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The entanglement entropy of two-body elastic scattering at high energies is studied by using the model-
independent Lévy imaging method for investigating the hadron structure. It is considered the finite entropy
in the momentum Hilbert space properly regularized and the results are compared to recent evaluation using
the diffraction peak approximation. We present the entropy for RHIC, Tevatron and LHC energies pointing
out the underlying uncertainties.
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I. INTRODUCTION

Entanglement entropy is a current hot topic in high
energy physics, quantum gravity and quantum field theory
(see, for instance the reviews [1–3]), measuring the
departure from a pure quantum state by a particle system.
Recently, the confinement of partons inside hadrons has
been investigated as an example of quantum entanglement
due to their correlations and where only a part of the Hilbert
space of quark-gluon system is probed by the scattering
probe (projectile electrons, virtual photons, proton, etc.). It
has been demonstrated that in the deep inelastic scattering
of leptons off hadrons (DIS) a nonzero von Neumann
entropy is obtained from different configurations of quasi-
free incoherent partons inside probed hadron because of
their quantum entanglement [4]. Specifically focusing on
gluons the entropy associated with their production [5] is
obtained taking into account perturbative QCD saturation
formalism. An upper bound on the entropy of gluons was
found, which is deeply connected with the measured
hadron multiplicity in proton-proton collisions at high
energies. Along similar lines, the entropy of quarks and
gluons using the semiclassical counterpart of von
Neumann, i.e., the Wehrl entropy, has been derived in
Ref. [6]. The phase space QCD Wigner and Husimi
distributions for partons are taken into account and
Wehrl entropy is given in terms of the gauge invariant
matrix element of the parton field operators. Moreover,
within the color glass condensate (CGC) formalism for the
fast hadron wave function the entropy of soft gluons was

obtained in [7] and the evolution equations for the effective
CGC density matrix have been investigated [8,9]. In the
same context, the entropy associated to a partial set of
measurements on a quantum state named as entropy of
ignorance [10] was defined. It is equal to the Boltzmann
entropy of a classical system of quarks and gluons and is
similar to entanglement entropy at high momenta.
Recently, we computed the entanglement entropy of

gluons within the nucleons and nuclei by considering
analytical parametrizations for the gluon distribution func-
tion in the context of QCD saturation formalism [11]. It was
compared to current extractions of entropy using hadron
multiplicities in DIS and proton-proton collisions at the
LHC [12]. The relation with other approaches for parton
entropy as the CGC formalism and Wehrl entropy was
investigated and the nuclear entanglement entropy per
nucleon was addressed as well. Summarizing ideas, the
entanglement entropy, SEE ¼ ln½xgðY;Q2Þ�, is determined
by the gluon distribution, xgðx; μ2Þ, evaluated at a probing
scale μ2 ¼ Q2 at a rapidity Y ¼ lnð1=xÞ (x is the usual
Bjorken variable). There is the identification of the gluon
distribution with the average number of particles, N, such
that SEE ¼ lnðNÞ in small-x DIS. In the large Y limit the
entanglement entropy is maximal meaning that the equi-
partition of microstates maximizing them corresponds to
the gluon saturation. The extracted values from ep DIS at
DESY-HERA and proton-proton collisions at the Large
Hadron Collider (LHC) are of order SEE ∼ 2–3 for Y ≃ 7–9
[11,12], which is consistent with the entanglement entropy
of the initial state partons derived within the nonlinear QCD
evolution formalism [4]. These results are corroborated by
recent determination [13] that the multiplicity distribution
of hadrons described by QCD evolution equations scales on
N in the form σn=σinel ¼ 1

N ðN−1
N Þn−1 and S ¼ lnðNÞ corre-

sponding to the high energy partonic state being maximally
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entangled. Here, the quantity σn is the cross section for
producing n hadrons and with σinel being the inelastic cross
section. In studies presented in [11] the key quantity is the
saturation scale, QsðxÞ2 ¼ Q2

0ðx=x0Þ−λ ∼ eλY (λ ≃ 0.25,
x0 ≃ 10−5 and Q0 ¼ 1 GeV), which is the typical gluon
transverse momentum at very small x or quite large
rapidities Y. It was demonstrated that both the Werhl
entropy and entanglement entropy from the CGC formal-
ism behave as SEE, SW ∼ S⊥Q2

s with S⊥ being the target
transverse area. On the other hand, in the QCD dipole
cascade formalism [4,13] it behaves asymptotically as
SEE ∼ Y lnðQ2

s=μ2Þ ∼ Y2. The nuclear entanglement
entropy was also investigated and the main result is that
the nuclear Wehrl entropy behaves like SW ∼ SA⊥Q2

s;A ∼
AeλY with the nuclear saturation scale being Q2

s;A ∼ A1=3Q2
s

and the nucleus transverse area given by SA⊥ ¼ πR2
A ∼ A2=3.

Therefore, the nuclear entanglement entropy for gluons
inside nuclei is additive with respect to the hadron one and
consistent with SEE being an extensive variable. Although it
is tempting to follow the same parton saturation frame-
works to treat the entropy of produced hadron in the soft
region in collider energies, here we will use a nonpertur-
bative approach. The saturation scale provides us with a
semihard scale at high energies, which allows to extend the
perturbative analysis deep in the soft region as we show in
[14]. However, the measured observables as the differential
elastic cross section at small-t and total cross section should
be dominated by nonperturbative aspects of QCD and an
S-matrix approach is more appropriated.
In this work we focus on the entanglement entropy

generated by the two-body elastic scattering in the high
energy limit. Now the underlying dynamics is given by the
nonperturbative sector of the QCD or in the Regge
phenomenology by the soft Pomeron physics. In particular,
we investigate the hadron-hadron strong interaction scat-
tering including both the elastic (Aþ B → Aþ B) and
inelastic (Aþ B → X) channels by using the S-matrix
formalism. In the latter, the full Hilbert space of states is
factorized into the Hilbert spaces of the initial and final
states. We follow closely Refs. [15,16], where the reduced
matrix, ρ̂A, of the final state with two outgoing particles in
an elastic scattering is computed in terms of the partial
wave expansion of the two-body states. The entanglement
entropy is obtained through the Rényi entropy, SReðnÞ, with
SEE ¼ limn→1SReðnÞ. By using the partial wave expansions
of the physical observables as the total, elastic and inelastic
cross sections (σtot, σel, and σinel) as well as the differential
elastic cross section, dσel=dt, the entropy is given by

SEE ¼ −lim
n→1

∂
∂nTrAðρ̂AÞ

n ¼ − lnΩ; ð1Þ

Ω ¼ 1 −
�
σel − 4

fV
dσel
dt jt¼0

πfV − σinel

�
: ð2Þ

In the expression above, fV ¼V=k2 with V ≔
P

lð2lþ 1Þ
being the full phase space volume. Such a volume is
formally divergent as the full Hilbert space spans over all
partial waves up to l → ∞. In Ref. [16] the identification
of the physical origin of this divergence and its further
regularization is carefully treated. Finite and regulated
expressions for the entanglement entropy are then applied
to pp and pp̄ collisions at high energies. Extraction of
entropy is performed using the diffractive peak approxi-
mation and three different regularization methods. One of
them disregards the noninteracting states and an ideal
volume regularization is constructed. At the LHC energies
the values reach above unity. For instance, at

ffiffiffi
s

p ¼ 13 TeV
the entropy for pp collisions is SEE≈1.0370�0.1749 [16].
The main goal of this paper is to extract the entanglement

entropy using the ideal regularization proposed in [16]
[given by Eq. (10) in what follows] and the systematic and
model-independent method for determining the differential
cross section provided by the Lévy imaging method
[17–19]. The hadron femtoscopy provided by the Lévy
expansion allows for the reconstruction of the elastic p̄p
and pp scattering amplitudes at low and high energies. This
means that the entropy will be determined in an indepen-
dent way and its asymptotic limit can be described by
absorptive and reflective scattering modes constrained by
unitary. For instance, the black disk limit predicted in the
context of the absorptive mode formalism set a bound
SEE ≈ 1þ lnð2Þ for the elastic scattering at asymptotic
energies. This paper is organized as follows. In the next
section, we start by briefly reviewing the calculation of
the entanglement entropy in elastic scattering using the
S-matrix approach and the partial wave expansion
(Sec. II A). Also, the phenomenology of Lévy hadron
imaging as applied to the internal structure of the hadrons
at collider energies by elastic scattering is reviewed
(Sec. II B). In Sec. III the main results are presented and
the uncertainties associated to the formalism and possible
future applications are discussed. In Sec. IV we summarize
the main results obtained by the analysis.

II. THEORETICAL FORMALISM AND
PHENOMENOLOGY

A. Entanglement entropy in two-body elastic
scattering in the S-matrix formalism

First, we shortly review the formalism presented in
Refs. [15,16], where the entanglement entropy is obtained
for elastic scattering of two on-shell particles, A and B, at
the high energy regime. It includes also inelastic processes
which appear in the overall set of the allowed final states.
The reduced density matrix is constructed in terms of the
S-matrix operator projecting the two-body initial state onto
the two-body one. The incoming particle 3-momenta are
denoted by ðk⃗; ⃗lÞ, whereas the outgoing 3-momenta are
ðp⃗; q⃗Þ, respectively. Tracing out the overall density
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matrix, ρ̂, with respect to the Hilbert space of particle B,
one obtains

ρ̂A ¼ ρ0

Z
d3p⃗
2EAp⃗

δðp − kÞjhp⃗;−p⃗jsjk⃗;−k⃗ij2
4kðEAk⃗ þ EBk⃗Þ

jp⃗ihp⃗j;

ρ−10 ¼ δð3Þð0Þ
Z

d3p⃗
δðp − kÞjhp⃗;−p⃗jsjk⃗;−k⃗ij2

4kðEAk⃗ þ EBk⃗Þ
; ð3Þ

where the following normalization condition is obeyed,
TrAρ̂A ¼ TrATrBρ̂ ¼ 1. This condition leads to the overall
δð3Þð0Þ appearing in Eq. (3) and it is the origin of possible
divergence in the entropy. Here, p ¼ jp⃗j and k ¼ jk⃗j
with cos θ ¼ p⃗ · k⃗=ðpkÞ.
The entanglement entropy is obtained from the reduced

matrix in the form SEE ¼ −limn→1
∂
∂nTrAðρ̂AÞn. After doing

the product of the n density operators given at Eq. (3), one
obtains TrAðρ̂AÞn in the following way:

TrAðρ̂AÞn¼
Z

d3p⃗δð3Þð0Þ
�
ρ0δðp−kÞjhp⃗;−p⃗jsjk⃗;−k⃗ij

2

4kðEAk⃗þEBk⃗Þ
�n

;

where the extra δð3Þ arises from performing the trace
over the 3-momentum of the A particle. Also, one has
the definition hp⃗; q⃗jSjk⃗; ⃗li≡ δð4ÞðPpþq − PkþlÞhp⃗; q⃗jsjk⃗; ⃗li
with the notation P for the center-of-mass 4-vector.
By making use of the partial wave expansion of the

reduced S-matrix element and partial wave expansion of the
scattering amplitude [15,16],

hp⃗;−p⃗jsjk⃗;−k⃗i ¼ EAk⃗ þ EBk⃗

ðπk=2Þ
�
δð1 − cos θÞ þ iA

16π

�
;

Aðs; tÞ ¼ 16π
X∞
l¼0

ð2lþ 1ÞτlPlðcos θÞ; ð4Þ

the quantity TrAðρ̂AÞn can be further computed. In the
last equation above, sl ¼ 1þ 2iτl refers to the two-
body S-matrix lth partial wave. It can be defined as a
full phase-space volume, V ≡ 2δð0Þ ¼ P∞

l¼0ð2lþ 1Þ,
which is related to the δð3Þ-functions in the form
V ¼ 4πk2δð3Þð0Þ=δð0Þ.
After integration over the 3-momentum and writing

Eq. (4) in terms of the scattering angle θ and factoring
out the remaining constant factors, one obtains

TrAðρAÞn ¼
�
V
2

�
1−n Z 1

−1
d cos θ½PðθÞ�n; ð5Þ

PðθÞ ¼ δð1 − cos θÞ
�
1 −

2
P

lð2lþ 1Þjτlj2
V=2 −

P
lð2lþ 1Þfl

�

þ jPlð2lþ 1ÞτlPlðcos θÞj2
V=2 −

P
lð2lþ 1Þfl

; ð6Þ

where fl are the partial wave components of the inelastic
cross section related to the elastic ones τl through the
unitarity relation, fl ¼ 2ðImτl − jτlj2Þ. The next step is
rewriting PðθÞ as a function of the physical observables,
σtot, σel, σinel and dσel=dt ¼ jAj2=ð256πk4Þ, which are
usually described in terms of partial wave components
τl and fl. Namely,

PðθÞ ¼ δð1 − cos θÞ ·
�
1 −

σel
πV=k2 − σinel

�

þ 2k2

σel

dσel
dt

·

�
σel

πV=k2 − σinel

�
; ð7Þ

with the Mandelstam variable t ¼ 2k2ðcos θ − 1Þ being the
momentum transfer squared.
Finally, the entanglement entropy SEE is properly com-

puted as

SEE ¼ −lim
n→1

∂
∂nTrAðρ̂AÞ

n; ð8Þ

¼ ln
V
2
−
Z

1

−1
d cos θPðθÞ lnPðθÞ: ð9Þ

In Refs. [15,16] the authors identified divergences
appearing in the calculation of SEE above coming from
the divergent full phase-space volume, V, as discussed
before. This divergence is interpreted as due to the infinite
number of noninteracting two-body states included for the
summation of final states in the derivation. Therefore, a
suitable regularization is need and three options have been
suggested in [16]: (i) volume regularization, (ii) cutoff (step
function) regularization and (iii) cutoff (Gaussian function)
regularization. The key feature is that at a given energy the
first term in Eq. (7) arises from the part of the two-body
Hilbert space of the final states which does not correspond
to the interacting ones. A natural way to get rid of those
noninteracting modes is regularizing the phase-space vol-
ume in order for the first term of PðθÞ to vanish. Namely, it
is defined in such a way that σel=½ðπṼ=k2Þ − σinel� ¼ 1.
Using the fact that σtot ¼ σel þ σinel, one gets Ṽ ¼ k2σtot=π
and accordingly, P̃ðθÞ ¼ 2k2

σel
dσel
dt . This is considered the

volume-regularization hypothesis and the volume-
regularized entanglement entropy is given by

SEE ¼ −
Z

∞

0

djtj 1
σel

dσel
dt

ln

�
4π

σtotσel

dσel
dt

�
; ð10Þ

which depends only on measurable observables.
In [16] an estimate of Eq. (10) was obtained assuming

the diffraction peak approximation for hadron-hadron
scattering at high energies. In this case, the differential
elastic cross section and the elastic cross section are
given by
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dσel
dt

¼ σ2tot
16π

e−Beljtj; ð11Þ

σel ¼
Z

∞

0

djtj dσel
dt

¼ σ2tot
16πBel

; ð12Þ

where Belð
ffiffiffi
s

p Þ is the elastic slope parameter which can be
written as Bel ¼ σ2tot=ð16πσelÞ.
In the diffraction peak approximation, the entanglement

entropy in Eq. (10) therefore becomes

S̃EE ¼ 1þ 2 lnð2Þ þ ln

�
σel
σtot

�
; ð13Þ

which could be bounded by the black disk limit,
σel=σtot → 1=2, at asymptotic energies. That is,
S̃EEð

ffiffiffi
s

p
→ ∞Þ ¼ 1þ lnð2Þ ≈ 1.693.

In order to implement regularization using an explicit
cutoff, in [16] the scattering amplitude A was rewritten in
the impact-parameter representation as

aðs; bÞ ¼ 1

2π

Z
d2qe−iq⃗·b⃗fðs; tÞ; ð14Þ

fðs; tÞ ¼ 1

2π

Z
d2beiq⃗·b⃗aðs; bÞ; ð15Þ

where we denote fðs; tÞ ¼ A=ð16πk2Þ and thus σtot ¼
2
R
d2bImaðs; bÞ and σel ¼

R
d2bjaðs; bÞj2 (with t ¼ −q⃗2).

The following prescription is used to approximately
obtain the physical Hilbert space. Identifying that
bk ∼ l, the large impact parameter region does not con-
tribute to the scattering amplitude aðs; bÞ (i.e., the large l
contribution to partial wave components of the elastic cross
section τl). The regularization procedure is done through
the truncation of the large impact parameter modes by
introducing a cutoff function CðbÞ which vanishes at
b → ∞. In this way, the regulated quantities become [16]

σ̂tot ¼ 2

Z
∞

0

d2bC2ðbÞImaðs; bÞ; ð16Þ

σ̂el ¼
Z

∞

0

d2bC2ðbÞjaðs; bÞj2; ð17Þ

dσ̂el
dt

¼ 1

4π

����
Z

∞

0

d2beiq⃗·b⃗CðbÞaðs; bÞ
����
2

: ð18Þ

Accordingly, the volume of the regularized Hilbert space
is given by Ṽ ≈ V̂ ¼ k2σ̂tot=π and as a consequence,
P̃ðθÞ ¼ 2k2

σ̂el
dσ̂el
dt . The simplest choices for the function

CðbÞ are the step function and the Gaussian one. Namely,

CðbÞ ¼
�
1 ðb ≤ 2ΛÞ;
0 ðb > 2ΛÞ: ðstep functionÞ; ð19Þ

CðbÞ ¼ exp

�
−
1

2
·
b2

4Λ2

�
ðGaussianÞ: ð20Þ

With regard to the cutoff approximation the entangle-
ment entropy, Eq. (10), is rewritten as

ŜEE ¼ −
Z

∞

0

djtj 1
σ̂el

dσ̂el
dt

ln

�
4π

σ̂totσ̂el

dσ̂el
dt

�
: ð21Þ

Both cutoffs presented above regularize the infinite
volume of the Hilbert space because l now has an upper
bound defined by lmax ≡ 2Λk and then V̂ ¼ k2σ̂tot=π ¼
2k2

R∞
0

d2b
2π C

2ðbÞ ¼ 4k2Λ2. Therefore, the condition that
determines the cutoff is Λ2 ¼ σ̂tot=4π. For instance, in the
forward peak approximation and the Gaussian-function
regularization the entanglement entropy is given by [16]

ŜGausEE ¼ 1 −
4πBelð1þ Bel

2Λ2Þ
σtotð1þ Bel

2Λ2Þ
; ð22Þ

with Λ ¼
�
σtot
4π

−
Bel

2

�
1=2

: ð23Þ

In Table I we present the results of calculations done in
Ref. [16] using the three regularization prescriptions
(originally, for

ffiffiffi
s

p ¼ 1.8, 7, 8 and 13 TeV). The measured

TABLE I. The entanglement entropy determined by the model-independent Lévy imaging method compared to the diffraction peak
approximation presented in Ref. [16]. We present for the sake of completeness the results for the three different regularization schemes
(volume regularization and step/Gaussian function cutoffs). Predictions for 0.2 TeV (RHIC) and 2.76 TeV (LHC) not appearing
originally in [16] are computed.

ffiffiffiffiffiffiffispp
p (TeV) Lévy imaging Volume regularization Experimental data ½σtot; σel�ðmbÞ Step function Gaussian function

13.00 1.126 1.114 ½110.6� 3.4; 31.0� 1.7� 1.212 0.8621
8.00 � � � 1.063 ½101.7� 2.9; 27.1� 1.4� 1.197 0.7965
7.00 1.020 1.031 ½98.0� 2.5; 25.1� 1.1� 1.192 0.7539
2.76 � � � 1.029 ½84.7� 3.3; 21.8� 1.4� 1.144 0.7509
1.80 0.953 0.918 ½72.10� 3.3; 16.6� 1.6� 1.193 0.6009
0.20 � � � 0.769 ½54.67� 1.89; 10.85� 0.64� 1.103 0.3909
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values of total and elastic cross sections are also presented
[20,21]. We also added the predictions for RHIC energy
recently measured, 0.2 TeV [22], and the LHC data at
2.76 TeV [23,24]. Our main goal here is to compute the
entanglement entropy with ideal regularization, Eq. (10),
without making use of any assumption about the t
dependence (diffraction peak) of the differential elastic
cross section and/or any cutoff on impact parameter. To do
so, we will employ the model-independent Lévy imaging
method which allows to reconstruct the elastic pp and pp̄
scattering amplitudes at both low and high energies. In
what follows, the Lévy expansion is quickly reviewed
focusing on the description of observables needed for
computing SEE.

B. Model-independent femtoscopic Lévy imaging
for elastic scattering

The Lévy series is a generalization of the Lévy expan-
sion methods proposed to analyze nearly Lévy stable
source distributions in the field of particle femtoscopy
[17–19]. Here, we are interested in the momentum transfer
t-distribution in hadron-hadron elastic collisions. It pro-
vides a systematic and model-independent method to
characterize the variations from the approximate shape
of these distributions by making use of a dimensionless
variable, z≡ R2jtj ≥ 0, and a complete orthonormal set of
polynomials that are orthogonal with respect to the weight
function ωðzÞ ¼ expð−zαÞ. We follow closely the recent
analysis of differential elastic pp=pp̄ scattering cross
sections done in Ref. [17]. A clear advantage of the
Lévy method for proton imaging is supplying the inelas-
ticity profile of the proton as a function of energy and
impact parameter. In momentum t-representation, the
elastic differential cross section is related to the modulus
of the complex-valued elastic amplitude Tel. The latter is
expressed as an orthonormal series expansion in terms of
the Lévy polynomials [17],

dσel
dt

¼ 1

4π
jTelðs; tÞj2; ð24Þ

Telðs; tÞ ¼ i
ffiffiffiffiffiffiffiffiffi
4πA

p
e−

zα
2

�
1þ

X∞
i¼1

ciliðzjαÞ
�
; ð25Þ

where R denotes the Lévy scale parameter, ci ¼ ai þ ibi
are the complex expansion coefficients (ai and bi being
the real and the imaginary parts of ci, respectively). The
quantities ljðzjαÞ are the normalized Lévy polynomial of
order j, which are given by

ljðzjαÞ ¼
LjðzjαÞffiffiffiffiffiffiffiffiffiffiffiffi

DjðαÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Djþ1ðαÞ
p ; for j ≥ 0: ð26Þ

constructed in terms of the unnormalized Lévy polynomials
LiðzjαÞ [where one has L0ðzjαÞ ¼ 1],

L1ðzjαÞ ¼ det
�
μα0 μα1
1 z

�
; ð27Þ

L2ðzjαÞ ¼ det

0
B@

μα0 μα1 μα2
μα1 μα2 μα3
1 z z2

1
CA; ð28Þ

LmðzjαÞ ¼ det

0
BB@

μα0 � � � μαm

..

. . .
. ..

.

1 � � � zm

1
CCA; ð29Þ

and the Gram determinants, DjðαÞ, are defined by

D1ðαÞ ¼ μα0; D2ðαÞ ¼ det

�
μα0 μα1
μα1 μα2

�
; ð30Þ

DmðαÞ ¼ det

0
BB@

μα0 � � � μαm−1

..

. . .
. ..

.

μαm−1 � � � μα2m−2

1
CCA; ð31Þ

μαn ¼
1

α
Γ
�
nþ 1

α

�
; ð32Þ

where D0ðαÞ≡ 1 and ΓðxÞ is the Gamma function.
The total cross section, σtot ≡ 2ImTelðs; 0Þ, and elastic

cross sections are expressed in terms of the quantities
defined above:

σtot ¼ 2
ffiffiffiffiffiffiffiffiffi
4πA

p �
1þ

X∞
i¼1

ailið0jαÞ
�
; ð33Þ

σel ¼
A
R2

�
1

α
Γ
�
1

α

�
þ
X∞
i¼1

ða2i þ b2i Þ
�
: ð34Þ

It was demonstrated in Ref. [17] that the expansion for
Telðs; tÞ converges very fast and a third-order Lévy series is
enough to reproduce the data measured at

ffiffiffi
s

p
≤ 1 TeV

with confidence levels corresponding to a statistically
suitable description. In the next section, the Lévy imaging
method will be used to compute the entanglement entropy
in the ideal regularization scheme at high energies. The low
energy data are considered as well. We used the results of
the fourth-order Lévy expansion to the elastic scattering
data of proton-proton collisions measured in the ISR energy
range (

ffiffiffi
s

p ¼ 23.5, 30.7, 44.7, 52.8 and 62.5 GeV).
Moreover, for proton-antiproton collisions a second-order
expansion is used for energies of

ffiffiffi
s

p ¼ 53 GeV (ISR) andffiffiffi
s

p ¼ 1960 GeV (D0, Tevatron) whereas a third-order
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expansion stands for
ffiffiffi
s

p ¼ 546 GeV and
ffiffiffi
s

p ¼ 630 GeV
(UA4). For the LHC energies, a fourth-order expansion to
all the differential cross section measurements of elastic pp
collisions at 7 and 13 TeV has been taken. The parameters
of the expansions, R, α and the complex coefficients ci
are available in Appendices A and B of Ref. [17] and
in Refs. [18,19]. Typically, one has α ≃ 0.9 and
R ≃ 0.6–0.7 fm. In the next section the model independent
extraction of SEE is compared with those from Ref. [16] and
an analysis on its energy dependence is performed using for
simplicity the eikonal model.

III. RESULTS AND DISCUSSIONS

In Fig. 1 is shown the extracted entanglement entropy as
a function of center of mass energy using the ideal volume
regularization scheme, Eq. (10), using the Lévy imaging
method. The low energy data for pp collisions from ISR
are labeled by up triangles, whereas the pp̄ collision data
from ISR, UA4 and D0 are represented by down triangles.
The TOTEM-LHC data at 7 and 13 TeV are presented
(squares) together with extracted values for SEE in Ref. [16]
(stars) using the same ideal volume regularization. The
Lévy expansion gives somewhat large values of entangle-
ment entropy using the ideal regularization due to the
additional contribution at large t which is suppressed in
the diffraction peak approximation considered in [16].
However, the deviation is not so high and the small-t
approximation can be considered a suitable extraction for
SEE. For the sake of completeness, in Table I is presented
the comparison between the different extraction methods
at high energies (LHC and Tevatron) and the values of

cross section measurements. We included also the recent
results for σtot and σel in pp collisions for RHIC atffiffiffi
s

p ¼ 200 GeV. We verified that the step-function regu-
larization option is numerically time consuming due to the
oscillating integrand in Eq. (18).
At low energies, the proton-proton elastic scattering

(ISR) presents an entanglement entropy of order 0.7.
The proton-antiproton scattering at intermediate and high
energies (UA4, Tevatron) provides SEE ≃ 1. At the LHC
energies the entropy reaches values around 1.2 at 13 TeV. It
would be worth obtaining the Lévy expansion extraction in
the intermediate LHC energies of 2.76 and 8 TeV in order
to confirm the trend on the behavior as a function of the
center of mass energy. As we will see in what follows it is
roughly expected that the entropy in forward peak approxi-
mation, S̃EE ∼ lnðσtot=σelÞ, saturates at very high energies.
We have also discussed the bound given by the black
disk (BD) limit, σtot=σel → 1=2, which corresponds to the
maximal absorption within the eikonal unitarization. On the
other hand, in the U-matrix formalism the scattering
amplitude [25] in impact parameter space may exceed
the BD limit with the colliding particles becoming pro-
gressively more transparent [25,26], i.e., the gray disk limit.
In this unitarization scheme, that ratio reaches its maximal
possible value, σtot=σel → 1, at asymptotic energies.
Specifically, this means that when the amplitude exceeds
the BD limit then the scattering becomes driven by
antishadow contribution [26]. For the antishadow mode
the elastic amplitude in impact parameter space increases
with decrease of the inelastic channel pieces.
In order to shed light on the energy dependence of the

entanglement entropy in high energy elastic collisions we
will consider the one-channel eikonal model in impact
parameter space (GLM model) [27,28]. The reason is that
the ratio Relð

ffiffiffi
s

p Þ ¼ σel=σtot can be analytically evaluated.
In the diffraction peak approximation and ideal volume
regularization, S̃EE ¼ lnð4eRelÞ. Using s-channel unitarity
and a simplified form for the scattering amplitude in impact

parameter representation, i.e., aðs; bÞ ¼ i½1 − e
Ωðs;bÞ

2 �, the
total, elastic and inelastic cross section can be easily
computed. The Opacity function, Ω, is written in terms
of a single t-channel soft Pomeron (P) exchange in a
factorized way Ωðs; bÞ ¼ gðsÞSðs; bÞ with the notation
νðsÞ ¼ Ωðs; 0Þ [27,28]. The quantity Sðs; bÞ is the b-space
normalized soft profile function. By using a Gaussian soft
profile the Opacity takes the form

Ωðs; bÞ ¼ σ0
2πBel

�
s
s0

�
ΔP

exp

�
−

b2

2Bel

�
; ð35Þ

where Bel ¼ B0 þ 2α0P lnðs=s0Þ and B0 is the slope of the
elastic differential cross section due to the Pomeron
exchange at s ¼ s0. It is well known that the ratio Rel
takes the analytical form,

101 102 103 104 105

s
1/2

 [GeV]

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

S
E

E

ISR pp
ISR/UA4/D0 pp
LHC pp
Peschanski-Seki
Eikonal model

FIG. 1. The entanglement entropy for elastic scattering as a
function of center-of-mass collision energy,

ffiffiffi
s

p
. Extraction using

the Lévy imaging method is presented at low and high energies
and compared to the results from Ref. [16]. The values for LHC,
Tevatron and RHIC energies are presented in Table I. Prediction
for diffraction peak approximation using the one-channel eikonal
model is shown (solid line). A fit based on the single Regge pole
contribution to the soft Pomeron is also presented (dashed line).
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Rel ¼
1

2

lnðν=4Þ þ γE − Γð0; νÞ þ 2Γð0; ν=2Þ
lnðν=2Þ þ γE þ Γð0; ν=2Þ ; ð36Þ

where γE ≈ 0.5772 is the Euler-Marscheroni constant and
Γð0; xÞ is the incomplete Gamma function. We took
the parameters from Ref. [29], which does not include
the LHC data. The fitted values for the Pomeron parameters
in the one-channel eikonal model are ΔP ¼ 0.09,
α0P ¼ 0.25 GeV−2, s0 ¼ 450 GeV, σ0 ¼ 47.2 mb and
B0 ¼ 10.24 GeV−2 [29]. Here, the main goal is to obtain
an analytical expression of SEE as a function of energy. The
adjusted parameters can be of course updated using the
recent LHC data, which is out of the scope of the present
study (it is known that LHC data on soft scattering are only
marginally compatible with the simple soft Pomeron GLM
model [30]). For instance, the measured value at the LHC
by the TOTEM collaboration at 13 TeV is Rel ¼ 0.281�
0.009 [21] and the eikonal model gives Reik

el ¼ 0.23. On the
other hand, one-channel eikonal models based on QCD
with nonperturbative effects included through a QCD
effective charge are able to successfully describe the
LHC data [31,32]. At high energies, Eq. (36) can be further
simplified as Γð0; ν ≫ 1Þ ≈ ν−1e−ν. For instance, νð ffiffiffi

s
p ¼

13 TeVÞ ¼ 3.68 and a good approximation at very high

energies is Rel ≈ 1
2
½lnðν=2ÞγE

þ 1�−1. This implies an energy
behavior for the entropy like SEE ∼ lnðln sÞ.
Here, some words are in order. It is a complex task to

single out the energy dependence of the entanglement
entropy using the regulated entropy in Eq. (10) as the final
result after t-integration is strongly dependent on the
specific behavior of the elastic differential cross section
at small and large t (we quote Ref. [33] where a compre-
hensive review is done on the hadron cross sections from
lower to the highest energies, including comparison to
several models). This task is quite simplified in the
diffraction peak approximation and the one-channel eiko-
nal model describes analytically its energy behavior. In this
case, the physical parameters driving the s-dependence
of the entropy are the soft Pomeron intercept αPð0Þ, with
ΔP ¼ αPð0Þ − 1, and the elastic slope BelðsÞ ∼ lnðsÞ.
Particularly, SEE ∼ lnðln νðsÞÞ with ν being the Opacity
at central impact parameter, νðsÞ ¼ Ωðb ¼ 0Þ ∼ sΔP=Bel.
Using the traditional Regge phenomenology and taking
the single pole contribution to the soft Pomeron we can
investigate from which property of observables the energy
dependence of SEE comes from. In this picture, the
total cross section is given by σtot ¼ 4πgPsαPð0Þ−1 with
gP ¼ γPð0ÞImηPð0Þ. The quantities γP and ηP are the
residue function at the pole and the signature factor at
t ¼ 0, respectively. Assuming a simple exponential form
for the residue function, γPðtÞ ¼ γPð0Þ expð−B0jtjÞ, one
has that the elastic differential cross section given by
dσel=dt ∼ s2ðαP−1Þ expðBtÞ. The effective slope of the
elastic amplitude for the linear Pomeron trajectory,

αPðtÞ ¼ αPð0Þ þ α0Pt, is given by BðsÞ ¼ B0 þ 2α0P lnðsÞ.
In this approximation, it is straightforward to obtain
σel ∼ s2ðαPð0Þ−1Þ=BðsÞ and putting all together in Eq. (10)
and performing the t-integration we find that

SEE ∼ ln

�
4πBðsÞ
sαPð0Þ−1

�
∼ ln

�
B0 þ 2α0 lnðsÞ

sΔP

�
: ð37Þ

This means that s-dependence of the entropy is influenced
mostly by the total cross section and the effective slope.
In order to test the reliability of the relation (37) we
performed a three parameter fit to the extracted SEE in the
form S ¼ ln½a0ðs=s0Þ−ΔPða1 þ 0.5 lnðs=s0ÞÞ� with fixed
s0 ¼ 100 GeV2 (in the energy range 23.5 ≤

ffiffiffi
s

p
≤

13000 GeV). It is found ΔP ¼ 0.0019� 0.0022, a0 ¼
0.1775� 0.0140 and a1 ¼ 10.1759� 0.8466 and the
results are represented by the dashed curve in Fig. 1.
The fit is consistent with a soft Pomeron with intercept
αPð0Þ ≈ 1 and we have checked that by using the standard
supercritical Pomeron intercept ΔP ¼ 0.08 the description
is reasonable for pre-LHC energies and underestimates the
entropies at the LHC energy range. This is due to the
unitarity corrections disregarded in the single pole approxi-
mation and expected to play a significant role at the LHC.
Namely, for the inputs σtot ∼ sΔP and σel ∼ s2ΔP=BðsÞ the
power behavior is modified to σtot; σel ∼ ln2ðsÞ in unitarized
models [27,28].
The prediction for S̃EEð

ffiffiffi
s

p Þ ¼ 1þ 2 lnð2Þ þ ln½Relð
ffiffiffi
s

p Þ�
using the one channel eikonal model (GLM model) is
presented in Fig. 1 (solid line). We included also the
Reggeon contribution to the Opacity as low energy data are
also presented. The eikonal prediction underestimates the
data points as the parameters were fitted without including
the LHC data as discussed before. The black-disk limit,
Rel → 1=2, imposes a limitation on the entanglement
entropy for two-body elastic scattering in hadron collisions.
Namely, S̃EE → lnð2eÞ ≈ 1.693 at asymptotic energies.
Of course, this is the case for the absorptive scattering
mode whereas the predicted ratio Rel in the reflective
scattering mode is somewhat different [25]. The elastic
scattering would have an absorptive nature in the energy
region

ffiffiffi
s

p ≲ 5 TeV, where elastic and inelastic cross
sections obey the relation σinelðsÞ ≤ σelðsÞ. Above some
energy threshold, sr, defined as Sðsr; b ¼ 0Þ ¼ 0 the
scattering picture at small b gradually acquires a reflective
contribution. In this region, σinel < σtot − πr2ðsÞ, where
Sðs; rðsÞÞ ¼ 0. The value of the ratio RelðsÞ at s > sr is
correlated with the degree of reflection, while the value of
the ratio RinelðsÞ ¼ σinel=σtot (with Rel þ Rinel ¼ 1 due to
unitarity) is correlated with the degree of the so-called
hadron hollowness [26]. It is claimed that at the LHC
energies of 8 and 13 TeV reflective scattering mode starts
to take place and a speed-up of the ratio Rel is expected.
Asymptotically, including the reflective mode the limit
Relðs → ∞Þ → 1 is predicted and the entanglement entropy
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would have a higher bound, S̃EE → lnð4eÞ ≈ 2.386. We
quote Ref. [34] where model-independent analytical para-
metrizations of the ratio Rel as a function of energy are
investigated focusing on its asymptotic limit.
Concerning nuclear targets one question that arises is

what is the value of the entanglement entropy for proton-
nucleus elastic scattering. We have no answer by now, but if
the ideal regularization expression Eq. (13) remains the
same on pA collisions then some estimate can be done. In
Ref. [35] a generalization of the Glauber-Gribov formalism
for pA and AA collisions is proposed which takes into
account the usual rescattering of the fastest partons and the
interaction of all partons with the target and the projectile.
As an example, at energy ffiffiffiffiffiffiffispA

p ¼ 2 TeV and for gold

nucleus (A ¼ 197) one obtains σpAtot ≈ 5.1b and σpAel ≈ 1.9b.
This would give S̃EE ≈ 1.40, bearing in mind that the
theoretical estimates for nuclear interaction suffer of large
uncertainties [36,37] (in [38] smaller values for total and
elastic pA cross section are obtained by using the
Miettinen-Pumplin model for pp collisions and fluctuation
effects in the nuclear case).
As a final comment, there have been strong efforts to

investigate the relation between the entanglement entropy
and the properties of the holographic QCDmodels [39–43].
Namely, in the AdS/QCD correspondence the holographic
duality [44] of entanglement entropy between boundary
region A and its complement is the holographic entangle-
ment entropy (HEE), ShA, which is obtained by using the
Ryu-Takayanagi relation [45,46]. The latter is a generali-
zation of the proportionality of black hole entropy to the
area of its event horizon. The HEE is equivalent to the area
of minimal three-dimensional surface in the bulk which is
homologous to A, the so-called Ryu-Takayanagi surface γA,
over a constant value equals to 4GN . Explicitly, ShA ≡
2π
κ2
AreaðγAÞ with κ2 ¼ 8πGN being the gravitational con-

stant. The usual procedure for evaluating the HEE is to set a
region and getting a finite area of the minimal surface
properly UV/IR regulated. The entanglement entropy
determination in soft processes presented here is eminently
driven by nonperturbative aspects of QCD and holographic
methods can shed some light on the problem. Along these
lines, recent studies put forward the calculation of the total
and elastic cross sections at high energies by using the
bottom-up AdS/QCD models in the five-dimensional AdS
space [47–49]. Moreover, sophisticated approaches taking
into account completely anisotropic holographic models
containing different spatial scale factors have been pro-
posed [50,51]. In these models describing aspects of heavy
ion collisions there is a relation between anisotropy of the
background and anisotropy of the heavy ions geometry. It
was found that the holographic entanglement entropy and
its density have important fluctuations near the black hole

phase transition line in the chemical potential-temperature
plane for all values of the anisotropy parameter. In addition,
it was demonstrated that the HEE entanglement entropy of
the colliding ions is further related with the multiplicity of
particles produced [51].

IV. SUMMARY

We have studied the entanglement entropy for high
energy elastic scattering in pp and p̄p collisions, which
is theoretically obtained by the S-matrix formalism and
partial wave expansion of physical observables. It extended
the seminal analysis done in Ref. [16] which used the
diffraction peak approximation and a model independent
extraction has been performed using the Lévy imaging
method. The ideal volume regularization is considered as it
involves only the measured quantities in the soft region like
the elastic and total cross section and the elastic differential
cross section as well. The femtoscopy of hadrons allowed
by this expansion method opens the possibility for a
systematic extraction of entanglement between the final
state hadrons and at high energies SEE ∼ 1. We discuss the
theoretical bound for the entanglement entropy coming
from black disk or gray disk limits related to the inclusion
of absorptive and reflective scattering modes. We verified
that at high energies the entropy for elastic scattering
behaves parametrically like S ∼ 1þ lnð2Þ − lnðlnðsÞÞ and
saturating at asymptotic energies. To gain some insight
about the energy dependence of the entropy we make use of
the simple one-channel eikonal model and qualitative and
quantitative analysis has been done. It was found that the
energy dependence of the entropy is influenced mostly by
the total cross section and the effective slope, B, where

SEE ∼ lnð4πBðsÞ
sαPð0Þ−1Þ. It is possible to describe the extracted

entanglement entropy using the single pole contribution to
the soft Pomeron with an intercept close to unit or by using
the GLM eikonal model. The present study is somewhat
complementary to our investigation in Ref. [11], where the
entanglement of gluons in DIS off proton and nuclei was
addressed.
In summary, the present study carefully investigates the

entanglement entropy in soft scattering processes using
systematic and model independent tools which are helpful
to single out the main aspects of the entangled final state.
The knowledge about entanglement described in a non-
perturbative sector of QCD is deeply related to the holo-
graphic entanglement entropy in the context of holographic
models of QCD [39–43]. These models based on AdS/
QCD duality are shown to be promising as they are able to
describe the main observable as total and elastic cross
sections [47,48] and heavy-ion observables as well [50,51].
In former models the proton gravitational form factor can
be obtained from the pPðgravitonÞp three-point function.
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