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RESUMO

Os grafos são essenciais para muitas representações de dados. A análise visual de grafos

é usualmente difícil devido ao tamanho, o que representa um desafio para sua visualiza-

ção. Além de isso, seus algoritmos fundamentais são frequentemente classificados como

NP-difícil. Análises dos grafos de potência (PGA em inglês) é um método que simpli-

fica redes usando representações reduzidas para subgrafos completos chamados cliques e

subgrafos bipartidos chamados bicliques, em ambos casos com una redução de arestas.

Os benefícios da representação de grafo de potência são a preservação de informação e a

capacidade de mostrar a informação essencial sobre a rede original. Entretanto, encontrar

uma representação ótima (a máxima redução de arestas possível) é também um problema

NP-difícil. Neste trabalho, propomos BCD, um algoritmo guloso que usa um abordagem

de detecção de bicliques baseado em operações binarias para encontrar representações de

grafos de potencia. O BCD é mas rápido que as estratégias atuais da literatura. Final-

mente, descrevemos como a estrutura induzida pelo grafo de potência é utilizado para as

análises dos grafos densos na detecção de agrupamentos de nodos.

Palavras-chave: Análises dos grafos de potência. redução de arestas. detecção de bicli-

ques. clustering de dados. operações binarias.



A Bitwise Clique Detection Approach for Accelerating Power Graph Computation

and Clustering Dense Graphs

ABSTRACT

Graphs are at the essence of many data representations. The visual analytics over graphs is

usually difficult due to their size, which makes their visual display challenging, and their

fundamental algorithms, which are often classified as NP-hard problems. The Power

Graph Analysis (PGA) is a method that simplifies networks using reduced representa-

tions for complete subgraphs (cliques) and complete bipartite subgraphs (bicliques), in

both cases with edge reductions. The benefits of a power graph are the preservation of

information and its capacity to show essential information about the original network.

However, finding an optimal representation (maximum edges reduction) is also an NP-

hard problem. In this work, we propose BCD, a greedy algorithm that uses a Bitwise

Clique Detection approach to finding power graphs. BCD is faster than competing strate-

gies and allows the analysis of bigger graphs. For the display of larger power graphs, we

propose an orthogonal layout to prevent overlapping of edges and vertices. Finally, we

describe how the structure induced by the power graph is used for clustering analysis of

dense graphs. We demonstrate with several datasets the results obtained by our proposal

and compare against competing strategies.

Keywords: Power Graph Analysis, edges reduction, biclique detection, clustering analy-

sis, binary operation.
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1 INTRODUCTION

Through the years, scientists have developed several methods to study real-world

networks. In neuroscience, for example, there is great interest in finding information on

the behavior of neural networks (SPORNS; TONONI; KÖTTER, 2005; SPORNS, 2011;

REUS; HEUVEL, 2013). A prominent feature in this field is the study of connectomes,

but the complexity of living things makes it impossible to study individual neurons in most

cases. To reduce the complexity, the analysis is done at specific brain regions, like the hu-

man connectome (SPORNS; TONONI; KÖTTER, 2005) or the cat connectome (REUS;

HEUVEL, 2013). Other networks widely studied are the protein (CHASSEY et al., 2008),

social (BRANDES; WAGNER, 2004) and citations networks (LESKOVEC; HORVITZ,

2014).

The Power Graph Analysis (PGA) is a technique proposed to simplify graphs

using reduced representations, called Power Graphs, that has special representations for

complete subgraphs (cliques) and complete bipartite subgraphs (bicliques). Power graphs

allow a considerable reduction in the number of edges. In Figure 1.1 we illustrate a dense

graph (a) and its corresponding power graph representation (b), which uses the special

terminology of power nodes and power edges to refer to its vertices and edges. There are

many possible power graphs associated to a given graph, and an optimum power graph is

the one that has the smallest number of power edges, which is directly related to the suc-

cess on finding bicliques and cliques. This problem is likely to be NP-hard since finding

the maximum biclique on a graph was proved to be NP-hard (PEETERS, 2003). The-

refore, the power graph computation algorithms rely on approximation algorithms and

heuristics.

A hierarchical clustering approach is used in (ROYER et al., 2008) for power

graph computation, but it is slow for dense graphs. Dwyer et al. (DWYER et al., 2014)

proposed an improved algorithm using a greedy strategy and which allowed power graphs

to be used for the visualization of dense graphs. However, their results were limited to

small graphs (up to 100 vertices).

In this dissertation, we address the problem of scaling the analysis of power graphs

to larger graphs. Our approach starts with the proposal of a bitwise greedy algorithm to

find power graphs with reduced number of edges. Our algorithm runtime is approximately

one order of magnitude faster than the improved method by (DWYER et al., 2014). The

larger power graphs also pose difficulties with respect to its visualization. We designed
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a customized algorithm for building orthogonal representations of power graphs. Finally,

we describe how the power graph can be used to drive a clustering algorithm defined over

a graph. We demonstrated that clustering results can be better understood when using

the orthogonal layout of the power graph, which allows to evaluate the relation among

elements in a given cluster.

In summary, the main contributions introduced in this work are:

• Binary Clique Detection (BCD), a PGA method that uses a bitwise matrix represen-

tation to improve clique and biclique detection, and lead to a speedup of an order

of magnitude to previous methods,

• An orthogonal layout specially designed for power graphs, and

• A power-graph algorithm for clustering dense graphs that combined with the ortho-

gonal layouts allow inspecting clustering results, as well as the connectivity among

nodes in each cluster.

Figura 1.1: Clustering process based on power graph analysis applied to the graph repre-
senting the cat connectome.

(a) Dense Graph (b) Orthogonal Layout
of Power Graph

(c) Power Graph Adja-
cency matrix

(d) Clusters found with
BCD

1.1 Motivation

The topological information about problems in graph theory (NP-complete and

NP-hard) are used to the prediction, classification and visualization systems, but their

runtimes for real-world networks is extremely high. In the last years, several heuristics

are developed for finding near-optimal solutions, their advantages are the reduction of

results and the runtime, making the analysis of real-world networks practical. In this

sense, we can obtain relevant information about real network represented by graphs and

note that countless works are published in Information visualization, there are few about

graph simplification, especially for dense graphs.
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1.2 Structure of this document

The remaining of this thesis is organised as follow: Chapter 2 presents the related

works, we explain concepts about power graphs in Chapter 3; data structure, their des-

cription and evaluation are presented in Chapter 4; Chapter 5 describes the power graph,

orthogonal layout, clustering and image compression algorithms exhibiting their results

in Chapter 6; Chapter 7 and Chapter 8 describe conclusions and future works respectively.
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2 POWER GRAPH

In this chapter, we present the background for power graph and related work.

2.1 Background

In this section, we review the terminology associated to power graphs: graph,

clique, biclique, star and dendrogram. Also the analysis of the structured data and finally

a real example for the protein-protein interaction of Saccharomyces cerevisiae.

2.1.1 Graphs, Cliques, Bicliques and Stars

Let a graph G = (V,E) be an ordered pair of a non-empty finite set V = V (G)

of vertices and a finite set of edges E = E(G) defined as unordered pairs of distinct

vertices (BONDY; MURTY, 1976). A clique is defined as a subset of vertices of an

undirected graph such that the generated subgraph is complete. A graph is bipartite if its

vertices can be divided into two non-empty disjoint sets, such that their edges connect the

first to the second set. A complete bipartite graph, or biclique, is a bipartite graph where

every vertex of the first set is connected to every vertex of the second set. A star is a

complete bipartite graph GS = (V1, V2, E) where |V1| = 1 or |V2| = 1. The density of a

graph is the ratio between the number of edges and the number of edges of the complete

graph with the same vertices, defined as D = (2 ∗ |E|)/(|V | ∗ (|V | − 1)).

Real-world networks are attractive to analyse, as protein-protein interaction (e.g.

ZDS1 Protein of Saccharomyces cerevisiae in Figure 2.1). S1 is a clique of 6 nodes and

15 edges. Also, the biclique of S2 and S3 have 18 edges. Finally, the star of S4 and S5

have 3 edges. The graphical representation for this simple graph has many overlapped

edges.

2.1.2 Power Graphs

The basic idea for the power graph representation is illustrated in Figure 2.2. The

compact representation used for power graphs replaces the structures of bicliques, cliques,

and stars in a given graph by a compact representation with fewer edges. The power graph
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Figura 2.1: Example of a simple protein-protein interaction of Saccharomyces cerevisiae
<http://www.yeastgenome.org/>, sets correspond to a clique, biclique and start.

is composed of four main elements: power nodes, power edges, and vertices and edges

from the original graph. Formally, a power graph of a undirected graph G = (V,E) is

PG = (PV, PE, V,E), where PV is a power node set, PE is a power edge set. A vertex

v ∈ PV ∧ and an edge e ∈ PE if and only if these conditions are satisfied: v is a subset

of V , |v| > 1, e is a pair (u, v) ∧ u ∈ PV and v ∈ {PV ∪ V }(a power edge can link to

a power node from a vertice). In a power graph it must be true that u ∩ v ∈ ∅, u, v where

u, v ∈ PV .

A dendrogram is a tree data representation with three types of nodes: leaf node,

inner node, and a root node (PHIPPS, 1971). It is used in hierarchical clustering and in

our case to store the power graph. We use the dendrogram data structure as follows: leaf

nodes represent vertices of the original graph, inner nodes represent a node subset and the

root node represent all the graph nodes.

http://www.yeastgenome.org/
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Figura 2.2: Power Graph for bicliques, cliques and stars.

(a) Biclique (b) Clique (c) Star

2.1.3 Data structure

Operations between sets of vertices are essential to implement the construction

of a power graph. Common power graph algorithms are required to find the number of

common nodes between their adjacency sets for every pair of vertices. We refer to node

similarity when two nodes share a high number of adjacent vertices. Given an adjacency

list as a graph representation, the complexity of finding the similarity between adjacency

sets (FSBAS) is O(V ∗E). As an example, consider a graph of 1000 vertices with an edge

density of 60%. The number of iterations for FSBAS are 300 millions approximately.

Considering an adjacency matrix representation, the complexity for FSBAS is O(V 3).

We use of binary adjacency matrix to store the graph, and a row of the matrix can

be implemented in 4 ways for C++ language programming:

• As a boolean array implemented by bool VariableName[N], where N is the array

length.

• As an array of 64-bit integers implemented by and unsigned long long int Varia-

bleName[N], in this way, a single integer can store 64 elements in a row, and for a

graph with 1000 nodes, we need 16 integers to store a row of the adjacency matrix.

• As a bit-set implemented by "bitset<N>"where N is a constant integer.

• As a dynamic bitset implemented by "boost::dynamic_bitset<>".

The first and second also can be implemented using the dynamic structure called

vector, The third was implemented in Standard Template Library (STL) and the last in

Boost Library published in <http://www.boost.org/>.

2.1.3.1 Comparison results

Each implementation has advantages and disadvantages referred to the runtime

and the memory store, generating cases where they are more or less usable, we analyze

two commonly operations used to calculate a power graph representation. The first is the

http://www.boost.org/
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execution of the binary operations between 2 rows of bits, ten thousand times and returns

the answer in an index array where each position is equal to 1 in the bit row of the answer,

iterations is proportional to the maximum case where the results are significants.

The second is the And operation between all pairs of rows (for example if the array

length is 250, the number of operations is 62500 or 2502). The results are showed in table

2.1 and 2.2 respectively, all values are in seconds and the used structure is Vector.

Tabela 2.1: Runtime for first operation

Implementation Array length

250 500 1000

Boolean array 159,125 624,525 5035,45

64-Bit intenger array 1,117 5,304 32,361

Bitset 0,017 0,09 0,553

Dynamic bitset 1458 7,586 46,611

Tabela 2.2: Runtime for second operation

Implementation time

Boolean array 17.35

64-Bit intenger array 0.771

Bitset 0.676

Dynamic bitset 1.801

The binary matrix has certain numbers of bytes depending on the implementation,

in C++, a vector occupies 16 bytes, but also, we must consider the bytes number for each

row. We calculate for rows of 250, 500 and 1000 elements. The results show at Table 2.3

demonstrate that Bitset Is the best option, to stored the binary matrix.

Tabela 2.3: Required bytes for each implemeantion

Array length

250 500 1000

Boolean array 14016 44016 152016

64-Bit intenger array 13016 42016 144016

Bitset 8016 32016 128016

Dynamic bitset 13016 42016 148016

All evaluations were implemented in Visual Studio 12 C++ and run in Windows 10
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PC with a processor Intel(R) Core(TM) i7 of 3.60 GHz and 8,00 GB de physical memory.

The results demonstrate that the bitset implementation is the best option for power graphs

in runtime and memory.

2.2 Related work

Several works about the search of relevant information into real-world networks

have been published in the last years among them, there is a group which investigated

networks with clustering algorithms trying to find topological information. Although

several clustering algorithms were proposed, others methods for analyzing networks were

not deep, especially complete substructure.

In this section, we review the related work divided into three categories: extrac-

tion of knowledge from real-world networks (2.2.2), algorithms for power graph analysis

(2.2.3), and visualization methods for dense graphs (2.2.4).

2.2.1 Overview

Real-world networks appear from metabolic to social interaction networks. Howe-

ver, their representations have been used in science only in the last century (LEVINSON,

2004), many of them have two main properties: (1) the distance between nodes is short

in relation to the number of nodes, and (2) a high clustering coefficient; such networks

are also known as small-world networks (WATTS; STROGATZ, 1998). Small-world

networks have a hierarchical structure, and for finding them exist algorithms of hierarchi-

cal clustering, which require complex diagrams.

2.2.2 Knowledge extraction

In the field of biology and neurology, scientists have studied several real-world

networks. In (GAGNEUR et al., 2004) the complex protein purification is described as a

graph. After applying a modular decomposition algorithm over this graph, results showed

that detected modules corresponded to the reuse in other protein compounds. In (ROYER

et al., 2008) a hierarchical graph-based algorithm is used to identify differences in proteins

indistinguishable to the naked eye. The relation between drugs and diseases is modeled
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as incomplete bi-cliques in (DAMINELLI et al., 2012). The study of brain networks also

uses graphs to help understanding different levels of connectivity. Structural connectivity

is described as the physical or anatomical connections (SPORNS, 2011). Functional con-

nectivity corresponds to patterns of neural activity usually occurring between distant brain

regions (HEUVEL; POL, 2010). Finally, effective connectivity is described as a network

of causal effects between neural elements (SPORNS, 2011). The connectome is a map

of the connections between neurons and brain regions, and can be defined as a graph,

where the brain regions and neurons are nodes and the functional, structural or effective

connections are the edges. This kind of graph has several features, such as communities,

cores ( the group of highly connected nodes, resistant to damage) (HEUVEL; SPORNS,

2013), rich clubs (set of nodes with high centrality) (COLIZZA et al., 2006), and hubs

(central nodes of a graph (HEUVEL; SPORNS, 2013)). Figure 2.3 shows networks and

their analysis.

Figura 2.3: Examples of real-world networks, (a) connectome and their rich clubs <http:
//www.newswise.com/articles/highways-of-the-brain-high-cost-and-high-capacity>, (b)
Hepatitis C virus infection protein network <http://msb.embopress.org/content/4/1/230>,
(c) A sociology citation network and their communities <http://nealcaren.web.unc.edu/
a-sociology-citation-network/>.

http://www.newswise.com/articles/highways-of-the-brain-high-cost-and-high-capacity
http://www.newswise.com/articles/highways-of-the-brain-high-cost-and-high-capacity
http://msb.embopress.org/content/4/1/230
http://nealcaren.web.unc.edu/a-sociology-citation-network/
http://nealcaren.web.unc.edu/a-sociology-citation-network/
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2.2.3 PGA Algorithms

A power graph algorithm was proposed in (ROYER et al., 2008) for undirected

graphs that uses a hierarchical clustering algorithm (EISEN et al., 1998) based on the

Jaccard’s similarity index (JACCARD, 1901). In (DWYER et al., 2013) it was proposed

a heuristic to obtain a decomposition of a power graph with a complexity of (O(|V |3 ∗

|E| ∗ log|E|)). This complexity is high for large and dense graphs such as connectomes.

In (DWYER et al., 2014) it is presented another heuristic with constraints on the backtrac-

king algorithm. We propose a bitwise algorithm to find an optimal biclique of the graph.

After applying our recursive algorithm, we find a dendrogram of the graph, and eliminate

the redundant edges. Our method is different from (ROYER et al., 2008) because we use

fast binary operations when finding a biclique.

2.2.4 Network visualization

For large graph visualization, a review of layout algorithms and interactive ex-

ploration techniques is given in (HU; SHI, 2015). They recognized challenges of large

graph visualization as the problem of dealing with an exponential increase in graph size,

the evolution of complex networks, the abstraction and visual representation with novel

displays. The orthogonal layout algorithm in (KIEFFER et al., 2016) encodes aesthetic

criteria to overcome the deficiency of automatic layout techniques in producing human-

like diagrams. The HOLA algorithm achieves layouts of comparable quality to those

produced by hand. In (JANKUN-KELLY et al., 2014) it is discussed the state of art sca-

lability, with considerations such as visual limitation, graph design strategies, filtering,

aggregation, and interaction. To address the computational consumption of visualizing

large networks, (MRžEK; BLAžIč, 2013) developed a GPU-based implementation of a

layout algorithm. Using a force-driven method, they generated layouts where communi-

ties are less entangled and performed comparisons with the CPU-based implementations.

VCD (RUNPENG; JUN; XIAOFAN, 2012) is a network visualization tool used for the

analysis of communities and dynamically uncover the hierarchical communitiy structure

in real networks. As a use case, they used the yeast network and allow the exploration of

hierarchical structure by providing a hierarchical evolution function for visual analysis.

In (ZHANG; PARTHASARATHY, 2012) they proposed the notion of a Triangle K-core,

a simpler topological structure which helps the search for clique-like subgraphs. Addito-



22

nally, they extend the basic definition of cliques and support user defined clique template

patterns with applications to network visualization and correspondence analysis. Dudas

et al. (DUDAS; JONGH; BRUSILOVSKY, 2013) presented a visualization which models

the overlapping of community membership to solve the problem of members belonging to

multiple cliques. They provide an interactive interface to study large network topologies.

Clustering analysis and matrix visualizations are studied by Wu et. al. (WU;

TIEN; CHEN, 2010). HCMapper (MARTI et al., 2015) compare groups extracted from

pairs of dendrograms and StructMatrix (GUALDRON ROBSON L. F. CORDEIRO, 2015)

a large visualization of dense matrices. In (BECK MICHAEL BURCH; WEISKOPF,

2015) a survey of dynamic graph visualizations is described. They focus on the chal-

lenge of representing evolution of relationships between entities. In terms of classificati-

ons tasks, (BEAUXIS-AUSSALET; HARDMAN, 2014b) and (BEAUXIS-AUSSALET;

HARDMAN, 2014a) describe confusion matrices visualzations to minimize user cogni-

tive effort. (WONG et al., 2013) proposed a matrix visualization for social networks to

understand the distances between individuals, groups within the populations and discon-

nections. In this paper, we use two ways to display clusterings over a power graph. The

first one uses a matrix layout that allows to observe how bicliques and cliques groups

create clusters. The second one is the orthogonal layout that improves the visualization of

individual links and groups of vertices (EIGLSPERGER; FÖSSMEIER; KAUFMANN,

2000).
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3 ALGORITHM

In this chapter, we explain the algorithms used to get, display and analyse power

graphs. Section 3.1 describes algorithms to find near optimal sub-graphs (biclique, clique

or star). Note that the star is a particular case of a biclique and we use the biclique term

to refer to both cases. The algorithm to find the dendrogram and redundant edges is

explained in section 3.3 and 3.2, respectively. The figure 3.1 has an overview of the first

three sections. We show in section 3.5 the process to display power graphs in a quasi-

orthogonal layout. In section 3.6 is showed the method to analyse clusters of the network.

Finally, the image compression is explained in the section 3.7.

Figura 3.1: Power Graph construction algorithm overview. Input: adjacency matrix repre-
sentation of the graph. We recursively find optimal maximum edge cliques and bicliques
and form groups of nodes. The algorithm builds a dendrogram from previously found
cliques and bicliques and finally, abstract reduntant edges in power edges. Output: den-
drogram representing the power graph groups.

3.1 Finding Near Optimal Biclique or Clique

Algorithm 1 finds a near optimal solution based on a clustering idea of joining

vertices. Vertices that share the highest number of common adjacent vertices are grouped

using the Jaccard index as a measure of similarity and projected on a plane in two dimen-

sions. Nodes are sorted according to the Jaccard distance. This heuristic finds an ordering

of nodes which might not be optimal; however, we reduce operations as we avoid the

search of nodes without common neighbours.
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Algorithm 1 Algorithm for finding a near optimal subgraph (clique or biclique)
procedure FINDSUBGRAPH(BitMat)

order← GETORDERNODES(binMat)
nearOptimalSubG← {}
for i = 0; i < order.length do

for j = i; j < order.length do
biclique← FINDBICLIQUE(i,j)
clique← FINDCLIQUE(i,j)
if Biclique.edges>Clique.edges then

nearOptimalSubG← biclique
else

nearOptimalSubG← clique
return nearOptimalSubG

3.1.1 2D Node Placement

The main idea of the power graph algorithm is to find groups of strongly connected

nodes and represent them as power nodes. To obtain nodes with the most adjacent nodes

in common, we order the nodes based on the number of common adjacent connections. To

do so, we characterize each node with the number of adjacent edges and define a distance

in 2D space based on the Jaccard distance, calculated as Dj(A,B) = 1−|A∩B|/|A∪B|.

We multiply by |A∪B| to limit the result to only integers, then the Jaccard distance equals

to d(A,B) = |A ∪B| − |A ∩B|.

Our iterative approach takes the first node and assigns it to position (0, 0). The

second node is placed at a Jaccard distance k of the first node (at (k, 0)). Any subsequent

node is positioned at the intersection of the circumferences with a radius equal to the two

shortest Jaccard distance d(ni, nj). Figure 3.2 details the node placement process.

Algorithm 2 collects ideas referred to the above and shows the use of the Jaccard

function. The function named makeCircle uses the node information and returns a circle

where the radius is the Jaccard distance and the center is the node position. The circle

intersection has four possible values: zero, one, two and undefined. When the case is 1, 3

or 4 the answer is the value that generates less conflict. The conflict is defined as the sum

of Euclidean distances from one node towards all others. Case 2 has only one option.
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Algorithm 2 Algorithm for finding the 2D Node Placement
procedure POSITIONNODES2DBYJACCARD(bitMat)

pointList=[]
firstPoint← (0, 0)
pointList.ADD(firstPoint)
SecondPoint← (0, JACCARDDISTANCE(1,2) )
pointList.ADD(SecondPoint)
for i = 3; i < visit.length do

list← []
for j = 1; j < i do

list.ADD(JACCARDDISTANCE(i,j))
frsInd, sndInd← TWOMIN(list)
firstCircle←MakeCircle(frsInd)
secondCircle←MakeCircle(sndInd)
Intersection← CIRCLEINTERSECTION(firstCircle,secondCircle)
if Intersection.length = 0 then

a← (xfirst+JACCARDDISTANCE(i,frsInd),yfirst)
b← (xsecond+JACCARDDISTANCE(i,sndInd),ysecond)
nextPoint← a ∨ b

else if Intersection.length = 1 then
nextpoint← Intersection[1]

else
a← Intersection[1]
b← Intersection[2]
nextPoint← a ∨ b

pointList.ADD(nextPoint)
return pointList
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Figura 3.2: 2D Node placement: (a) the first point p1 is placed at the origin, while the
second point p2 is placed in the x-coordinate axis at the Jaccard distance d12 of p1. (b) the
third point p3 is placed at the intersection of the circles with center at p1 and p2 and radius
corresponding to their Jaccard distances to p3 (d13 and d23 respectively). (c) similarly, the
fourth point p4 is placed at the intersection of the two circles associated to the shortest
Jaccard distances to p4 (in this example the circles defined at p1 and p3 with radius d14
and d34 respectively). The same criterion is applied to subsequent nodes.

p1 p2 p1 p2 p2 

p3 p3 

p4 

d12 

d13 d23 d14 

d34 

d23 

(a) (b) (c) 

3.1.2 Finding the Sequence of Nodes

To compute the ordering of the nodes in 2D, we need to select the nodes with the

shortest distance, which represent the nodes with maximal adjacent nodes in common.

We formulate the problem of obtaining the sequence of vertices as finding the shortest

Hamiltonian path for a complete graph. We use a greedy algorithm with the following

steps. First, we take the leftmost node and insert it into the result list, look for the closest

node in the Euclidean distance, and add it to the list. The process is repeated until nodes

are processed (Algorithm 3). The final list has the ordered sequence of vertices used to

find the optimal sub-sequence.

Algorithm 3 Algorithm for finding the Sequence of Nodes
procedure GETORDERNODES(bitMat)

listPoint←2DNODEPLACEMENT(bitMat)
leftMostNode← FINDLEFTMOSTNODE(listPoint)
order← []
ORDER.ADD(leftMostNode)
LISTPOINT.DELETEPOINT(leftMostNode)
for i = 1;i < visit.length do

nextNode←LISTPOINT.CLOSESTPOINTTO(previousPoint)
ORDER.ADD(nextNode)
LISTPOINT.DELETEPOINT(nextNode)

return order
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3.1.3 Finding the Optimal Subsequence

In this step, we find the maximum edge biclique or clique computing the number

of adjacent nodes in common for each node subsequence. We iterate the ordered sequence

with two indices i and j and evaluate for each subsequence the number of common adja-

cent nodes. For each evaluated subsequence, i represents its initial position in the ordered

sequence while j represents the final position. We choose the subsequence which maxi-

mizes (j − i) ∗ (|S|), where S is the intersection set of adjacent nodes and j − i represent

the number of nodes in the subsequence. Moreover, the pair i, j produces a clique or bi-

clique with the highest number of elements. We choose the pair according to its number

of edges. The total complexity to find the approximation of the maximum edge biclique

is O(n2).

3.2 Finding the Dendrogram

A dendrogram has three types of vertices: objects, nodes, and the root node(PHIPPS,

1971). Objects are original graph nodes, the root node and nodes are power nodes but in

our case, we also need to distinguish between cliques and bicliques. To solve this, we

use different colors for each power nodes in the visual representation: red for bicliques

and blue for cliques. The implementation and representation in C++ is explained in the

Section 3.2.1.

To represent a hierarchy of node groups, we build a tree-like data structure with

the previously found cliques and bicliques. Each of the dendrogram nodes stores a graph

node partition with three children, which is analogous to a graph partition in three groups.

The first and second child store the first and second sets of the proximal optimal edge

biclique respectively. If the second set is empty in case of cliques, this is discarded in the

following operations. The third partition represents the remaining nodes of the partition,

in others words, it is the difference between the parent and the union between the other

partitions.

Algorithm 4 stops when the parent stores two or fewer nodes. The output is a

dendrogram structure (see Figure 3.3) with near optimal maximum edge bicliques or cli-

ques considered as power nodes and stored in the variable called Powergraph. We also

calculate the first power edges of cliques or bicliques taking advantage of the recursion. It

can have bad cases, for example, when the subgraph has zero or one nodes and the parent
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has a considerable number of nodes. We solved it using a similar method explained in

(ROYER et al., 2008). We group nodes and assign power nodes until the smaller partiti-

ons have two nodes. It is easy to note that some power nodes are not linked. It is not an

important issue and is solved in section 3.3.

Algorithm 4 Algorithm for finding the Dendrogram
procedure POWERNODEASSIGN(bitMat)

powerGraph← {}
if bitMat.nodes ≥ 2 then

subGraph← FINDSUBGRAPH(bitMat)
if subGraph is Clique then

clique← subGraph
if clique.length ≥ 2 then

Remove the clique of the graph
Add a power node of the clique
Add a power edge
Divide the graph in 2 sets
repeat PowerNodeAssign for each set

else
Look for others possible power nodes

if subGraph is Biclique then
biclique← subGraph
if biclique.Set1.length ≥ 2 then

Remove the biclique of the graph
Add 2 power nodes
Add a power edge
Divide the graph in 3 sets
repeat PowerNodeAssign for each set

else
Look for others possible power nodes

return powerGraph

3.2.1 Implementation

A hash array can store trees as dendrograms, and its implementation is easier than

traditional trees with pointers, but against the memory usage depends on the maximum

index. We adapt the power node indices to have a limit of the maximum index(maxindex <

4 ∗ n), starting from n + 1 where n is the number of vertices of the original graph. This

type of representation is common to see in algorithms bases on Union-find.

Adjacent lists are used to store graphs and trees, thus, we have a direct link to chil-

dren of a node and the store an edge of one node to itself (as cliques). This representation
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Figura 3.3: Implementation of a dendrogram: (a) the dendrogram for a 9-nodes graph, (b)
the hash array, (c) the adjacent, (d) Binary rows for each power nodes index.

is extensively used by BFS and DFS algorithms.

A Binary row can store the final children of each power node (see Figure 3.3).

In this way, the comparison between two power nodes is direct. We use these ways

simultaneously for obtaining a short time in data access and operation that are required in

the section 3.3.

3.3 Finding Redundant Edges

The dendrogram structure holds the near-optimal power nodes configuration com-

puted by our method; however, many edges from the original graph need additional pro-

cessing and to be considered as power edges. We define redundant edges as the individual

connections between sets of nodes that belong to power nodes. During this phase, we

remove redundant edges having multiple connections from one node to all nodes or con-

nected a power node. All these edges could be represented by a power edge, connecting

the node with a power node. We replace them with power edges. Edge reduction could

occur with edges going out of from a node or a power node.

Algorithm 5 illustrates these ideas and works in the following way: it requires a

specific power node configuration and a graph stored in the variable named PowerGraph

and BitMat respectively. The next step is to visit each node of the original graph and
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access its adjacent list of power nodes. The power edge is represented by the pair node

and power, as a star, in the last step, it adds the star to power graph and removes from the

binary matrix using binary operations.

Algorithm 5 Finding the Redundant Edges
procedure POWEREDGEREPLACE(powerGraph,BinMat)

for each node in BinMat do
Find Adjacent Power Node
for each powerNode in adjacentPowerNodes do

powerGraph.ADDPOWEREDGE({node, powerNode})
Delete edges from bitMat

3.4 Finding adjacent list of power nodes

The idea of Algorithm 6 is to compare two Binary rows with And operations. The

first are the adjacent nodes corresponding to a node and the second is the final children

of a power node, both are parameters stored in Node and PowerNode, respectively. If the

comparison is equal to the power node then it is added to the final solution as a power

edge, otherwise, the algorithm is repeated for each child of the power node in a depth-first

search.

Algorithm 6 Finding adjacent list of power nodes
procedure FINDPOWERNODEADJACENT(bitMat, powerGraph, node, powerNode)

intersection← bitMat[node] ∩ powerNode
if intersection.COUNT() < 2 then

return {}
if bitMat[node] = powerNode then

result.ADD(powerNode)
return

get children of the power node
for each powerNode in children do

FINDPOWERNODEADJACENT(bitMat, powerGraph, node, powerNode)
return result

3.5 Orthogonal Layout for Power Graphs

Orthogonal layouts are widely used for clear representations of simple graphs.

We extend the orthogonal layout idea to visualize power graph diagrams. We propose
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a greedy method to compute the position of nodes and power nodes in a 2D plane and

compute edge trajectories that avoid overlapping other elements in the layout(Figure 3.4).

3.5.1 Drawing Vertices

The orthogonal layout for power graphs uses nodes as boxes and power nodes

as rectangles around the previously positioned boxes. Based on the hierarchy found,

we assign a minimal box to each node in the original graph. For each leaf node in our

dendrogram, we place the nodes in a bounding rectangle using a clockwise orientation

and assign to the position that minimizes the area of this rectangle (Figure 3.4).

We calculate the bounding rectangle layout by ordering the boxes from highest

to lowest area. The first box is assigned to position (0, 0) in the plane. Subsequently,

the placement of the following nodes is chosen from four possible positions around the

bounding box of previously located boxes (up, down, left, right). We choose the position

where the value of F is minimized:

F (h,w) = h ∗ w ∗ |h− w|

where h and w are the height and width of the minimum bounding box that con-

tains the previously placed boxes.

3.5.2 Drawing Edges

We use a roadmap approach to place edges. The graph can be seen as a city, where

nodes and power nodes are buildings, and blank spaces in the layout represent two-way

roads where we place graph edges. To draw an edge, we need to select a route between

two nodes that does not cross other edges. In addition, the direction of the edge must be

parallel to the coordinate axes. The path of an edge must be minimized to produce a less

cluttered visualization.

To calculate the shortest path distance between nodes, we use articulation points

(Figure 3.4) which represent possible ways for edge drawings. Each articulation point

is represented as a node in a helper graph and edges describe the adjacency between

articulation points. We use a helper graph to find the shortest distance between nodes in

the original graph. Edges are colored in blue and the opacity of the edges is mapped to
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Figura 3.4: Power graph orthogonal layout algorithm. (a) dendrogram representation of
power graph. (b) We begin node positioning from the last level of the dendrogram and
sort squares by area. (c) Inner nodes are represented as bounding rectangles. (d) We place
the power nodes (bounding rectangles) in clockwise fashion after ordering them by area.
(d) node layout with additional spacing to allow room for edge connectivity (e) green
articulation boxes added, along blue boxes that represent a path an edge should take to
connect node 2 to node 10. (f) edge path connecting the selected articulation boxes.

the number of edges passing through the same track.

3.6 Clustering using Power Graphs

Given a large graph, we want to use the properties of power graphs to propose

a user-guided clustering method. The BCD algorithm finds groups of nodes based on

the number of common adjacent neighbors. Thus, the ordering of nodes is reflected in

the dendrogram structure. For the visualization, we choose an adjacency matrix to avoid

edge overlapping and demonstrate the change in the order. The rows and columns of the
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Figura 3.5: Power graph orthogonal layout algorithm. (a) . (b) squares by area. (c) Inner
nodes are represente

adjacency matrix (Figure 3.5) are ordered by the number of common neighbors repre-

sented in the dendrogram. We built an interactive user interface that allows the user to

visually select the clusters in the matrix. Clusters are represented by squares of the same

color located on the diagonal of the matrix and the colors in the visualization matrix are

mapped to properties of the graph nodes.

3.7 Image reduction

The digital communication is a continuous need with an evolving situation, parti-

cularly to images and videos. In this sense, the data compression is involved in several

works. Image compression is an extensive field of research, it may be lossy as BMP or

PNG or lossless as JPG, this last is the most commonly used for image transmission.

We propose a novel lossless method based on biclique detection. The idea behind

Algorithm 7 is to interpret the binary image as a bipartite graph, extract bicliques and

replace the edges with a simple coding.

The decoder receives a binary image and a number, where each single pixel of the

binary image is one or zero. This number indicates how many times the algorithm for fin-

ding bicliques is executed. Bicliques are removed from the binary matrix and eventually

are saved as binary rows, exactly two rows for each biclique (see Figure 3.6).

A biclique represents |S1| ∗ |S2| pixels graphically, but it only needs |S1| + |S2|.
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Figura 3.6: Image compression based on biclique detection: (a) full-color image, (b) bi-
nary image, (c) detected bicliques in the binary Image, (d) binary image without bicliques,
(e) biclique binary image.

Depending on the length of S1 and S2 the reduction is considerable, for example, if |S1| =

15 and S2 = 20 graphically they represent 300 pixels but they only require 35 pixels, in

this case, the reduction is more than 80%. To decode the biclique and reconstruct the

image, it requires a simple iteration for each biclique.

Algorithm 7 Binary image compression
procedure IMAGECOMPRESSIONENCONDER(BinaryImage,Iterations)

bitMat← BinaryImage as binary matrix
bitMatBiclique←
for i = 0; i <Iterations do

find biclique
delelte biclique of bitMat
save biclique in bitMatBiclique

return bitMat, bitMatBiclique
procedure IMAGECOMPRESSIONDECODER(bitMat,bitMatBiclique)

for each biclique in bitMatBiclique do
S1, S2← biclique
for each nodei in S1 do

for each nodej in S2 do
add edge (nodei, nodej) in bitMat

image← bitmat as binary image
return image
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4 RESULTS

In this chapter, we report our results with respect to the performance of the BCD

algorithm, as well as the orthogonal layout and clustering in three different datasets and

image compression results.

4.1 Synthetic and Real Datasets

A synthetic dataset of 90 random graphs was created as follows. The density was

defined to be between 10% and 90%, with an increment of 10%. The number of vertices

in the graph started at 100 nodes, with increment of 100 nodes until the last graph with

1000 nodes. All edges have an equal probability of appearing in the random graph. These

features provide an equitable scenario for PGA algorithms.

We used three real datasets: the cat cortex connectome, the zoo dataset and a

dermatology dataset. The cat cortex dataset contains information about brain regions of

the cat cortex. We build a graph from the dataset where each graph node represents a

brain cortex region and edges represent the existence of functional connectivity between

cortex regions. The zoo dataset contains animals with 17 boolean valued attributes. The

constructed graph uses animals as nodes and represents the similarity of animals with

edges. Finally, the dermatology data corresponds to 365 patients with clinical attributes.

Each patient has one of six dermatology diseases.

4.2 BCD Performance Results using Synthetic Datasets

We compared our algorithm against the work in (ROYER et al., 2008) using the

synthetic dataset. BCD shows good performance with different configurations, which is

expected in real word applications. The runtime of our algorithm shows a clear advantage

over previous related work (Figure 4.1). The previous algorithm has problems with graphs

of 900 nodes with 90% of density and with graphs of 1000 nodes with 60%,70%, 80%,

and 90%. For those cases, the java implementation by (ROYER et al., 2008) has runtime

errors of memory limits. the edge reduction ratio, our algorithm also has an advantage

over previous work. We achieved an edge reduction ratio of 90% for very dense graphs.
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Figura 4.1: Runtime performance and edge reduction comparison. Colors represent dif-
ferent graph configurations with certain number of nodes. Runtime in miliseconds and
edge d and density obtained by the greedy method (ROYER et al., 2008) (a) and (c) and
BCD (b) and (d).
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(d) Greedy edge reduction(ROYER et al., 2008)

4.2.1 Clustering Evaluation using Real Datasets

We selected real datasets to evaluate the clustering approach using power graphs,

Additionally, we compare them with the ground truth datasets and evaluate the accuracy of

the technique using confusion matrices (see Figure 4.3). A requirement of our approach

is that the input graph must be undirected. We transform the input graph as follows.

First, we generate a weighted adjacency matrix – the cortex cat dataset is provided in this

format. Then, we compare each pair of elements and assign a weight according to their

similarity. We define a similarity distance to compare attributes, normalized between 0

and 1. As an example, consider the animal dataset: the similarity value between breast
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Figura 4.2: Adjacency matrix visualization with columns and rows ordering for three
datasets. From left to right. Weighted adjacency matrix. Binary adjacent matrix. Binary
Adjacent matrix with rows and columns ordered by maximum edge bicliques.

(a) Animal dataset

(b) Cat connectome graph

(c) Dermatology dataset

features is 1 if the two animals have breasts, otherwise it is 0. We consider that each

attribute can be quantitative or qualitative; in case of quantitative attributes we consider

the following formula:

Ci(A,B)
= 1− |CiA − CiB |

Cimax − Cimin

Where CiA , CiB are values of the attribute Ci of elements A and B respectively

and Cimax , Cimin
are the maximum and minimum values respectively for that attribute.

For a qualitative attribute it is considered 1 if they are equal and 0 if they are different.

Finally, the similarity between two elements is given by:
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W(A,B) =

|C|∑
i=1

Ci(A,B)

where |C| is the number of attributes of an element. Once the weighted matrix is

computed, we use a threshold to compute the adjacency matrix binarization. We highlight

the importance of considering a suitable threshold due to the fact that the density of the

resulting matrix impacts on data analysis. For each dataset, we picked the threshold which

generates a density of 50%. A lower density could present a loss of information and a

higher density would include information not present in the original graph (see Figure

4.2).

4.2.1.1 Cat Cortex

We show the comparison between the standard adjacency matrix of a cat connec-

tome with the adjacency matrix with ordered nodes in Figure 4.2b. The cat connectome

has four regions with high connectivity (communities)(REUS; HEUVEL, 2013). These

anatomical regions correspond to the clusters found by our power graph clustering appro-

ach. Our method presents a fifth cluster with elements that apparently do not correspond

to a defined community. Detected communities have a similarity with a cat brain cortex

described in (REUS; HEUVEL, 2013). The first cluster corresponds to the frontolimbic

cortex, the second with the auditory cortex,the third with the visual cortex and the fourth

with the somatomotor cortex. We should note that the second community which corres-

ponds to the auditory cortex is a quasi-clique. It is well known that cats audition is one

of the best in the animal kingdom, thus, we believe that the relationships between animal

capacity and density of brain regions are probable.

4.2.1.2 Zoo animals

The classification of elements allows us to understand the behavior of groups of

elements.There are different ways of classifying the animal kingdom (taxonomy). We

tested the results of the groups obtained with our BCD algorithm against the natural grou-

ping of 101 species of animals. A feature vector of 17 boolean animal characteristics and

a similarity matrix of animals features was defined. The matrix consists of similarity va-

lues between animals considering the number of characteristics in common. We binarized

the matrix considering a similarity of over 13 characteristics to consider, which are repre-
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Figura 4.3: Confusion matrices for clustering methods. From left to right. Our approach
using power graph, Hierarchical clustering, Kmeans clustering and Partitioning around
medoids. The confusion matrix visualization allows an overview of the performance of
the algorithms. Each column of the matrix represents the instances in a predicted class
while each row represents the observations in the class specified by the classifier. Colors
are mapped from 0 to 1 from the normalized confusion matrix.
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(c) Dermatology dataset

sented as edges (see Figure 4.2a). The threshold was chosen because it generates a graph

with high density. The power graphs of dense graphs tend to capture relevant information

about connectivity, whereas low-density graphs have many small non-relevant groups.

In Figure 4.2a, the matrix was ordered following our power graph approach. White

square regions represent groups and semi-white regions represents links between groups.

The adjacency matrix helps us explore the graph and identify the occurrence of groups

with high connectivity, thus representing a similarity between their members. Using this

concept we can create a simpler graph than the original, using power nodes as simpler

nodes. The graph representation was implemented using the D3 library (BOSTOCK;
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Figura 4.4: Weight adjacency matrix for different clustering algorithms. From left to
right, k-means, hierarchical clustering, partitioning around medoids and ground truth.

(a) Matrix layout for Zoo dataset

(b) Matrix layout for Cat connectome dataset

(c) Matrix layout for dermatological dataset

OGIEVETSKY; HEER, 2011). The matrix layout represents a compact way to visualize

clusters and the orthogonal layout reduces the edge overlapping in the graph. The pro-

posed layout makes it possible to inspect the difference between cliques and bicliques.

Cliques are represented by boxes with black borders and bicliques by pairs of pink boxes

connected by a power edge.

4.2.1.3 Dermatological Diseases

The dataset of dermatological diseases corresponds to 365 patients and each pa-

tient has 34 attributes divided into two groups, clinical attributes and histopathological

attributes. The dataset has 33 integer values and one of them is nominal (LICHMAN,

2013). The numerical attributes were given a degree in the range of 0 to 3. The value 0

indicates that the feature was not present, the values 1,2 for relative intermediate values

and 3 for the largest amount possible. The six classes describing dermatological diseases

are: psoriasis, seborrheic dermatitis, lichen planus, pityriasis rosea, chronic dermatitis,

and pityriasis rubra pilaris 4.2a.

To assess the dermatology data as with the previous datasets, we chose three po-
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Figura 4.5: Power Graph orthogonal layout for dense random graphs with 10, 20, 30, 40
and 50 nodes.

10 20 30 

40 50 

pular clustering methods to compare their accuracy and results with our clustering ap-

proach. The disadvantage of unsupervised techniques as clustering analysis is difficult

to assign labels to discovered clusters. To overcome the problem we used the ground

truth and assigned a label based on the more frequently observations inside detected clus-

ters. The precision of our method compared with other clustering techniques are shown

in Figure 4.4.

The Circular layout of dendrograms for cat connectome, dermatological diseases

and zoo dataset are shown in Figure 4.7. We see the power node indices and the tree

structure with branches and colors associated with each cluster.
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4.2.2 Orthogonal Layout Evaluation

In addition to the real datasets, we analysed the orthogonal layout in five undirec-

ted random graphs with a different number of nodes densities. The main concern of our

layout algorithm was the area required for each power graph representation. We can see

in Figure 4.5 that an increment of the number of nodes does not generate edge occlusion;

however the difficulties to interpret the visualization arise when we want to identify the

path of single edges. The proposed orthogonal layout helps us to observe a concentration

of edges and their communication with groups of nodes. We considered as a unit of mea-

sure the width and length of a single node (represented by a square). In this layout, if the

diagram minimises the visualization area, the output layout is more compact and easier to

understand and represent more information.

The 10-nodes graph has two small cliques, a large biclique, two dependent groups

and ten edges; the original graph has 36 edges which lead to an obvious reduction of more

than half edges. The other cases show similar results highlighting the modular structure

and power edges that are similar to veins in the circulatory system with orthogonal direc-

tions.

In Figure 4.6 we present the orthogonal layout with clustering highlights for the

zoo and dermatology datasets, the cat connectome is in Figure 1.1d.

4.3 Image comprenssion performance

We tested the compression method in three images of different sizes. The first is

a picture of 256x256 pixels with a density of 51.38 % (see Figure 4.9) where rectangular

shapes dominate and large bicliques are easy to find. The second is a widely-known

image in the image processing area. Lena is a 512x512 image(see Figure 4.10), with a

low pixel density(37.71%), in this case, the first bicliques are not large. Lastly, the third

image has a size of 1024x1024 and represents a landscape with a higher density than the

others(61.12%) but without rectangular shapes (see Figure 4.11).

The results show that the pixel reduction ratio depends on three factors: the black

pixel density, the rectangular shapes and number of bicliques. In this sense, the images

with high density and rectangular shapes have a considerable reduction.

Another method to compress binary images works with 16x16 blocks similar to the

JPG strategy and finds rectangular partitions of the same colour (FALKOWSKI, 2004).
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Figura 4.6: Power Graph Orthogonal Layout, each box represent a node or power node
and their colors correspond to clusters find by BCD method. Generally there are pairs of
boxes with the same color (they are bicliques), also there are cliques but they generally
are small. in very dense graphs, this is the opposite.
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(a) Animal dataset, on the left it shows the complete power graph and on the right a subgraph
belonging to the cluster of mammals.

(b) Dermatology dataset, on the left it shows the complete power graph and on the right a subgraph
belonging to the cluster of psoriasis patient.

In (MOHAMED; FAHMY, 1995) nonoverlapping rectangular regions are calculated. In

conclusion, the plan to compress binary images is to find rectangular regions. The rectan-

gular region is a particular case of a biclique but we can find several rectangular regions

in a single biclique (i.e. in Figure 4.11 for K = 1 this image have several rectangular

regions where K is the number of bicliques).

Our method allows applying another method of compression because we only
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Figura 4.7: Dendrograms for power graph representations. Leaf nodes represent nodes
from the original graph which are colored according to found clusters. Intermediate nodes
present tags that correspond to power node identifiers. The arragement of the ramificati-
ons from the dendrogram root is the ordering obtained as a result of BCD algorithm.

(a) Animal dataset (b) Cat connectome (c) Dermatology dataset

Figura 4.8: Runtime and black pixel compression for 3 images of different sizes.

reduce the number of black pixels. In others words, it is another way to see the image.

The runtime of our method is particularly fast to work with images from 256x256

to 1024x1024 without using blocks (see Figure 4.8a). The biclique representation also

demonstrates that the compression of black pixels is considerable(see Figure 4.8b).
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Figura 4.9: 256x256 image with rectangular shapes and 33674 black pixels. For one
biclique (K = 1) the number of black pixels is 22359 with a compression of 33, 60%. For
K = 10 and K = 100 the image has 13721 and 9365 black pixels respectively.
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Figura 4.10: 512x512 image without rectangular shapes and no dense, it has 98879 black
pixels. For one biclique (K=1) the number of black pixels is 93423 with a compression of
6%. For K = 10 and K = 100 the image has 70985 and 40802 black pixels respectively.
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Figura 4.11: 1024x1024 image without rectangular shapes, it has 641900 black pixels.
For one biclique (K=1) the number of black pixels is 561303 with a compression of 13%.
For K = 10 and K = 100 the image has 430840 and 215764 black pixels respectively.
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5 DISCUSSION

In order to offer more effective methods for data and graph analysis, we desig-

ned the BCD algorithm for power graph construction which improves the complexity of

related work algorithms and increases the runtime performance over undirected graphs.

Additionally, we proposed a clustering technique based on an adjacency matrix visuali-

zation with nodes ordering. We evaluated our technique in three aspects: runtime perfor-

mance, clustering results and visualization presentation. We measured the performance

of the proposed algorithm and observed speedups in runtime with respect to the current

state of the art. The BCD algorithm possesses an advantage over its rivals during the

sets operations while computing common adjacent nodes. Greedy algorithms for power

graph construction are required to test each node versus the rest of them resulting in a

complexity of O(n2) where n is the number of nodes of the input graph. Additionally,

previous work needs to iterate over each adjacent node to compute the common neigh-

bors. BCD reduces the complexity of finding common neighbors by storing the neighbors

as binary sets and computing the intersection with binary operations. For edge reduction,

our approach obtains its advantage by maximizing the number of nodes that are abstrac-

ted in a power node. We should highlight the limitation of BCD while dealing with larger

graphs with more than 1000 nodes; however, the scalability improvement achieved with

our method opens the opportunity for real-time graphs applications.

Case studies demonstrate that BCD clustering can be used for clustering tasks

supported by the user. The accuracies obtained with our power graph clustering method

are similar to results obtained with common clustering techniques for the animal (89%)

and cat connectome (69%) dataset. We attribute the difference of accuracies observed

in the dermatology dataset to the distance used to form the groups. We used a generic

distance for each dataset which measures the number of similar features between the

observations. In the case of a health dataset, the distance used does not capture the relevant

features to diagnose a disease. However, using the generic distance after the binarization

of the adjacency matrix, the generated graph was dense enough and our power graph

algorithm obtained interesting groupings that could be used for medical decisions when

evaluating a disease.

The orthogonal layout visualization used for power graph representation, solved

the problem of edge occlusion with traditional graph visualizations. Additionally, the

chosen representation improves the visualization of nodes due to the introduced order.



49

Displaying the nodes with a natural or custom order help experts in finding patters through

data analysis. We tested the orthogonal layout using our three datasets and colored the

power nodes with clusters found by our approach. We showed that the proposed layout

highlights relationships between subgraphs and subcomponents. In the other hand, it

presents the disadvantage of recognizing individual connections, thus allowing a general

analysis which could be improved by additional interaction.

The binary image compression is a premature technic, but its results are promising.

we demonstrate that our method for finding bicliques is good,but its implementation can

be improved with different methods. The black pixels dense determinate the percentage

of compression, but we obtained results over 50% of compression for no dense images.
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6 CONCLUSION AND FUTURE WORK

In this work, we proposed a novel algorithm for power graph construction to sim-

plify the visual representation of large graphs. Power graphs serve as a novel represen-

tation that uses cliques, bicliques, and stars as primitives, thus reducing the number of

original nodes and edges and facilitating the data interpretation. To be specific, we first

developed a novel algorithm named Bitwise Clique Detection (BCD) to find the opti-

mal maximum edge clique or biclique. The advantage of BCD over related work is the

improvement of sets comparison using binary operations while computing the common

neighbors between two nodes. We also obtained an improvement in edge reduction over

previous work due to the fact that BCD maximizes the number of nodes that should be

inserted in a power node. Furthermore, we demonstrated a simple orthogonal layout algo-

rithm which emphasizes the minimization of the area occupied by graphic components,

imposing an order on the diagram and reducing nodes and edges occlusion. As other con-

tributions, we used the ordering of the power nodes found to reorder the adjacency matrix

visualization and with the help of user interaction we used BCD output as a graph cluste-

ring technique. We conducted empirical evaluations for our clustering approach based on

three machine learning datasets: zoo animals, cat brain connectome, and a dermatology

diseases. In fact, by visualizing the results obtained from BCD clustering and comparing

with popular clustering techniques we tested the ability of our technique to detect groups

and find meaningful patterns, which validated the effectiveness of our approach. Finally,

we use the main method to power graphs(biclique detection) to reduce black pixels of

images of different sizes.

Limitations of the BCD algorithm are the need use to undirected graphs, for weigh-

ted directed graphs or graphs, so we planted a criterion for binarizing weighted matrices.

With respect to orthogonal layout the fundamental limitation lies when drawing the edges,

to draw an edge is necessary to explore within the graph, but in large graphs, the number

of edges exceeds 1000 and run the Dijkstra algorithm for large graphs and run several

times it does slow.

In the future, we plan to improve BCD to deal with weighted adjacency matrices

without previous binarization to prevent loss of performance. We hope to expand the clus-

tering technique using power graphs. Though we think that experts input on data analysis

task is valuable, automatic tools for clustering analysis offer different insights. Additio-

nally, we will explore interactive layouts for complex networks and cluster analysis.
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APÊNDICE A — RESUMO EXPANDIDO EM PORTUGUÊS

Ao longo dos anos, os cientistas desenvolveram vários métodos para estudar redes

do mundo real. Na neurociência, por exemplo, existe um grande interesse em encontrar

informações sobre o comportamento das redes neurais (SPORNS; TONONI; KÖTTER,

2005; SPORNS, 2011; REUS; HEUVEL, 2013). Uma característica proeminente nesse

campo é o estudo de conectomas, mas a complexidade dos seres vivos torna impossível

estudar neurônios individuais na maioria dos casos. Para reduzir a complexidade, a aná-

lise é feita em regiões específicas do cérebro, como o conectoma humano (SPORNS;

TONONI; KÖTTER, 2005) ou o conectoma de gatos (REUS; HEUVEL, 2013). Outras

redes amplamente estudadas são as redes de proteínas (CHASSEY et al., 2008), redes

sociais (BRANDES; WAGNER, 2004) e de citações (LESKOVEC; HORVITZ, 2014).

Os grafos são essenciais para muitas representações de dados. A análise visual

de grafos é usualmente difícil devido ao tamanho, o que representa um desafio para sua

visualização. Além de isso, seus algoritmos fundamentais são frequentemente classifi-

cados como NP-difícil. A análise de grafos de potência (AGP) é uma técnica proposta

para simplificar grafos usando representações reduzidas, chamadas Grafos de Potência

ou Power Graphs, que possuem representações especiais para subgrafos completos (cli-

ques) e subgrafos bipartidos completos (bicliques). Os grafos de potência permitem uma

redução considerável no número de arestas. A Figura A.1 ilustra um grafo denso (a) e

sua representação correspondente no grafo de potência (b), que usa a terminologia espe-

cial de nodo de potência e aresta de potência para se referir aos seus vértices e arestas.

Existem muitos grafos de potência possíveis associados a um determinado grafo, e um

grafo de potência ideal é aquele que possui o menor número de arestas de potência, dire-

tamente relacionado a o sucesso em encontrar bicliques e panelinhas. É provável que esse

Figura A.1: Processo de agrupamentos baseados na análise de grafos de potência aplicado
no grafo representando o conectoma do grafo.

(a) Grafo Denso (b) Layout Ortogo-
nal/Grafo de Potência

(c) Matriz de Adjacên-
cia/Grafo de Potência

(d) Agrupamentos en-
contrados com BCD
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problema seja NP-difícil, pois encontrar a biclique máxima em um grafo mostrou-se NP-

difícil (PEETERS, 2003). Portanto, os algoritmos de computação do grafo de potência

baseiam-se em algoritmos de aproximação e heurísticas.

Uma abordagem hierárquica de agrupamento é usada em (ROYER et al., 2008)

para computação de grafos de potência, mas é lenta para grafos densos. Dwyer et al. (DWYER

et al., 2014) propuseram um algoritmo aprimorado usando uma estratégia gananciosa e

que grafos de potência permitidos para a visualização de grafos densos. No entanto, seus

resultados foram limitados a pequenos grafos (até 100 vértices). O objetivo desta disser-

tação é escalar a análise de grafos de potência para grafos maiores.

Neste trabalho, propusemos um novo algoritmo para construção de grafos de po-

tência para simplificar a representação visual de grandes grafos. Os grafos de potência

servem como uma representação nova que utiliza cliques, bicliques e estrelas como pri-

mitivas, reduzindo assim o número de nós e arestas originais, assim facilitando a interpre-

tação dos dados. Primeiro desenvolvemos um novo algoritmo chamado Bitwise Clique

Detection (BCD) para encontrar a biclique máxima ou clique ideal de borda máxima.

A vantagem do BCD sobre o trabalho relacionado é a melhoria da comparação de con-

juntos usando operações binárias enquanto computa os vizinhos comuns entre dois nós.

Também obtivemos uma melhoria na redução de borda em relação ao trabalho anterior

devido ao fato de o BCD maximizar o número de nós que devem ser inseridos em um

nó de energia. Além disso, demonstramos um algoritmo de layout ortogonal simples que

enfatiza a minimização da área ocupada por componentes grafos, impondo uma ordem

ao diagrama e reduzindo a oclusão de nós e arestas. Como outras contribuições, usamos

a ordem dos nós de energia encontrados para reordenar a visualização da matriz de ad-

jacência e, com a ajuda da interação do usuário, usamos a saída BCD como uma técnica

de agrupamento de grafos. Realizamos avaliações empíricas para nossa abordagem de

agrupamento com base em três conjuntos de dados de aprendizado de máquina: animais

do zoológico, conectoma do cérebro de gato e doenças dermatológicas. De fato, visuali-

zando os resultados obtidos com o agrupamento de BCD e comparando com as técnicas

populares de agrupamento, testamos a capacidade de nossa técnica em detectar grupos

e encontrar padrões significativos, que validavam a eficácia de nossa abordagem. Final-

mente, usamos o método principal para gerar grafos (detecção de biclique) para reduzir

pixels pretos de imagens de tamanhos diferentes.

Em resumo, as principais contribuições apresentadas neste trabalho são:

• Binary Clique Detection (BCD), um método PGA que usa uma representação de
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matriz bit a bit para melhorar a detecção de cliques e bicliques, e levar a uma ace-

leração de uma ordem de magnitude para métodos anteriores,

• Um layout ortogonal especialmente projetado para grafos de potência,

• Um algoritmo de grafo de potência para agrupar grafos densos que combinados com

os layouts ortogonais permitem inspecionar os resultados do algoritmo de agrupa-

mento, bem como a conectividade entre os nós em cada agrupamento.

As limitações do algoritmo BCD incluem grafos não direcionados, grafos dire-

cionados ponderados ou grafos. Portanto, propomos um critério para a binarização de

matrizes ponderadas. No que diz respeito ao layout ortogonal, a limitação fundamen-

tal está ao desenhar as arestas, é necessário explorar uma aresta para explorar dentro do

grafo, mas em grafos grandes, o número de arestas excede 1000 e execute o algoritmo

Dijkstra para grafos grandes e execute várias vezes desacelera.

No futuro, planejamos melhorar o algoritmo BCD para lidar com matrizes de adja-

cência ponderadas sem etapas de binarização anteriores, para evitar perda de desempenho.

Esperamos expandir a técnica de agrupamento usando grafos de potência. Embora pen-

semos que a contribuição dos especialistas na tarefa de análise de dados seja valiosa, as

ferramentas automáticas para análise de agrupamentos oferecem diferentes perspectivas.

Além disso, exploraremos layouts interativos para redes complexas e análise de agrupa-

mentos.
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