being ionised directly by

2These forbidden lines come from an atomic transition that violates the selection rules when con-
sidering the usual electric dipole approximation for the interaction between light and the bounded
electron. This process is not strictly forbidden, since deeper approximations as the electric quad-
rupole, for example, changes the selection rules and allows this transitions to happen, though at
much lower rate than the regular transitions. The mean lifetime of this state is of the order of
hours, i.e., a long-lived state in comparison to the regular states with mean lifetime in the order of
10−9s. It means that it would take hours for such an excited electron to decay back to its original
level and emit a photon radiatively, what is extremely unlikely to happen in an environment with
relatively high density, since the collisional de-excitement is almost certain within an hour. Even
the best vacuum produced in laboratories today still is too dense to observe these lines, and this
is why they were called forbidden.

3A gaseous region close to the central regions of a quasar and ionised by the radiation emitted
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(a) 30 Doradus. Credits: Trappist/E. Je-
hin/ESO

(b) N44. Credits: Optical: ESO, X-
ray: NASA/CXC/U.Mich./S.Oey, IR:
NASA/JPL

Figure 1.5: Examples of H ii regions. 30 Doradus is located within the LMC with a
distance of ∼ 49 kpc from us, where the picture shown is made from a composition of the
filters B, V and R. The FoV of the image covers 20 arcmin. 30 Doradus is intrinsically the
brightest star-forming region in the Local Group, with a stellar mass of 4.5×105M�. N44
is also located within the LMC, and the picture shown displays a combination of images
in the optical, IR and X-ray. It has a projected extension of ∼ 300 pc and an estimated
stellar mass of 5× 105M�.

the Active Galactic Nuclei (AGN) it is thought that analysing the gas may reveal

important information about the influence of the AGN activity into quenching or

enhancing the star formation. In the former case, we call this process as negative

AGN feedback, while the latter is called positive AGN feedback (Schawinski et al.,

2007, Sijacki et al., 2007, Dubois et al., 2016, Gallagher et al., 2019). This hard

radiation field can be ceased if the SMBH stops the mass accretion. Since the speed

of light is finite the gas composing the EELR does not stop receiving this radiation

immediately. Then, there is a window in time where the observed energetic level

of the continuum needed to produce the emission lines seen in the spectrum of the

EELR is not compatible with the radiation emitted by the faded quasar. Such

an object is called a quasar light echo, and its existence was unknown until the

serendipitous discovery of a faint nebula near IC 2497 by the citizen scientist Hanny

Van Arkel during the visual inspection of data in the Galaxy Zoo project (Raddick

et al., 2009, 2013). This peculiar object was named then as Hanny’s voorwerp

(voorwerp is the dutch word for object, Lintott et al., 2009, Józsa et al., 2009,

Rampadarath et al., 2010, Schawinski et al., 2010). Similar objects found later are

by an Active Galactic Nuclei (AGN) due to the accretion of matter by the Supermassive Black
Hole (SMBH, Ferrarese & Ford, 2005, Kormendy & Ho, 2013, Storchi-Bergmann, 2014).
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(a) ii Zw 40. (b) Mrk 36.

Figure 1.6: Examples of H ii galaxies, rich in gas, metal-poor and with irregular mor-
phologies, these objects are actively forming stars. ii Zw 40 is a widely studied Blue
Compact Dwarf Galaxy, with z = 0.00263. Mrk 36 also a Blue Compact Dwarf Galaxy,
has z = 0.00215. Figure taken from SDSS database.

called voorwerpjes (plural for voorwerp). These objects are large (the prototypical

Hanny’s voorwerp, for example, extends itself over a 11 x 16 kpc projected region

(Sartori et al., 2018) and thought to be originated in the release of huge amounts of

gas occurred in past merger events (Keel et al., 2012).

There are galaxies that have morphologies that resembles giant H ii clouds, as

II Zw 40 and Mrk 36, which are illustrated in figure 1.6, with images taken from SDSS

(Zhao et al., 2013, Fernández et al., 2018). This is why these are referred sometimes

as H ii galaxies in the literature. These H ii galaxies and other low metallicity dwarf

galaxies represent key objects in the process of improvement of the theory behind the

hierarchical scenario of galaxy formation, since smaller low metallicity galaxies in

the Early Universe (and today) are the minor pieces that shall merge to form the

larger galaxies. Thus, finding local Universe low metallicity analogues to these kind

of objects is fundamental to study in detail and understand the physics behind such

types of sources.

1.3 Dwarf irregular galaxies

Dwarf galaxies differ from larger galaxies in several aspects. Noticeable they are

smaller in size, fainter and have lower mass content, usually orbiting as satellites of

larger galaxies. These objects play a fundamental role in the hierarchical model of
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galaxy formation and evolution, since it is thought that smaller objects go through

successive mergers to form the observed galaxies, meaning that they have perhaps

also been dwarfs in the past (Digby et al., 2019).

Although the most abundant galaxies in the Universe, the fraction of all stars

that are located in dwarf galaxies is not equally significant (i.e., though the most

abundant class of galaxies, these do not hold the highest fraction of stars when

compared with massive galaxies), once the gas content varies from case to case (Mo

et al., 2010). Numerous, dwarf galaxies are seen in a wide range of environments,

providing important information about the formation of these systems and the im-

pact of the environment on their evolution. Indeed, they present diverse observed

structures, so that we have dwarfs with high gas and stellar content with active star

formation, classified as Dwarf Irregulars (dI).

From the relatively high amount of gas present in the dwarf irregulars, a fair

fraction of neutral gas is observed, i.e., the gas composed of the neutral atoms of

Hydrogen and Helium4 (H i and He i). Molecular gas can also be observed in some

cases, i.e., the gas composed of H2 (Riffel et al., 2010, Brum et al., 2019).

One of the most important feature in a dI is its metallicity5, which can be estim-

ated via several methods. In the case of gas-rich systems, such as dIs, metallicity

can be traced from the Oxygen abundance in H ii regions (Kunth & Östlin, 2000).

Considering the optical wavelength range, Oxygen is the most reliable element, since

it often presents stronger emission lines in comparison to other elements (i.e., N, S,

Ne, He) and the most important stages of ionisation can all be observed (Kunth &

Östlin, 2000). Dwarf irregulars are said to be metal-poor, presenting, in the Local

Group, metallicities that varies from 1/3 Z� to 1/40 Z�, some of them between the

most metal-poor known systems, where Z� is the metallicity of the sun (Gil de Paz

et al., 2003, Thuan & Izotov, 2005). dIs have, on average, a major axis of about

7 kpc with masses6 of the order of 108–109M�(Hunter & Gallagher III, 1985).

Metallicity is an unique feature of these systems. Such metal-poor systems re-

semble the primitive galaxies in the Universe, which are located at high redshift,

and due to the typical faintness of the dwarfs they can not be be observed directly

with the instruments available today. The dwarf galaxies represent an unique class

of extragalactic objects, since in the hierarchical scenario they are the minor pieces

that assembly the larger galaxies via successive mergers. In the case of the primitive

galaxies, which are the first formed galaxies, the processes of evolution and forma-

4Adopting the spectroscopic notation X0 ≡ X i and X+ = X ii
5The fraction of elements heavier than He
6This value corresponds to the mass measured using atomic Hydrogen, MHI
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tion of such objects are still unclear, since the environmental conditions in the early

Universe are far distinct than today. Understanding empirically the formation and

evolution of primitive galaxies can improve several constraints in hierarchical the-

ory, leading to a more refined scenario, and also provide deeper knowledge on star

formation in different environmental conditions (Pritchet, 1994, Djorgovski, 1992).

Fortunately, local metal-poor galaxies with high content of gas, such as the dI and

specially the Blue Compact Dwarf Galaxies (BCDGs), represent nearby analogues

to the primitive galaxies in the sense that we are able to explore the thermal balance

of the ISM under the condition of low metallicities. This allows inferences on the

evolutionary driving processes in primitive galaxies (Lebouteiller et al., 2017).

1.4 Blue Compact Dwarf Galaxies

Blue compact dwarf galaxies are also referred in the literature as H ii galaxies, since

spectroscopically they are indistinguishable from H ii regions often found in the

outskirts of spiral galaxies, being usually found in emission line surveys because of

this feature. The Blue Compact Dwarf Galaxies (BCDGs) differ in many properties

from the regular (galaxies that are not classified as dwarfs) galaxies and in many

times differ from other known dwarf galaxies, even though the categories of dI and

BCDGs often overlap, i.e., there are irregular BCDGs and dIs exhibiting H ii regions.

Such overlap happens mainly because the transition between one category to the

other is gradual and the division criteria might be too arbitrary (Kunth & Östlin,

2000). In Gil de Paz et al. (2003), a criteria is proposed to segregate dIs from

BCDGs: Since in dI the recent star formation is less active in comparison to BCDGs

and thus the Peak Surface Brightness (PSB) of the former is fainter and redder

than the latter, a criteria of µB,peak − µR,peak can be used. Indeed, Gil de Paz

et al. (2003) introduces a criteria where BCDGs are thought to follow a trend where

µB,peak − µR,peak . 1. BCDGs stand out for its activity in forming stars, and the

presence of a large quantity of young hot stars increasing the luminosity on the blue

part of the spectrum, and this is why they are called blue.

The BCDGs are very faint in the optical, with absolute B magnitudes regularly

ranging from -17 to -21 mag. To separate Blue Compact Galaxies (BCGs) from

BCDGs, the main criteria used in the literature is to set as dwarfs the ones fainter

than MB ≈ −18 mag (Kunth & Östlin, 2000, Janowiecki et al., 2017, Yin et al.,

2018). These galaxies are relatively rich in gas, specially when compared with other

dwarfs, also exhibiting clumpy knots where the recent star formation is taking place
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and stars are formed at high rates, exhausting the available gas in timescales of

∼1 Gyr (Fanelli et al., 1988). Results in the literature show that the SFR in BCDGs

span about 5 orders of magnitude. Using different methods for samples of BCDGs,

such as SFR(60µm), SFR(1.4 Ghz) and SFR(LHα), the median SFR in these galaxies

seems to lie in the range of 0.1 – 10M� yr−1 (Hopkins et al., 2002, Zhao et al., 2011).

Similarly as in the case of the dIs, the class of BCDGs include galaxies with the

lowest measured Oxigen abundance, as first shown by Searle & Sargent (1972) for

the cases of i Zw18 and II Zw40 and confirmed for several other galaxies in many

posterior investigations, establishing the BCDGs among the least chemical evolved

objects in the Universe, thus said to be metal-poor. Indeed, Oxygen abundance

measurements reveal that the BCDGs usually lies in the range of metallicity of 1/2

Z� ∼ 1/50Z� (Gil de Paz et al., 2003).

The low metallicity measured in these galaxies and the presence of young stars

made many researchers argue that the BCDGs could be even more similar to the

primeval galaxies located at high redshift, in the sense that the observed episode of

SF could actually be the first of these systems (Searle & Sargent, 1972, Kunth et al.,

1988). The idea behind this argument is the fact that in the process of evolution

of the massive stars, elements like H and He are converted into metallic elements

via nuclear fusion in the interior of the stars. In this scenario, when these massive

stars die, these heavier formed atoms are thrown back to the original environment,

a process that happens successively, making the gas within the H ii regions to be

more metal-rich.

However, extensive photometric analysis in the optical (Loose & Thuan, 1986,

Papaderos et al., 1996) and in the NIR (Noeske et al., 2005) revealed that almost all

BCDGs present a low surface brightness (LSB) stellar host with near-exponential

profiles (Amorin et al., 2007). The LSB component appears as an extended envelope

underlying the t ≤ 500 Myr stellar population found in the SF regions, with ages in

the order of 1 Gyr. The existence of these older stellar populations indicates that it

is unlikely that these objects are actually experiencing their first starburst episode.

Regarding the compactness, the initial criteria was to set an upper limit of 1 kpc in

the optical for the BCDGs (Thuan & Martin, 1981). Due to the existence of the LSB

component, it is more accurate to associate the compactness with the components

within the galaxy with higher surface brightness (µ). An useful criteria for this

situation was introduced in Zwicky (1970), where compact is said to be a galaxy

or any part of a galaxy with µ < 20 mag arcsec−2. This criteria of compactness

shows one of the subtle difference between dIs and BCDGs, as mentioned before.
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When comparing the PSB measured in the Low-Surface Brightness components of

a sample of both classes of galaxies, a trend is observed, where dIs present higher

values of µB in comparison to BCDGs. The physical reason for this is that the recent

star formation in BCDGs is more intense than in dIs, adding up the luminosity in

the blue part of the spectrum (Gil de Paz et al., 2003). Another characteristic of

BCDGs that often appears in the literature as a criteria to determine an object as

a BCDG is the luminosity associated with Hα emission line, i.e., L(Hα). The upper

limit of L(Hα) = 1041 erg s−1 is used, for example (Gallego et al., 1997, Kong et al.,

2002, Shi et al., 2005).

1.5 Motivation

During the visual inspection of data from the Multi Unit Spectroscopic Explorer

(MUSE) we serendipitously found a nebular region near the quiescent Early-Type

Galaxy (ETG) Mrk 1172. This object has photometric data available on the GALEX

catalogue (as GALEX J020536.7-081424) in the NUV and FUV wavelength range

and photometrical properties in the optical on SDSS. However, no spectrum was

found for this object in the literature, neither studies exploring its relation with

Mrk 1172.

This faint nebular region presents irregular shape (see figure 1.7), occupying a

projected area of approximately 14× 14 kpc. The inspection of its spectrum in the

optical revealed the presence of strong emission lines, specially Hα and [O iii] λ5007,

indicating that the gas is ionised and is likely to be actively forming stars. From

the strong emission lines we estimate the redshift of this object and its distance,

comparing with the values found in the literature for Mrk 1172. Based on its mass,

metallicity and star formation properties derived later in the dissertation we refer

to this object as BCD-UFRGS-01 from now on. In this work our efforts focus on

the characterisation of BCD-UFRGS-01 with respect to its physical and chemical

properties, in order to shed some light about its nature, thus, adding one extra

piece to help solve the puzzle of galaxy evolution and inferring, if possible, how it is

interacting with Mrk 1172.
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Figure 1.7: The MUSE Field of View (FoV) continuum centered in Mrk 1172 (top left),
Hα+[N ii]λλ6550+6585 (top central), [O iii]λ5007 (bottom left) and [S ii]λλ6716+6731
(bottom central) wavelength ranges. The wavelength windows used to subtract the con-
tinuum from the flux of each emission lines are presented in section 2. The spectrum of
Mrk 1172 highest-SNR spaxel is presented in top right panel, while in bottom right panel
we present the spectrum for the highest-SNR spaxel for BCD-UFRGS-01. The location of
these spaxels within the FoV is indicated in blue in the top left panel.



Chapter 2

Methods

In this chapter we briefly describe the physics underlying the techniques applied in

our analysis and the motivations that led us to apply each one of them.

2.1 Stellar population synthesis

We briefly debate the importance of the gas in the context of galaxy formation

and evolution. Besides being able to dictate the morphology of a galaxy, when

the gas collapses it begins forming stars, which are the responsible for the greater

fraction of emitted light in a galaxy, disregarding the case of galaxies hosting an

AGN. The evolution of stars is nowadays reasonably well understood, and assuming

spherical symmetry and hydrodynamical equilibrium, a very accurate model for the

birth, interior chemical processes and death of a star can be build using their mass,

Initial Mass Function (IMF) and also the birth rate (Mo et al., 2010).

Roughly speaking, a galaxy is composed of dust, gas, stars and dark matter.

Then, the evolution of the luminous matter within a galaxy is directly connected

to the formation and evolution of its stars, and these should hold imprints on the

galaxy star formation history. It would be amazing to study in detail each star to

completely trace when they were formed and under which conditions, but they are

numerous and the majority of the galaxies are too distant for them to be individually

resolved. However, we know that tens to hundreds of stars are formed in the collapse

of a single cloud, sharing the same initial environmental conditions and age (the

timescale between the birth one star and other is negligible in comparison to time

they will live), and then we call this set of stars a stellar population, in the case of

the mentioned approximation, we can call them Simple Stellar Populations (SSPs).

19
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Recovering the stellar content of a galaxy from its observed integrated light is not

an easy task, as corroborated by the number of works on this topic and the constant

improvement in the techniques seen in the past half century (e.g., Wood, 1966, Bica,

1988, Fernandes et al., 2001, Cid Fernandes et al., 2005, Conroy et al., 2009, Vazdekis

et al., 2015).

In order to determine the main properties of the dominant stellar population of

a galaxy, a stellar population synthesis technique was developed, where the spectra

of individual stars is combined and synthesized to match the observed integrated

spectrum of the galaxy. The spectrum of individual stars to be used can be obtained

via two main approaches. In the empirical approach, a sample of nearby stars with

measured bolometric magnitudes (Mbol), effective temperatures (Teff) and metallicit-

ies (Z) is used to extrapolate/interpolate these spectra and create a model spectrum

for a wide rage of stars. The empirical method has a limitation lying in the fact that

the spectrum of these individual stars can be obtained with the necessary quality

only for the stars in the solar neighborhood, meaning that the range of abundances

and metallicities available in the empirical set is considerably restricted, and the ex-

trapolation for stars formed in different environments is not very reliable (Mo et al.,

2010). The second approach is theoretical and models of stellar atmospheres are

build in order to produce spectra of stars in a wider range in comparison to the em-

pirical approach. A detailed discussion of how this is done can be found in Mihalas

(1978), Kurucz (1992), Coelho (2014), Barbuy et al. (2018). The limitations in this

model are related to our current knowledge about the life cycle of stars instead of

data availability, though the libraries of stellar evolutionary tracks are constantly

being improved (Lejeune et al., 1997, Westera et al., 2002, Maraston & Strömbäck,

2011, Vazdekis et al., 2012).

Using the knowledge of stellar evolution (e.g., isochrones tracks and/or fuel con-

sumption theorem, Maraston, 2005, Bressan et al., 2012) together with a stellar

library allows the production of evolutionary population synthesis models (EPS),

which are a set of simple stellar population models (SSPs). To disentagle the star

formation history of a galaxy, one can fit a mixture of SSPs models to the underly-

ing galaxy spectrum. In this work we used starlight code (Cid Fernandes et al.,

2005), which uses a base of SSPs with a variety of ages and metallicities, and per-

forms a linear combination between the elements in the base to produce synthetic

spectra that are compared with the observed spectrum in order to determine the

combination that minimizes the χ2 associated with the fit. Considering Oλ as the

observed flux and Mλ as the model flux vector given by the linear combination of
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the elements in the base, the χ2 of the fit is calculated using:

χ2 =
∑
λ

[
(Oλ −Mλ)wλ

]2

(2.1)

where wλ is a weighting factor with wavelength dependency that can be set by the

user. There are regions in the spectrum that the user may wish to ignore in the

fitting process, like emission lines or spurious data, for example. In this case, the

user can set wλ = 0 for these regions in the spectrum.

To determine Mλ, starlight uses the equation:

Mλ = Mλ0

[ N?∑
j=1

xj bj,λ rλ

]
⊗G(v?, σ?) (2.2)

where the index j covers all the N? elements in the base, xj is the j-th element of

the population vector, bj,λ is the j-th element in the base and rλ = 10−0.4(Aλ−Aλ0 ) is

the term for reddening correction (reddening will be discussed further). The term

inside the brackets is convoluted with a Gaussian with center determined by the

stellar velocity (v?) and dispersion (σ?, i.e., G(v?, σ?)) and then multiplied by the

model flux vector evaluated at λ = λ0, ideally a featureless region in the original

spectrum to be set by the user before the fit.

2.2 Interestellar extinction

When studying an H ii region we are usually interested in the properties of the

gas, to be obtained from the emission lines presented in its spectrum. However,

such regions must not be considered as a pure volume of gas, since dust particles

are present, located among the gas, absorbing and scattering the stellar continuum

radiation. Thus, these dust particles affect the spectrum and consequently the

emission lines, meaning that this effect must not be neglected in order to obtain the

correct properties.

The amounts of dust can absorb the radiation, reducing the flux emitted by the

source in the perspective of the observer, and this phenomena receives the name

of extinction. The scattering of the photons has the result of reducing the energy

of the incident photon, and thus the light is said to suffer an effect of reddening.

The intensity of the light emitted by the source is called intrinsic intensity (Iλ0),

and relates with the observed intensity (Iλ) via the equation (Osterbrock & Ferland,
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2006):

Iλ = Iλ0 e−τλ (2.3)

where τλ is the optical depth, which quantifies the transparency of the environment

along the line-of-sight of the observer. The mean free path of a photon depends

on its wavelength, since photons with considerably different energies will interact

differently with the matter, and this is why τλ has a wavelength dependency. The

optical depth is given by:

τλ = Cf(λ) (2.4)

where C is a constant and f(λ) is a function that holds the wavelength dependency

of the optical depth. Combining equations 2.3 and 2.4 gives:

Iλ = Iλ0 e−Cf(λ) (2.5)

Since C and f(λ) are yet undetermined, the expression above cannot be solely

determined. To proceed we must consider the ratio of this generic expression with

its evaluation on a specific wavelength window. The typical sizes of the dust grains

in H ii regions make the interaction with photons more intense in the optical and

Near Ultraviolet (NUV), and then the wavelength corresponding to Hβ (4861.33 Å)

is very convenient to proceed with the analysis1 (Osterbrock & Ferland, 2006):

Iλ
IHβ

=
Iλ0
IHβ0

e−Cf(λ)

e−Cf(Hβ)
=

Iλ0
IHβ0

10−0.434 C[f(λ)−f(Hβ)] (2.6)

Considering the extinction at a given wavelength λ1 in units of magnitude (Aλ1)

as Aλ1 = 2.5 log (Iλ1/Iλ0) we can use this definition in equation 2.6 to obtain that

Aλ1 can be expressed as:

Aλ1 = −2.5 C ′f(λ1) (2.7)

where C ′ ≡ 0.434C. We have also that the excess of color E(B − V ) ≡ AB − AV ,

where AB and AV are the extinction in the B and V bands, respectively. Adopting

the ratio of total to selective extinction R2 as R = 3.1, which represents the so called

standard reddening law (since it is the most used), we get that E(B − V ) ≈ 0.77C ′

(Osterbrock & Ferland, 2006). Then, we have:

1A conversion of the logarithmic base was applied: ex = 10y ⇒ y = 0.434 x
2R ≡ AV

E(B−V )
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Aλ = −2.5 log
( Iλ
Iλ0

)
(2.8)

Finally, using the relation betweenAV andAλ, we obtainAV f(λ) ≈ 2.387 log(Iλ/Iλ0).

To determine the interestellar extinction the H i Balmer lines are often used. Usually

Hα and Hβ are used, since they are strong lines in an emission spectrum, but also

because they are able to provide accurate measurements even with poor temperature

estimates. The assumed extinction curve gives f(Hα) = 0.818 and f(Hβ) = 1.164.

Then, assuming the case B of recombination, an intrinsic Hα/Hβ intensity ratio of

2.87 and temperature of 104 K, we have (Nascimento et al., 2019):

AV = 7.23× log

[
F (Hα)

F (Hβ)

]
− 3.31 (2.9)

where F (Hα) and F (Hβ) are the observed fluxes. The reddening law used in this

work is known as CCM law and was introduced in Cardelli et al. (1989).

The effect of dust has proven to be highly variable along the line of sight of the

observer, and this is not only because the dust within the H ii region, but specially

because of the diffuse extragalactic background, dust and molecular emission from

the ISM originated from within and beyond MW. To correct these effects a 2D dust

reddening map based on thermal emission is made (see Schlegel et al., 1998) in order

to correct this effects in Galactic and also in extragalactic scales. In this work we

use both CCM law and the so called Schlegel dust maps in order to estimate the

reddening effect in the observed system.

Since starlight only corrects the extinction of the underlying stellar popu-

lation, the extinction effects of the fluxes of the free emission line gas (i.e., after

subtracting the synthetic stellar population) are corrected as described above.

2.3 Emission Line Diagnostic Diagrams

As mentioned, when emission lines are seen in a spectrum, they indicate the

excitation of the gas. However the excitation mechanism requires a deeper analysis

than the simple visualisation of spectra, once different mechanisms can produce the

same emission lines. In most cases the ionisation mechanism is one of the following:

photoionisation by O and B stars, photoionisation by a power-law continuum source

or heating due to shock waves.

O and B stars are blue and massive stars, with masses up to 20M�. Their
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effective temperatures exceed 10 000 K, emitting photons with energy enough to

ionise the surrounding interestellar gas. The gas can also be ionised by a power law

continuum3, a characteristic of the broad-band spectral energy distribution (SED) of

a quasar, which emits energetic photons that are able to ionise the surrounding gas.

The ionisation of the gas due to shocks has proven to be an important mechanism in

systems around jets and high-velocity outflows originated in radio-loud AGNs. These

shocks convert part of the kinetic energy in the colliding gas clouds into thermal

energy, which is then converted into ionizing radiation (Laor, 1998, Keel et al., 2019).

Galaxies presenting emission line spectra also might be a Low-Ionisation Nuclear

Emission Line Region (LINER), an object that differs from the more common Seyfert

galaxies (Singh et al., 2013). While studies in the past decades favoured a scenario

that suggests that the ionisation is due to low-luminosity AGNs, inconsistencies were

found in this hypothesis(Halpern & Steiner, 1983, Cid Fernandes et al., 2011). The

most likely scenario points that ionisation in these galaxies is due to evolved stars

(post-AGBs, Singh et al., 2013).

As mentioned before, all these excitation mechanisms provide photons or thermal

radiation sufficiently energetic to produce the main emission lines in the optical.

However, the intensity ratio of these lines is not equal for each case and therefore

can be used to determine the source of ionisation. Baldwin et al. (1981) proposed

diagnostic diagrams using the intensity line ratios of Hα, Hβ, [O iii] λ5007, [N

ii] λ6583, [S ii] λ6716 and [S ii] λ6731. In figure 2.1 we present an example of

both diagrams known as BPT diagrams (Kewley et al., 2006). The limitation lines,

i.e., the lines separating each region in the diagram were obtained by extensive

empirical studies in the past decades (Veilleux & Osterbrock, 1987, Kewley et al.,

2001, Kauffmann et al., 2003, Osterbrock & Ferland, 2006, Kewley et al., 2006,

2013a,b).

2.4 Electron temperature and density determin-

ations

It is known that in low density regimes the intensity of the auroral transition
1s →2 d is considerably smaller than for the nebular-type transition of 2d →3 p

(Allen, 1987, Gordon & Sorochenko, 2009). It is also known that the intensities of

3Fν ∝ ν−α, where α is the power law index
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Figure 2.1: In the right panel, the diagram using [N ii] and Hα emission line ratios, with
the limitation lines that define the photoionisation mechanism of the observed gas. The
same for left panel, but now using the emission line ratios of [S ii] and Hα. Figure taken
from Kewley et al. (2006).

forbidden lines are sensitive to ambient temperature and density through collisions,

and then can be used to estimate physical conditions of their environments (Pily-

ugin et al., 2010, Aller, 2012, Boselli, 2012). In theory, the intensity ratio of the

nebular and auroral transition of any element is sufficient to estimate the electronic

temperature (Te) of the photoionized gas, as long as these lines are not too distant

in the wavelength direction. However, with the exception of [O iii], [N ii] and [S

ii], other intensity ratios are often weak and difficult to measure. Therefore the

most popular choice used to determine Te is [O iii](λ4959 + λ5007)/[O iii] λ4363

(Aller, 2012, Kewley et al., 2019). The emission line [O iii]λ4363 is highly sensitive

to temperature gradients, but turns out to be very faint and thus rarely observed

in systems with high-metallicity 4 (Stasińska, 2005, Kewley & Ellison, 2008, Kewley

et al., 2019). In figure 2.2 we present the the curves for the temperature dependency

of the line ratios of the most used ions (Osterbrock & Ferland, 2006, Pradhan &

Nahar, 2011).

The emission lines excited collisionally can also be used to determine the elec-

tronic density (ne) of the photoionized gas. Most of the studies of electron densities

in ionized gaseous regions in the optical use the emission lines of S[ii] λλ6716,6731

4Here considering a high-metallicity gas as Z ' Z�
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Figure 2.2: Line ratio dependency with electronic temperature for a set of emission lines
sensitive to temperature. The ratios shown are considering the low-density limit of ne =
1 cm−3. Figure taken from (Osterbrock & Ferland, 2006).
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Figure 2.3: Line ratio dependency with electronic density assuming Te = 104 K for the
most sensitive emission lines in the optical. The asymptotic behaviour of the curves
indicates the values of density for which these lines saturate. Figure taken from Osterbrock
& Ferland (2006).

and O[ii] λλ3726,3729. These are strong emission lines, thus often observed and

accessible in a wide range of redshifts (Kakkad et al., 2018). Both lines are close

in wavelength direction and have nearly the same excitation energy and then their

relative flux depends only on the electronic density (Osterbrock & Ferland, 2006).

The emission lines of O[ii] λλ3726,3729 are separated only by 3 Å, and often the

spectrographs used do not have the spectral resolution necessary to resolve both

lines. S[ii] λλ6716,6731 is more used than O[ii] doublet, being sensitive to elec-

tronic densities in the range of 50 ∼ 2000 cm−3, while the latter is more sensitive

for systems with lower densities (Osterbrock & Ferland, 2006, Kakkad et al., 2018).

The electronic density dependency for both doublets can be visualized in figure 2.3

(Ryden & Pogge, 2015), where the asymptotic behaviour of the functions indicate

the density limits for which each doublet saturates. Examples of H ii regions and

galaxies that exceed the limit of S[ii] doublet line ratio of ≈ 1.4 can be found in

Wang et al. (2004).
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2.5 Chemical Abundances

The chemical abundances of the ions in an ionised nebula can be derived from

the relative strengths of each emission line. For an emission line excited collisionally,

its intensity is given by the expression (Osterbrock & Ferland, 2006) :

Iλl,m =
1

4π

∫
N(X i)neh(νm − νl) ql,m(Te) bdS (2.10)

where N(X i) is the abundance of element X, and i is the degree of ionisation of

the element. The term h(νm − νl) is the energy difference between atomic levels

m and l, ql,m(Te) is the collisional excitation rate, which depends on the electronic

temperature of the gas Te, and b is a factor that measures the deviation of the

system from the thermodynamical equilibrium (b = 1 for an equilibrium state). The

differential element dS is related to the path travelled by light in the observer line-

of-sight. Considering ne and N(X i) constant along the observer line-of-sight, we

integrate the argument in equation 2.10 to obtain a new expression, dependent on

S. To eliminate this dependency we can divide Iλl,m by IHβ and express the relative

abundance in function of both intensities (Osterbrock & Ferland, 2006):

N(X i)

N(H+)
=
Il,m
IHβ

h(νm − νl) ql,m(Te)b

jHβ
(2.11)

Assuming a value for Te and ne, and assuming the gas to be at an equilibrium

state, the relative abundance can be determined from the intensity ratio of an emis-

sion line, since the other other parameters are already determined by the mentioned

assumption. The relative abundance can be expressed as (Osterbrock & Ferland,

2006):

N(X i)

N(H+)
=
∑
i

N(X i)

N(H+)
(2.12)

Equation 2.12 means that the total relative abundance of an ion is given by

the sum of the relative abundances of all the possible ionisation levels of atom X.

However, these lines span a wide wavelength range in the spectrum and in many

times are too faint to be detected, or are simply unavailable. Thus, in most cases

equation 2.12 cannot be directly applied since the summation is incomplete. To

correct this, an Ionisation Correction Factor (ICF) is used, and equation 2.12 is

rewritten as (Luridiana et al., 2015):
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N(X i)

N(H+)
=
∑
ī

N(X ī)

N(H+)
× ICF (2.13)

where now the index ī covers the subset of available emission lines. The determ-

ination of the ICF for a given element can be done via photoionization models or

via empirical observations done with comparisons between the ionisation poten-

tials of different ions. The expressions for ICF are usually associated to Planetary

Nebulae (PNe) or H ii regions. The available emission lines in the spectrum of

BCD-UFRGS-01 are those concerning the ions of O,N and S. We calculated their

relative abundances using pyneb (Luridiana et al., 2015), where the models for ICF

for these in elements in H ii regions are described in details in Izotov et al. (2006).

2.6 Star Formation Rate

Since the baryonic content of galaxies is essentially gas and stars, which are

linked to each other via gravitational instabilities and strong radiative cooling, it is

essential to study how this process is driven in a galaxy in order to better under-

stand its evolutionary processes (Davé et al., 2011). It is known, for example, that

environmental impact on SFR is stronger than that on morphology (Wetzel et al.,

2012). Thus, SFR holds information about the environment in which a galaxy was

formed and consequently how it evolved. As mentioned before, nebular emission

lines provide a sensitive and direct probe of the young and massive stars. Evolu-

tionary synthesis models indicate that only stars with masses > 10M� and lifetimes

of < 20 Myr contribute significantly for the integrated flux that is measured (Kenni-

cutt Jr, 1998). Therefore, an estimate of the SFR based on these nebular emission

lines is an ”instantaneous” probe of a galaxy SFR.

Assuming solar abundances and a Salpeter IMF, calibrations computed using

case B of recombination at Te = 104 K (Kennicutt Jr, 1998, and references therein)

yields to the relation:

SFR(M� yr−1) = 7.9× 10−42L(Hα) (erg s−1) (2.14)

where the luminosity L(Hα) is the luminosity associated with flux of Hα emission

line, obtained using the equation:

L(Hα) = 4πF (Hα) d2 (2.15)
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where d is the distance of the galaxy, which can be obtained in literature or calculated

using d = z(c/H0), where z is the redshift, c is the speed of light and H0 is the Hubble

constant. Since the SFR is a measurement of the gas, and not of the stars, the flux

F (Hα) in equation 2.15 must be obtained from a pure emission line spectrum, i.e.,

the stellar contribution must be subtracted from the gas contribution. It is also

important to note that the extinction is a large source of uncertainty for the SFR

measurement and thus a correction given by equation 2.5 must be applied to F (Hα)

in order to obtain more accurate and reliable estimates of SFR.



Chapter 3

Results and Discussion

In this chapter we present the most recent draft version of a scientific article that

is being written about the subject of this dissertation, which we intend to submit

to Monthly Notices of the Royal Astronomical Society (MNRAS) when the analysis

is ready. Besides the content explored in detail in the last two chapters of this

dissertation, this article also contains the results obtained and a discussion related

to these results
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ABSTRACT
We serendipitously discovered a nebular emission region with projected extension of
14× 14 kpc near the quiescent ETG Mrk 1172, which we name BCD-UFRGS-01. In
this work we aim to explore and describe BCD-UFRGS-01 in order to understand
its nature. Using data from MUSE we perform a spatially resolved stellar population
synthesis and from the strong emission lines in BCD-UFRGS-01 spectra we estimate its
SFR, Oxygen abundance, spatially resolved kinematics and a lower limit for the ionised
gas mass. From the stellar content, we estimate the stellar mass for both Mrk 1172 and
BCD-UFRGS-01. BCD-UFRGS-01 presents two dominant stellar populations (t1 ∼
108 yrs and t2 ∼ 109 yrs), while Mrk 1172 is dominated by an old stellar population (t3 ∼
1012 yrs). BCD-UFRGS-01 is metal-poor (Z ∼ 1/15 Z�) and is actively forming stars
(0.71 M� yr−1). It has a stellar mass of 4.06 × 109 M� and an ionised gas mass higher
than 3.5×106 M�. BCD-UFRGS-01 is rotating in the counter-clockwise direction, and
the motion of the gas is well described by a gas in circular orbit around the plane of
a disk. We conclude that BCD-UFRGS-01 is most likely to be a blue compact dwarf
galaxy, although further analysis is necessary to better understand its nature.

Key words: galaxies: dwarf – H ii regions – ISM: abundances

1 INTRODUCTION

The conditions at which stars formed within primeval galax-
ies in the early Universe were very different from the con-
ditions on which stars form in the Local Universe (Kepley
et al. 2016). Finding metal deficient dwarf galaxies that can
be studied locally are invaluable as they have the poten-
tial to serve as laboratories where one can test a variety
of properties of the almost metal-free gas of the young Uni-
verse. One such star forming laboratory can be found in Blue
Compact Dwarf Galaxies (De Paz et al. 2003; Papaderos
et al. 2008; Lebouteiller et al. 2017). This group of extra-
galactic small star forming galaxies are of low metallicity
(12 + log(O/H) <∼ 7.6). They are also blue in the optical,
fainter than MB ≈ −18, and even more faint in the contin-
uum, with the emitted light coming mainly from the strong
emission lines originated in the ionised gas in H ii regions,
usually tracing the starburst regions (Van Zee et al. 1998;
Remy-Ruyer et al. 2013). Despite the strength of these emis-

? augusto.lassen@ufrgs.br

sion lines with respect to the continuum in the spectrum of
BCDGs, such objects are said to be low-H luminosity, pre-
senting Hα luminosities lower than 5× 107L� (Gallego et al.
1997; Shi et al. 2005).

BCDGs present optical linear sizes ∼ 1 kpc (Bekki 2008;
Meurer et al. 1996). The criteria used in the literature to
determine if a certain object is compact or not follows the
definition introduced in Zwicky (1970), where compact is
said to be any galaxy or any part of the galaxy with surface
brightness lower than 20 mag arcsec−2. Initially the con-
cept of compact was followed by a physical size upper limit,
introduced by Thuan & Martin (1981) as 1 kpc, but the
development of the CCD imaging observations revealed the
extended structures correspondent to the LSB component in
the BCDGs, meaning that the compactness is more strictly
related to this parameter rather than physical size. Several
BCDGs are thought to be experiencing their first episode
of star formation (Thuan & Izotov 2005; Wu et al. 2006).
However, studies in the optical(Loose & Thuan 1986; Pa-
paderos et al. 1996) and in the near-infrared (Noeske et al.
2005) revealed that all BCDGs are likely to present a Low-

© 2020 The Authors
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Surface Brightness (LSB) stellar host, and extended enve-
lope underlying the star forming (SF) regions that shows
elliptical isophotes and red colours, indicative of an older
stellar population than the ≤ 500 Myr found in the SF re-
gions. The age of this stellar population is ∼ 1 Gyr and is
therefore the witness of the former events of SF (Bergvall &
Östlin 2002; Cairós et al. 2003; Amorin et al. 2007). In many
cases the visual aspect of BCDGs in the optical resemble a
compact H ii region within a larger irregular galaxy, for ex-
ample, II Zw 40, I Zw 18 (Sargent & Searle 1970) and II Zw
70 (Oconnell et al. 1978; Thuan & Martin 1981). Adopting
log(O/H)+ 12 = 8.91 for the solar Oxygen abundance, BCGs
usually lie in the low-metallicity range of 1/3 to 1/50 Z�
(Kunth & Östlin 2000; Izotov & Thuan 1999).

In this paper we report the serendipitous discovery of an
extended nebular region near the massive (estimated stellar
mass of the order of 1011 M�) Early-Type Galaxy (ETG)
Mrk 1172 that resembles in many properties the criteria
used to classify an object as a BCDG, and, to the best of
our knowledge, has no previous report in the literature. In
section 2 we introduce the data and the adopted analysis
methodologies, in section 3 we briefly describe the techniques
used and present the results obtained, in section 4 we pro-
mote a discussion based on the results from the previous
section, which is summarised in the last section. Through-
out this paper, we adopt H0 = 69.32 km s−1 Mpc−1 (Hinshaw
et al. 2013).

2 DATA

In the present work, we present the Mrk 1172 Field
of View (FoV) (J020536.18-081443.23) from Program-ID
099.B-0411(A) (PI: Johnston) that can be downloaded from
the ESO Science Archive Facility. The data were obtained
using UT4-Yepun telescope in the Wide Field Mode (WFM)
of the Multi Unit Spectroscopic Explorer (MUSE), which
covers the spectral range of 4650 – 9300 Å with a FoV of
1x1 arcmin2, pixel resolution of 0.2 arcsec per spaxel and see-
ing of ∼ 1.4 Å(Bacon et al. 2010). Mrk 1172 was observed in
2018, two different nights (August 11th and October 2nd),
where the total exposure time reached was 1.6hrs.

2.1 Data Reduction

In each night a standard star was observed for flux and tel-
luric calibrations, sky flats were taken within a week from
these observations and an internal lamp flat was taken im-
mediately before or after each set of observations. This flat
field image was used to correct for the time and temper-
ature dependent variations in the background flux level of
each CCD. Additional bias, flat field and arc images were
observed the morning after each set of observations.

The data were reduced using the ESO MUSE pipeline
(Weilbacher et al. 2012) in the ESO Recipe Execution
Tool (EsoRex) environment (ESO CPL Development Team
2015). First we created a master bias and flat field images
with a wavelength solution for each detector, each night sep-
arately. The flux calibration solution obtained from the stan-
dard star observations in both nights and the sky flats ex-
posures are provided to the science frames, as part of the

post-processing steps, which creates the reduced pixel, a ta-
ble containing individual information corrected by the men-
tioned effects on each pixel. We combined them to generate
a single aligned image and generate the final data cube. It
is known that the sky-subtraction method used in this data
reduction process recurrently leaves behind significant resid-
uals that may contaminate the spectra of faint sources or in
regions in the NIR, populated by strong sky emission lines,
thus we applied the Zurich Atmosphere Purge (ZAP) (Soto
et al. 2016) in the final data cube, in order to improve the
correction of these issues.

2.2 Data specifications

During the inspection of the data cube for Mrk 1172, we have
serendipitously found an extended nebular region (we will
call this object as BCD-UFRGS-01 throughout this paper)
near the ETG with similar redshift (z = 0.04025 ± 0.00003)
that was never reported in the literature to the best of our
knowledge. Despite its irregular shape, we can estimate the
projected extension of BCD-UFRGS-01 using a square box
of ∼ 14 × 14 kpc that contains this region. However, it is
noticeable from the FoV of MUSE shown in figure 1 that
BCD-UFRGS-01 is near the edge, so we inspected images
of Mrk 1172 in larger fields of view (***) to confirm that
BCD-UFRGS-01 does not extend further than the observed.
In figure 1 we show the MUSE FoV for the system in the
continuum in Hα,[O iii]λ5007 and [S ii] λ6716 + [S ii] λ6731
wavelength ranges. The spectra presented in this figure is
from the spaxels with highest SNR. To produce the im-
ages that show the emission in each emission line wavelength
range, we averaged the flux within the correspondent range
and subtracted the continuum, evaluated as the mean flux
within the following windows:

• Hα + [N ii]: 6525–6535 Å, 6590–6600 Å
• [O iii] λ5007: 4990–5000 Å, 5015–5044 Å
• [S ii] : 6650-6700 Å, 6800–6900 Å

3 ANALYSIS

3.1 Stellar population fitting

A spatially resolved stellar population synthesis analysis is
essential to reveal information regarding the formation, evo-
lution and current state of the observed systems. With such
technique we can obtain the star-formation history (SFH) of
both Mrk 1172 and BCD-UFRGS-01, besides the possibility
of removing the stellar contribution from the gas, allowing
several properties to be estimated, like the extinction, star
formation rate (SFR) and other that shall be discussed fur-
ther, which can be illustrated via 2D maps (Cid Fernandes
et al. 2013; Mallmann et al. 2018; Nascimento et al. 2019).

To perform the stellar population synthesis we used
megacube module, which was developed to work as front-
end for starlight code, operating in three main modules
(Mallmann et al. 2018; Cid Fernandes et al. 2005). Since
starlight is designed to operate with ASCII-format files,
the spectra of each spaxel needs to be extracted from the
original fits files, applying several pre-processing corrections,

MNRAS 000, 1–12 (2020)
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Figure 1. The MUSE FoV continuum centered in Mrk 1172 (top left), Hα+[N ii]λλ6550+6585 (top central), [O iii]λ5007 (bottom left)
and [S ii]λλ6716+6731 (bottom central) wavelength ranges. The wavelength windows used to subtract the continuum from the flux of

each emission lines are presented in section 2. The spectrum of Mrk 1172 highest-SNR spaxel is presented in top right panel, while in

bottom right panel we present the spectrum for the highest-SNR spaxel for BCD-UFRGS-01. The location of these spaxels within the
FoV is indicated in blue in the top left panel.

i.e., rest-frame spectrum shifting and galactic extinction cor-
rection. We used the dust maps from Schlegel et al. (1998)
and the CCM reddening extinction law (using Rv = 3.1,
Cardelli et al. 1989; O’Donnell 1994). Many spaxels, spe-
cially from the region corresponding to BCD-UFRGS-01 lo-
cation, tend to present noisy spectra. In order to increase the
SNR of the individual spaxels, we have binned the original
data cube two by two along the spatial direction.

Since the spatial coverage of MUSE is high, many spax-
els within the FoV are from empty regions in the sky, or even
from objects we do not desire to analyse or want to analyse
separately, therefore the creation of a 2D boolean mask that
flags valid and invalid spaxels is very useful. However, to cre-
ate the mask we must adopt a reliable criteria to separate
valid spaxels from the invalid ones. In this work we adopted
the following criteria:

• The flux vector of the individual spaxel must present
5 % or lower of non-positive numbers within the array in
order to avoid the noisy spaxels, specially from the edge.
The non-positive values in the valid spaxels are replaced by
applying an interpolation with neighbouring valid values.
• The maximum of the flux must be at least 1.5 times

higher than the maximum of the standard deviation for that
flux vector. In this way only spaxels with high SNR and/or
strong emission lines are set as valid.

The values used to create the criteria were obtained af-
ter several tests, by comparing the final 2D mask with the
image of continuum plus Hα emission, as shown in figure
2. Finally, we must perform two more interpolations in the
unmasked spectra, in order to match the spectral resolution
with the SSPs in the base that are used in the synthesis and

to have the recommended ∆λ = 1 Å. For the spaxel meeting
the above criteria and with the corrections applied we per-
formed the stellar population synthesis. As base set we used
the Granada-Miles simple stellar population (SSPs) com-
puted with the PADOVA200 isochrones and Salpeter initial
mass function (Vazdekis et al. 2010; Cid Fernandes et al.
2014). We adopted 21 ages (1 Myr, 5.6 Myr, 10 Myr, 14
Myr, 20 Myr, 31 Myr, 56 Myr, 100 Myr, 200 Myr, 316 Myr,
398 Myr, 501 Myr, 638 Myr, 708 Myr, 794 Myr, 891 Myr, 1
Gyr, 2 Gyr, 5 Gyr, 8.91 Gyr and 12.6 Gyr) and 4 metallicities
(0.19 Z�, 0.39 Z�, 1.0 Z�, 1.7 Z�). The fit was performed
in the 4800-6900 Å spectral range with normalization point
at λ0 = 5600 Å.

With the stellar population synthesis done, we inspect
the result for individual spaxels in Mrk 1172 and BCD-
UFRGS-01. The location of the highest SNR spaxels are
marked in blue in figure 1 and in red in figure 2. In figure
3 we can see the results for Mrk 1172 in the top panel and
for BCD-UFRGS-01 in the lower panel. We present the ob-
served spectra in black with the best-fit synthetic spectrum
in red, and below we show the residual spectra and the re-
gions masked by the sigma clipping method from starlight
for both cases. In the right panel we show the histograms of
the contribution weighted by luminosity of each stellar pop-
ulation with its respective ages. Mrk 1172 has dominant old
stellar populations, despite the presence of a young stellar
population with ∼ 107 yr, while BCD-UFRGS-01 is predom-
inantly young, presenting two dominant stellar populations
with ages between 108 and 109 yr, most likely to be associ-
ated with the LSB component that is typically observed in
the case of BCDGs.

We now assess the mean age weighted by luminosity (<
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Figure 2. Comparison between Mrk 1172 FoV in continuum plus

Hα emission (right panel) with a binary map (left panel), where

the yellow regions represent the spaxels used in the synthesis,
while the purple spaxels are discarded. The yellow regions in up-

per and lower left are field galaxies/stars that shall be masked

manually. The scale measures the offset, in kpc, from the refer-
ence spaxel. In red, the highest-SNR spaxels for Mrk 1172 and

BCD-UFRGS-01.

tL >) for each spaxel and build a map with the age gradient
for the dominant stellar populations using the equation:

< tL >=
∑
j

aj log tj (1)

where tj is the age of the j-th element on the basis, and aj

is a renormalization factor that takes into account the fact
that the total contribution of the SSPs used to reproduce
the spectrum is not necessarily 100 % (Cid Fernandes et al.
2005). The resulting map can be seen in figure 4, where we
can see that BCD-UFRGS-01 is dominated by young and
intermediate stellar populations, while Mrk 1172 is domi-
nated by old stellar populations. This figure shows the spa-
tial distribution of the information given by the histogram
in figure 3. Figure 4 shows that BCD-UFRGS-01 dominant
stellar population is considerably younger than the domi-
nant stellar population of Mrk 1172.

3.2 Emission Line Fluxes

Having the underlying fitted spectrum of each spaxel, we
subtract it from our observed data, resulting in a pure emis-
sion line spectrum. However no sings of emission lines were
detected in locations corresponding to Mrk 1172. For BCD-
UFRGS-01, on the other hand, strong emission lines are
clearly detected. We measure the fluxes using the ifscube1

tool, by fitting gaussian profiles to the emission emission
lines for the spectra of each spaxel in the specified regions.
We fitted each emission line using a single gaussian profile,
where the constraints used are detailed below.

3.2.1 Single gaussian fitting

We did not used a polynomial function to fit the continuum
of the spectra of BCD-UFRGS-01. It can be seen in figure 3
that the synthetic spectrum given by the result of the stellar

1 https://ifscube.readthedocs.io/en/latest/intro.html

population synthesis is more representative for the contin-
uum than a low-order polynomial would in accuracy and in
physical meaning. As input for the flux, we have provided the
same spectrum we provided for the stellar population syn-
thesis step, i.e., a rest-frame spectrum, resampled in ∆λ = 1
Å and corrected for galactic reddening. We also provide the
2D mask, and the extension of the data cube containing
the variance of each spaxel. As first constraint, we assume
the presence of three different kinematic groups, i.e., two
emission lines belonging to the same kinematic group shall
have the same values on velocity and on the σ parameter
of the modeled gaussian. From the stronger emission lines
found in the spectrum of BCD-UFRGS-01 we use four dif-
ferent kinematic groups containing the lines respective to
transitions in the atoms of H,O,N and S. We used specific
constraints, such as the known doublet ratio [N ii] λ6583 =
3.06 × [N ii] λ6548 and established the lower and upper limit
for the Sulfur doublet ratio, related to the asymptotic limits
of the intensity ratio vs. electron density curve (Osterbrock
& Ferland 2006).

An example of the outcomes of this fitting procedure
is shown in figure 5, where we present the spectral regions
containing the fitted emission lines. The observed spectrum
is shown as a solid black line, the stellar continuum obtained
via stellar population synthesis is shown in the solid blue
lines and the best-fit model is shown by the dashed yellow
line.

Besides fluxes, ifscube also provides us the gas kine-
matic parameters (gas velocity and velocity dispersion). In
the next sections we analyze these quantities.

3.2.2 Gas excitation

Emission line ratios allow us to determine the nature of the
ionization source of the H ii region within BCD-UFRGS-01,
where we use the traditional diagnostic diagram in its spa-
tially resolved version (for a similar analysis see Nascimento
et al. (2019)), as shown in figure 6 (Baldwin et al. 1981).

In figure 6 we can visualise the spatially resolved diag-
nostic diagrams for BCD-UFRGS-01. In the right top panel
in figure 6 the solid blue line separating H ii from the tran-
sition region, as well as the solid red line separating Seyfert
and LINER regions were obtained from Kauffmann et al.
(2003), and the solid green line separating transition region
from the hard-source photoionized region was obtained from
Kewley et al. (2001). The dots are the position of a single
spaxel in the diagnostic diagram. In this second diagram,
the solid magenta line is from Kewley et al. (2001), while
the solid red line is from Kauffmann et al. (2003). Both di-
agrams indicate that the gas seems to be ionised by young
massive stars rather than by an AGN. Ionisation by shocks
are investigated using the fast radiative shock models from
Allen et al. (2008), adopting solar metallicity, ne = 1.0 cm−3

and varying the values of magnetic field. In any of these
cases the curve of emission line ratio vs. shock velocity was
able to approach the low observed value of [N ii]/Hβ ∼ 0.56,
indicating that shock ionisation is unlikely in BCD-UFRGS-
01.
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Figure 3. Synthesis results for the highest-SNR spaxel for Mrk 1172 and BCD-UFRGS-01. Top left panel : In black, the observed

spectrum of Mrk 1172, where the flux is normalized using F(λ0). In red, the synthetic spectrum build from the best-fit stellar population
synthesis. Top middle panel: Residual spectrum for Mrk 1172 in black, with the regions masked by sigma clipping method in magenta. At

the bottom middle and bottom left panels, the same for BCD-UFRGS-01. Top right panel : Histogram presenting the luminosity-weighted

percentual contribution of each stellar population for Mrk 1172 best fit and their ages, in logarithmic units. Bottom right panel: Same
than top right panel, but for BCD-UFRGS-01.

Figure 4. Map of the mean age weighted by luminosity in Gyr
for Mrk 1172 and BCD-UFRGS-01 obtained via spatially resolved

stellar population synthesis.

3.3 Extinction

We already corrected the observed spectra for galactic dust
reddening using the Schlegel dust maps (Schlegel et al.

Figure 5. Emission lines in BCD-UFRGS-01 spectrum fitted us-
ing gaussian profiles with ifscube. In black, the observed spec-

trum, in blue the continuum, and the dashed yellow line represents
the model fit.

1998), but the effect still occurs in extragalactic scales, and
applying this correction is crucial to obtain many of im-
portant properties concerning the gas component in BCD-
UFRGS-01. Considering Iλ as the observed intensity for a
given wavelength and Iλ0 as the intrinsic intensity, we have:

Iλ = Iλ0 × 10−c f (λ) (2)

where c is an undetermined constant and f (λ) is the extinc-
tion curve. The number of magnitudes of extinction Aλ is
related to the lines intensity ratio by:

Aλ = −2.5 log
(

Iλ
Iλ0

)
(3)
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Figure 6. Spatially resolved diagnostic diagram for BCD-UFRGS-01. Left top/bottom panel: The circles represent the position of each

single spaxel in the diagnostic diagram, where the solid lines represent the curves that define the excitation regions. Right top/bottom
panel : BCD-UFRGS-01 with each spaxel colored corresponding to its position in the diagnostic diagram.

Since Aλ is related to AV (reddening in V band) via redden-
ing law, we assumed the case B of recombination, with an
intrinsic intensity ratio of Hα/Hβ = 2.87, electronic temper-
ature of 10000 K and and RV = 3.1 (Osterbrock & Ferland
2006):

AV = 7.23 × log
[

F(Hα)
F(Hβ)

]
− 3.31

where F(Hα) and F(Hβ) are the observed fluxes. The extinc-
tion map produced is shown in figure 7.

3.4 Star formation rate

From the diagnostic diagram one can see that BCD-UFRGS-
01 is forming stars, so it is interesting to estimate its Star
Formation Rate (SFR). We can calculate it using the recom-
bination lines, like the Balmer recombination lines found in
the spectra of BCD-UFRGS-01. Assuming case B of recom-
bination, a Salpeter Initial Mass Function (IMF), we can use
the expression below to estimate the instantaneous SFR of
BCD-UFRGS-01 (Kennicutt Jr 1998):

SFR(M� yr−1) = 7.9 × 10−42L(Hα) (erg s−1) (4)

The luminosity L(Hα) can be obtained directly from the flux
of Hα emission line, where we subtract the synthetic stellar
population flux, by using:

L(Hα) = 4πF(Hα) d2 (5)

Figure 7. The BCD-UFRGS-01 extinction map. Lighter regions

represent higher light extinction, while darker regions represent
lower extinction. In white, the masked points, excluded form the

plot. The colour bar shows the range of extinction values mea-

sured in the region in magnitude units.

where d is the distance of the galaxy, which can be ob-
tained in literature or by taking d = z(c/H0). We calcu-
lated the distance of BCD-UFRGS-01 using the measured
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Figure 8. The BCD-UFRGS-01 SFR distribution map. Regions

with high SFR appear in red, while regions without significant

star formation appear in blue. The colour bar indicates the values
of SFR associated to each colour in units of M�/yr.

z = 0.04025± 0.00003 and have obtained a L(Hα) value to be
used in equation 4 for each spaxel, resulting in a SFR map
that illustrates the SFR distribution, shown in figure 8. The
blue regions in the map represent less significant star forma-
tion, while the yellow and red regions are forming stars more
intensely, according to the colour bar. Integrating the SFR
over all spaxels results in a total SFR of 0.71 M� yr−1 and
a ΣSFR of 1.4 ×10−2 M� yr−1 kpc−2, which was obtained by
dividing the SFR by the area of each spaxel.

We can use the information acquired with the stellar
population synthesis to estimate the current stellar mass
M?

2:

M?(M�) = 4πd2 ×Mcortot × 10−20 × (3.826 × 1033)−1 (6)

where Mcortot is a starlight output parameter related to
the current mass of stars in units of Å s3 cm−2 g−1. We can
apply equation 6 to each spaxel of our datacube to obtain the
total stellar mass for both Mrk 1172 and BCD-UFRGS-01.
We obtain M? ∼ 1.76×1011M� for Mrk 1172 and M? ∼ 4.06×
109M� for BCD-UFRGS-01. Similarly, we can estimate how
many solar masses have been processed into stars through
the lifetime of the system by using2:

M ini
? (M�) = 4πd2 ×Minitot × 10−20 × (3.826 × 1033)−1 (7)

where Minitot is another starlight output parameter that
gives the mass that was once in stars, differing from Mcortot
because the stars can lose mass to the ISM because of Sne,
winds and other phenomena2. Applying equation 7 to all

2 https://www.minerva.ufsc.brstarlight/files/papers/

Manual_StCv04.pdf

valid spaxels, we obtain M ini
? ∼ 1.26 × 1011M� for Mrk 1172

and M ini
? ∼ 3.00 × 109M� for BCD-UFRGS-01.

3.5 Ionized gas mass

Following the steps detailed in Nascimento et al. (2019) and
Osterbrock & Ferland (2006), we can calculate the mass of
the ionised gas by using the expression:

M = nempV f (8)

where ne is the electron density of the gas, mp is the mass
of the proton, V is the volume of the ionised region and f
is the filling factor, which tries to correct the fact that the
ionised region does not entirely occupy the volume V. Using
the emissivity of the Hβ emission line ( jHβ ), we can calculate
the total luminosity of this line:

L(Hβ) =
∫ ∫

jHβ dΩdV (9)

We know (Osterbrock & Ferland 2006) that for recombina-
tion case B (assuming low-density limit), assuming T = 104 K
we have:

4π jHβ

nenp
= 1.24 × 10−25 erg cm3

s

where ne and np are the electronic density and the density
of protons, respectively. Using this result into the integral in
equation 9 we obtain L(Hβ) in units of erg s−1:

L(Hβ) = 1.23 × 10−25 nenpV f

Assuming the gas to be completely ionised (ne = np = n)
we can isolate V f from the expression above and use it in
equation 8. Considering ne = 1.0 cm−3, which is the lower-
limit density measurable using [S ii] doublet, we obtain the
mass of the ionised gas:

M(M�) = 6.837 × 10−34L(Hβ) (10)

where L(Hβ) is the luminosity of Hβ emission line, in units

of ergs.s−1. Since we used ne = 1.0 cm−3, the mass result-
ing from equation 10 should be interpreted as a lower-limit
mass. We apply equation 10 to BCD-UFRGS-01, where Hβ
emission line is strong for the majority of the spaxels in the
region, by using the reddening corrected F(Hβ) to calculate
L(Hβ) for each spaxel in BCD-UFRGS-01. Integrating over
the whole region correspondent to BCD-UFRGS-01, we have
obtained M = 3.5 × 106M� for the ionised gas mass.

3.6 Abundances

We aim to characterise BCD-UFRGS-01 with respect to its
gas abundance, for the elements that are present in the spec-
tra wavelength range, namely H,N,O and S using the mea-
sured emission lines. For an emission line excited collision-
ally, as the case of N,O and S, we can calculate its intensity
using:
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Figure 9. Abundance maps for the collisionally excited ions iden-

tified in BCD-UFRGS-01 spectra, namely O,N and S, respec-

tively. Abundances are given in log10N (X i ) with H = 12.

Iλl,m =
1

4π

∫
N(X i)neh(νm − νl) ql,m(Te) bdS (11)

where N(X i) is the abundance of element X, and i is the
element’s degree of ionisation. The term h(νm − νl) is the
energy difference between atomic levels m and l, ql,m(Te) is
the collisional excitation rate, which depends on the elec-
tronic temperature of the gas Te, and b is a factor that
measures the deviation of the system from the thermody-
namical equilibrium (b = 1 for an equilibrium state). The
differential element dS is related to the path travelled by
light in the observer line-of-sight. Considering ne and N(X i)
constant along the observer line-of-sight, we integrate the
argument in equation 11 to obtain a new expression, depen-
dent on S. To eliminate this dependency we can divide Iλl,m
by IHβ

and express the relative abundance in function of
both intensities:

N(X i)
N(H) =

Il,m
IHβ

h(νm − νl) ql,m(Te)b
jHβ

(12)

To estimate the ionic abundances using equation 12 we
use pyneb python package3, where we need to normalize
the measured emission line fluxes to have F(Hβ) = 100. The
results are shown in figure 9, where the abundance values for
O,N and S are represented in log10N(X i) + 12 units (Claas
1951; Peimbert et al. 1992). In the case of BCD-UFRGS-01,
we have the mean Oxygen, Nitrogen and Sulfur abundances:
N(O++) = 7.71, N(N+) = 6.91 and N(S+) = 6.56.

3.7 Kinematics

There are many intriguing aspects of BCD-UFRGS-01, i.e.,
its irregular shape, its proximity to Mrk 1172 and its physical
properties that may indicate this gas may be falling towards
Mrk 1172. Thus it is important to explore the kinematics of
this gas to reveal some extra information about the motion
of BCD-UFRGS-01. We can obtain the radial velocity v of
the gas for the identified emission lines in BCD-UFRGS-
01 spectra directly from ifscube single gaussian fit, as well
as the σ parameter, to be interpreted as the turbulence of

3 http://research.iac.es/proyecto/PyNeb//

the gas. In the fit process, we fit the doublets in the same
kinematic group, meaning that the resulting velocity values
will be the same for the same ion. In figure 10 we show
both radial velocity and sigma maps for Hα, [O iii]λ5007,
[N ii]λ6548 and [S ii]λ6731 emission lines.

First we observe, specially in the maps of radial veloc-
ity, that the gradient seen is more smooth in the case of Hα

emission line maps. This is due to the fact that in spaxels
near the edge of BCD-UFRGS-01 the SNR is low and the
measurement of emission lines other than Hα has high un-
certainty at these points. Even so, all velocity maps exhibit
the same kinematical trend for the motion of the gas, where
it seems to be rotating in counterclockwise direction around
an axis that crosses the image diagonally. A better visualisa-
tion of this axis can be seen in figures 12 and 11, represented
by the v = 0 solid line. The turbulence of the gas, in its turn,
presents no clear trend, and is uniformly distributed along
BCD-UFRGS-01 structure.

4 DISCUSSION

From the stellar population analysis it is clear that Mrk 1172
and BCD-UFRGS-01 do not share similar SFHs, since the
ETG is dominated by and old stellar population with no
signs of ionised gas. Mrk 1172 has less than 20 % of its
light contribution originated from stars formed in the past
108 ∼ 109 years, meanwhile BCD-UFRGS-01 presents a rich
emission line spectrum with its stellar emission dominated
by very young stellar populations (t < 109, see figures 4 and
3). It is worthwhile to mention that although figure 3 brings
information about individual spaxels, it is representative for
all the spaxels of each system, and arguments based on this
figure can be extended then to the entire systems.

We also wish to understand the mechanism responsi-
ble for the gas excitation, evidenced by the strong emission
lines observed in BCD-UFRGS-01 spectrum. Since Mrk 1172
has an inactive Black Hole (BH) in its central regions, BCD-
UFRGS-01 could be ionised by the hard radiation originated
from the BH, i.e., it could be an AGN echo like the proto-
typical Hanny’s voorwerp near IC 2497 (Lintott et al. 2009;
Rampadarath et al. 2010; Keel et al. 2012). However, from
the BPT diagnostic diagrams shown in figure 6 it is clear
that the gas within BCD-UFRGS-01 is excited by young
hot stars rather than by a hard radiation field. Despite this,
the presence of such energetic field is observed in several
BCDGs, where the nature of its source remains unexplained,
although several mechanisms have been proposed, i.e., mas-
sive main-sequence stars (Schaerer & de Koter 1997), Wolf-
Rayet stars (Schaerer & Vacca 1998; Schaerer & Stasin-
ska 1999), primordial zero-metallicity stars (Schaerer 2003),
high-mass X-ray binaries (Garnett et al. 1991) and fast ra-
diative shocks (Dopita & Sutherland 1996). Unfortunately,
due to the limitation in our spectral range we are not able
to visualise emission lines such as He λ4686 and [Ne IV] that
could indicate the presence of a powerful ionisation source.
Even without the spectral limitation we probably would not
be able to detect those lines, since they generally are too
faint, about 5% of Hβ flux in the case of He λ4686 and 2%
in the case of [Ne V] λλ3346+ 3426 (Thuan & Martin 1981),
and BCD-UFRGS-01 is considerably faint. Consulting shock
models from Allen et al. (2008) we concluded that fast ra-
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Figure 10. Kinematic maps for Hα , [O iii]λ 5007, [N ii]λ 6548 and [S ii]λ 6731 emission lines. In the upper panel, radial velocity maps,
and in the lower panel, the turbulence of the gas. Both parameters are obtained from a single gaussian used to fit the observed emission

lines using ifscube.

diative shocks are not the main mechanism involved in the
ionisation of the gas.

It is clear then that BCD-UFRGS-01 is actively forming
stars, although the efficiency of the process is unknown. The
young stars that are ionizing the gas seem to be located in
few clumpy knots along the structure of BCD-UFRGS-01,
better traced by the SFR maps in figure 8. This structure
also becomes visible when looking at the Hα collapsed image
in figure 1 and in the continuum Hα emission in figure 2, and
are typical structures formed in regions with active star for-
mation. Since the mean AV is moderately low (∼ 0.9, as seen
in the previous section), BCD-UFRGS-01 seems to be com-
posed more of gas and stars than dust, though its presence
shall not be neglected. By using the synthesis result we cal-
culated the SFR using equation 4, obtaining a SFR of 0.71
M� yr−1, which is close to the total SFR of 0.44 M� yr−1

found for H ii regions in M31 (Azimlu et al. 2011). We also
obtained the spatial distribution of SFR for BCD-UFRGS-
01 (

∑
SFR), resulting in 1.4 × 10−2 M�yr−1kpc−2. In table

4 we present a comparison between the measured SFR of
BCD-UFRGS-01 with BCDGs from the literature (Van Zee
et al. 1998). But why do we compare this galaxy with known
BCDGs rather than other class of objects?

As shown previously, we also calculated the mass of
the ionised gas in BCD-UFRGS-01 using Hβ emission line,

resulting in a mass of 3.5 × 106M�, and a stellar mass
of 4.06 × 109M�. In the case of Mrk 1172 we could not
estimate the mass of ionised gas because of the lack of
prominent emission lines, but we estimate a stellar mass
of 1.76 × 1011M�, a typical value for massive ETGs and in
agreement with other measures found in the literature (i.e,

8.91 × 1010M�, see Omand et al. (2014)). Meanwhile BCD-
UFRGS-01 stellar mass is comparable with the SMC stellar
mass of 6.5×109M� (Bekki & Stanimirović 2009), and is or-
der of magnitudes higher than the ∼ 105M� found for large
emission nebula and H ii regions, as N44 and the the Taran-
tula Nebula, for example (Tsuge et al. 2019; Bosch et al.
2009), indicating that the observed structure should not be
taken as a simple H ii region, but as a dwarf galaxy in inter-
action with Mrk 1172. However, the main reason for com-
paring BCD-UFRGS-01 with BCDGs rather than any other
class of objects comes from the abundance measurements.

To estimate the fraction of heavy elements in the H ii
regions within BCD-UFRGS-01 we used the Oxygen abun-
dance. Using this, we have found a mean Oxygen abundance
of 7.71 for the spaxels shown in figure 9, where all spaxels
within the region lie in the range 6.43 < log(O/H) + 12 <
8.29. Few of these spaxels may not have trustworthy values
of Oxygen abundance, since edge spaxels present noisy Hβ

emission lines, hard to model correctly. However it is notice-
able that the values of Oxygen abundance for all spaxels lie
in the same metallicity range than the metal-poor BCDGs
(adopting log(O/H)+12 = 8.91 for the sun), which lie among
the most metal-poor galaxies in the Universe. In table 4 we
compare this value with the Oxygen abundance measured
for BCDGs in the literature. As we can see, BCD-UFRGS-
01 is considerably metal deficient, presenting similar results
with other BCGDs. Another characteristic of BCDGs is their
magnitude in the B band. As cited previously, we lack the
spectral range to measure the magnitude in B band using
the spectrum of BCD-UFRGS-01. However we can use the
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Figure 11. Dynamical model used, assuming circular orbits in
the plane of a disk without constraints. The right panel the veloc-

ity map, in agreement with the kinematical map shown previously,

is an indicative of the success of the chosen dynamical model. In
the middle panel, the model indicating a counterclockwise rota-

tion, with the dynamical axis and the rotation levels of the gas

along the structure. In left panel, the residual map, uniformly
distributed around zero.

available photometry data from SDSS in ugriz band system
and convert it to B by using:

B − g = (0.349 ± 0.009) (g − r) + (0.245 ± 0.006) (13)

The conversion equation above was obtained in Jordi
et al. (2006) from comparing Stetson fields around Draco,
NGC 2419 and NGC 7078 with their SDSS DR4 photometry
and is best suited for metal-poor Population II stars, which
is the case for the observed dwarf galaxy. There is another
version of equation 13 which uses g and u rather than g and
r, and applying the other version leads to the same result for
B, but with much higher uncertainty, since u measurement
magnitude has a considerably larger uncertainty than in the
case of r band. Applying equation 13 we obtain B = 21.00 ±
0.37, resulting in a absolute magnitude of MB ∼ −15 mag,
which means the observed dwarf galaxy is very faint even
in the blue and satisfies the criteria of MB > −18, adopted
as one of the main criteria to define BCDGs. We also know
such objects should present L(Hα) luminosity lower than 5
×107 L�. Measuring L(Hα) by using equation 5 we obtain
L(Hα) ∼ 2 × 107 L� for the integrated flux of the minor
galaxy, below the lower limit introduced by Gallego et al.
(1997). In table 4 we compare the measured MB with other
BCDGs (Van Zee et al. 1998).

A dynamical model can be used to investigate deeper
the behaviour of the gas. We have used a model based on
Bertola et al. (1991), assuming circular orbits in the plane
of a disk. We tested two cases, one with all the parameters
of the fit free of constraints and in the other case we used
the spaxel which is the peak of the stellar mass distribution
in BCD-UFRGS-01 as the position of the kinematic center.
The first case is shown in figure 11 and the latter is presented
in figure 12. Although simplistic, the behaviour seen in the
upper panel of figure 10 is also reproduced by the dynamical
model, in the left of both figures 11 and 12, despite the slight
difference in the velocity values. We can also notice that in
the residual map in the right uniformly distributed values
around zero are observed, indicating that the fit predicts
accurately the dynamical behaviour of the gas. The success
of this fit may indicate that the observed region may actually
be a low-metallicity disk galaxy that could be disrupted due
to tidal forces.

Figure 12. Same as figure 11, but now using the spaxel with
higher stellar mass measured as the dynamical center of mass of

the observed structure. Again, the fit is performed successfully.

5 SUMMARY AND CONCLUSIONS

We present here an extensive analysis of the physical and
chemical properties of a new nebular emission line region,
namely, BCD-UFRGS-01. It is located near the quiescent
ETG Mrk 1172 in projection and was never reported in the
literature, to the best of our knowledge. We measured the
redshift of BCD-UFRGS-01 from its spectra and compared
with the redshift of Mrk 1172. For BCD-UFRGS-01 we have
obtained z = 0.04025 ± 0.00003, or d = 174 ± 2 Mpc while
Mrk 1172 has a redshift of z = 0.04115, implying a distance
of d ∼ 178 Mpc (Chang et al. 2015). Below, we summarize
the main conclusions of this work:

(i) Despite its low SNR in the continuum, the spectrum
of BCD-UFRGS-01 presents strong emission lines, namely:
Hα, Hβ , [O iii] λλ4959+5007, [N ii] λλ6548+6583 and [S
ii] λλ6716+6731. The stellar population synthesis reveals
that Mrk 1172 is predominantly dominated by old stellar
populations with t ≥ 1010 yrs, while BCD-UFRGS-01 shows
the presence of a young stellar population with ages in the
range of 107-108 yrs. An underlying stellar population with
t ∼ 109 yrs is also present, which we suggest that it might be
related to the LSB component usually found for BCDGs.

(ii) From the stellar content of BCD-UFRGS-01 and
Mrk 1172 we are able to estimate the stellar mass of both
galaxies. We obtain M? ∼ 1.76 × 1011M� for Mrk 1172, a
value that lies close to a previous measurement found in the
literature. This is relatively high value of mass, and con-
sidering that Mrk 1172 is classified as isolated (Argudo-
Fernández et al. 2015), it is possible that many merg-
ers events happened throughout the evolutionary history
of this ETG. BCD-UFRGS-01 presents a stellar mass of
M? ∼ 4.06 × 109M�, which is comparable to the mass of
the SMC, (M? = 6.5 × 109M� Bekki & Stanimirović 2009)
and to the BCDG Henize 2-10 (M? = 3.7 × 109M� Reines
et al. 2011), for example.

(iii) In order to investigate the gas excitation mechanism,
we perform a spatially resolved study making use of emis-
sion line diagnostic diagrams such as the BPT. Both dia-
grams indicate that the gas within BCD-UFRGS-01 is be-
ing photoionized by young massive hot stars rather than by
an AGN power-law feature less continuum. In the edges of
BCD-UFRGS-01 FoV the signal associated to the Hβ emis-
sion line is low, and a few spaxels in these locations appear
in the AGN region of the BPTs but we interpret them as
spurious data. Shock models were also investigated, but they
are negligible.

(iv) We have estimated 3.5 × 106M� for the ionised gas

MNRAS 000, 1–12 (2020)
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Galaxy log(O/H) + 12 MB SFR (M� yr−1)

II Zw 40 8.13 ± 0.15 -16.2 1.2
UGC 4483 7.52 ± 0.03 -12.7 0.0031

UM 439 8.05 ± 0.15 -15.8 0.083
UM 461 7.74 ± 0.15 -14.4 0.071

UM 462 7.98 ± 0.15 -16.1 0.23

BCD-UFRGS-01 7.71 -15.3 0.71

mass. The values of mass and size (∼ 14 × 14 kpc) of BCD-
UFRGS-01 is orders of magnitude higher than massive H ii
regions and is more likely to be a dwarf galaxy than an giant
H ii region.

(v) We calculate maps for the ionic abundances of O, N
and S for BCD-UFRGS-01. We have obtained an average
log(O/H) + 12 = 7.71 (∼ 1/15 Z�). This value characterises
the environment of BCD-UFRGS-01 as metal-poor, and lies
in the typical ranges of metallicity found for BCDGs.

(vi) Our measurements and observations strongly suggest
that BCD-UFRGS-01 is actively forming stars. Thus it is
important to quantify the total SFR. We use the reddening
corrected Hα flux, to compute the instantaneous SFR. We
obtain an integrated value of 0.71 M� yr−1, which is high
when compared to other BCDGs (0.1 – 0.5 M� yr−1, Van Zee
et al. 1998; Remy-Ruyer et al. 2013; Lian et al. 2016). We
also estimate a

∑
SFR of 1.4 ×10−2 M� yr−1 kpc−2. It also

presents clumpy knots that we have interpreted as active
star-formation.

(vii) Radial velocity maps indicate that the gas seems
to be rotating in the counter-clockwise direction along an
axis that crosses BCD-UFRGS-01 diagonally. These veloc-
ity maps are well fitted with a disk model of Bertola et al.
(1991), thus, indicating that the gas in BCD-UFRGS-01 is
arranged on a disk structure.

(viii) We have found that BCD-UFRGS-01 has a MB =

−15.3 mag, a value close to other known BCDGs.

With the summarised results mentioned above we con-
clude that the faint nebular emission line region close in
projection to Mrk 1172 is actually a gas rich low-metallicity
dwarf galaxy, most likely a BCDG.

In Hα images bright knots are visible in BCD-UFRGS-
01, where the highest fraction of its stellar content seems to
be located. Analysis in these knots and how they are ionizing
the surrounding gas may reveal more accurately the true na-
ture of BCD-UFRGS-01 (Lassen et al, in preparation). Mod-
elling the light profile of both galaxies is essential to improve
our understanding about their detailed structure, which can
reveal the Low-Surface Brightness component that is typ-
ical from BCDGs and may also trace mergers in the past
history of both systems. The latter may help us to answer
another important question, i.e., which are the origins of this
low-metallicity gas and how this metal-poor environment af-
fected the evolutionary processes of BCD-UFRGS-01? This
is, however, behind the scope of this paper, and is left for a
future publication (Lassen et. al, in preparation)
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Figure A1. Map for the flux of ionizing photons for BCD-

UFRGS-01. The gas is excited due to massive young stars, which

seem to be concentrated in knots spread along the BCD-UFRGS-
01 structure, which are also the regions with stronger SFR.
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APPENDIX A: FLUX OF IONIZING PHOTONS

From Osterbrock & Ferland (2006) we have:

Q(H0) ≈ αB(H0,T)
αeff

Hβ
(H0,T)

L(Hβ)
hνHβ

(A1)

where Q(H0) is the number of ionizing photons emitted by
the stars ionizing the gas in BCD-UFRGS-01, αB(H0,T) is
the recombination coefficient for all energy levels except for
ground state, αeff

Hβ
(H0,T) is the effective recombination co-

efficient for Hβ emission line and hνHβ
is the energy of a

photon emitted in a Hβ radiative transition. Since Hα is the
strongest line in the spectra of BCD-UFRGS-01, we may
want to replace L(Hβ) in equation A1 using the equation of
reddening. Notice that this replacement also introduces the
reddening correction for both lines. Using also equation 5,
we have:

Q(H0) ≈ αB(H0,T)
αeff

Hβ
(H0,T)

4πd2

hνHβ
10

Av+3.31
7.23

F(Hα) (A2)

which can be applied to each spaxel of BCD-UFRGS-01, in
order to obtain a map for Q(H0), which can be visualized in
figure A1.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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Chapter 4

Concluding remarks

Using data from the Multi Unit Spectroscopic Explorer (MUSE) we serendip-

itously found an emission line region within the FoV of the quiescent and massive

ETG Mrk 1172. We measure the redshift of this nebular region and compare to

values of redshifts found for Mrk 1172 in the literature (z = 0.04115 or d = 178 Mpc

for Mrk 1172 and z = 0.04025 ± 0.00003 or d = 174 Mpc for the nebular region).

Although both galaxies seem to be too distant from each other (∼ 4 Mpc) to have

considerable effects of gravitational interaction, in our redshift measurement we did

not apply an corrections for peculiar velocities. Mrk 1172 has a massive halo, which

possibly contains many satellite dwarf galaxies within it, as its SDSS image sug-

gests, characterising a fossil group. In this case, a correction for peculiar velocities

is needed, and this separation distance would be changed. Thus, we can not ex-

clude the possibility of gravitational interaction between both galaxies, and further

analysis of the environment is needed.

This galaxy in the FoV of Mrk 1172 appears in the GALEX catalogue (as GALEX

J020536.7-081424) in the NUV and FUV wavelength range and photometrical prop-

erties in the optical on SDSS (as SDSS J020536.84-081424.7). However, we were not

able to find the spectra of this object in previous studies in the literature, neither

detailed studies about its properties.

Despite its low SNR in the continuum, the spectrum of BCD-UFRGS-01 presents

strong emission lines, namely: Hα, Hβ, [O iii] λλ4959+5007, [N ii] λλ6548+6583

and [S ii] λλ6716+6731. These indicate the presence of ionised gas surrounding a

few bright knots that become visible in Hα images, where we believe star formation

is taking place. In order to investigate the stellar content of BCD-UFRGS-01 we

perform a spatially resolved stellar population synthesis using the starlight code.

44
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The best fit model reveals that Mrk 1172 is predominantly dominated by old stellar

populations with t ≥ 1010 yrs, while BCD-UFRGS-01 shows the presence of a young

stellar population with ages in the range of 107-108 yrs. An underlying stellar pop-

ulation with t ∼ 109 yrs is also present, which we suggest that it might be related

to the LSB component usually found for BCDGs.

In order to investigate the gas excitation mechanism, we perform a spatially

resolved study making use of emission line diagnostic diagrams such as the BPT.

Both diagrams indicate that the gas within BCD-UFRGS-01 is being photoionized

by young massive hot stars rather than by an AGN power-law featureless continuum.

In the edges of BCD-UFRGS-01 FoV the signal associated to the Hβ emission line

is low, and a few spaxels in these locations appear in the AGN region of the BPTs

but we interpret them as spurious data. Shock models were also investigated, but

they are negligible.

Our measurements and observations strongly suggest that BCD-UFRGS-01 is

actively forming stars. Thus it is important to quantify the total SFR. We use

the reddening corrected Hα flux, to compute the instantaneous SFR. We obtain an

integrated value of 0.71 M� yr−1, which is high when compared to other BCDGs

(0.1 – 0.5M� yr−1, Van Zee et al., 1998, Remy-Ruyer et al., 2013, Lian et al., 2016).

We also estimate a
∑

SFR of 1.4 ×10−2 M� yr−1 kpc−2.

Applying pyneb we calculate the metallicity of each spaxel, resulting in an

average value of log(O/H) + 12 = 7.71. Adopting log(O/H) + 12 = 8.91 for the

Sun (Kunth & Östlin, 2000), we conclude that the average metallicity of the gas is

approximately 1/15 Z�, which lies within the typical metallicity range of BCDGs

(1/3 Z� – 1/50 Z�, Gil de Paz et al., 2003, and references therein). The uncertainty

related to this measurement has strong dependency with Te, which we were not able

to determine, as discussed before. Thus, the uncertainty of this value is unknown,

and we should apply an alternative method to estimate the abundance in this galaxy,

in order to compare the values obtained. A possibility is to use the indirect method,

as explained in details in Marino et al. (2013).

From the stellar content of BCD-UFRGS-01 and Mrk 1172 we are able to estim-

ate the stellar mass of both galaxies. We obtain M? ∼ 1.76× 1011M� for Mrk 1172,

a value that lies close to a previous measurement found in the literature. This is

relatively high value of mass, and considering that Mrk 1172 is classified as isolated

(Argudo-Fernández et al., 2015), it is possible that many mergers events happened

throughout the evolutionary history of this ETG. BCD-UFRGS-01 presents a stel-

lar mass of M? ∼ 4.06 × 109M�, which is comparable to the mass of the SMC,
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(M? = 6.5 × 109M�, Bekki & Stanimirović, 2009) and to the BCDG Henize 2-10

(M? = 3.7 × 109M�, Reines et al., 2011), for example. We also estimate a low-

limit for the ionised gas mass of M = 3.5 × 106M�. This value is higher than the

mass of giant H ii regions such as 30 Doradus and N44 nebulae (4 × 105M� and

∼ 5×105M�, respectively, Bosch et al., 2009, Tsuge et al., 2019). It is worth noting

that [S ii] λλ6716+6731 emission lines, used to determine ne, are saturated towards

a low-density environment (ne . 1 cm−3), and therefore we assume ne = 1 cm−3 for

the gas within BCD-UFRGS-01.

From the gaussians fitted to the emission lines we obtain the radial velocity of

the gas, and the velocity dispersion σ. In the velocity dispersion maps we find no

gradient, revealing that leaking gas and similar perturbations are unlikely to be

significant in BCD-UFRGS-01. On the other hand, radial velocity maps present the

same trend for all the observed emission lines. The gas seems to be rotating in the

counter-clockwise direction along an axis that crosses BCD-UFRGS-01 diagonally. A

dynamical model from Bertola et al. (1991) is used, where we assume circular orbits

around the plane of a disk. This model reproduces the trend seen in the velocity

maps, and the residual map is uniformly distributed around zero, indicating that

the model is able to characterise the dynamics of BCD-UFRGS-01.

Since the spectra of BCD-UFRGS-01 do not cover the necessary wavelength

range for us to integrate the flux and obtain the B-band magnitude of BCD-UFRGS-

01 we use SDSS images and the conversion equation from Jordi et al. (2006) and

derive an abstolute magnitude in the B-band of MB = −15.3 mag. This value lies

in the range of other known BCDGs (e.g., -13 ∼ -20 mag, Van Zee et al., 1998,

Doublier et al., 1999, Remy-Ruyer et al., 2013), suggesting that BCD-UFRGS-01 is

faint as the BCDGs.

From the above we conclude that BCD-UFRGS-01 is actively forming stars.

We raise two possibilities to explain its nature: either (i) BCD-UFRGS-01 is a

blue compact dwarf galaxy or (ii) a low metallicity disk galaxy with intense star

formation. The former is our favoured scenario which we explore in more details

below.

As in other BCDGs, BCD-UFRGS-01 shows many intense star-forming regions.

The clumpy knots could be young massive star clusters like those found in the spa-

tially resolved analysis of Haro 11 (z = 0.02060) (Menacho et al., 2019), which is

shown in figure 4.1. In the work of Menacho et al. (2019), the analysis is made using

data from MUSE and Hubble Space Telescope (HST), revealing inner structures of

the irregular Haro 11, where its gaseous structure is composed of several young star
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Figure 4.1: A spatially resolved analysis of Haro 11 using data from MUSE and from
HST is performed in Menacho et al. (2019), revealing inner structures in the gas, such as
large-scale bubbles and young massive star clusters. In left panel, the image of Haro 11
collapsed in Hα wavelength for MUSE FoV. In middle panel the central region inside the
square shown in the first image, now for HST. The labels A, B and C indicate the location
of the three main star clusters. In right panel, the image of HST now collapsed in Hα
wavelength.

clusters and channels in the ISM tracing outflows and the creation of large-scale

bubbles. BCD-UFRGS-01 resembles in many aspects Haro 11. However, this needs

to be further investigated, and a separate analysis of the clumpy knots is recommen-

ded. Moreover, we must also separate the low surface brightness component from

the other component.

Since we have estimates for the Oxygen abundance and stellar mass of BCD-

UFRGS-01 we can investigate its position in the MZR. In figure 4.2 we plot all

the relations shown previously in a combined figure, where the black dashed line

is the low-end trend from Lian et al. (2016) (referred as L16), and the red balloon

surrounding it represents the scatter of the sample of BCDGs seen in figure 1.4.

In this plot the position of BCD-UFRGS-01 is represented by a red star, while

the purple star represents the position of Haro 11, which has a stellar mass of

1.6 × 1010M� (Menacho et al., 2019) and a metallicity of log(O/H) + 12 = 7.92

(Masegosa et al., 1994, Raimann et al., 2000). Apart from being visually similar,

both BCDGs lie close to each other in the MZR, where Haro 11 is more massive and

metallic than BCD-UFRGS-01.

We thus conclude that the faint nebular emission line region near Mrk 1172 is

actually a dwarf galaxy, most likely to be a BCDG. To proceed with the analysis of

this system, further efforts in determining the light profile of our candidate BCDG

may reveal traces of mergers and explicit the exponential profiles expected from

the LSB component typically present in BCDGs. As seen in the Hα collapsed

images of BCD-UFRGS-01 in figure 1.7, bright clumpy knots are noticeable. They
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Figure 4.2: An adapted version of the MZR plot shown in Fig 1.3 from Andrews &
Martini (2013), showing the position of BCD-UFRGS-01 represented by the red star at
the bottom right part. The dashed black line, labelled as L16, is the trend found in the
MZR for a sample of BCDGs analysed in Lian et al. (2016), which scatter around this line
occupying the region represented by the red balloon. The purple star indicates the position
of Haro 11 from Menacho et al. (2019), which lies relatively close to BCD-UFRGS-01.
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represent the source of the flux that ionises the surrounding gas, and are probably

young massive star clusters, resembling the star clusters found in Haro 11, shown

in figure 4.1. A separate analysis on the bright clumpy knots in BCD-UFRGS-01

is also essential, since the measurements shown here are related to BCD-UFRGS-01

as a whole, while there seems to be a clear contrast between these knots and its

surroundings. We are also interested in investigating deeper the dynamics of the

system to further explore the origin of the observed metal-poor gas.
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BARROSO, J, ALVES, J, FERNANDES, R CID, GALBANY, L, GARĆıA-
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