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Coexistence and crossover phenomena in a Fermi-like model of particles in counterflowing streams
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In this work, we propose a two-dimensional extension of a previously defined one-dimensional version of a
model of particles in counterflowing streams, which considers an adapted Fermi-Dirac distribution to describe
the transition probabilities. In this modified and extended version of the model, we consider that only particles
of different species can interact, and they hop through the cells of a two-dimensional rectangular lattice with
probabilities taking into account diffusive and scattering aspects. We show that for a sufficiently low level
of randomness (α � 10), the system can relax to a mobile self-organized steady state of counterflow (lane
formation) or to an immobile state (clogging) if the system has an average density near a certain crossover
value (ρc). We also show that in the case of imbalance between the species, we can simultaneously have three
different situations for the same density value set: (i) an immobile phase, (ii) a mobile pattern organized by lanes,
and (iii) a profile with mobility but without lane formation, which essentially is the coexistence of situations (i)
and (ii). All of our results were obtained by performing Monte Carlo simulations.
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I. INTRODUCTION

The statistical mechanics of self-driven diffusive systems
has great importance in the context of nonequilibrium phe-
nomena [1]. In particular, counterflowing streams of parti-
cles [2–6] can lead to interesting patterns, such as those
presented by studies with charged colloids [7–11], for ex-
ample. Exactly as pedestrians organize their motion to make
that system flow [12,13], particles without a “natural intel-
ligence,” self-propelled or simply oriented by a field, some-
times can organize their motion by lanes (see, for example,
Refs. [14,15,16]). However, exclusion effects seem to bring
clogging/jamming [17] phenomena [18,19], although the for-
mation of condensates is not mandatorily observed only in
counterflowing systems [20].

Recently, we have developed a model with exclusion based
on Fermi-Dirac distribution [18] from an extension of a simple
model without exclusion previously defined in [3], which was
loosely based on the concept of clannish random walks devel-
oped by Montroll and West [21]. The easiness and coverage of
this extended model is related to the manipulation of a single
parameter that can model systems going from hard-body sys-
tems with exclusion up to systems that are completely random
and without exclusion effects. We have previously shown that
such systems have an interesting transition from a clogging
phase to a mobile phase, which we have described with many
order parameters such as mobility, the Gini coefficient, etc.,
over different situations [19].

The extension of this Fermi model for the counterflowing
streams of particles in two dimensions has not yet been
studied, and it deserves our attention. It is known that mod-
els in counterflowing system of particles in two dimensions
present interesting lane patterns. For example, a lattice model
for oppositely driven binary particles with purely repulsive

interactions was investigated on a square lattice presenting
such an effect [22]. On the other hand, two-dimensional
directed random walks in counterflow can also present such
phenomena [5].

In this paper, we propose a two-dimensional version of
the Fermi model to describe the counterflowing streams of
particles on a lattice. We show that the system can present
metastable events between a clogging and a lane phase, which,
to the best of our knowledge, was never studied in systems
with counterflowing streams of particles. Thus in this paper,
we qualitatively and quantitatively explore this phenomenon
in detail.

Our paper is organized as follows: In the next section, we
present one of the possible formulations (the more appropriate
one in our opinion) of the modeling in two dimensions. We
show that renormalization is required for d = 2, but that
naturally recovers d = 1 previously studied by us in our
first contributions about this topic [18,19]. After that, we
present our results in Sec. III. Finally, a few conclusions and
summaries are presented in Sec. IV.

II. THE MODEL IN TWO DIMENSIONS

We start this section by defining our scenario: a rectangular
system of V = LxLy cells with periodic boundary conditions
(toroidal lattice) where N particles of two species, namely A
and B, can move. Each cell has a maximum occupation level
denoted by σmax. Our particles are able to hop only to their
neighboring cells where particles of species A tend to move to
the +x direction (along the toroid) while particles of species
B tend to move to the −x direction, exactly like the effect
of an electric field longitudinally applied, considering that
particles of species A are oppositely charged to particles of
species B. In our model, particles only interact with particles
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of the opposite type. Thus a particle of species A that occupies
the cell (x, y) = (iε, jε) hops to its neighboring cell (x, y) =
(iε + ε, jε) at the instant t = τ l according to a rate that
follows the Fermi-like distribution of probability given by

ω
(l )
(i, j)→(i+1, j) = 1

1 + eα(B(l )
i+1, j−σmax )

, (1)

where B(l )
i+1, j is the number of particles of the species B in the

cell, α is the parameter that controls the randomness of the
dynamics, ε is the step length (linear dimension of the cells),
and τ is the time spent to perform the transition.

We define the rate of the particles to move along the y-
direction as a product of two factors: Scattering and diffusion.
The scattering factor is defined as the complement of the rate
of a particle to move in the direction of the toroid, i.e., the
complement of Eq. (1). In a similar way, the diffusion factor
consists of the rate of a particle entering the neighboring cell
in the y-direction, which depends on the level of occupation
of the target cell. If we only consider the diffusive factor as
the “lateral” rates, the model would be able to be reduced to a
set of single-lane systems because the dynamics along the two
perpendicular axes would only be indirectly coupled (see, for
example, [23]).

By this logic, we describe the rate at which particle A
moves to a cell in the transversal direction of the toroid as

ω
(l )
(i, j)→(i, j+1) =

[
1 − 1

1 + eα

(
B(l )

i+1, j−σmax

)
]

· 1

1 + eα

(
B(l )

i, j+1−σmax

)

= eα

(
B(l )

i+1, j−σmax

)(
1 + eα(B(l )

i, j+1−σmax ))−1

(
1 + eα(B(l )

i+1, j−σmax )) . (2)

And similarly,

ω
(l )
(i, j)→(i, j−1) = eα

(
B(l )

i+1, j−σmax

)(
1 + eα(B(l )

i, j−1−σmax ))−1

(
1 + eα(B(l )

i+1, j−σmax )) , (3)

where the term inside the square brackets corresponds to the
scattering factor, and the term outside the square brackets
corresponds to the factor of diffusion.

At this point, we are able to define the normalization factor:

Z (l )
(i, j) =

{
�

(l )
(i, j) if �

(l )
(i, j) � 1,

1 otherwise,
(4)

where �
(l )
(i, j) = ∑

〈i, j〉 ω
(l )
(i, j)→(i′, j′ ) is the total rate of particles

that come out of the cell, and here 〈i′, j′〉 denotes that the
sum is taken over the nearest-neighbor cells toward which the
movement is allowed. Thus using the normalization, we now
have the transition probabilities defined as

p(l )
(i, j)→(i+1, j) = 1

Z (l )
(i, j)

ω
(l )
(i, j)→(i+1, j),

p(l )
(i, j)→(i, j±1) = 1

Z (l )
(i, j)

ω
(l )
(i, j)→(i, j±1).

However, to keep the similarities with the original model,
the particles also have to have the chance of remaining in their

cells. So we also define the probability using

p(l )
(i, j)→(i, j) =

(
1 − �

(l )
(i, j)

)
	

(
1 − �

(l )
(i, j)

)
,

where 	(ξ ) is the step function:

	(ξ ) =
{

1 if ξ > 0,

0 otherwise.

By symmetry, a particle of species B in the cell (x, y) =
ε(i, j) hops to its neighboring cell (x, y) = (iε − ε, jε) at the
instant t = τ l according to the rate

ω
(l )
(i, j)→(i−1, j) = 1

1 + eα

(
A(l )

i−1, j−σmax

) ,

and the transition rate from (x, y) = ε(i, j) to (x, y) =
(iε, ( j ± 1)ε) is

ω
(l )
(i, j)→(i, j±1) = eα

(
A(l )

i−1, j−σmax

)(
1 + eα(A(l )

i, j±1−σmax ))−1

(
1 + eα(A(l )

i−1, j−σmax )) .

By building Z (l )
(i, j), one similarly obtains the transition proba-

bilities calculated for the particles B.
The main parameter of the adapted Fermi-like distribution

in our model is α once it controls the randomness of the
dynamics that can range from a purely random scenario to
a deterministic case in which the relation between the cell’s
occupation and the limitation factor (σmax) is paramount. In
the context of counterflowing particle dynamics, α can be
associated with the magnitude of an external field applied to
oppositely charged particles.

We can understand the influence of α on the dynamics by
focusing on the two extreme situations: (i) α → 0 and (ii)
α → ∞. In the case (i) (α → 0) the dynamics is random
with particles A (B) moving cell by cell with probability
1/2 toward the + (−) x direction if the particle is from the
A (B) species and with 1/4 to the ±y direction. It is easy
to notice that there is no chance that particles will stay in
their cells. On the other hand, in the contrasting situation (ii)
(α → ∞), the system behaves with deterministic dynamics
like the lattice gases, and the set of possible configurations of
occupation of the surrounding cells will define with certainty
the movement of all particles except for the particular case in
which the target cell happens to have σ = σmax. In that case,
a local random decision is made as a result of p = 1/2 or 1/4
depending on the direction of the occupied cell, although we
do not expect it to substantially alter the bulk behavior of the
system. Moreover, it is important to mention that we have a
notorious computational advantage in using this model, since
we are not obliged to check by brutal force if cells satisfy
the occupation limit σmax like systems with nearest-neighbor
exclusion [24,25].

To describe the state of the dynamics, we define the mo-
bility, denoted as M(t ) = 1

N

∑N
i ξi(t ), where ξi(t ) is a binary

parameter that assumes the value 1 when a particle moves in
the x direction, and the value 0 otherwise. The mobility stands
as a current of particles or simply the fraction of the particles
that perform a step along its specie’s drift direction. When
jamming/clog occurs the mobility drops to zero. While when
an opposite scenario occurs like particle’s self-organization in
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lane formation, the mobility will tend to one as a result of the
optimal flow. To capture the lane-organized state we define
the order parameter in the x-direction, or simply “x-order
parameter,” denoted as �l

x ≡ 1
N

∑Ly
k=1 |Al

k − Bl
k|, where Al

k ≡∑Lx
j=1 Al

j,k and Bl
k ≡ ∑Lx

j=1 Bl
j,k are the marginal sum over

the j variable (cells along the y-direction) of the number of
particles of each species. From the definition of �l

x we see that
it will tend to 1 when the system is in a lane-organized state
along the toroid, which represents an optimal state of flow due
to the lack of particles moving in the opposite direction.

It is only possible to calculate the mobility parameter
when performing MC simulations, differently from �x, which
depends only on the spatial concentration of particles and can
also be measured when one integrates the recurrence relations
that emerge from a mean-field approximation of Eqs. (1)–(3)
for species A as well as it can be done for species B, similarly
to what was done in Ref. [5].

We implemented standard MC simulations. For that,
one uses an asynchronous updating method: First, a parti-
cle is drawn at random among N possible choices. Thus,
according to the transition rules previously explained, one
updates the position of this particle. Sequentially, another
particle is picked up randomly and the same procedure is
successively repeated. One MC step consists of N of these
procedures (random sequential updates), where the same par-
ticle can possibly be chosen more than once in the same
MC step. In all of our results, we use NA = NB = N/2. One
uses a uniformly random spatial distribution of the parti-
cles, and amounts used in this paper, such as M(t ) or �(t ),
were computed for each t th MC-step; other variables that
will be presented were averaged over Nrun = 100 000/N +
10 000 different runs unless specified otherwise. Each run
corresponds to a different time series (different seeds) of the
evolution that reaches the steady state in the experiment. This
adaptive sampling is used to keep a reasonable number of runs
in the case of diluted lattices.

A detailed study of the influence of α and σmax was
explored in our previous contributions in one-dimensional
systems [18,19], and in this current paper we concentrate our
study on a situation in which the clogging is expected (α large
and σmax = 1) and therefore is the most important situation to
be explored.

III. RESULTS

We start the analysis of our system of particles by studying
the time evolution of mobility and �x for considerably low
stochastic level α = 20 [26] for some different values of
density, here defined as ρ = N/V , i.e., the number of particles
divided by the number of cells. Thus we run our simulations
for three different values of densities: ρ = 0.5, 1.0, and 1.5. At
this regime, we expect the system of dimensions Lx = 256 and
Ly = 64 to present a high mobility scenario for low density,
while for the high density case we expect the system to jam.
Figures 1 and 2 show the expected behavior for the two
present extreme cases of density [plots (a) and (c)] as we
can see by M(t ) and �x(t ) for each of the ten runs rapidly
reaching the steady state. The case of intermediate density,
i.e., ρ = 1.0, surprisingly shows a kind of transient instability

FIG. 1. Time evolution of mobility for ten different runs (differ-
ent seeds, corresponding to different colors, or different shades of
gray in grayscale) of a system with dimensions of Lx = 256 and Ly =
64 and with α = 20. The dynamics relaxes to a state of optimal flow
when ρ = 0.5 (a) and to an immobile state when ρ = 1.5 (c). For
ρ = 1.0 (b), the system presents a transient instability phenomenon
on the steady states where either the mobile or the immobile phase
can arise depending on the time series.

phenomenon, as we can see by plot (b) in Figs. 1 and 2.
The present case reveals that for a certain specific density,
the steady state of each run depends sensibly on the initial
conditions, as we can observe by the splitting of the mobility
and the x-order parameter. We can also observe in plot (b)
of Figs. 1 and 2 that it is a bimodal situation, since there is
no intermediate steady state of mobility other than the fully
mobile self-organized state (lanes) or the jammed state.

To better understand this transient instability, we studied
the system dependence on the density ρ. By knowing that
the dynamics relax to a bimodal steady state of extremely
different outcomes, where for each run the mobility and �x do
not change after a sufficient time, we implemented the same
criteria to stop the time evolution as used in the previous work
based on the slope of the time-dependent curve to consider

FIG. 2. Time evolution of the alternative order parameter �x

from the same set of time series plotted in Fig. 1 for the mobility.
Here the conclusions are exactly the same as that obtained for the
time evolution of the mobility. Different colors, or different shades
of gray, correspond to different seeds.

022139-3



EDUARDO VELASCO STOCK AND ROBERTO da SILVA PHYSICAL REVIEW E 102, 022139 (2020)

FIG. 3. Typical snapshots obtained when having high density:
ρA = ρB = 8. We can see that the system presents (a) lane patterns,
(b) a clogging state, and (c) a strange situation where where clogging
of particles and a lane-organized pattern seems to be simultaneously
coexisting, the so called “unorganized state”. Blue (dark gray) cor-
respond to particles moving to the right side, Green (light gray)
correspond to ones that are moving to the left side.

when the system has reached the steady state. The considered
criteria consist of making a linear fitting on M(t ) and �x(t )
averaged over consecutive large number of time intervals �t ,
thus comparing the slope of the fitted curves to an error value
η. In this work, we used �t = 1000 and η = 10−7, which was
shown in Ref. [18] to be a good choice. Now focusing on
the study of the density’s influence on the transient instability
behavior, we simulated Nrun different runs to calculate the
probability of lane formation (the number of times that the
system reaches the lane pattern at steady state divided by
Nrun), which is denoted as plane. Similarly, we calculated
the probability of clog formation, denoted as pclog, and the
probability of any outcome other than the two previous cases,
denoted as pelse = 1 − pclog − plane.

First, it is interesting to observe the other outcome (differ-
ent from clogging and lane pattern) that occurs in our problem,
i.e., what we refer to as the “else” situation. To understand this
point, let us observe the snapshots of the possible different
patterns shown in Fig. 3. Here we used a high particle density:
ρA = ρB = 8.0. Figure 3(a) shows the lane pattern (certainly
rare in this situation), Fig. 3(b) illustrates the clogging state
(highly probable in this situation), and finally in Fig. 3(c) we
show the occurrence of a very different pattern of fluidity,
denoted “unorganized” pattern of mobility, which simultane-
ously contains characteristics from states (a) and (b), i.e., a
coexistence of these states.

Here it is important to clarify the apparent contradiction
between plots (c) of Figs. 1 and 2 and what the snapshots
show. The situation (c) plotted in Fig. 3 is indeed very rare for
higher values of density in longitudinal systems and when the
species are balanced (ρA = ρB) in the environment, although
this deserves more attention. It is so rare that when we created
plot (c) of Figs. 1 and 2, all the time series sampled relaxed
to the clogging steady state, which is really expected for
Lx → ∞. However, when one explores a reasonable sample,
and less longitudinal systems as those used to build the
snapshots (Lx = 64 and Ly = 12), we obtain this rare mobile
steady state (which in this case is not so rare even for high
density systems) corresponding to plot (c) of Fig. 3. However,
Figs. 1(b) and 2(b) suggest that lane patterns and clogging

FIG. 4. The probabilities of lane formation (filled circles), jam-
ming (empty circles), and relaxation to any other state in between
(lines) for a system with a width of Ly = 2 for Lx = 25 (black),
Lx = 26 (red), Lx = 27 (green), and Lx = 28 (gray). We are able to
see that the crossover density decreases asymptotically as the length
of the system increases. The inset shows the standard deviation of
the probabilities having their maximum value ρc decreasing with
lengthy systems. The different colors used in this figure correspond
to different shades of gray in grayscale. Our simulations lead to
pelse ≈ 0.

can occur for the same, but not so high, density value and the
question is, what kind of perturbation should be used to create
the coexistence between the lane pattern and jammed states?

It is important to mention that in our model, one species
only interacts with the counter (opposite) species since the
particles of the same species are in the same stream, and thus
this can lead to mobile systems even for higher densities. It is
interesting to investigate these points further by looking at the
properties of the system at steady state for a density range and
making clear what such a crossover is and other nuances of
this problem.

Figure 4 shows the probabilities of the system reaching
each one of the three possible steady states as a function of
ρ for a system of width Ly = 2 (purposefully quite narrow)
and different values of length Lx = 25 (black), Lx = 26 (red),
Lx = 27 (green), and Lx = 28 (gray). We can observe that
the system shows the expected lane formation state for small
densities regardless of the size of the system. When the
system has sufficiently large density (ρ � 0.5 for Lx = 25, for
example), clogging starts to emerge as a possible steady state,
and the bimodal scenario arises. With larger density values,
pclog keeps increasing while plane decreases until both curves
cross each other over and the most probable scenario for the
dynamics shifts.

The inset of Fig. 4 shows us that the standard deviation of p
has its maximum value at the crossover density where plane =
pclog = 1/2 and thus we define the crossover density ρc ≡
ρ(plane = pclog = 1/2). As Fig. 4 suggests, the lengthier the
system is, the more the crossover density appears to decrease
asymptotically in conjunction with the range of density.

Let us continue with our finite-size scaling study, but now
changing the width of a long system. We show in Fig. 5 the
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FIG. 5. The probabilities of lane formation (filled circles), jam-
ming (empty circles), and relaxation to any other state (lines) for
a system of length Lx = 128. We plotted the results for different
widths: Ly = 2 (black), Ly = 22 (red), Ly = 23 (green), and Ly = 24

(gray). We notice that the crossover density increases from ρc ≈ 0.5
up to a maximum ρc ≈ 1.2 for systems with Ly � 2. The different
colors used in this figure correspond to different shades of gray in
grayscale. Our simulations lead to pelse ≈ 0.

probabilities of the stationary outcome for different widths
Ly = 2 (black), Ly = 22 (red), Ly = 23 (green), and Ly = 24

(gray) while keeping the length fixed on Lx = 128. We ob-
serve that when the toroid is considerably narrow, the system
exhibits a large difference in ρc, as we can see that it increases
for the smaller widths Ly = 2, 22, and 23. However, when the
system has a width of Ly = 23 or greater, the crossover density
does not change and we would expect the chances of lane
formation to increase with wider corridors, but this does not
occur due to the proportionally larger number of particles.

Thus by denoting the concentration of the species as cA =
NA/N and cB = NB/N and remembering that we used cA = cB

so far, we see from Figs. 4 and 5 that pelse ≈ 0, showing that
unorganized mobility patterns are very rare in this situation.
Similarly, for higher densities, lane patterns also rarely occur
since plane ≈ pelse ≈ 0.

We also approached the problem considering different
relative concentration of particles, i.e., different mixing of
species. Figure 6 shows the stationary state of the dynamics
when the proportion of the species ranges from a scenario of
basically one species moving along the toroid (cA = 0, where
cA + cB = NA+NB

N = 1) to the case studied until this point
of equal concentrations cA = cB = 1/2. In the present plot
(Fig. 6), we show the three regimes that arise when ρ < ρc,
ρ = ρc, and ρ > ρc. For a system with dimensions Lx = 128
and Ly = 16, the crossover density is ρc ≈ 1.2 (light gray
curve in Fig. 5), and we therefore simulated the cases ρ = 0.5,
1.2, and 3.0, which are shown in the plots of Figs. 6(a), 6(b),
and 6(c), respectively.

For all the curves, we began by simulating a scenario of
one species (cA = 0), which means plane = 1 and obviously
it represents a fake state of lane formation because there
is no induced self-organization when only one species is
considered.

FIG. 6. The dependence of the probabilities (plane, pclog, and
pelse) on the relative density for three values of the absolute density.
For ρ < ρc (a) the system will flow regardless of the mixing of
species. For ρ = ρc (b) the system has plane = 1 for cA � 0.2 and
falls to plane = 0.5 when the mixing increases up to a 1:1 ratio,
reaching the point where we defined the crossover density. Finally,
when ρ > ρc (c) the system is more likely to present the steady state
of phase coexistence in the interval of 0.1 < c < 0.4.

Figure 6(a) shows an expected behavior for the dynamics
because the average level of occupation (ρ) of the system
ensures the lane formation despite the growth of the concen-
tration of species A. However, the case of ρ = ρc [Fig. 6(b)]
shows that plane gradually decreases as cA grows. Finally, in
Fig. 6(c), which corresponds to ρ > ρc, we observe that the
system can relax to a situation in which it is neither only
self-organized by lanes nor only relaxed to a jammed state
(coexistence). In that case, the overall density ρ is above the
crossover level, so the growth of cA around cA ≈ 0.2 makes
the particles A stand as impurities for the movement of B,
but they are not sufficient to make the system immobile.
When the mixing of species tends to the same value (cA ≈
cB), the system essentially shows the clogging steady state
uniquely.

To conclude, it is important to make some points about
α . We used a sufficiently large value of α throughout our
paper, but this was not duly justified. To do so, we performed
simulations to obtain a plot of p × α considering the same
sized system (Lx = 128 and Ly = 16), keeping cA = cB, which
was used for most of this paper, and using ρ = 0.5 < ρc,
ρ = ρc ≈ 1.2, and ρ = 3.0 > ρc, as shown in plots (a), (b),
and (c), respectively, of Fig. 7.

The result shows that the dynamics has an abrupt transition
on the stochastic level α, and that abrupt transition depends on
the density (ρ), similar to what was observed in the original
one-dimensional model [18,19]. The result also suggests that
for ρ = ρc, the system is more likely to jam in the range
2 � α � 5, where the particle interaction is sufficiently high
as to make the system relax to an immobile state but not
to self-organize in lane patterns. For small values of α, the
system is moderately mobile, which is expected since the
interaction between opposite species is weak, and particles
perform biased random walks along the x-direction with dif-
fusive (standard random walks) components in the y direction.
For high values of α, the system shows the expected equally
probable steady states of mobile lane patterns and jamming.
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FIG. 7. Behavior of p as a function of α considering cA = cB for
the same size and other parameters used in Fig. 6. For ρ = ρc, the
system shows an intermediate range (2 � α � 5), where the system
is more likely to jam.

IV. SUMMARIES, CONCLUSIONS, AND DISCUSSIONS

In this paper, we extend the Fermi-like model for particles
in counterflowing streams to a two-dimensional lattice, and
we show the existence of three possible steady states for the
system: (i) a lane-organized state, (ii) a jamming/clogging
state, and (iii) an “unorganized” state (metastable) where a
jammed cluster of particles (clogs) and mobile lane patterns
can coexist for a highly dense system (ρ > ρc). This occurs
when one breaks the balance/symmetry, i.e., when cA 	= cB.
We can observe that such coexistence (although unlikely
because the system should evolve to a state of condensation of
particles in this situation) can occur even for small perturba-
tions around cA = cB = 1/2, as suggested by the fluctuations
observed for pelse in Fig. 6.

It is interesting that in the context of driven lattice
gases [27] and cellular automata for traffic flow [28], similar
metastability phenomena can be observed as well as the pres-
ence of a phase-separated steady state of coexistence between
a jammed and a mobile phase, and it is also interesting
to observe how such peculiarity occurs in counterflowing
streams of particles.

Our results also suggest that a larger imbalance/asymmetry
between the species makes the three possible states likely to
happen. In this situation, pelse reaches its maximum value
at cA ≈ 1/4 and symmetrically at cA ≈ 3/4 for ρ > ρc (see
Fig. 6). On the other hand, pelse = 0 in more diluted situations:
ρ � ρc independently of cA, showing the absence of coexis-
tence in such a situation. The coexistence also vanishes for
flows of a single species (cA = 0 or 1) for any density.

Last but not least, we observe the effects of the randomness
parameter α according to Fig. 7. Our results still suggest that
for sufficiently large values of α, one observes that for ρ = ρc,
plane = pclog ≈ 1/2, which is the expected value according to
our definition. Finally, for small values of α, the system is
flowing under unorganized patterns since pelse = 1 is a result
from the biased random-walk dynamics.
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