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COMMENTARY

Coronavirus infection (SARS‑CoV‑2) 
in obesity and diabetes comorbidities: is heat 
shock response determinant for the disease 
complications?
Mauricio Krause1*, Fernando Gerchman2,3 and Rogério Friedman2,3

Abstract 

Chronic inflammation is involved in the pathogenesis of several metabolic diseases, such as obesity and type 2 diabe-
tes mellitus (T2DM). With the recent worldwide outbreak of coronavirus disease (SARS-CoV-2), it has been observed 
that individuals with these metabolic diseases are more likely to develop complications, increasing the severity of 
the disease and a poorer outcome. Coronavirus infection leads to the activation of adaptive and innate immune 
responses, resulting in massive inflammation (to so called cytokine storm), which in turn can lead to damage to various 
tissues, septic shock and multiple organ failure. Recent evidence suggests that the common link between metabolic 
diseases and SARS-CoV-2 is the inflammatory response (chronic/low-grade for metabolic diseases and acute/intense 
in coronavirus infection). However, the ability of the infected individuals to resolve the inflammation has not yet 
been explored. The heat shock response (HSR), an important anti-inflammatory pathway, is reduced in patients with 
metabolic diseases and, consequently, may impair inflammation resolution and control in patients with SARS-CoV-2, 
thus enabling its amplification and propagation through all tissues. Herein, we present a new hypothesis that aims to 
explain the increased severity of SARS-CoV-2 infection in people with metabolic diseases, and the possible benefits of 
HSR-inducing therapies to improve the inflammatory profile in these patients.
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Background
COVID-19 (Coronavirus Disease-2019), a disease caused 
by SARS-CoV-2 (Severe Acute Respiratory Syndrome-
Coronavirus-2), was identified in China in January 
2020, after notification of a series of pneumonia cases 
of unknown cause [1, 2]. Currently (May 2020), over 
3.7 million cases have been identified worldwide, with 
more than 260 thousand registered deaths. The clinical 

manifestations of the disease range from asymptomatic 
to severe viral pneumonia with respiratory failure and 
death.

The most frequent complications of the disease are 
acute respiratory distress syndrome (ARDS), heart fail-
ure, septic shock and/or multiple organ failure [3–5]. 
Risk factors associated with a higher probability of hos-
pitalization and higher mortality are advanced age and 
the presence of chronic conditions such as hypertension, 
diabetes, cardiovascular disease [3, 4] and, possibly, obe-
sity [6]. In the case of diabetic subjects, the higher sus-
ceptibility may be related to impaired immune response 
caused by the chronic metabolic dysfunction [7–9]. 
Interestingly, a common hallmark of the described risk 
factors is the insulin resistant state [10].
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Coronavirus infection results in activation of adap-
tive and innate immune responses, resulting in massive 
inflammation—referred to as “cytokine storm”—which 
can lead to various tissues’ damage, locally and systemi-
cally, in addition to lymphopenia. Recent evidence sug-
gests that the common link between metabolic diseases 
and SARS-CoV-2 is the inflammatory state, and the ina-
bility to induce its resolution. Elevated levels of inflam-
matory cytokines, especially interleukin-6 (IL-6) [11], 
have been reported in patients with COVID-19, and, for 
this reason, anti-inflammatory therapies, such as IL-6 
blockers and interleukin-1 blockers (IL- 1β) are beeing 
tried as a treatment.

SARS-CoV-2 infected patients can develop a delayed 
exacerbated immune response that contribute to the 
cytokine storm and tissue injury, demonstrating a role 
of persistent inflammation in COVID-19 infection and 
complications. The continuous activation of inflam-
matory cells, even following viral clearance, appears to 
involve TLR-7 signaling overactivity and the perpetua-
tion of exaggerate inflammation [12, 13]. Here, we wish 
to discuss, in addition to the well accepted knowledge on 
persistent inflammatory response in COVID-19 infec-
tion, a not well explored pathway, looking at the resolu-
tion of inflammation, the heat shock response (HSR).

The control of the inflammatory response depends, 
of course, on its mediators (cytokines, LPS, among oth-
ers), but also on a series of programmed mechanisms for 
resolving inflammation, such as the heat shock response 
pathway. This molecular pathway is required for physi-
ological adjustments in proteostasis and normal stress 
adaptation [14]. Recent evidence has shown that the HSR 
pathway, an important inflammation resolution path-
way, is reduced in patients with metabolic disease [15]. 
Consequently, appropriate resolution of inflammation 
is impaired, allowing its amplification and propagation 
through all tissues, which, in patients with SARS-CoV-2 
substantially increases the rate of complications [15–17].

Hyperinflammation in COVID‑19 infection, 
the heat shock response, and the resolution 
of inflammation
Critical SARS-CoV-2 patients share common features 
such as lymphopenia, hypercoagulability and a hyperin-
flammatory syndrome named “cytokine storm” (eleva-
tion in IL-6, CRP, TNF, MCP1, IL-1β levels and others) 
[18]. This uncontrolled release of cytokines can rapidly 
evolve to septic shock and multiple organ failure. In fact, 
elevated levels of IL-6 were found to be a stable indica-
tor of poor outcome in patients with severe COVID-19 
with pneumonia and ARDS [19]. Thus, it would be desir-
able to identify and treat the hyperinflammation using 
approved (and safe) therapies, to reduce organ damage 

and mortality [19]. To date, several potential anti-inflam-
matory therapies are under scrutiny, including glucocor-
ticoids, IL-6 antagonists and JAK inhibitors [18].

Another candidate approach to alleviate COVID-
19-related immunopathology, still not well explored, may 
involve the other side of the inflammatory response: the 
resolution of inflammation. Resolution of inflammation 
starts soon after the first inflammatory signals and leads 
to local and/or systemic elevation of temperature, trig-
gering a conserved response of a transcriptional program 
based on the activation of heat shock transcription fac-
tor-1 (HSF1), the heat shock response (HSR) [20]. HSF1 
activation initiates the machinery for the rapid produc-
tion of the anti-inflammatory and cytoprotective heat 
shock proteins (HSP), of which the most sensitive and 
expressed is the 70 kDa family of HSP (HSP70), in addi-
tion to other small heat shock proteins [21, 22].

The HSR (thus HSP70 expression) is essential to protect 
the cells against a wide range of non-lethal stresses, such 
as oxidative, thermal, exertional, ischemic, metabolic 
and others [17]. Its content is increased up to 2% of the 
total cellular protein during stress [23]. HSP70 (encoded 
by the HSPA1A gene in humans), is a classical molecular 
chaperone that interacts with other proteins (unfolded, in 
non-native state and/or stress-denatured conformations), 
avoiding inappropriate interactions, formation of pro-
tein aggregates and degradation of damaged proteins, as 
well as helping the correct refolding of nascent proteins 
[24]. In addition to its several functions (anti-apoptosis, 
protein translocation, metabolism, and others) [17], this 
protein exerts, intracellularly, a potent anti-inflamma-
tory effect [25]. The anti-inflammatory effect of HSP70 
is mainly attributed to its capacity of interaction with 
NF-κB, decreasing its activity [26]. HSP70 is able to asso-
ciate with the complex formed by NF-κB with its inhibi-
tor (IκB), stabilizing this complex and thus impeding 
NF-κB translocation to the nucleus [26]. NF-κB activa-
tion is particularly involved on the mechanisms of insulin 
resistance through the induction of several inflammatory 
proteins, such as iNOS and NAPDH oxidase, inducing 
nitrogen and oxygen radical species formation and the 
consequent blockage of insulin cascade [25, 27]. Thus, 
HSP70-mediated NF-κB inhibition can also ameliorate 
insulin sensitivity [17].

While iHSP70 has anti-inflammatory effect, on the 
other hand, when released to the extracellular environ-
ment (eHSP72), this protein exerts opposite effects, 
inducing inflammation and immune activation. Extracel-
lular HSP72 is receiving more attention since its regula-
tory role on immune cells are still under discussion. This 
protein can be released by different cells and stress condi-
tions such as acute exercise and heat [15] and is involved 
in several conditions such as insulin resistance and acute 
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lymphoblastic leukemia [28]. The effects of eHSP72 are 
still under debate since pro and anti-inflammatory results 
were described. For example, extracellular HSP72 nega-
tively regulates the acute inflammatory cytokine syn-
thesis by monocytes through the activation of HSF-1 
to the inflammatory gene promoters [29, 30]. On the 
other hand, eHSP72 may bind to TLR2 and 4, activat-
ing innate immune responses which may lead to adap-
tive immune responses through the activation of NF-κB 
and JNK by a pathway related to IL-1 receptor-associated 
kinase (IRAK) family of protein kinases [31]. In addition, 
eHSP72 may induce a direct anti-inflammatory response 
through a TLR2-ERK-STAT3-IL-10 dependent path-
way [32]. The final effect may be dependent on the ratio 
between iHSP72/eHSP72, as we recently suggested [17]. 
Until now, no report study the effects of SARS-CoV-2 on 
eHSP72.

A detailed description of HSR is available elsewhere 
[25], and involves several key modulators such as 
NAD+-dependent deacetylase sirtuin-1 (SIRT1). Figure 1 
summarizes the HSR and the production of HSP72. As 
briefly described, stress-activated HSF1 leads to a loop 
of positive feedback that provides a robust anti-inflam-
matory response. However, a mandatory pathway to 
maintain a normal chaperone machinery (HSR) is insu-
lin signalling [17]. Hampered insulin signalling will lead 
to a deficient ability to induce HSR and the resolution of 
inflammation. Obese, insulin resistant individuals, and 
elderly people (with insulin resistance) have been found 
to have lower levels of HSP70 [15, 33, 34]. Not surpris-
ingly, obesity-related, chronic inflammatory states show 
depressed HSR [15, 35, 36]. Thus, a lower HSR in insulin 
resistant individuals might be, at least in part, responsible 
for the exacerbated levels of inflammation and the worse 
prognosis observed in those infected by SARS-CoV-2, in 
comparison with insulin sensitive subjects.

Heat shock response in insulin resistant subjects: 
the role of chronic inflammatory‑related conditions
Inflammation is a common feature in elderly, obese and 
diabetic subjects. In comparison to acute inflammation 
(in response to injury or infection), in chronic condi-
tions the levels of inflammatory mediators are lower, but 
remain chronically elevated, a situation called low-grade 
inflammation. The origin of low-grade inflammation 
is multifactorial. Evidence suggests that the inflamma-
tory profile is directly connected with the unfavourable 
changes in body composition [33, 37]. For example, the 
expansion of the adipose tissue (specially visceral) leads 
to increased recruitment of blood monocytes and their 
polarization to inflammatory cells (M1 phenotype) [14].

Adipose tissue expansion results in the release of 
several cytokines, such as TNF-α [38], leading to the 

activation of serine threonine kinases, JNK (c-jun amino 
terminal kinase), and the inhibitor of IκB, IKK (IκB kinase 
kinase) [34]. Both JNK and IKK phosphorylate IRS-1 on 
Ser-307, leading to inactivation of the insulin receptor 
[34], and, eventually, to insulin resistance [10]. In addi-
tion, TNF-α signalling also promotes the activation of 
proteins and enzymes that initiate the massive produc-
tion of free radicals, reactive oxygen species (ROS) and 
nitrogen reactive species (RNS) [39], all connected to 
insulin signalling impairment [39].

As previously mentioned, individuals with insulin 
resistance may present a blunted HSR (thus reduced 
HSP72 expression), and an insufficient ability to resolve 
inflammation. But what is the convergence point between 
insulin signalling and the HSR pathway? One key point 
is the suppression of HSF-1 activation and binding to 
HSEs (heat shock elements), via an increased activity of 
the enzyme glycogen synthase kinase-3β (GSK-3), and 
decreased HSF1 expression [40]. HSF-1 is negatively 
regulated by GSK3β, a serine/threonine kinase that phos-
phorylates this factor on Ser303, keeping it in its inac-
tive form in the cytosol. Insulin action is mandatory for 
the inhibition of GSK-3β activity. Therefore, depressed 
insulin signaling results in the maintenance of GSK-3β 
function, and chronic inhibition of HSF1 activation, lead-
ing to lower HSR in insulin resistant individuals. In fact, 
lower expression of HSF1 has been identified in subjects 
with metabolic diseases [15, 33, 36].

In addition, low-grade inflammation (present in many 
obese, diabetic and elderly people) can inhibit HSR at 
gene regulatory level: i) TNFα may transiently repress 
HSF1 activation [41] and ii) JNK1 can phosphorylate 
HSF1 in its regulatory domain causing its suppression 
[42]. The opposite regulation is also demonstrated since 
the promoter region of TNFα gene contains an HSF1 
binding site that represses TNFα transcription, and thus 
loss of this repressor results in sustained production of 
TNFα [43] and increased susceptibility to endotoxin 
challenge [44]. These data may explain why the induction 
of HSP72 reduces the expression of inflammatory genes 
such as TNFα, IL- 1, IL-12, IL-10, and IL-18 [45].

In summary, low-grade inflammation, found in elderly, 
obese or diabetic subjects, induces (through the release 
of inflammatory cytokines) inhibition of insulin signaling 
and chronic activation of GSK-3β, reducing HSF1 activity 
and blunted HSR (Fig. 2). Therefore, it seems reasonable 
to expect that patients with these profiles, when infected 
by SARS-CoV-2, would be unable to activate the resolu-
tion of the inflammation, giving way to a vicious cycle of 
inflammation that might increase the probability of com-
plications found in these populations. It is not surprising 
that diabetes significantly increases the risk of Covid-19 
progression and the rates of mortality [46]. Despite the 
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fact that not all obese and old patients who progress to 
severe COVID-19 complications have a formal previous 
diagnosis of diabetes, both aging and obesity are associ-
ated with low-grade inflammation, and some degree of 
insulin resistance.

Regarding gender differences, considering that 
infected men are more at risk than women, gender-
specificity of HSR needs some consideration. Again, 
there is a significant lack of data. Under the light of cur-
rent knowledge, we could speculate that the observed 

gender differences in risk may be related to the higher 
levels of estrogen (E2) in the female subjects. E2 is 
known to protect women from insulin resistance, and 
insulin signaling is mandatory for normal HSR) [47, 
48]. E2 is related to maintenance of a normal HSR (thus 
HSP72 expression) [49, 50]. Therefore, the hormonal 
profile of female patients might perhaps explain not 
only the different clinical outcomes but it could also 
offer some insight into the mechanisms behind this 
difference.

Insulin Resistance

Representa�ve Cell

Insulin Sensi�ve

Insulin

Func�onal
Insulin 

Signaling

GSK-3β

HSR Ac�vators

SIRT1

HSF-1

HSP70HSR

 GSK-3β
SIRT1

HSF-1

HSP70HSR

NF- B/JNK

Inflammatory Balance Disrupted Inflammatory 
Resolu�on

 NF- B/JNK

 Inflammatory 
Mediators

Adipose Tissue 
Expansion/Inflamma�on

Hyperthermia 
(induced by fever)

HSR Inducer Drugs
(BGP-15)

Heat Therapy

Exercise

For maintenance of HSR

Possible treatment to 
reestablish HSR and 

inflammatory resolu�on 
during SARS-CoV-2

Fig. 2  Heat shock response in healthy and in insulin resistant state. In insulin sensitive state, activation of insulin signalling will lead in inhibition 
of the enzyme GSK-3β (by phosphorylation). In this case, activation of HSR, when stimulated, is normal and HSP72 can maintain NF-κB inhibition, 
thus an inflammatory balance. Obesity (adipose tissue expansion) and physical inactivity initiates a chronic low-grade inflammation that spread 
to all tissues. The inflammatory mediators (cytokines, TLR ligands and others) can induce the activation of NF-κB and JNK, leading to ROS/RNS 
overproduction (by increase activity and expression of inflammatory enzymes) and inhibition of insulin signalling. In the presence of insulin 
resistance, GSK-3β become activated and inhibits HSF1 activity and expression, resulting in a blunted HSR. Under this circumstance, no inhibition 
over NF-κB results in amplification of inflammation and no resolution, causing a vicious inflammatory cycle. Heat therapy (hot water immersion or 
sauna) and exercise can activate HSR and ameliorates insulin signalling and inflammation. Two potential alternative therapies that may be applied 
to restore HSR and reduce inflammation in SARS-CoV-2 infected patients is the rationale use of antipyretic drugs (allowing increases in temperature, 
thus improving HSR) and the use of HSR activator drugs, such as the BGP-15
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Strategies to increase the HSR in SARS‑CoV‑2
Different strategies have been used to increase the HSR 
and raise the levels of HSP72 in patients with inflamma-
tory-related diseases—such as cardiovascular, metabolic 
and neurodegenerative diseases [17]. Among the alter-
natives, several data have shown the efficacy of exercise 
training [15], heat therapy (hot water immersion, sauna 
or hot tub) [51], pharmacological agents (such as BGP-
15, a hydroxylamine derivative) [52], and finally, the 
rational use of antipyretics for fever control.

Regarding exercise, it is expected that individuals 
engaged in exercise training, present higher levels of 
HSP72 (efficient HSR machinery). In fact, elevated levels 
of HSP72 have being associated with resistance to meta-
bolic diseases (such as diabetes), increased cardiovas-
cular fitness (higher oxygen consumption, VO2max) and 
reduced inflammation [53]. These mechanisms give sup-
port the hypothesis that active individuals (with better 
cardiorespiratory fitness) could be more resistant to the 
inflammatory effects of COVID-19 infection, as recently 
suggested [54].

Other alternative intervention to increase HSR is heat 
therapy. It consists in inducing a passive elevation of the 
central body temperature, using hot water immersion or 
sauna. The benefits of heat therapy in metabolic diseases 
have been studied and confirmed [51]. However, in the 
setting of COVID-19, these two interventions cannot be 
applied.

Considering that HSR is activated by elevation of 
body temperature, another potential strategy to improve 
HSR involves the rational use of antipyretics in infected 
patients. In fact, the inflammatory response, triggered by 
any infection (including SARS-CoV-2), will lead to the 
activation of the nuclear factor NF-kB, the master regula-
tor of inducible production of cytokines and inflamma-
tory enzymes. This culminates into the release of several 
factors (such as prostaglandins), capable of inducing 
fever (hyperthermia), and in turn activating HSR and 
aiding the resolution of inflammation [26]. Thus, fever is 
important for the HSR induction. This should be taken 
into account when using antipyretic drugs to control 
fever. Lowering body temperature, down to normal lev-
els, with antipyretics, may potentially hamper the natu-
ral HSR and the resolution of inflammation. This has not 
been properly tested to date. The challenge, of course, is 
to find an optimal temperature that still allows HSP72 to 
increase, without causing any tissue heat damage.

Finally, the use of pharmacological agents may pro-
vide a strategy to improve HSR in patients with meta-
bolic diseases. A candidate drug is BGP-15. BGP-15 is a 
pharmacological inducer of HSP72 that has been shown 
to be safe and well tolerated in Phase II clinical trials in 
patients with diabetes and insulin resistance [55, 56]. The 

use of BGP-15 in animal models was found to induce 
metabolic benefits, besides reducing inflammatory sign-
aling and improving respiratory muscles during mechan-
ical ventilation [52].

How to measure the heat shock response?
There are several technical ways to determine the HSR in 
biological samples. The majority of studies use the quan-
tification of gene and/or protein levels of factors (or their 
products) involved in this pathway, such as HSF1, SIRT1, 
HSP72, and other chaperones. However, with this strat-
egy, only baseline levels can be measured, leading, some-
times, to divergent results. For this reason, we suggest the 
use a “heat stress test” to determine the real chaperone 
machinery capacity of the cells to express HSP72 (and 
release, in the case of peripheral blood mononuclear 
cells) in response to a heat challenge [15].

As a model it is possible to test HSR in human periph-
eral blood mononuclear cells (PBMC), a major source 
of circulating HSP72 and representative of immune cell 
stress response [14]. These cells, in normal and optimal 
conditions, can express and release HSP72, under heat 
stress conditions. Briefly, after harvesting, whole blood 
is immediately incubated at two different temperatures: 
37 °C (control) and 42 °C (heat stressed) for 2 h in a water 
bath (with a gentle mix every 15 min). After the incuba-
tion, total blood is centrifuged to isolate plasma/serum 
and PBMC through density gradient separation [57, 
58]. Then, plasma can be used for the direct analysis of 
extracellular HSP72 while PBMC can be prepared for the 
measurement of iHSP72. The difference between concen-
tration at 37  °C and 42  °C is used as a HSR index. The 
full protocol is described elsewhere [14] and is present 
in Fig.  3. In addition, the levels of extracellular HSP72 
(plasma) may be used as a marker for inflammation and 
immune system control, since, as an extracellular protein, 
HSP72 induces inflammation through the activation of 
Toll-like receptors (TLR2 and 4) [17, 25].

Conclusions and perspectives
The cytokine storm syndrome induced by coronavirus 
infection can lead to severe tissue damage and evolve 
to septic shock and multiple organ failure. For this rea-
son, it is recommended that this hyperinflammation it 
treated to reduce the disease-related complications and 
mortality, especially in patients with established meta-
bolic disease (for whom the risk is considerably higher). 
To date, only therapies using anti-inflammatory agents 
were considered. We suggest that HSR, an essential 
pathway for inflammation resolution, is blunted in indi-
viduals with insulin resistance and, for this reason they 
are at risk for complications when infected by corona-
virus. This hypothesis is currently under investigation 
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in our laboratory. Finally, we propose that the use of 
HSR activators should be investigated, since they could 
potentially alleviate the COVID-19 complications in 
insulin resistant patients. This may include the rational 
use of antipyretic drugs (to allow mild elevations of 
body temperature by fever, without causing heat dam-
age, but enough to eventually lead to elevations of 
HSP72), and HSP72 activators such as BGP-15.
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