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ABSTRACT. Earthquakes can cause vibration problems in many types of structures, 
generating large displacements. The interstory drift is a design criterion very used in 
seismic analysis and the structural control is an alternative to reduce these 
displacements and improve the performance of these structures adapting them to the 
imposed criteria. TMD is a device widely used due to the simple principle of 
operation and many successful applications in real life practice. This paper 
investigates the use of optimized TMD for reduction of maximum horizontal 
displacement at the top floor and interstory drift of a steel building under seismic 
excitation considering three scenarios: single TMD at the top floor; MTMD 
horizontally arranged at the top floor; and MTMD vertically arranged on the 
structure. By a metaheuristic optimization algorithm, the parameters and positions of 
the devices are obtained. Three real and one artificial earthquakes are employed in 
the simulations. The results showed that all proposed scenarios are efficient in 
reducing top floor response and interstory drift to values below of the interstory drift 
limits allowed by the standard code consulted. However, Scenario 2 presented the 
best reduction for the top displacement and interstory drift to the critical floor for 
the worst earthquake considered. 
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INTRODUCTION 
 

arthquakes are a natural phenomenon with violent shaking of the ground due to tectonic movements in the 
interior of the earth [1]. When the structure is subjected to seismic excitation there is an induction of horizontal 
forces at foundation level of structures which can generate vibration problems and in situations where the 

frequency of this excitation is very close to some natural frequency of the structure, the vibrations can reach large 
amplitude, allowing which the resonance phenomenon can occur, which can cause large displacements in the structure, 
and even its collapse [2-4]. In this scenario, the structural control is an alternative to reduce the levels of vibrations and 
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improve the performance of these structures when requested by dynamics actions. In general, the control devices used in 
structural control can be classified in three main groups, namely: passive, active and semi-active control devices. Passive 
control devices do not require external power source for operation and utilize the motion of the structure to dissipate the 
energy generated by the dynamic action, such as viscous damper, friction damper and the Tuned Mass Dampers (TMD) 
[5], which is focus of this work. Regarding the use of viscous damper, an interesting study is presented by [6] where two 
search methods based on the genetic algorithms are adopted to examine the optimal distribution of damping coefficients 
for viscous dampers in buildings under three different earthquake records. In the work presented by [7], a new 
methodology for the simultaneous optimization of placement and forces of friction dampers for buildings subjected to 
seismic loads, was proposed. A six-story shear building was analyzed, and a metaheuristic algorithm was utilized to solve 
the proposed problem.  
For the active control devices, differently passive system, require the application of external power source for operation 
and are operated by hydraulic or electromechanical actuators and the force control is monitored by sensors that detect the 
response of the structure and the extent of external action [5]. A typical example is the Active Mass Damper (AMD), such 
as utilized by [8] to analyze the response of two different building under seismic excitations. The main aim of their work 
was the development of a method for achieving the vibrations control in buildings utilizing a limited number of floors 
equipped with active controlled dampers. In the work of [9], an AMD consisting of an AC servo motor, a movable mass 
connected to the AC servo motor and an accelerometer, was utilized to reduces the dynamic response of structures 
subjected to earthquake load. The authors proposed the Negative Acceleration Feedback (NAF) control algorithm for the 
proposed AMD system. The effectiveness of the control system was first evaluated using a Single-Degree-of-Freedom 
(SDOF) system and then for Multi-Degree-of-Freedom (MDOF) systems using a single AMD by the Multi-Modal NAF 
(MMNAF) control, which was validated in laboratory.  
Finally, the semi-active control devices can be understood as an intermediate system among the active and passive system, 
because they require a small external power source for operation and utilize the motion of structure to generate control 
forces [5]. An application of these devices can be found in the study of [10] where an improved Displacement Semi-
Active Hydraulic Damper (DSHD), by converting it to Active Interaction Control Device (AIC) with the addition of an 
accumulator, was utilized to minimize the dynamic response of a building under earthquakes. The authors tested a 
prototype in laboratory using full-scale elements and evaluating the structural displacement and typical responses of the 
interacting interface element proposed. In [11] a simple and effective method for optimal control of structures using the 
magnetorheological dampers (MRD) is proposed. The effectiveness and performance of the proposed method were 
evaluated by simulating the response of a structure subjected to real seismic excitations. 
Among the many types of passive vibration control systems, the TMD is the most popular due to its simple principle and 
the many successful applications in real life practice. The use of vibration absorbers dates to 1909 when it was first studied 
by Frahm. The researcher proposed a kind of TMD applied to a main spring-mass without damping which was attached 
to a small spring-mass without damping to reduce the displacement of the main mass subjected to harmonic load [12-13]. 
The classical TMD system consists of a mass, an elastic spring and a viscous (or hysteretic) damper and its parameters 
have a direct effect on the response of the main structural system. Therefore, tuning the parameters of TMDs constitutes 
one of the most important stages in a structural control system project [14]. 
The passive system using TMD is an extremely useful type of control for mitigating natural hazards and enhancing the 
safety and serviceability of structural systems. As these devices do not require an external power source for operation and 
they utilize the motion of the structure to develop the control forces, they are cheaper and simpler than active and semi-
active control devices, for example, and, consequently, they are broadly used in structures around the world [7]. For a 
structure equipped with single TMD, the device should generally be installed at the top of the structure and its natural 
frequency is tuned around the frequency of the fundamental mode, which has the most influence on the response of the 
structure, so when the structure vibrates, the TMD vibrates with the same frequency and absorbs part of the energy from 
the main system [15-16]. 
In this process, a single TMD can perform well in reducing the dynamics response of a structure under external excitation. 
However, this can be a disadvantage, because the TMD may present low performance in the control of the upper 
vibration modes of the structure [17-18]. A simple solution to overcome these shortcomings is the installation of Multiple 
Tuned Mass Dampers (MTMD) which can be tuned to different modes and placed at many locations of the structure to 
enhance its performance. The performance of MTMD depends on their parameters such as mass, stiffness, and damping. 
However, determining the number of devices to be installed and the best position in the structure, as well as optimum 
parameters in terms of spring stiffness and damping constant for each TMD, is an optimization problem of great interest 
to the engineer designer and can be solved by optimization algorithms, which are used to minimize an objective function 
and to find an optimal solution of the problem [18].  



 

F. Brandão et alii, Frattura ed Integrità Strutturale, 54 (2020) 66-87; DOI: 10.3221/IGF-ESIS.54.05                                                                     
 

68 
 

Overall, the optimization process seeks to minimize or maximize a given function which this may be subject to equality, 
inequality or lateral restrictions, in order to obtain maximum efficiency for a pre-established measure. Optimization is one 
of the most studied fields in the wide field of artificial intelligence. Hundreds of studies published year after year focus on 
solving many diverse problems by resorting to a vast spectrum of solvers [19]. 
The metaheuristic algorithms have excelled in solving optimization problems, mainly because they do not use the gradient 
value of the objective function. Most of these are nature inspired, for example, in the movement of swarm members in 
Particle Swarm Optimization (PSO) [20]; the behavior of ants seeking a path between colony and food in Ant Colony 
Optimization (ACO) [21]; by the observation which the aim of music is to search for a perfect state of harmony in 
Harmony Search (HS) [22]; the flashing behavior of fireflies in Firefly Algorithm (FA) [23]; the hunting strategy of 
humpback whales in Whale Optimization Algorithm (WOA) [24]; which was used in this paper. 
Many types of dynamic problem are solved by a metaheuristic optimization algorithm, for example, for optimization of 
TMD, as shown in work of [12] where the authors used the Charged System Search (CSS) [25], an algorithm based on the 
laws electrostatics and Newtonian mechanics, to find the optimum parameters of single TMD to minimize the dynamic 
response of multi-story building systems under seismic excitations. 
In [14], authors used an algorithm called Cuckoo Search (CS) [26] based on the obligate brood parasitic behavior of some 
cuckoo species in combination with the Levy flight behavior of some birds and fruit flies, to find the optimum parameters 
of a single TMD for buildings under seismic excitations through a new multi-objective optimization method. 
To design of MTMD, in a specific scenario of the work of [27] a hybrid formulation with two algorithms, Firefly 
Algorithm and Nelder–Mead Algorithm, a non-derivative search method for multidimensional unconstrained 
minimization developed by [28], was used to the global optimization of multiple tuned mass dampers for structures 
subjected to seismic excitations taking into account the oscillators’ vertical and horizontal distribution. According to the 
authors, this procedure is extremely useful because it avoids the pre-definition of the tuned mass dampers number and 
their placement. In the study presented by [29], the true optimal of individual stiffness and damping parameters of 
MTMD system was obtained using an optimization algorithm, namely, artificial bee colony (ABC) algorithm [30] which 
simulates a particular intelligent behavior of a honey bee swarm, foraging behavior, and a new artificial bee colony for 
solving multidimensional and multimodal optimization problems. In their study, parameters of TMD units are treated as 
free search optimization variables and the ABC algorithm, which is powerful enough to handle a large number of design 
variables, has been utilized in obtaining optimum parameters of MTMDs. 
In the work of [18] a new methodology for simultaneous optimization of parameters and positions of MTMD in buildings 
subjected to earthquakes is proposed, where they consider uncertainties present in the structural parameters, in the 
dynamic load, and also in the MTMD design with the aim of obtaining a robust optimum design. To solve the 
optimization problem, the Search Group Algorithm (SGA) [31] an efficient metaheuristic algorithm in which the main 
goal is to be balanced in terms of exploration and exploitation of the design domain, was used. Consequently, the SGA 
aims at providing better designs than other metaheuristics for the same computational cost. 
Vibration control of structures under seismic excitation is an interesting field of research and linked to structural 
optimization of TMD plays an important role in mitigating the impacts of earthquakes on structures. In this context, this 
paper presents a study on the use of optimized TMD for reduction of the maximum horizontal displacement at the top 
floor and also the interstory drift of a steel building under seismic excitation in three scenarios: single TMD at the top 
floor (Scenario 1); MTMD horizontally arranged at the top floor (Scenario 2); and MTMD vertically arranged on the 
structure (Scenario 3). Three real and one artificial earthquakes are employed in the simulations. To evaluating of the 
maximum interstory drift, the ANSI/AISC 360-16 code of the American Institute of Steel Construction [32] are 
considered and in order to obtain the optimized devices in each scenario, a metaheuristic optimization algorithm, 
denominated Whale Optimization Algorithm (WOA) is utilized to find the optimal parameters (spring and damping 
constants) for each TMD and also, the optimal TMD position for MTMD in Scenario 3. 
 
EQUATION OF MOTION FOR A LINEAR STRUCTURE UNDER SEISMIC EXCITATION EQUIPPED WITH TMD 
 

he differential equation of motion of a n-degree-of-freedom (n-DOF) system with linear behavior for material and 
equipped with one TMD at the top floor (Fig. 1.a) or with MTMD possibly located in all floors of the structure 
(Fig. 1.b) and subjected to earthquake ground motion, may be written as: 

 

gu(t) + u(t) + u(t) = u (t)M K C MB
                   (1) 

 

T 
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In which M, C and K represent the (n+NTMD)x(n+NTMD) mass, stiffness and damping matrices and n is the number of 
degrees of freedom. The damping matrix C is assumed to be proportional to the M and K matrices as: C = αM+βK. 

,u(t)



 
,u(t)




 
,u(t)


are the (n+NTMD)-dimensional acceleration, velocity and displacement vectors relative to ground, 

respectively. The matrix B is a (n+NTMD)xd matrix that contains the cosine directors of the angles formed between the 
base motion and the associated displacement direction with the considered degree of freedom and d is the number of 

considered ground motions (directions). ,gu (t)

 represents the base acceleration and is a d-dimensional vector. 

 
 

Figure 1: n-degree-of-freedom system (n-DOF) structure equipped (a) with one TMD at the top floor and (b) with MTMD possibly 
located in all floors of the structure. 
 
In Fig. 1.(a), there is a single TMD attached at the top floor of the structure. The structure DOF is increased by one and 
the TMD contribution to M and K, is illustrated in Eqns. 2 and 3. For the C matrix, the procedure is analogous to the K. 
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Fig. 1.(b) represents the MTMD possibly located on all floors of the structure, the TMD contribution to M and K is 
illustrated in Eqns. 4 and 5. Again, for the C matrix, the procedure is analogous to the K. 
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where mn, cn, and kn represent the mass, damping coefficient, and stiffness of the nth story of the structure, respectively. 
Also, mdi, cdi, kdi (i = 1, 2, 3, …, m) where m is the last TMD in each floor considering horizontal distribution, are the mass, 
damping coefficient and stiffness of ith TMD, respectively. To solve Eq. 1, a numerical integration method can be applied. 
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PROPOSED METHODOLOGY 
 
Analyzed structure 

n this study, a 2D building (Fig. 2) with structure predominantly in steel adapted from [33] is utilized. The building 
consists of 10 floors, where the height of the first and second floor are 3.65 m and 5.49 m, respectively. The 
remaining floors have a height of 3.96 m, which totals 40.82 m. The base has five spans of 9.15 m each, totaling 

45.75 m in length. Fig. 2 (a) shows the building with dimensions and profiles used, while Fig. 2 (b) shows the numbering 
of nodes and the bars. The building has 66 nodes with 3 DOF each, totaling 198 DOF, 110 elements and the base nodes 
that correspond to nodes 1 to 6 are fixed in the ground. 
 

 
Figure 2: 2D Steel building: (a) W shape of structural elements and dimensions; (b) numbering of nodes and bars. 

 
Considering that the structure of the building is predominantly in steel, for all 110 elements of the structure, the properties 
of the material E=200 GPa, ρ=7850 kg/m3 and ν=0.3 were attributed. The other properties required for the analysis, 
Inertia Moment, I, and cross-sectional area, A, are shown in Tab. 1: 
 

W Shape Member number Area (m2) Inertia moment (m4) Structural Element type 

W360x744 1,2,11,12,21,22,31,32,41,42,51,52 9.48x10-2 3.42x10-3 

Column 

W360x677 3,4,13,14,23,24,33,34,43,44,53,54 8.65x10-2 2.99x10-3 

W360x551 5,6,15,16,25,26,35,36,45,46,55,56 7.03x10-2 2.26x10-3 

W360x421 7,8,17,18,27,28,37,38,47,48,57,58 5.37x10-2 1.60x10-3 

W360x382 9,10,19,20,29,30,39,40,49,50,59,60 4.88x10-2 1.42x10-3 

W920x238 
61,62,63,64,65,66,67,68,69,70,71,72,

73,74,75 3.03x10-2 4.06x10-3 

Beam 

W920x201 76,77,78,79,80,81,82,83,84,85,86,87,
88,89,90,91,92,93,94,95 

2.56x10-2 3.25x10-3 

W760x147 96,97,98,99,100 1.88x10-2 1.66x10-3 

W690x125 101,102,103,104,105 1.60x10-2 1.19x10-3 

W610x101 106,107,108,109,110 1.30x10-2 7.62x10-4 
 

Table 1: Properties of structural elements of 2D steel building. 

I 
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The structure was modeled in Matlab software using a 2D frame element flat with 2 nodes and 3 DOF for each node. 
This finite element has one horizontal translation, one vertically translation and one rotation in the plane for each node. 
The mass matrix of the structure is consistent where for each element, the mass and stiffness matrix in the local system, is 
represented by Me and Ke. 
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Through a code developed in Matlab which reads an input file with the coordinates of each node, the connectivity 
between the elements, the properties of the cross-section and material the assembly of the global mass and stiffness 
matrices of the structure was performed. After reading this file, the eigenvalues and eigenvectors which represent the 
building’s natural frequencies and vibration modes are calculated. The first ten natural frequencies of the building are: 
2.4745 Hz; 6.4281 Hz; 10.8511 Hz; 16.5136 Hz; 22.6422 Hz; 26.9282 Hz; 27.9586 Hz; 28.6196 Hz; 29.6882 Hz; 31.9920 
Hz; . In Fig. 3 are shown the first three mode shapes. For the building damping matrix, a Rayleigh Damping Matrix (

  C M K ) was used which is given by the linear combination of the mass and stiffness matrices. Since the critical 
damping ratio, ζ, considered in this analysis equal to 1% for the first two vibration modes, it was possible to calculate the 
α and β coefficients using the first two natural frequencies.

   

 
Figure 3: The first three mode shapes of the 2D steel building.
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Seismic excitation 
For the seismic analyses, records of three real earthquakes (obtained from [34]), shown in Tab. 2, and a non-stationary 
artificial earthquake (resonant earthquake), generated by the Kanai-Tajimi Spectrum [35-36] and an envelope function 
adapted from [37] are used as seismic excitation. 
 
 

Record Earthquake name Country Year Station M (Mw) (1) D (km)(2) PGA (g)(3) 

1 Loma Prieta EUA 1989 Santa Cruz-USCS 7.0 17.5 0.441 

2 L'Aquila ITA 2009 L'Aquila-V.A-Centro Valle 6.3 8.8 0.661 

3 Canterbury NZL 2010 Kaiapoi N. School 7.0 5.0 0.343 

Note: 
(1) M, Magnitude of the earthquake; 
(2) D, depth of the earthquake; 
(3) PGA, Peak Ground Acceleration. 

Table 2: Characteristics of the real earthquakes utilized. 
 
For each real earthquake in Tab. 2, only an accelerogram of the horizontal component with the largest PGA was used. 
Each earthquake has a different length of time and PGA, therefore, it was decided to use only the most relevant 20s of 
each record and a common PGA for all, which was 0.4g. In Fig. 4 is shown the accelerogram and PSD of each record. 
 
 

 
Figure 4: Accelerogram and PSD of the three real earthquakes. 
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To generate a non-stationary artificial earthquake, firstly a stationary earthquake was developed using Kanai-Tajimi 
Spectrum, a model that presents the acceleration of the ground as a stationary random process. The equation which 
describes this model is given by the power spectral density function S(ω) expressed in Eq. 8 where S0 is the spectral 
density constant, ξg and ωg are the damping and frequency of the soil, respectively. In this paper, ξg and ωg are equal to 0.3 
and 15.5478 rad/s (first natural frequency of the building, 2.4745 Hz), respectively. The spectrum obtained is shown in 
Fig. 5. 
 

4 2 2 2
g g g

0 2 2 2 2 2 2
g g g

ω +4ω ξ ω
S(ω)=S

(ω -ω ) +4ω ξ ω

 
 
  

    with   
g

0 2
g g

0.03ξ
S =

πω (4ξ +1)
           (8) 

 
S(ω) is a function in the frequency domain, therefore, to take it to the time domain, the Eq. 9, proposed by [38] was used. 
In this equation Nω represents the interval number of the frequency band, Δω is the frequency increment and ϕj is the 
random phase angle with values uniformly distributed from 0 to 2π. 
 

ωN

g j ω j j
j=1

u (t) = 2 S(ω )Δ cos(ω t+ )

                                             (9) 

The signal generated in the time domain firstly has been normalized to unitary PGA and subsequently multiplied by a 
PGA equal to 0.4g. Finally, to simulate the transient nature of earthquakes, an envelope function proposed by [37] was 
adapted (Fig. 5) and used to multiplies the stationary accelerogram generated in order to obtain a new record with 
characteristics similar of a real earthquake, with an initial stretch of growth and a final stretch of attenuation of 
acceleration. 
 
 

 
Figure 5: Kanai-Tajimi Spectrum and envelope function for Non-stationary earthquake. 

 
 
The adapted envelope function consists of three intervals OA (increasing interval), AB (constant interval) and BC 
(decreasing interval), which are described by Eq. 10. Thus, a non-stationary earthquake is obtained and its accelerogram 
and PSD are shown in Fig. 6. 
 

2t
O A: Env(t)=

4
AB: Env(t)=1

BC: Env(t)=exp[-0.268(t-12)]

                                             (10) 
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Figure 6: Non-stationary earthquake and respective PSD. 
 
The Whale Optimization Algorithm (WOA) 
An optimization problem can be solved by many ways and the metaheuristic optimization algorithms are widely used in 
many types of optimization engineering problems, because they: (i) do not require gradient information; (ii) do not 
become stuck in local minimal if correctly tuned; (iii) are based on simple concepts and are easy to implement; (iv) can be 
utilized to solve a mixed variables optimization problems in different fields. In this paper, the Whale Optimization 
Algorithm (WOA) is employed to solve three optimization problems. 
WOA is a metaheuristic optimization algorithm mimicking the hunting behavior of humpback whales, proposed by [24]. 
In this strategy, whales search for their prey randomly and when they find it, they attack them creating bubbles and 
addressing them in the spiral shape. The pseudo-code of WOA is shown in Fig. 7 and according to [24] the following 
input parameters are necessary: Dim (number of design variables); fobj (objective function); Nsa (number of search agents, 
that is, the whale population); Ngen (maximum number of generations, that is, maximum iteration number); Lb (lower 
bound, where Lbn the lower bound of variable n, for example: Lb = [Lb1, Lb2,..., Lbn]); Ub (upper bound, where Ubn the 
upper bound of variable n, for example: Ub = [Ub1, Ub2,..., Ubn]). Fig. 7 shows the parameters which must be updated, 
where a is decreased from 2 to 0 in order to provide exploration and exploitation, respectively; A and C, are coefficients 
utilized to calculate the best current solution; l, is a random number in [−1,1]; and p, is a random number in [0,1].  
 

 
Figure 7: Pseudo-code of the WOA [adapted from [24]]. 
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As in other evolutionary approaches, WOA works with a population of potential candidates that are updated dynamically 
throughout the evolutionary process. Initially, a population is generated (with NP potential candidates-whales) randomly 
considering the search space defined by the user. Then, the operators (search for prey, encircling prey and bubble-net 
attacking method) are applied to generate a new population. In the new population, the best candidate found, in terms of 
the value of the objective function, is assumed as the optimal solution of the current generation. The procedure is 
repeated until a certain stopping criterion is satisfied, which is usually the maximum number of generations [24]. For more 
details about the mathematical model of WOA, refer [24].  
  
Formulation of the dynamic optimization problem and interstory drift limit 
The dynamic analyzes performed in this study consider a n-DOF structure, therefore, to solve the equation of motion of 
this system (Eq.1), it is common to use numerical integration methods, because they have two relevant characteristics. The 
first is to satisfy the equation to be solved in discrete time intervals separated by ∆t, instead of satisfying it at all times. The 
second, some type of variation is allowed for displacement, velocity and acceleration, inside each time interval ∆t. In 
literature many numerical methods are available, and in this work, the Newmark Method is utilized. The Newmark 
method is an implicit method of integration and is based on the principle in which acceleration varies linearly between two 
instants of time. The method assumes that displacement and velocity values at time t=0 are known and then the initial 
acceleration is calculated. With this information, the solution of the differential equation of motion is determined in the 
interval from t=0 to t=T, where T indicates the duration of excitation.  
In this paper, the main aim is to reduce the maximum horizontal displacement of the top floor and interstory drift of the 
analyzed structure under seismic excitation using TMD with optimized parameters and positions by WOA. For this, three 
different scenarios are considered: single TMD installed at the top floor (Scenario 1); MTMD horizontally arranged at the 
top floor (Scenario 2); and MTMD vertically arranged on the structure, maximum one per floor (Scenario 3). For each 
scenario, the optimization problem consists in the same objective function to be minimized and the total mass for single 
TMD in Scenario 1 or for all devices which remain in the structure, in the Scenario 2 and Scenario 3, represents 3% of the 
structural mass of the building, which corresponds to 6715 kg. The drift criteria are considered of interstory drift 
according to ANSI/AISC 360-16 code of the American Institute of Steel Construction [32] as ratio 1/400 of the story 
height, which is, the limit of interstory drift is hi/400, where hi is the ith story height. 
The optimization problem for Scenario 1 consists to determine the optimal parameters (spring and damping constants) 
for a single TMD installed on the 10th floor which reduces the maximum horizontal displacement of the top floor and the 
interstory drifts. For convenience of notation, the design variables kTMD and cTMD are grouped into the vector 

[ ]TMD TMDx = k , c
 . The lower bound and the upper bound value of the stiffness and damping constants of TMD are 0-8 

MN/m and 0-50 kNs/m, respectively. The optimization problem in this scenario can be expressed as: 
 

 

th

TMD TMD

max,10 floor

min max
TMD TMD TMD

min max
TMD TMD TMD

Find: x = [k ,c ]

Minimizes: f(x) = D

k k k
Subject to: 

c c c

  


 




                                                   (11) 

 
In Scenario 2, four TMDs, one per node, are horizontally arranged at the top floor at nodes 62, 63, 64 and 65, and each 
TMD has 1678.75 kg. The optimization problem of this scenario is again to determine the optimal parameters (spring and 
damping constants) for each TMD in order to reduce horizontal displacement and interstory drift. The design variables 
vector is 1 4 1 4[ ..., , , ..., ]d d d dx = k , k c c

 . The lower and upper bounds values of the stiffness and damping constants of each 
TMD are 0-2 MN/m and 0-12.50 kNs/m, respectively. This optimization problem can be posed as: 
 

  

th

d1 d4 d1 d4

max,10 floor

min max
d d d

min max
d d d

Find: x = [k ,...,k ,c ,...,c ]

Minimizes: f(x) = D
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                                                      (12) 
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For Scenario 3, MTMD are vertically arranged on the structure, maximum one per floor, and the optimization algorithm 
indicates the best position and optimal parameters of each TMD, and, indirectly the number of dampers. The design 
variables are the spring and damping constants and the position of each TMD in the structure. The position for each 
device is grouped into the vector of damper positions ( p


) which contains 0 and 1, where 1 indicates that there is a TMD 

in this position. The number of available positions (np) is a constraint and its maximum value is 10 (one TMD in each 
story). Thus, the maximum number of ones in p


indicates another constraint, the maximum number of TMD (nTMD). The 

mass of all devices, as mentioned earlier, was fixed as 3% of the structural mass of the building and the mass of each 
TMD (md) is the same and it is defined by nTMD. The possible positions of MTMD are given to the nodes 9, 15, 21, 27, 33, 
39, 45, 51, 57 and 63. The lower and upper bounds values of the stiffness and damping constants of each TMD are 0-2 
MN/m and 0-12.50 kNs/m, respectively. Finally, the optimization problem for Scenario 3 can be expressed as: 
 

  

TMD TMD

th

d1 dn d1 dn

max,10 floor

min max
d d d

min max
d d d

p

TMD

d structur
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k k k
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                                      (13)  

 
 
RESULTS AND DISCUSSIONS 
 

he building analyzed in this paper, as mentioned earlier and shown in Fig. 2, has 10 floors where the first and 
second floors have 3.65 m and 5.49 m of height, respectively, and for the third to tenth floors, each one has 3.96 
m of height, totalizing 40.82 m of height. According to ANSI/AISC 360-16 code of the American Institute of 

Steel Construction [32], the interstory drift limits for each floor can be given as ratio hi/400, where hi is the ith story height. 
Thus, the interstory drift limits to the 1st floor is 0.0091 m, to the 2nd floor is 0.0137 m and for the 3rd to 10th floors is 
0.0099 m. In Tab. 3 the value of the maximum displacement to each story (Dmax), the interstory drift (ISD) and the 
interstory drift limits (ISDlimit) of the uncontrolled structure under the four earthquake records are reported. 
 

Response of uncontrolled structure 

Story 
number ISDlimit (m) 

Loma Prieta Earthquake L’Aquila Earthquake Canterbury Earthquake Non-Stationary 
Artificial Earthquake

Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) 

1 0.0091 0.0067 0.0067 0.0064 0.0064 0.0072 0.0072 0.0117 0.0117 

2 0.0137 0.0281 0.0214 0.0270 0.0206 0.0300 0.0228 0.0497 0.0380 

3 0.0099 0.0396 0.0116 0.0384 0.0114 0.0426 0.0127 0.0713 0.0216 

4 0.0099 0.0494 0.0098 0.0484 0.0102 0.0539 0.0112 0.0910 0.0197 

5 0.0099 0.0584 0.0108 0.0582 0.0105 0.0648 0.0110 0.1109 0.0199 

6 0.0099 0.0652 0.0100 0.0662 0.0092 0.0739 0.0094 0.1278 0.0169 

7 0.0099 0.0712 0.0100 0.0732 0.0086 0.0818 0.0090 0.1432 0.0153 

8 0.0099 0.0805 0.0093 0.0792 0.0076 0.0883 0.0081 0.1562 0.0130 

9 0.0099 0.0890 0.0085 0.0853 0.0067 0.0938 0.0072 0.1674 0.0112 

10 0.0099 0.0945 0.0054 0.0892 0.0042 0.0972 0.0046 0.1743 0.0069 
 

Table 3: Maximum displacement and interstory drift of uncontrolled structure under the four earthquakes records. 

T 
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Looking Tab. 3 it is important to note to the Loma Prieta Earthquake the ISD of story numbers 2, 3, 5, 6 and 7 exceed 
ISDlimit. To the L’Aquila Earthquake and Canterbury Earthquake the story numbers 2, 3, 4, and 5 exceed ISDlimit. And to 
the Non-Stationary Artificial Earthquake, the non-stationary artificial earthquake which could generate resonance of 
structure, only the story number 10 did not exceed ISDlimit. Therefore, this building requires a vibration control system in 
order to reduce the interstory drift to the imposed limits. Thus, in Scenario 1 a vibration control using a single TMD of 
mass md=6715 kg installed at the top floor of the building, at node 63, was proposed. The parameters (kTMD and CTMD) 
were optimized through the optimization problem shown in Eq. 11. In the WOA the number of search agents and 
interactions were defined in 50 and 100, respectively. The convergence curve of this problem is presented in Fig. 8 which 
resulted in optimal values for spring and damping constants corresponding to kTMD=1513880 N/m and cTMD=32878 
N.s/m and the TMD frequency of fTMD=2.3897 Hz. The results obtained for this scenario are reported in Tab. 4 and the 
percentage of reduction of Dmax and ISD regarding the uncontrolled structure is shown in Tab. 5. 
 

 
Figure 8: Convergence curve of Scenario 1. 

 
Scenario 1- Response to single TMD at the top floor 

Story 
number ISDlimit (m) 

Loma Prieta Earthquake L’Aquila Earthquake Canterbury Earthquake Non-Stationary 
Artificial Earthquake 

Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) 

1 0.0091 0.0030 0.0030 0.0025 0.0025 0.0036 0.0036 0.0039 0.0039 

2 0.0137 0.0126 0.0096 0.0111 0.0086 0.0152 0.0117 0.0166 0.0127 

3 0.0099 0.0177 0.0051 0.0161 0.0050 0.0219 0.0067 0.0238 0.0072 

4 0.0099 0.0218 0.0045 0.0207 0.0045 0.0281 0.0062 0.0303 0.0065 

5 0.0099 0.0253 0.0052 0.0250 0.0044 0.0344 0.0063 0.0369 0.0066 

6 0.0099 0.0278 0.0052 0.0283 0.0035 0.0397 0.0055 0.0423 0.0058 

7 0.0099 0.0332 0.0055 0.0310 0.0035 0.0446 0.0053 0.0471 0.0056 

8 0.0099 0.0385 0.0053 0.0331 0.0033 0.0489 0.0048 0.0512 0.0052 

9 0.0099 0.0436 0.0051 0.0350 0.0036 0.0533 0.0047 0.0549 0.0052 

10 0.0099 0.0470 0.0035 0.0366 0.0029 0.0565 0.0035 0.0578 0.0043 

TMD - 0.0903 - 0.1031 - 0.1300 - 0.1875 - 
 

Table 4: Maximum displacements and interstory drifts of the structure under the four earthquakes records to Scenario 1. 



 

                                                                  F. Brandão et alii, Frattura ed Integrità Strutturale, 54 (2020) 66-87; DOI: 10.3221/IGF-ESIS.54.05 
 

79 
 

 
 

Scenario 1- Percentage of response reduction 

Story number 
Loma Prieta Earthquake L’Aquila Earthquake Canterbury Earthquake Non-Stationary Artificial 

Earthquake

Dmax (%) ISD (%) Dmax (%) ISD (%) Dmax (%) ISD (%) Dmax (%) ISD (%) 

1 55.22 55.22 60.94 60.94 50.00 50.00 66.67 66.67

2 55.16 55.14 58.89 58.25 49.33 48.68 66.60 66.58 

3 55.30 56.03 58.07 56.14 48.59 47.24 66.62 66.67

4 55.87 54.08 57.23 55.88 47.87 44.64 66.70 67.01 

5 56.68 51.85 57.04 58.10 46.91 42.73 66.73 66.83 

6 57.36 48.00 57.25 61.96 46.28 41.49 66.90 65.68

7 53.37 45.00 57.65 59.30 45.48 41.11 67.11 63.40 

8 52.17 43.01 58.21 56.58 44.62 40.74 67.22 60.00 

9 51.01 40.00 58.97 46.27 43.18 34.72 67.20 53.57 

10 50.26 35.19 58.97 30.95 41.87 23.91 66.84 37.68 
 

Table 5: Percentage of reduction of the maximum displacements and interstory drifts of the structure under the four earthquakes 
records regarding uncontrolled structure to Scenario 1. 
 
Analyzing Tabs. 4 and 5, it is possible to note that the structure equipped with a single TMD at the top floor had a 
significant reduction of maximum displacements per floor and interstory drift when compared to the uncontrolled 
structure. This scenario presented the lowest top displacement to the Loma Prieta Earthquake (0.047 m), when compared 
to use of the same record in the other scenarios. To the four earthquakes records, the reduced interstory drifts are below 
the allowed limit to each floor. In this scenario, to the 2nd floor (which presented the highest interstory drift value for the 
uncontrolled structure), the lowest value was obtained for L’Aquila Earthquake (0.0086 m) which represents 58.25% of 
reduction regarding uncontrolled structure. However, for the Non-Stationary Artificial Earthquake (resonant earthquake) 
even with a significant reduction (66.58%), the new value (0.0127m) is still close to ISDlimit = 0.0137m. This is related to 
the total response of the structure and also, to the floor height. Therefore, a new control scenario was proposed. 
 

 
Figure 9: Convergence curve of Scenario 2. 
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Scenario 2 proposes a vibration control using four TMDs horizontally arranged at the top floor at nodes 62, 63, 64 and 
65. The optimization problem of this scenario is represented by Eq. 12 and consists to determine the optimal parameters 
of spring and damping constants for each TMD. The number of search agents and interactions was defined as 50 and 200, 
respectively. The convergence curve for this scenario is presented in Fig. 9 and the optimal parameters are presented in 
Tab. 6. 
 

TMD number Location node md (kg) kd (N/m) cd (N.s/m) fTMD (Hz) 

1 62 1678.75 312346 8204 2.1709 

2 63 1678.75 416296 1220 2.5063 

3 64 1678.75 258753 4654 1.9759 

4 65 1678.75 389261 8755 2.4235 
 

Table 6: Optimal parameters of MTMD of Scenario 2. 
 
The frequencies of the four TMDs are around the first natural frequency of building indicating that the devices are being 
tuned near to the 1st mode. The maximum displacements per floor and interstory drift obtained to this scenario are 
reported in Tab. 7 and the percentage of reduction of Dmax to each story and ISD regarding the uncontrolled structure is 
shown in Tab. 8. 
 

Scenario 2- Response to 4 TMDs horizontally arranged at the top floor 

Story 
number ISDlimit (m) 

Loma Prieta Earthquake L’Aquila Earthquake Canterbury Earthquake Non-Stationary 
Artificial Earthquake 

Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) 

1 0.0091 0.0033 0.0033 0.0024 0.0024 0.0037 0.0037 0.0038 0.0038 

2 0.0137 0.0141 0.0108 0.0107 0.0082 0.0157 0.0121 0.0161 0.0123 

3 0.0099 0.0199 0.0058 0.0155 0.0048 0.0226 0.0069 0.0230 0.0070 

4 0.0099 0.0245 0.0052 0.0198 0.0043 0.0290 0.0063 0.0293 0.0063 

5 0.0099 0.0286 0.0060 0.0239 0.0041 0.0354 0.0064 0.0355 0.0062 

6 0.0099 0.0320 0.0058 0.0270 0.0032 0.0409 0.0056 0.0405 0.0050 

7 0.0099 0.0380 0.0060 0.0295 0.0031 0.0459 0.0052 0.0448 0.0049 

8 0.0099 0.0436 0.0057 0.0314 0.0032 0.0502 0.0047 0.0481 0.0050 

9 0.0099 0.0488 0.0052 0.0331 0.0036 0.0540 0.0045 0.0508 0.0053 

10 0.0099 0.0521 0.0035 0.0346 0.0029 0.0567 0.0033 0.0524 0.0044 
 

Table 7: Maximum displacements and interstory drifts of structure under the four earthquakes records to Scenario 2. 
 
Looking Tab. 7, it is noted that in this scenario the structure had a significant reduction of maximum displacements per 
floor and the interstory drift regarding the uncontrolled structure. The top displacement for this scenario, regarding the 
L’Aquila Earthquake (0.0346 m) and resonant earthquake (0.0524) are the lowest of the three scenarios. The reduced 
interstory drift, to the four earthquakes, is below the allowed limit to each floor. The best reduction of interstory drift to 
the 2nd floor (the critical floor), considering the three scenarios, was obtained for the L’Aquila Earthquake (0.0082 m) 
which corresponds to 60.19% of reduction according to Tab. 8. To the resonant earthquake, the reduced interstory drift 
of the 2nd floor corresponds to 0.0123 m, which is 67.63% of reduction, and it was the lowest value, for this seismic 
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excitation, in the three scenarios. However, it is still close to the limit of 0.0137 m, therefore the Scenario 3 was proposed 
where MTMD are vertically arranged on the structure, maximum one per floor. 
The optimization problem of this scenario is presented in Eq. 13 and consists to determine the best position and optimal 
parameters of each TMD. In WOA, the number of search agents and interactions was defined as 50 and 300, respectively. 
The convergence curve for this scenario is presented in Fig. 10. 
 

Scenario 2- Percentage of response reduction 

Story number 
Loma Prieta Earthquake L’Aquila Earthquake Canterbury Earthquake Non-Stationary Artificial 

Earthquake 

Dmax (%) ISD (%) Dmax (%) ISD (%) Dmax (%) ISD (%) Dmax (%) ISD (%) 

1 50.75 50.75 62.50 62.50 48.61 48.61 67.52 67.52 

2 49.82 49.53 60.37 60.19 47.67 46.93 67.61 67.63 

3 49.75 50.00 59.64 57.89 46.95 45.67 67.74 67.59 

4 50.40 46.94 59.09 57.84 46.20 43.75 67.80 68.02 

5 51.03 44.44 58.93 60.95 45.37 41.82 67.99 68.84 

6 50.92 42.00 59.21 65.22 44.65 40.43 68.31 70.41 

7 46.63 40.00 59.70 63.95 43.89 42.22 68.72 67.97 

8 45.84 38.71 60.35 57.89 43.15 41.98 69.21 61.54 

9 45.17 38.82 61.20 46.27 42.43 37.50 69.65 52.68 

10 44.87 35.19 61.21 30.95 41.67 28.26 69.94 36.23 
 

Table 8: Percentage of reduction of the maximum displacements and interstory drifts of the structure under the four earthquakes 
records regarding uncontrolled structure to Scenario 2. 
 

 
Figure 10: Convergence curve of Scenario 3. 

 
The optimization procedure resulted in four devices to be installed one per floor at the, 3rd, 7th, 8th and 9th floor, which is, 
the maximum number of TMD nTMD=4. The mass of each damper was expressed according to the nTMD. In Tab. 9 the 
best position vector and optimal parameters are presented where it can be seen that the frequencies of the four devices are 
around the first natural frequency of building and the TMD number 8 presents the nearest value. For this scenario, the 
maximum displacements per floor and interstory drift are reported in Tab. 10 and the percentage of reduction of Dmax to 
each story and ISD regarding the uncontrolled structure in Tab. 11. 
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Story number TMD number p


 Location node md (kg) kd (N/m) cd (N.s/m) fTMD (Hz) 

1 1 0 9 - - - - 

2 2 0 15 - - - - 

3 3 1 21 1678.75 623047 3989 3.0661 

4 4 0 27 - - - - 

5 5 0 33 - - - - 

6 6 0 39 - - - - 

7 7 1 45 1678.75 494359 2324 2.7312 

8 8 1 51 1678.75 408683 1235 2.4832 

9 9 1 57 1678.75 304062 2580 2.1419 

10 10 0 63 - - - - 
 

Table 9: Best position and optimal parameters of MTMD of Scenario 3. 
 

Scenario 3- Response to 4 TMDs vertically arranged along the structure 

Story 
number ISDlimit (m) 

Loma Prieta Earthquake L’Aquila Earthquake Canterbury Earthquake Non-Stationary 
Artificial Earthquake 

Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) Dmax (m) ISD (m) 

1 0.0091 0.0033 0.0033 0.0026 0.0026 0.0038 0.0038 0.0041 0.0041 

2 0.0137 0.0142 0.0108 0.0112 0.0086 0.0160 0.0123 0.0170 0.0129 

3 0.0099 0.0200 0.0059 0.0163 0.0051 0.0231 0.0070 0.0242 0.0072 

4 0.0099 0.0248 0.0055 0.0209 0.0046 0.0295 0.0064 0.0305 0.0064 

5 0.0099 0.0291 0.0063 0.0253 0.0044 0.0361 0.0066 0.0368 0.0063 

6 0.0099 0.0344 0.0060 0.0286 0.0040 0.0417 0.0057 0.0420 0.0055 

7 0.0099 0.0407 0.0063 0.0313 0.0040 0.0469 0.0054 0.0466 0.0052 

8 0.0099 0.0466 0.0059 0.0334 0.0036 0.0512 0.0046 0.0502 0.0045 

9 0.0099 0.0520 0.0054 0.0363 0.0032 0.0548 0.0038 0.0532 0.0039 

10 0.0099 0.0555 0.0035 0.0381 0.0021 0.0570 0.0023 0.0552 0.0025 
 

Table 10: Maximum displacements and interstory drifts of the structure under the four earthquakes records to Scenario 3. 
 
Tab. 10 shows that to the four earthquakes records the interstory drift are below the allowed limit to each floor and 
represents an important reduction considering the uncontrolled structure. Comparing this scenario to Scenarios 1 and 2, it 
was observed that it does not present the lowest reductions of top displacement and neither the lowest interstory drift for 
the 2nd floor. However, comparing only the results of this scenario, to the 2nd floor the lowest value was obtained for 
L’Aquila Earthquake (0.0086 m) which represents 58.25%, the same values as of Scenario 1. 
Overall, according to Fig. 11, which shows the curves of the maximum displacements per floor for the four seismic 
excitations, it can be seen that for Loma Prieta Earthquake, Scenario 1 presented the best performance in comparison to 
the uncontrolled structure. For the L'Aquila Earthquake, Scenario 2 can be considered as the best. For the Canterbury 
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Earthquake, again the Scenario 1 can be considered as the best and for the Non-Stationary Artificial Earthquake, Scenario 
2 is shown as the best. 
 

Scenario 3- Percentage of response reduction 

Story number 
Loma Prieta Earthquake L’Aquila Earthquake Canterbury Earthquake Non-Stationary Artificial 

Earthquake 

Dmax (%) ISD (%) Dmax (%) ISD (%) Dmax (%) ISD (%) Dmax (%) ISD (%) 

1 50.75 50.75 59.38 59.38 47.22 47.22 64.96 64.96 

2 49.47 49.53 58.52 58.25 46.67 46.05 65.79 66.05 

3 49.49 49.14 57.55 55.26 45.77 44.88 66.06 66.67 

4 49.80 43.88 56.82 54.90 45.27 42.86 66.48 67.51 

5 50.17 41.67 56.53 58.10 44.29 40.00 66.82 68.34 

6 47.24 40.00 56.80 56.52 43.57 39.36 67.14 67.46 

7 42.84 37.00 57.24 53.49 42.67 40.00 67.46 66.01 

8 42.11 36.56 57.83 52.63 42.02 43.21 67.86 65.38 

9 41.57 36.47 57.44 52.24 41.58 47.22 68.22 65.18 

10 41.27 35.19 57.29 50.00 41.36 50.00 68.33 63.77 
 

Table 11: Percentage of reduction of the maximum displacements and interstory drifts of the structure under the four earthquakes 
records regarding uncontrolled structure to Scenario 3. 
 
 

 
Figure 11: Maximum displacement per story for the structure under the four earthquakes records to each scenario. 
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Figure 12: Maximum interstory drift for the structure under the four earthquakes records to each scenario. 

 
 

 
Figure 13: Displacement of the top of the building at node 63 considering the four earthquake records for uncontrolled structure and 
controlled scenarios. 
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In Fig. 12 the maximum interstory drift of each floor is shown where, considering the 2nd floor (which presented the 
largest interstory drift for each seismic excitation), regarding the Loma Prieta Earthquake, the Scenario 1 shows the best 
interstory drift reduction on this floor. For the L'Aquila Earthquake, Scenario 2 is considered as the best. For the 
Canterbury Earthquake, Scenario 1 is the best and for the Non-Stationary Artificial Earthquake Scenario 2 is shown as the 
best. Finally, in Fig. 13 the displacement at the top floor at node 63 is shown, which allows a better visualization of the 
reduction of displacements for each earthquake according to each scenario. 
Overall, all scenarios are efficient in reducing the response of the top floor and the interstory drift for each seismic 
excitation considered. Considering the effectiveness control system, it is verified that Scenario 2 (4 TMDs horizontally 
arranged at the top) can be the best to reduce the top displacement and interstory drift for the 2nd floor in relation to the 
worst case, which is the Non-Stationary Artificial Earthquake. In addition, regarding the economic aspect, this scenario 
would be the one which could generate lower spending in the implementation of the design, because the mass of one or 
the sum of the mass of multiple devices is always 3% of the structural mass and the values of the spring and damping 
constants should be evaluated. To Scenario 1 these values correspond to 1513880 N/m and 32878 N.s/m, respectively. 
To Scenario 2 theses parameters, added, correspond to 1376656 N/m and 22833 N.s/m, respectively, and to Scenario 3 
correspond to 31830151 N/m and 10128 N.s/m, respectively. Thus, scenario 2 can be considered as the best. 
 
 
CONCLUSIONS 
 

his paper investigated the use of TMD for reduction of the maximum horizontal displacement at the top floor and 
the interstory drift of a steel building under four earthquakes, one of these being a resonant earthquake. The 
behavior of the uncontrolled structure was evaluated regarding the interstory drift limit given by ANSI/AISC 360-

16 code of the American Institute of Steel Construction [32] where it was verified that the building required a vibration 
control system in order to reduce the interstory drift to the imposed limits of the code. For this, three control scenarios 
are proposed, Scenario 1 with a single TMD at the top floor, Scenario 2 with 4 TMDs horizontally arranged at the top 
floor and Scenario 3 with maximum 10 TMDs vertically arranged along of the structure, one per floor. 
To the optimization procedure, the WOA was utilized. To Scenarios 1 and 2, only spring and damping constants are 
optimized, while to Scenario 3, position and parameters of each TMD were optimized. By results obtained, it was verified 
that Scenario 1 presented the best reduction of maximum displacement at the top floor and of interstory drift for the 
Loma Prieta and Canterbury Earthquakes. Scenario 2 presented a better reduction of top displacement and interstory drift 
to the 2nd floor to the L’Aquila and Non-Stationary Artificial Earthquakes, when compared to Scenario 1 and 3. Overall, 
in this scenario the best reduction for interstory drift to the 2nd floor was observed, 0.082 m to L’Aquila Earthquake. In 
Scenario 3, the best position and the optimal parameters are determined by an optimization procedure, and it resulted in 
four devices to be installed one per floor at the, 3rd, 7th, 8th and 9th floor. However, comparing this scenario to scenarios 1 
and 2, it had slightly inferior performance. However, comparing only the results of this scenario, to the 2nd floor the 
lowest value was obtained for L’Aquila Earthquake (0.0086 m) which represents 58.25%, the same values of Scenario 1. 
Finally, overall, all scenarios studied were efficient to reducing the response of the top floor and the interstory drift 
correcting them to the imposed limits. However, the Scenario 2 can be considered as the best solution. 
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