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Extreme or rogue waves are large and unexpected waves appearing with higher probability than predicted
by Gaussian statistics. Although their formation is explained by both linear and nonlinear wave propagation,
nonlinearity has been considered a necessary ingredient to generate super rogue waves, i.e., an enhanced wave
amplification, where the wave amplitudes exceed by far those of ordinary rogue waves. Here we show, experi-
mentally and theoretically, that optical super rogue waves emerge in the simple case of linear light diffraction
in one transverse dimension. The underlying physics is a long-range correlation on the random initial phases
of the light waves. When subgroups of random phases appear recurrently along the spatial phase distribution,
a more ordered phase structure greatly increases the probability of constructive interference to generate super
rogue events (non-Gaussian statistics with superlong tails). Our results consist in a significant advance in the
understanding of extreme waves formation by linear superposition of random waves, with applications in a large
variety of wave systems.
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I. INTRODUCTION

In the last decade, a tremendous amount of attention has
been devoted to the investigation of extreme or rogue waves,
i.e., large amplitude waves appearing more often than pre-
dicted by the normal distribution [1,2]. Examples in physical
systems arise in hydrodynamics [3], optics [4], plasmas [5],
acoustics [6], and quantum systems [7].

A central topic in rogue waves studies is the understanding
of the main factors that lead to deviations from the normal
distribution. A deep comprehension of the mechanisms as-
sociated with the emergence of long-tail statistics is useful
for the more ambitious task of predicting and controlling the
occurrence of unexpected large events. This is of practical
interest, since extreme events can be potentially destructive
in different contexts, ranging from damage of maritime struc-
tures to breakdown of optical and communication systems.
Apart from such practical motivations, there is also a funda-
mental interest in the phenomenon itself, since the emergence
of rogue waves is a complex phenomenon that has triggered
considerable efforts of an interdisciplinary scientific com-
munity to provide a deep understanding of its generation.
Generally speaking, scientists are interested in understanding
how highly coherent structures can emerge from disordered
and small amplitude systems, being, at same time, statistically
significant.

In recent years, remarkable advances have been made in
this direction, with noteworthy contributions coming from
theoretical developments and controlled experiments with
electromagnetic and water waves, in linear and nonlinear
wave propagation. In linear systems, it has been shown that,

when correlation or inhomogeneity is present in the wave
field propagation, an increased probability of generating rogue
waves is observed [8–17]. In nonlinear systems, a wealth of
wave phenomena has been shown to be relevant for the emer-
gence of rogue waves. In this context, modulational instability
has received considerable attention [18–24]. Other mecha-
nisms in nonlinear systems include: breathers collision [25],
the dynamics of partially coherent waves [26], the directional
properties of the waves [27], and the wind force [28], in the
case of water waves; weak nonlinearities without modulation
instability in ocean waves [29]; a variety of nonlinear scenar-
ios ranging from chaotic and turbulent flows to solitons and
breathers collision in optics [30–46].

Rogue waves are usually defined as waves with more than
two times the significant wave height, or exceeding the aver-
age amplitude or intensity by four to eight standard deviations
[36,47]. More recently, some attention has been directed to
the investigation of the possibility of generating extremely
large amplitude waves, i.e., super localized structures that
significantly exceed the usual criteria defining rogue waves.
Examples of these so-called super rogue or superextreme
waves have been shown experimentally and theoretically in
water waves [48,49] and theoretically in a CO2 laser under
harmonic modulation [50].

An important open problem is whether nonlinearity is
a necessary ingredient to generate such super rogue waves
exhibiting an enhanced focusing behavior. The current de-
velopment stage of rogue waves formation suggests that
linear effects can generate only an initial wave amplification,
while nonlinearities are responsible for extra wave amplifi-
cation or focusing, leading to much higher wave amplitudes
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FIG. 1. (a) Illustration of the one-dimensional wave diffraction. (b) and (c) Examples of distinct sets of L = 10 initial phases, represented
by the integers 0 to 9. (d) Illustration of uncorrelated and correlated initial random phases, corresponding to memoryless, M = 4, M = 7,
M = 5, and M = 8, from top to bottom. Each integer corresponds to a phase, as shown in (b) or (c). See text for details.

than those observed in the purely linear case [9,18,51–53].
Therefore, a relevant question is whether super localized
structures with extremely large amplitudes can emerge from a
small-amplitude random field by a purely linear interference,
exhibiting, at the same time, a significant probability of occur-
rence.

In this article, we provide a positive answer to the question
above by demonstrating experimentally and numerically the
generation of super rogue waves by the simple linear super-
position of random waves in an optical system. By studying
spatial memory effects of diffracted light waves, we provide
the underlying physics behind super rogue waves formation
in the linear regime. We show that, when disordered phases
exhibit long-range correlations in space, the so-called linear
interference model generates waves with amplitudes as high
as those observed in systems with strong nonlinearities. It
is remarkable that, long after Lord Rayleigh developed his
famous statistics when investigating random superposition of
sound waves [54], which forms the basis of the so-called
Gaussian model for the surface elevation of water waves [55],
and after the recent progresses of rogue waves formation in
linear systems [8–11,13–15], we can still find a relevant qual-
itative dynamical scenario in the linear interference model.

II. MARKOVIAN AND NON-MARKOVIAN
INPUT PHASE SEQUENCES

We consider the simple physical situation of linear and one-
dimensional light diffraction of a certain number of random

waves, as illustrated in Fig. 1(a). Initially, the waves present
equal amplitudes and uniformly distributed random phases,
with distinct degrees of correlation. After the waves propagate
in free space, a diffraction pattern is observed in the far field
(Fraunhofer plane). We consider an even number L of distinct
initial phases in the interval [0, 2π ) such that the overall sum
of the phasors is zero. The L phases can be equally spaced in
the unit circle (spanning all the four quadrants) [Fig. 1(b)] or
have another phase configuration, such as L/2 phases in the
first quadrant and L/2 phases in the third quadrant [Fig. 1(c)].
Here, we choose the latter case with L = 10 [56].

Without any correlation, the spatially distributed initial
random phases are statistically independent and we obtain
a Markovian (memoryless) phase sequence. This uncorre-
lated case (UC) is illustrated by the gray shade sequence in
Fig. 1(d). To generate correlated random phases, we use a vari-
ation of a two-dimensional scheme of input phases proposed
to investigate diffraction patterns of non-Markovian light [57]
and recently used to investigate rogue waves generation in
linear and nonlinear media [58]. We start a correlated phase
sequence by taking a random permutation of the L distinct
phases. The last M random phases, shown in blue color in
Fig. 1(d), define the spatial memory length. Then, we perform
a random permutation of the remaining L − M phases [shown
in yellow color in Fig. 1(d)] and place them to the right of
the M-phase block. We now identify the last M phases of
the formed sequence and repeat successively the previously
explained procedure until the total number N of random waves
is reached. In this way, a group of L − M random phases
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FIG. 2. (a) Experimental setup and illustrations of random input phases and a measured diffraction pattern. (b) Measured diffraction
patterns showing the highest measured intensity peak for each corresponding memory length, for the IC (green) and CC (red). Gray plots show
the diffraction patterns containing the most frequent maximum intensity from a total number of 1000 realizations. The intensity is normalized
by the average intensity of each diffraction pattern and β is related to the diffraction angle.

always depends on the previous M phases, resulting in a
non-Markovian phase sequence.

The sequences of correlated phases with different memory
lengths can be classified in two distinct cases, which we de-
nominate here commensurate case (CC) and incommensurate
case (IC). The CC occurs when the ratio L/(L − M ) is an inte-
ger. In this case, the phase sequence contains distinct subsets
of phases with no common elements. For example, for M = 5
there are two distinct subsets of five random phases, and
for M = 8 there are five subsets of two random phases [see
Fig. 1(d)]. In the CC, the spatial configuration of initial phases
typically forms a quasiperiodic sequence, where the same
group of random phases appears recurrently, which greatly
enhances the coherence properties of the waves and favors
a quasiresonant process. As we show below, this process is
crucial to generate super rogue waves.

III. LINEAR SUPER ROGUE WAVES

A. Experiment on diffraction of light

Our experiments are performed in the following way.
One-dimensional random phase sequences, generated in a
computer according to the procedure described in Sec. II, are
imprinted on the spatial light modulator (SLM), which acts as
a phase mask. Since the SLM is a two-dimensional structure
and we are interested in investigating the simplest case of

one-dimensional wave diffraction, the one-dimensional phase
sequences are repeated along the rows of the SLM [a sketch
of the SLM is shown in Fig. 2(a), where each gray shade
represents a phase value]. The SLM is illuminated by a
monochromatic light from a laser beam and the diffracted
wavefront propagates in free space, passing through a cylin-
drical lens up to the detection in a CCD camera. Images
recorded with the CCD camera exhibit a one-dimensional
intensity pattern, where a single diffraction pattern is calcu-
lated averaging all rows in the image of each realization [an
example of a recorded image and the respective diffraction
pattern is shown in Fig. 2(a)]. This process is repeated for
a large number of realizations with different random input
phases.

The experimental setup is shown in Fig. 2(a), and addi-
tional details are as follows. For the diffracted profiles we
used a 5.0 mW fiber-coupled cw Fabry-Perot laser operating
at 405 nm (Thorlabs- MCLS1), whose output is sequentially
collimated with a 75× beam expander. The resulting wave
front illuminates the active area of the SLM—1280×720 pix-
els of 9.5 mm pitch (Cambridge-SDE1280)—containing the
designed spatial phase patterns. The SLM provides, according
to an eight-bit gray level, the phase structure randomly gen-
erated in a computer. This diffracted wave front illuminates
a cylindrical lens with focal distance f = 100 mm, which
in turn images the intensity pattern of the diffracted beam
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FIG. 3. (a) Probability density function (PDF) of the measured light intensity. The dashed and solid vertical lines mark the super rogue
wave definition for the cases M = 5 and M = 8, respectively. (b) Left: PDFs of the light intensity normalized by its standard deviation σ . The
blue straight line denotes the negative exponential fitting. Right: Average intensity 〈I〉 and variances (insets) as a function of screen position
β. The overall average I and the standard deviation σ are obtained by averaging over all realizations and all points recorded on the camera, for
each correlation degree. (c) PDFs from numerical simulations.

onto a CCD camera (Point Grey - CMLN-13S2M-CS) with
1280×960 pixels of 3.5 mm pitch. Images excluding the cen-
tral maxima were registered for a set of 1000 realizations up
to the first diffraction order.

The effects of distinct memory lengths on the measured
light intensities are shown in Fig. 2(b). The parameter β =
ka sin θ is related to the diffraction angle θ , where k is the
magnitude of the wave vector of the incident wave and a is
the pixel width of the SLM. Figure 2(b) shows the measured
diffraction pattern containing the highest intensity peak for
some memory lengths corresponding to the IC (green curves)
and CC (red curves). We can see that the the memory lengths
of the CC, M = 5 and M = 8, produce much higher light
intensity peaks than the memory lengths of the IC, M = 4 and
M = 7. The gray curves in Fig. 2(b) show typical realizations
of single diffraction patterns where the highest intensity peak
equals the mode of the statistical distribution of the maxima
intensities. In other words, if we take a random realization, the
highest intensity peak of the diffraction pattern is more likely
to coincide with the highest intensity in the gray curves.

In Fig. 3(a), we show, for distinct correlation degrees, a
plot of the probability density function (PDF) of the intensity I
normalized by its overall average Ī , obtained from all different

realizations and all points from the camera. In the UC (black
points), the intensity follows a negative exponential distribu-
tion, which is a signature of Rayleigh statistics. In this case,
the high intensity events have an extremely low probability
of occurrence. In the IC (green points), events with higher
intensities are more likely to occur than in the UC. As memory
increases, deviations from Rayleigh statistics become more
pronounced, leading to long-tailed PDFs. This is the usual
signature of extreme waves. In the CC (red points), the PDFs
exhibit superlong tails, due to what we call super rogue waves.
Below we discuss the quantitative and qualitative differences
between rogue and super rogue waves. Note that super rogue
light intensity events, such as those observed for M = 5 and
M = 8, are very unlikely to occur in the IC, even when con-
sidering M = 7, a case of large memory length.

A usual criterion to define extreme events is the compari-
son of the intensity (or amplitude) of an event with the average
intensity (or amplitude) plus a certain number of standard
deviations [36,47]. Throughout this article, we define super
rogue waves as those waves with intensities exceeding the
overall average intensity by more than 32 standard devia-
tions (ISRW = Ī + 32σ ). By this definition, the theshold is
four times greater than that of the 8σ criterion [36], a usual

052219-4



SUPER ROGUE WAVE GENERATION IN THE LINEAR … PHYSICAL REVIEW E 102, 052219 (2020)

criterion for defining ordinary rogue waves. This super rogue
wave definition has the advantage of being precise and the
drawback of being quite arbitrary. Other statistical measures,
such as the comparison of the PDFs with a stretched exponen-
tial distribution [35,53] or the analysis of the kurtosis instead
of the variance [20], could be used to quantify deviations from
Gaussianity. Nevertheless, a definition of super rogue waves
by these criteria would present some degree of arbitrariness
as well. In Fig. 3(b), we plot the PDF of I − Ī normalized
by its standard deviation σ . Thus, the horizontal scales of
the PDF plots in Fig. 3(b) indicate directly the number of
standard deviations by which the measured intensity exceeds
the average intensity. The experimental results show waves
with intensities exceeding the average intensity by more than
32 standard deviations in the CC [see the M = 5 and M = 8
cases in Fig. 3(b)]. The CC exhibits a number of waves with
intensities 100 times greater than the average intensity, as can
be seen in the experimental PDFs [Fig. 3(a)], with a much
higher probability of occurrence than in the UC and the IC.
The results observed for the CC show a much more significant
wave amplification when compared with the case of ordinary
rogue waves.

In Fig. 3(c) we show the average and the variance of the
light intensity along the screen, obtained from averaging over
all diffraction patterns. The light intensity decays as we de-
part from β = 0, since the pixel size in the SLM produces
a sinc(β/2) modulation with the first diffraction minimum
located at β = 2π . The mean intensity of the uncorrelated
case approximately reproduces this modulation. For the cor-
related cases, the average intensity is small at β = 0, which is
a consequence of the zero sum of the input phases and their
correlation. In this case, there is no repetition between neigh-
boring input phases, since the minimum distance between two
equal phases in a sequence is given by the memory length. As
the memory increases, there are some specific screen positions
where it is more likely to observe extreme events, as can be
seen by the peaks in the average and the variance of the light
intensity. These peaks are much more pronounced in the CC
than in the IC, which is a direct consequence of the more
ordered input phases, forming a quasiperiodic sequence.

B. Theoretical simulations

A simple linear model reproduces qualitatively the experi-
mental results. We model the SLM as a one-dimensional array
with a total number of N pixels, each one characterized by a
finite width and a random phase. An incident monochromatic
wave diffracts on the SLM, propagates in free space, and
yields a resultant electric field on the Fraunhofer plane

E = E0sinc(β/2)
N∑

m=1

eimβ+iφm , (1)

where E0 is the amplitude of the incident electric field and φm

is the random phase of pixel m. For the theoretically computed
diffraction patterns, we performed numerically the summation
in Eq. (1) by using E0 = 1 and N = 1024 random waves with
the same initial phases used in the experiments and explained
in Fig. 1. The resultant electric field on the screen is computed
for 20 000 values of β, equally spaced in the interval [0, 2π ).

The statistical distributions of 1000 realizations for the nu-
merically computed intensity I = |E |2 are shown in Fig. 4, for
distinct phase correlations. The qualitative agreement between
the theoretical results of Fig. 4(a) and the experimental results
of Fig. 3(a) is very good. In the simple theoretical model we
use here, which qualitatively reproduces the experiments, a
number of waves with intensities 300 times greater than the
average intensity appear for the CC [Fig. 4(a)]. Such waves
exceed by far usual criteria of rogue waves definition, char-
acterizing wave events with superextreme amplitudes. These
super rogue events are very unlikely to be found in a random
realization of the IC. In Fig. 4(b), we show the average and
variance computed for the whole cases of distinct initial phase
correlations investigated in the experiments. Again, the over-
all agreement with the experiments is very good. In Fig. 4(c),
we show the PDFs obtained from the numerical simulations
by using the initial phases simmetrically distributed along the
four quadrants, between 0 and 2π , according to Fig. 1(b).
As we can see, there is not a qualitative difference when
compared with the simulations using the initial phases only
in the first and third quadrants, which have been used in the
experiments.

The main ingredient behind the distinct qualitative behav-
iors of the UC, IC, and CC is the correlation properties due to
memory effects of the initial phases. In order to better under-
stand the role of the memory length in producing coherence,
we numerically calculate the following correlation between
two spatially separated blocks containing L random phases:

Cd = 1

L

L∑
i=1

〈φiφi+dL〉, (2)

where d = 1, 2, 3, . . . is the distance between the first block
with L phases to the other subsequent blocks along the phase
sequence. In Eq. (2) the product φiφi+dL is equal to one if
φi = φi+dL and zero otherwise. The angle brackets 〈. . . 〉 de-
note the average over 1000 distinct realizations of the random
phases. A plot of the correlation as a function of the distance
d between the blocks, for fixed L = 10 and different memory
lengths, is shown in Fig. 5(a). In the IC, the correlation decays
as the distance between the blocks increases, converging to
1/L. This means that, for large distances, the probability of
finding two coherent phases is 1/L, which is the same value
as in the UC. In contrast, the correlation does not decay in
the CC, having the constant value 1/(L − M ). In other words,
the probability of finding two coherent phases separated by an
arbitrary number of blocks of size L is 0.2 and 0.5 for M = 5
and M = 8, respectively. This is a significant difference when
compared with the IC.

The overall coherence of the phase sequence, for each M,
is obtained by computing the integrated correlation

C = 1

n

n∑
d=1

(
Cd − 1

L

)2

, (3)

where n is the maximum distance used in the calculation.
Since each correlation in the IC quickly decays to the value
1/L, we used n = 50, which already provides the asymp-
totic value of C. For the CC, Cd is independent of d , thus
the integrated correlation is independent of n. As shown in
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FIG. 4. (a) Probability density function (PDF) of the numerically computed light intensity for the UC and IC (left) and the CC (right).
The dashed and solid vertical lines mark the super rogue wave definition for the cases M = 5 and M = 8, respectively. The light intensity is
normalized by the overall average intensity I . (b) Average intensity 〈I〉 as a function of screen position, β, obtained from all realizations. The
insets show the corresponding variances. (c) Numerically computed PDFs with the initial phases distributed along the four quadrants.

Fig. 5(b), the integrated correlation puts in a clear ordering
the coherence generated by distinct memory lengths, having
M = 5 and M = 8 as the most coherent cases. This ordering
of the coherence properties of the initial phases directly re-
flects in the amplitudes of the extreme events generated by
wave diffraction. We stress that only a large memory length
is not enough for producing strong coherence. As can be seen
in Fig. 5(b), the smaller memory length M = 5 of the CC can
generate more coherence than larger memory lengths M = 6
and M = 7 of the IC.

Another way to observe the coherence properties of
the initial random waves is plotting the Fourier transform
of the phase sequences. These results are shown in Fig. 6 and
are very similar to the intensity patterns shown in Fig. 4(b),
since an intensity pattern observed after the linear wave
propagation, in the far field, is computed through a Fourier
transform of the initial random waves. The main difference is
that the intensity patterns observed after the wave propagation
contain a sinc modulation, exhibiting a decaying intensity
far from the central position of the screen. A more ordered
structure (or a higher degree of periodicity) of the initial
phase sequences corresponds to a higher probability of finding
extreme events through wave diffraction. As can be seen in

Fig. 6, the spatial phase sequences belonging to the CC con-
tain a much higher degree of ordering, since they correspond
to quasiperiodic phase sequences. This condition significantly
increases the probability of finding super rogue waves through
wave diffraction. Despite the fact that the CC can generate
super rogue events, an isolated random realization from our
method of generating the phase sequences typically does not
exhibit some significant degree of periodicity. This is illus-
trated in Fig. 7(a), where we show a random phase sequence
without exhibiting some significant degree of periodicity, for
the M = 5 case (the respective intensity pattern is shown in
Fig. 2, by the gray curve). But, for the CC, the probability
of generating a high degree of periodicity is very large. The
CC contains a very relevant feature: the match between two
spatial scales, i.e., the L and L − M sizes. This condition
greatly enhances the probability of generating sequences with
a very ordered structure, with long-range correlations, similar
to what we have in a quasiresonant process. In Fig. 7(b), we
illustrate this with a realization for the M = 5 case where the
phase sequence displays a high degree of periodicity. There-
fore, super rogue waves can be generated with a significant
probability in the CC, while in the UC and IC the probability
of finding super rogue waves is not significant.
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IV. CONCLUSION

In conclusion, by studying systematically memory effects
of spatially distributed random phases of a light field, we have
shown that a simple linear superposition of random waves
can generate waves with superextreme amplitudes, with a
significant probability of occurrence. Up to date, super rogue
waves, exceeding by far the usual criteria of rogue waves
definition, have been observed, in both hydrodynamical and
optical systems, only when nonlinearities are present. The
linear super rogue waves investigated here have been gen-
erated by using small phase fluctuations between 0 and 2π

and they are not only quantitatively, but also qualitatively
distinct when compared with ordinary rogue waves, since they
are formed by long-range phase correlations. Although we
use a particular procedure for generating correlations between
the optical phases of the interfering waves, other kinds of
long-range correlations should yield similar effects. The so-
lutions of the linear interference model can be classified in
distinct qualitative groups as a function of the phase corre-
lations in the input waves. In two opposite limits, we have
the fully disordered case (uncorrelated phases) and the fully
ordered case (completely coherent phases). Random uncor-
related phases lead to the well-known Rayleigh statistics,
where high-amplitude waves are very unlikely. Completely
coherent phases, as found in elementary physics textbooks,
lead to a sinc-like pattern. Between these two limits, we
can have two distinct qualitative scenarios: short-range and
long-range correlated random phases. Short-range correlated
phases lead to an increased probability of generating extreme
waves, which is the usual investigated case in the rogue waves
literature. On the other hand, long-range correlations of the
random phases greatly increase the probability of generating
waves with superextreme amplitudes, yielding a much more
pronounced L-shaped statistics when compared with ordinary
rogue waves.
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