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A simple numerical scheme to linear radiative transfer in hollow and
solid spheres

Um esquema numérico simples para transferência radiativa linear em
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Abstract
In this work we consider the linear radiative transfer in hollow and solid spheres and the solution in a medium
with diffusely reflecting boundaries and energy source as well. The discrete ordinates method with diamond
difference scheme is used to calculate the radiation intensities and the partial heat fluxes at the boundaries.
Our results were obtained for forward, isotropic and backward scattering and were compared with data in the
literature.
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Resumo
Nesse trabalho consideramos a transferência radiativa linear em esferas ocas e maciças, bem como a solução
em um meio com fronteiras refletoras difusas e com fonte de energia. O método de ordenadas discretas com
a técnica de diamond difference é utilizado para calcular as intensidades de radiação e os fluxos de calor
parciais nas fronteiras. Nossos resultados foram obtidos para os espalhamentos para frente, isotrópico e para
trás e foram comparados com os dados da literatura.
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Introduction

The radiative transfer equation in spherical geome-
try has numerous applications. Examples include, among
others, the stellar atmosphere, furnaces and nuclear reac-
tors (HOWELL; MENGUC; SIEGEL, 2016; MODEST,
2013). There are different techniques to solve the radia-
tive transfer in spheres, for example Thynell and Ozisik
(1985) used the Galerkin technique to simulate the ra-
diative transfer in solid spheres for isotropic scattering;
and Tsai et al. (1989) used the finite volumes method
and the discrete ordinates method in inhomogeneous and
anisotropic scattering solid and hollow spheres. In a first
moment, Abulwafa (1993) applied a Galerkin technique to
hollow spheres, and later Abulwafa and Attia (1997) used
the classical Pomraning-Eddington technique to obtain a
semi-analytical solution for solid spheres, both papers for
linearly anisotropic scattering. Sghaier (2013) used a mo-
ment method (SGHAIER, 2013), which reduces scattering
angular difficulties, but only in hollow spheres. Elghaz-
aly (2009) also used the Pomraning-Eddington technique
to obtain the solution for solid spheres (ELGHAZALY,
2009), but for different (more accurate) boundary condi-
tions.

As it is noteworthy, most of the researchers in the
field of linear radiative transfer in spherical geometry use
numerical methods, not always for both solid and hollow
spheres, also not always for anisotropic scattering. In this
work, we present a simple numerical method to solve the
linear radiative transfer in hollow and solid spheres with
anisotropic scattering.

We use the discrete ordinates method with a diamond
difference scheme (CHANDRASEKHAR, 1950; LEWIS;
MILLER JUNIOR, 1984). This combination is quite usual
in numerical methodologies for radiation transfer pro-
blems. We use the discrete ordinates method in the an-
gular variable and a numerical integration over a grid
in the spatial variable. The finite volumes method also
requires an numerical integration, however we propose
a different integration rule, where the nodes are in the
edges of each segment (not in the center). This procedure
produces a mesh, over which the radiation intensity as-
sumes constant values. Following the diamond difference
scheme, we solve the discretized radiation intensities one
by one, in an iterative routine. Finally, we report cases
with numerical solutions that are compared with data in
the literature.

Radiative transfer equation in spherical geome-
try

We consider the radiative transfer equation in spherical
geometry (OZISIK, 1973),
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where r ∈ [a,b], 0≤ a < b, is the optical (space) variable
and µ ∈ [−1,1]. Here, µ = cosθ , θ is the direction polar
angle and µ ′ is the direction cosine of the incident rays.
I = I (r,µ) is the radiation intensity, Ib (T ) is the black
body radiation for temperature T , ω is the single scattering
albedo and P is the phase function, a relation between the
incident and scattered radiations. P may be approximated
as a truncated series with a Legendre polynomials basis
(CHANDRASEKHAR, 1950),
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where β` are the expansion coefficients of the Legendre
polynomials and P` is the `-th Legendre polynomial.
Here, L refers to the degree of anisotropy. Also, if β1 > 0
or β1 < 0 we say P is a forward or backward scattering
phase function, respectively; and if β` = 0 for ` ≥ 1 we
say it is an isotropic scattering phase function (PETTY,
2006).

The boundary conditions of equation (1) are

I (a,µ) =


ε1Ib1 (T )

−2ρ1

∫ 0

−1
I
(
a,µ ′

)
µ
′dµ

′ , a > 0

I (0,−µ) , a = 0

(3)

for µ > 0, and

I (b,µ) = ε2Ib2 (T )+2ρ2

∫ 1
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)
µ
′dµ

′ (4)

for µ < 0. Here, ε1 and ε2 are the emissivities
at the inner and outer radii, respectively. Similarly,
ρ1 and ρ2 are the diffusive reflectivities at the in-
ner and outer radii, respectively; and Ib1 (T ) and
Ib2 (T ) are the black body radiations for tempera-
ture T at the inner and outer radii, respectively.
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In this paper, we use equation (1) in the form
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for (r,µ) ∈ [a,b]× [−1,1].

Discrete ordinates method

The discrete ordinates method SN (CHAN-
DRASEKHAR, 1950) is a classical method based
on the angular variable discretization in an enumerable set
of angles, or equivalently, their direction cosines. In our
work, {µm}M

1 where M is the amount of discrete ordinates.
We use the SN technique in the angular variable, so we
define Im (r) = I (r,µm). The SN form of equation (5) is
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for m = 1,2, . . . ,M, where µm and wm are the (crescent)
abscissas and weights of a quadrature rule and αm±1/2

are obtained by the recursion formula (LEWIS; MILLER
JUNIOR, 1984)

α1/2 = 0 (7)

αm+1/2 = αm−1/2−2µmwm (8)

for m = 1,2, . . . ,M. Here, the SN method requires an even
order quadrature, so M must be even. In this paper, without
loss of generality, we use an even order Gauss-Legendre
quadrature. Also, note that the integral term in (5) is ap-
proximated as a sum due to the quadrature rule to evaluate
it. This is one of the great advantages of using the discrete
ordinates method.

In order to solve (6) for Im (r) with an iterative scheme
for m = 1,2, . . . ,M, we use the mean (LEWIS; MILLER
JUNIOR, 1984)
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and we rewrite the equation (6) as
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To start the iterative scheme, we need I1/2 (r). To ob-
tain it, we consider equation (5), expand the derivative
in µ , cancel some terms out, evaluate it at the discrete
ordinate µ1/2 =−1, use the quadrature rule in the integral
over µ ′ and get
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The discrete ordinates form of the boundary conditions
writes

I1/2 (b) =ε2Ib2 (T )+2ρ2
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for m = 1,2, . . . ,M/2, and
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for m = M/2+1,M/2+2, . . . ,M.

Spatial discretization

We discretize the position variable a ≤ r ≤ b in the
nodes {ri}N

0 , wherein ri = a+ i∆r for i = 0,1, . . . ,N and
∆r = (b−a)/N = ri+1− ri for all i but N.

We propose a different approach in this discretization.
For example, the finite differences method imply an eva-
luation of the equation at the nodes, and get an algebraic
system where the unknowns are the Im in the edges of the
cells; and the finite volumes method requires the integra-
tion of the equation over a control volume, and also get
an algebraic system where the unknowns are the Im in the
center of the cells. In this article we used an integral ope-
rator in the equation and got the unknowns in the edges of
the cells.
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We apply the operators
1

∆r
∫ ri+1
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( · )r dr and

1
∆r
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( · )dr in equations (10) and (11), respectively,

and used the trapezoidal rule, dropping the error term. This
results in a grid with nodes in the edges of the segments,
obtained by integral operators. Defining Ii
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both for i= 0,1, . . . ,N−1. For illustration, Figure 1 shows
the double discrete variables (i,m) represent the continu-
ous variables (r,µ) in a mesh.

The boundary conditions (12), (13) and (14) are ex-
pressed as

IN
1/2 =ε2Ib2 (T )+2ρ2

M

∑
m′=M/2+1

wm′µm′ I
N
m′ , (17)

IN
m =ε2Ib2 (T )+2ρ2
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∑
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wm′µm′ I
N
m′ (18)

for m = 1,2, . . . ,M/2, and

Figure 1 – A schematic (out of scale) mesh of the (r,µ)
discretization into the variables (i,m) with corresponding
values r→ i and µ→m. Ii

m are positioned above the (i,m)
nodes. Also, the ray propagation directions are indicated
in the right for some values of µ .

Source: The authors.

I0
m =



ε1Ib1 (T )

−2ρ1
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µm′wm′ I
0
m′ , a > 0

I0
M+1−m , a = 0

(19)

for m = M/2+1,M/2+2, . . . ,M, respectively.

To obtain the solution of this linear algebraic system,
we used a diamond difference scheme, exemplified in
Algorithm 1. There, all right-hand sides of the cited equa-
tions are computed using older values. Also, we iterate
in a diamond difference scheme (LEWIS; MILLER JU-
NIOR, 1984), id est for m≤M/2 we update Ii

m for i going
from N to 0, and for m > M/2 we update Ii

m for i going
from 0 to N. That means we are updating the boundaries
Im first, and then the rest of the Ii

m for the same direction
angle.
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Algorithm 1: Pseudocode for the present metho-
dology.

Data: Problem data: a, b, ω , P, Ib (T ), ε1, ρ1,
Ib1 (T ), ε2, ρ2, Ib2 (T )

Data: Numerical data: M, N, stop criteria “O” for
the outer iterations and “I” for the inner
iterations.

Compute µm, wm, αm±1/2, ∆r, ri for all
m = 1,2, . . . ,M and i = 0,1, . . . ,N

Make initial guess Ii
m for all m = 1,2, . . . ,M and

i = 0,1, . . . ,N

while stop criterion O is not satisfied do

Compute IN
1/2 using (17)

for i = N−1,N−2, . . . ,0 do

Solve (16) for Ii
1/2

end
for m = 1,2, . . . ,M/2 do

while stop criterion I is not satisfied do

Compute IN
m using (18)

for i = N−1,N−2, . . . ,0 do

Solve (15) for Ii
m

end
end
for i = 0,1, . . . ,N do

Compute Ii
m+1/2 using (9)

end
end
for m = M/2+1,M/2+2, . . . ,M do

while stop criterion I is not satisfied do

Compute I0
m using (19)

for i = 0,1, . . . ,N−1 do

Solve (15) for Ii+1
m

end
end
for i = 0,1, . . . ,N do

Compute Ii
m+1/2 using (9)

end
end

end
Result: Matrix with values of Ii

m

Numerical results

We used the present methodology to solve the linear
radiative transfer problem in hollow and solid spheres. For
the purpose of comparison with available data in literature
(ABULWAFA, 1993; ABULWAFA; ATTIA, 1997), we

define backward and forward radiation fluxes as

q− (ri) =
M/2

∑
m′=1

wm′µm′ I
i
m′ , (20)

q+ (ri) =
M

∑
m′=M/2+1

wm′µm′ I
i
m′ . (21)

We used the stop criterion of relative distance to the
average between two consecutive iterations,

max
m=1,...,M
i=0,...,N

∣∣∣∣∣ Ii
m−

(
Ii
m
)

old
Ii
m +(Ii

m)old

∣∣∣∣∣≤ 10−6 , (22)

in both inner and outer loops. Here, the
(
Ii
m
)

old represents
values of Ii

m of the previous iteration.
The coefficients β` in equation (2) are evaluated ac-

cording to Table 1 (ABULWAFA, 1993). Note that in the
reference, the authors used an approximation to linear
phase function in their methods. We do not use any sort of
approximation in the phase function per se. The approxi-
mation in the angular variable occur due to the application
of the discrete ordinates method.

Table 1 – Values of β` in (2) for the phase function of
different scattering cases.

` Forward Isotropic Backward

0 1.00000 1.00000 1.00000

1 1.98398 0.00000 -0.56524

2 1.50823 0.00000 0.29783

3 0.70075 0.00000 0.08571

4 0.23489 0.00000 0.01003

5 0.05133 0.00000 0.00063

6 0.00760 0.00000 0.00000

7 0.00048 0.00000 0.00000

8 0.00000 0.00000 0.00000

Source: Table 1 of Abulwafa (1993) with our zeros and Isotropic
column completion.

In the following, we present the numerical results for
three cases, Case 1 for hollow sphere, Case 2 for solid
sphere and Case 3 for mesh refinement. In all cases, ac-
cording to the discrete ordinates method, we chose an
even integer M.

Case 1 - Hollow Sphere

For this case, we consider homogeneous and inho-
mogeneous hollow spheres, with numerical values a =

1 and b = 2, P is given by equation (2), where the
values of β` are given by Table 1. ω is given by Ta-
ble 2 (referenced by j), ε1 = ε2 = 0.75, ρ1 = ρ2 = 0.25,
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Ib1 (T ) = 0, Ib2 (T ) = 4/3 and several Ib (T ). We con-
sider a mesh with M = 30 and N = 100. Tables 3, 4 and 5
show the obtained numerical values of q+ (b) and−q− (a)

(to show positive values) for forward, isotropic and back-
ward scattering compared with the ones in the Table 6
of Abulwafa (1993). In this case, we use the numerical
quantities (ABULWAFA, 1993),

F = (b4−a4)/(b3−a3) , (23)

H = (b5−a5)/(b3−a3) , (24)

in the data tables. In the result tables, REF and P.M. re-
fer to “Abulwafa (1993)” and “Present Methodology”,
respectively.

Table 2 – Different single scattering albedos for case 1
(F and H are computed as in equations (23) and (24)).

j ω (r) j ω (r)

1 2r/3F 7 1.0−2r/3F

2 0.2+2r/5F 8 4r/15F + r2/2H

3 0.4+2r/15F 9 0.4−4r/15F + r2/2H

4 0.5 10 0.6−8r/15F + r2/2H

5 0.6−2r/15F 11 1.0−16r/15F + r2/2H

6 0.8−2r/5F

Source: Table 6 of Abulwafa (1993).

Case 2 - Solid sphere

For this case, we consider homogeneous solid spheres,
with numerical values a = 0 and several sphere radius b.
by equation (2), where the values of β` are given by
Table 1 and ω assumes constant values, from 0.100 to
0.999. ε2 = 0.5, ρ2 = 0.5, Ib2 (T ) = 1 and Ib (T ) = 1.
We consider a mesh with M = 30 and N = 100. Tables 6,
7 and 8 show the obtained numerical values of q+ (b) for
forward, isotropic and backward scattering compared with
the ones in the Table 4 of Abulwafa and Attia (1997). In
the result tables, REF and P.M. refer to “Abulwafa and
Attia (1997)” and “Present Methodology”, respectively.

Table 3 – Results for q+(b) and −q−(a), case 1, with
forward scattering (β` from Table 1) and albedos given by
the index j from Table 2.

q+(b) −q−(a)

j REF P.M. REF P.M.

( 1
−

ω
(r
)) I b

(T
)
=

0.
0

1 0.17334 0.17210 0.26879 0.27017
2 0.16887 0.16764 0.27264 0.27426
3 0.16466 0.16347 0.27670 0.27855
4 0.16266 0.16149 0.27881 0.28076
5 0.16073 0.15958 0.28098 0.28303
6 0.15705 0.15597 0.28549 0.28771
7 0.15364 0.15264 0.29024 0.29261
8 0.17990 0.17867 0.26448 0.26555
9 0.17047 0.16924 0.27190 0.27348

10 0.16616 0.16496 0.27591 0.27771
11 0.15837 0.15727 0.28458 0.28678

( 1
−

ω
(r
)) I b

(T
)
=

1.
0

1 0.83555 0.83675 0.80437 0.79757
2 0.82646 0.82752 0.82000 0.81305
3 0.81806 0.81904 0.83640 0.82923
4 0.81413 0.81508 0.84490 0.83760
5 0.81037 0.81130 0.85362 0.84616
6 0.80337 0.80430 0.87169 0.86387
7 0.79709 0.79803 0.89070 0.88241
8 0.84858 0.85002 0.78654 0.77991
9 0.82922 0.83031 0.8167 0.80990

10 0.82058 0.82159 0.83293 0.82592
11 0.80544 0.80636 0.86782 0.86020

( 1
−

ω
(r
)) I b

(T
)
=

1.
0
−

r2 H

1 0.41214 0.41187 0.54555 0.53428
2 0.40710 0.40684 0.54553 0.54420
3 0.40249 0.40227 0.55599 0.55455
4 0.40035 0.40016 0.56142 0.55991
5 0.39833 0.39817 0.56698 0.56538
6 0.39460 0.39452 0.57850 0.57669
7 0.39133 0.39134 0.59062 0.58854
8 0.41950 0.41926 0.52429 0.52308
9 0.40867 0.40840 0.54358 0.54231

10 0.40392 0.40368 0.55393 0.55257
11 0.39574 0.39563 0.57619 0.57449

Source: The authors.

26
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, n. 1, p. 21-30, Jan./June 2020



A simple numerical scheme to linear radiative transfer in hollow and solid spheres

Table 4 – Results for q+(b) and −q−(a), case 1, with
isotropic scattering (β` from Table 1) and albedos given
by the index j from Table 2.

q+(b) −q−(a)

j REF P.M. REF P.M.

( 1
−

ω
(r
)) I b

(T
)
=

0.
0

1 0.19633 0.19692 0.23659 0.23680
2 0.19069 0.19128 0.23028 0.23949
3 0.18531 0.18590 0.24221 0.24243
4 0.18273 0.18331 0.24378 0.24400
5 0.18021 0.18079 0.24541 0.24563
6 0.17537 0.17594 0.24888 0.24911
7 0.17078 0.17135 0.25266 0.25289
8 0.20451 0.20512 0.23373 0.23394
9 0.19275 0.19337 0.23876 0.23898

10 0.18728 0.18787 0.24163 0.24185
11 0.17715 0.17773 0.24817 0.24839

( 1
−

ω
(r
)) I b

(T
)
=

1.
0

1 0.83979 0.84053 0.78085 0.78145
2 0.83025 0.83097 0.79472 0.79529
3 0.82139 0.82211 0.80953 0.81010
4 0.81723 0.81794 0.81733 0.81788
5 0.81325 0.81395 0.82540 0.82594
6 0.80579 0.80650 0.84236 0.84289
7 0.79906 0.79975 0.86053 0.86104
8 0.85350 0.85426 0.76512 0.76573
9 0.83322 0.83395 0.79152 0.79208

10 0.82418 0.82485 0.80610 0.80666
11 0.80806 0.80877 0.83840 0.83893

( 1
−

ω
(r
)) I b

(T
)
=

1.
0
−

r2 H

1 0.42341 0.42402 0.51416 0.51460
2 0.41752 0.41812 0.52325 0.52369
3 0.41206 0.41266 0.53296 0.53340
4 0.40950 0.41010 0.53807 0.53850
5 0.40706 0.40764 0.54335 0.54377
6 0.40249 0.40307 0.55445 0.55487
7 0.39838 0.39895 0.56634 0.56674
8 0.43201 0.43264 0.50393 0.50438
9 0.41948 0.42009 0.52126 0.52169

10 0.41387 0.41448 0.53082 0.53125
11 0.40400 0.40459 0.55198 0.55240

Source: The authors.

Table 5 – Results for q+(b) and −q−(a), case 1, with
backward scattering (β` from Table 1) and albedos given
by the index j from Table 2.

q+(b) −q−(a)

j REF P.M. REF P.M.

( 1
−

ω
(r
)) I b

(T
)
=

0.
0

1 0.20305 0.20343 0.22740 0.22768
2 0.19707 0.19745 0.22978 0.23010
3 0.19136 0.19174 0.23241 0.23278
4 0.18861 0.18898 0.23383 0.23421
5 0.18592 0.18629 0.23533 0.23572
6 0.18073 0.18111 0.23853 0.23896
7 0.17581 0.17618 0.24206 0.24251
8 0.21170 0.21210 0.22492 0.22516
9 0.19927 0.19965 0.22932 0.22963

10 0.19347 0.19385 0.23189 0.23224
11 0.18265 0.18303 0.23786 0.23829

( 1
−

ω
(r
)) I b

(T
)
=

1.
0

1 0.84093 0.84174 0.77382 0.77320
2 0.83125 0.83203 0.78718 0.78651
3 0.82225 0.82302 0.80154 0.80084
4 0.81802 0.81878 0.80914 0.80840
5 0.81397 0.81471 0.81703 0.81626
6 0.80637 0.80711 0.83368 0.83285
7 0.79950 0.80023 0.85163 0.85072
8 0.85483 0.85572 0.75870 0.75812
9 0.83428 0.83508 0.78994 0.78334

10 0.82505 0.82583 0.79811 0.79742
11 0.80870 0.80945 0.82969 0.82888

( 1
−

ω
(r
)) I b

(T
)
=

1.
0
−

r2 H

1 0.42669 0.42720 0.50792 0.50803
2 0.42055 0.42105 0.51676 0.51685
3 0.41484 0.41534 0.52627 0.52634
4 0.41216 0.41266 0.53129 0.53134
5 0.40959 0.41009 0.53649 0.53653
6 0.40477 0.40528 0.54748 0.54748
7 0.40042 0.40092 0.55931 0.55927
8 0.43565 0.43618 0.49799 0.49812
9 0.42262 0.42312 0.51476 0.51486

10 0.41676 0.41727 0.52410 0.52418
11 0.40639 0.40690 0.54496 0.54497

Source: The authors.
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Table 6 – Results for q+(b), case 2, with forward scattering (β` from Table 1) and several values of b.

b = 0.1 b = 1.0 b = 10.0

ω(r) REF P.M. REF P.M. REF P.M.

0.100 0.511215 0.512020 0.544716 0.544995 0.619337 0.555623
0.300 0.534881 0.535722 0.657360 0.657857 0.755433 0.710358
0.500 0.560347 0.561229 0.818226 0.819105 0.999109 0.978411
0.700 0.587821 0.588748 1.064922 1.066358 1.523777 1.557299
0.900 0.617543 0.618519 1.487022 1.489217 3.574035 3.777158
0.990 0.631725 0.632725 1.792221 1.794336 10.74023 10.88715
0.999 0.633172 0.634175 1.879144 1.831212 13.43572 13.47837

Source: The authors.

Table 7 – Results for q+(b), case 2, with isotropic scattering (β` from Table 1) and several values of b.

b = 0.1 b = 1.0 b = 10.0

ω(r) REF P.M. REF P.M. REF P.M.

0.100 0.511214 0.512019 0.544598 0.544855 0.626033 0.555202
0.300 0.534874 0.535714 0.656075 0.656436 0.768494 0.704883
0.500 0.560331 0.561212 0.814216 0.814782 0.998583 0.954174
0.700 0.587800 0.588726 1.056900 1.057830 1.464033 1.465998
0.900 0.617531 0.618506 1.478574 1.480097 3.102848 3.311310
0.990 0.631723 0.632723 1.790732 1.792728 9.790239 10.01114
0.999 0.633172 0.634175 1.828986 1.831040 13.28207 13.31584

Source: The authors.

Table 8 – Results for q+(b), case 2, with backward scattering (β` from Table 1) and several values of b.

b = 0.1 b = 1.0 b = 10.0

ω(r) REF P.M. REF P.M. REF P.M.

0.100 0.511214 0.512018 0.544560 0.544814 0.627975 0.555079
0.300 0.534871 0.535712 0.655673 0.656031 0.774639 0.703408
0.500 0.560326 0.561207 0.812965 0.813555 1.002068 0.948234
0.700 0.587794 0.588719 1.054380 1.055400 1.451819 1.445996
0.900 0.617527 0.618502 1.475805 1.477445 3.012435 3.220619
0.990 0.631723 0.632723 1.790271 1.792254 9.520634 9.800874
0.999 0.633172 0.634175 1.828937 1.830995 13.22896 13.27063

Source: The authors.

Case 3 - Refinement

In order to obtain good results with the present me-
thodology we had to use high values for M and N, as
some Ii

m were less than zero for small M and I, which
has no physical meaning. In the Tables 9 and 10 we show
the effects of N (spacial) and M (angular) refining for

a solid sphere with numerical values a = 0, b = 10.0,
a forward scattering P of Table 1, ω(r) = 0.100, ε2 = 1.0,
ρ2 = 0.0, Ib2 (T ) = 1 and Ib (T ) = 0.
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Table 9 – Some values of IN
m for the case 3, N = 100 and

different values of M.

m M = 8 M = 18 M = 30 M = 36

1 1.000000 1.000000 1.000000 1.000000
2 1.000000 1.000000 1.000000 1.000000
3 1.000000 1.000000 1.000000 1.000000
...

...
...

...
...

M−2 -0.036613 0.005473 0.001724 0.001056
M−1 0.026204 -0.000430 0.000832 0.001089
M -0.008700 0.001907 0.000999 0.000817

Source: The authors.

Table 10 – Some values of I0
m for the case 3, M = 30 and

different values of N.

m N = 10 N = 20 N = 50 N = 100

1 -0.000716 0.000018 0.000082 0.000084
2 -0.001304 -0.000021 0.000081 0.000084
3 -0.001395 -0.000028 0.000081 0.000084
...

...
...

...
...

M−2 -0.001395 -0.000028 0.000081 0.000084
M−1 -0.001304 -0.000021 0.000081 0.000084
M -0.000716 0.000018 0.000082 0.000084

Source: The authors.

Concluding remarks and future work

This article is about a simple methodology that is able
to solve many cases of introdutory radiation transfer, for
solid and hollow spheres, inhomogeneous medium and
anisotropic scattering with classical boundary conditions.
In other words, it is about a methodology that is ready to be
expanded to more difficult cases, in the sense that it does
not require geometry restriction (solid or hollow sphere)
or scattering restriction (isotropic or linearly anisotropic)
in any way. It works smooth with and without black body
radiation, in the domain and boundaries, and to run the
code for most cases, it took about 30 seconds or less in a
domestic computer.

We run the code for some classical references
(ABULWAFA, 1993; ABULWAFA; ATTIA, 1997). Our
numerical values coincided with the references for all
cases with the same good agreements as in Tables 3, 4, 5,
6, 7 and 8. We choose to include in this paper the cases
we considered to be the most challenging to a numerical
iterative scheme.

In cases 1 and 2 we can see that the forward, isotropic
and backward scattering types did not have major impact
on the partial heat fluxes. The present methodology is
not restricted to phase functions like (2), it actually might
be used for any kind of P(µ,µ ′). Also, from case 2 we
can see that greater albedos and radius made the greater
changes in the numerical values, and from case 1 we note
how greater values of the black body radiation impact
on the results. The latter requires special attention, as for
more realistic cases, the black body radiation is modelled
with a nonlinearity in I (r,µ). In the tables of case 3, we
show where there were the majority of inconsistencies
(negative intensities), but there were cases where negative
values of I appeared in the middle of the Ii

m matrix. A curi-
ous fact about these incorrect results before the refinement:
the values of their partial heat fluxes were, apparently, cor-
rect, despite they have been computed with non realistic
intensities. This highlights the fact that the intensities must
be taken into account for refining purposes, rather than
the heat fluxes. Also, as we consider a radiative transfer
problem, this method may be easily adapted to other neu-
tral particles transport, like neutrons in a nuclear reactor
core.

For future work, we intend to develop a convergence
and stability analysis, which is not usual for transport
theory papers, even with numerical methods application.
Also, the expansion to higher dimensions would imply
bigger matrices, which could cause a memory stack over-
flow. We would like to investigate how to overcome this
problem. We also intend to approach some more realis-
tic cases for radiative transfer, which involve coupling
this transport equation with a heat conduction equation,
making a nonlinear system.
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