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“You can’t connect the dots looking forward;

you can only connect them looking backwards.

So you have to trust that the dots will somehow

connect in your future.”

— STEVE JOBS
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ABSTRACT

Automated video analysis is a growing demand in the context where technology enables

the creation of visual data at increasing rates. Detection and tracking of multiple pedes-

trians are specific needs of this demand as they are used in different types of applications

such as video surveillance, automated vehicles, and retail analysis. This work implements

a multiple pedestrian tracking application using the tracking-by-detection paradigm. We

use a pre-trained model for object detection and pedestrian reidentification, a linear state

prediction through recursive filtering, geometric and deep features as pedestrian dissimi-

larity, and an optimal algorithm for the assignment problem due to the probable presence

of multiple pedestrians on the video frame. We tested four methods locally using the

MOTChallenge dataset; when including static and moving camera sequences, the method

using deep features and pedestrian reidentification achieves an overall 48.3% MOTA. An-

alyzing only the PETS09-S2L1 sequence, a static sequence that is closer to what is found

in surveillance cameras, the method achieves 79.5% MOTA. Furthermore, we present the

details of the implementation and results of the four developed methods.

Keywords: Pedestrian tracking. deep features. geometric features. filtering.



Rastreamento de Múltiplos Pedestres usando Características Geométricas e

Profundas

RESUMO

A análise automatizada de vídeo é uma demanda crescente em diferentes áreas no con-

texto em que a tecnologia permite a criação de dados visuais em taxas crescentes. A detec-

ção e o rastreamento de múltiplos pedestres são necessidades específicas dessa demanda,

pois são usados em aplicativos como vigilância por vídeo, veículos automatizados, e ge-

ração de métricas para lojas. Este trabalho implementa um aplicativo de rastreamento

de múltiplos pedestres usando a abordagem de rastreamento por detecção. Nós usamos

um modelo pré-treinado para detecção de objetos e reidentificaçao de pedestres, predição

linear de estado com filtragem recursiva, características geométricas e profundas como

funções de dissimilaridade entre pedestres, e um algoritmo óptimo para o problema de as-

sociação devido à presença de vários pedestres num único quadro de vídeo. Nós testamos

quatro métodos localmente usando o conjunto de dados do MOTChallenge. Ao incluir

vídeos com câmeras estáticas e em movimento, o método usando características profun-

das com renascimento atinge 48,3% na métrica MOTA. Analisando apenas a sequência

PETS09-S2L1, uma sequência estática mais próxima do que é encontrado nas câmeras

de vigilância, o método alcança 79,5% na métrica MOTA. Além disso, apresentamos os

detalhes da implementação e os resultados dos quatro métodos desenvolvidos.

Palavras-chave: Rastreamento de pedestres. características profundas. características

geométricas. filtragem.
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1 INTRODUCTION

Image and video analysis have been receiving increasing interest since the tech-

nology has been leading us toward a world in which it is incredibly affordable to have the

equipment to capture and store visual data. In this context, the multiple object tracking

(MOT) is an important problem in computer vision community that is receiving attention

in recent years due to both academic and commercial potential. It is a fundamental skill

for several types of applications, such as video surveillance, human-computer interaction,

and automated vehicles (FAN et al., 2016).

The problem is also one of the most challenging areas of research in computer

vision (GUAN; XUE; ZHIYONG, 2016; LI et al., 2013). It has a long history span-

ning about 50 years (MALLICK et al., 2013) with around 30 multiple object tracking

approaches being published in major conferences every year (KUMAR, 2014). Over the

last years, deep learning models are boosting results in areas such as object detection and

reidentification, allowing researchers to use such technologies to study novel approaches

for the problem.

1.1 Problem definition

The MOT problem can be defined as the task of tracking multiple targets from a

video stream. More formally, given a sequence of frames, the tracker needs to detect each

target and propagate a unique identification for it through all the sequence. It also can

be view as an extension of the object detection problem since the tracker needs to detect

targets and also keep a connection between the same objects through the whole video

sequence, even if the targets are moving or changing appearance through the scene.

This work uses pedestrians as object targets since they are the default class used

in benchmarks of this subject, such as the MOTChallenge (LEAL-TAIXé et al., 2015). In

this context, for each frame, the application needs to detect each pedestrian to check if

it was seen before. If true, the detection must receive the same identification number as

previously given; otherwise, a new unique identification number must be assigned to it.

This is repeated for the whole stream of frames. In the end, the application outputs a list

containing all pedestrians detected in the video with their unique identification number.

If we assign a color for each identification number, it is possible to plot the track

lines produced by the tracker over the last frame of the video. The figure 1.1 shows an
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Figure 1.1: An illustration of the track lines plotted over the frame

Source: Adapted from PETS09 dataset

illustration of the track lines produced by tracker that solves the MOT problem.

It is still an open problem in the literature since it presents several challenges

even for state-of-art solutions, which still fall under complicated scenarios where there

are many sources of uncertainty. The tracker system requires a combination of chal-

lenging computer vision tasks such as object detection, dissimilarity modeling, filtering

techniques, and finally, pedestrian tracking (ANDRILUKA; ROTH; SCHIELE, 2008).

Moreover, it is also a heavy computational problem that uses a large amount of data per

frame, which makes it even more challenging for real-time applications.

Examples of complex scenarios that make tracking challenging are random target

movements, noisy image sources, partial or total occlusion of objects. Scenarios with

crowded pedestrians increase the number of false negative detections, which increases

the difficulty for the application to track pedestrians with accuracy.

1.2 Work proposal

This work proposes the implementation of a multiple pedestrian tracking algo-

rithm from a single uncalibrated camera using the tracking-by-detection paradigm where
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two uncoupled components, the detector and the tracker, will be used to achieve the goal.

The detector is responsible for detecting all the pedestrians from a single frame,

which is used to feed the tracker component that will assign a unique identification num-

ber for each detected pedestrian and propagate them through the whole video. In other

words, as used in the literature, the tracker will do an online frame-by-frame assignment

of detections without any information about future frames.

The use of some pre-trained models for object detection will be explored to detect

pedestrians on each frame. For the tracker, the use of state prediction, geometric fea-

tures, and a model trained for pedestrian reidentification will be studied to compute the

dissimilarity between pedestrians and to explore methods to handle the reidentification of

pedestrians.

The application should be able to online track one or more pedestrian from a sin-

gle stream of video fed by a static monocular camera without any scenario information,

background modeling, neither camera calibration. This work is not intended to deal with

scenarios containing high density crowds. All the coordinates will be in bi-dimensional

image coordinates where a point will be represented by (x, y) with the origin at the top-

left corner of the image. The output consists of a text file with comma-separated values,

which will contain the information of each detection - the frame number where it was de-

tected, the boundary box position and size, and the assigned identification number unique

for each pedestrian present in the whole sequence.

We want to check the overall results using four methodologies. The first method

will use a state prediction combined with the Jaccard index as the dissimilarity function.

The second will use the same technique, but followed by a pedestrian reidentification al-

gorithm. The third method will use the cosine distance between deep feature vectors ex-

tracted from the pixels of the detected pedestrian as dissimilarity. Finally, the last method

will use the cosine technique, but also followed by a pedestrian reidentification algorithm.

All results will be compared using a dataset and an evaluation metrics commonly used in

the literature for the MOT problem.

The following items describe the type of scenario expected by the implementation

to handle the multiple pedestrian tracking.

• No scene information or ground plane calibration

• Single, static or moving, monocular camera videos

• Frame-by-frame online tracking



14

The techniques used to address the problem with the previous assumptions can be

summarized by the following items.

• Tracking-by-detection paradigm

• Use of an optimal full-state estimator

• Use of an optimal linear assignment algorithm

• Use of a deeply learned model for object detection

• Use of a deeply learned pedestrian reidentification model
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2 BACKGROUND & RELATED WORK

This chapter introduces the theoretical background used in the proposed meth-

ods of this monograph. Section 2.1 presents more formally the MOT problem and the

tracking-by-detection paradigm in which this work is based. Section 2.2 presents about

the detector component and techniques used to perform pedestrian detection. Finally,

section 2.3 addresses the tracker component followed by techniques such as state pre-

diction, optimal assignment, and pedestrian reidentification. Some related works will be

presented with the exposed concepts, and any supplementary information can be found in

the references.

2.1 Multiple Object Tracking

The task of tracking multiple objects has the goal of finding trajectories of one

or more targets in the scene from a video stream. It poses additional challenges when

compared to single object tracking - where only the same and unique target is present in

each frame - because more than one candidate is present to be associated, which produces

a many-to-many relationship that needs to be solved by the tracker.

The problem can be view as a unidirectional weighed bi-partited graph where each

frame contains M detections that need to be associated with N pedestrians, as illustrated

in figure 2.1. Each possible association has a cost represented by the weight of the graph

edge that models the dissimilarity between the two objects; thus, two different pedestrians

should produce a high cost of association and vice versa. In each frame, the tracker needs

to associate each detection with a pedestrian in order to minimize the global cost.

The subject can be grouped into two broad tracker categories: online or offline

(KUMAR, 2014). An online tracker outputs a complete track of all objects of a sequence

of frames from the beginning up to the current frame (BAE; YOON, 2014). In other

words, it has no previous information about future frames, only data from the first frames

up to the current frame being analyzed. The identification assignment is made on a frame-

by-frame basis as the detections are being fed into the tracker. They often use some state

estimator for prediction information about the next frame since there is no information

about what is coming next. On the other hand, an offline tracker, also called a global or

batch-based tracker, has access to all the frames before performing the assignments. Such

trackers have more information available before making any decision, which addresses
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Figure 2.1: An illustration of the problem as a bi-partited graph

Source: The author

them fewer challenges when compared to online trackers. This work will focus only on

online trackers.

A common approach for an online tracker is the tracking-by-detection paradigm

(CHU et al., 2019; WANG et al., 2019; ANDRILUKA; ROTH; SCHIELE, 2008). This

methodology separates the system into two separated components: the detector and the

tracker. This requires the continuous use of a detection algorithm in each frame to produce

a list of detections to feed the next component that will associate a pedestrian numerical

identification. These approaches have become increasingly popular, driven by the recent

progress in object detection and also by being robust to handle typical challenges of the

MOT problem such as changing background or occlusions of targets (Mekonnen; Lerasle,

2019; ANDRILUKA; ROTH; SCHIELE, 2008).

The tracking without bells and whistles (BERGMANN; MEINHARDT; LEAL-

TAIXE, 2019) presents an approach based on bounding box regression where given a list

of detections in a sequence of frames, the tracker uses a regressor which allows predicting

of bounding box positions in future frames. However, the survey (LEON; GAVRILESCU,

2019) states that this approach presents some limitations since it requires that targets move

slightly from frame to frame and also high frame rates to keep relatively stable.

Gaddigoudar et al. (2017) use particle-filter to solve non-linear problems such as

state estimation in dynamic systems. Some of the tests included tracking pedestrians

in crowded regions, which can have high occlusion, and the results presented a better

performance when compared with the configuration using Kalman filter (KF), which is

a linear state estimator. They argued that KF often terminates pedestrian tracks when
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they get occluded in the scene. The solution was able to track fast-moving human targets

effectively.

Bewley et al. (2016) proposed an online tracker for real-time applications using

a similar approach to the first method of this work mentioned in section 1.2. They use

the Kalman filter for state prediction and the Hungarian algorithm to find the globally

optimal solution for the association. The approach achieved an accuracy comparable to

state-of-the-art online trackers while being 20x faster.

The recent work of Chen et al. (2019) proposed a solution for the MOT problem

using a novel spatial-temporal attentions and graph decomposition to assign pedestrians

through the frames. The authors achieved a better performance than state-of-the-art works

on the MOT16 and MOT17 dataset.

Bae and Yoon (2014) proposes a robust online multiple object tracking that aims

to handle tracking even in occluded scenarios. The authors also propose a novel method

for discriminating the appearances of objects using an incremental linear discriminant

analysis, which led to keeping the correct tracking even in severe occlusions.

Breitenstein et al. (2011) uses particle filters to estimate the distribution of each

target state and a greedy scheme for data association using cost values from classifiers

trained per target in runtime. They were able to perform multiple object tracking from a

single uncalibrated camera.

2.2 Detection

The goal of an object detector is to analysis a single image to localize and clas-

sify all the objects of interest. It outputs a list of bounding boxes containing the object

localization and the confidence score about how sure it is about that detection being the

targeted class label. The bounding box is a structure containing the position and size of

the detection in the image coordinate system, often represented by the top-left and the

bottom-right corners the box delimiting the detected object. Figure 2.2 illustrates this

idea.

An image can be view as an array of pixels in which the detector needs to find

the group of the pixels that represent the object. A basic technique for this task is to use

a sliding window across the entire frame while searching for geometric features such as

color, contour, or gradient until a threshold value is hit to a detection be made. More

advanced techniques can include the use of integral channel features, optical flow, or
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Figure 2.2: An illustration of a pedestrian detector input and output

Source: Adapted from PETS2009

background subtraction.

Lei and Huang (2018) use background subtraction to detect moving pedestrians by

extracting background information using an adaptive background and extraction method

combined with mathematical morphology operation and histogram segmentation. On the

other hand, Gaddigoudar et al. (2017) propose a pedestrian tracking using particle filters

and uses Bhattacharya distance between normalized histograms of two consecutive frame

sequences to detect a pedestrian.

2.2.1 Deep Features

In the last years, machine learning techniques are boosting the results for object

detection. Techniques that use convolutional neural network (CNN) are the dominant ap-

proach for almost all recognition and detection tasks. The good results of such techniques

in pattern recognition tasks can be in part explained because they are kind invariant from

position, orientation, or illumination of the targeted object.

They make use of deep features that are learned by the network itself in the training

phase instead of being engineered by hand, allowing them to take advantage of compu-

tational power and data available (LECUN; BENGIO; HINTON, 2015). In other words,

the model is structured in layers, then it is trained using a massive amount of data. This

strategy forces the model to learn deep features by adjusting the weights of each layer

until it can detect complex objects such as pedestrians.

The CNN structure is formed by different types of layers such as convolutional,

pooling, or fully-connected layer and then connected from thousands to millions of weights.

The data from one layer to another is a weighted sum of the inputs that go through a non-
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linear activation function such as ReLU (Rectified Linear Unit), tanh, or sigmoid. The

stack of such layers can transform the input to increase both selectivity and invariance of

the representation, allowing them to detect objects even if they present high variance of

illumination, orientation, or position on the image.

Nowadays, popular well-performing CNN architectures used for object detection

are Fast R-CNN (GIRSHICK, 2015), YOLO v3 (REDMON; FARHADI, 2018), and SSD

(LIU et al., 2016). One of the first good results using CNN for object detection was intro-

duced by OverFeat (SERMANET et al., 2013). Shortly after the publication, a method us-

ing regions was proposed in which around 2000 potential regions of interest were defined

to apply an image classifier in each of them (GIRSHICK et al., 2013). Later, Fast-RCNN

(GIRSHICK, 2015) and Faster-RCNN (REN et al., 2015) presented an optimization by

using a neural network to propose objects of interest.

Novel approaches start to combine the use of regions of proposals and the classifier

into one single network. This formed the basis for a single-shot object detector where

the entire image is passed only once instead of a sliding window or selective region of

interest, allowing much better results in speed. Examples of these types of detectors are

the single-shot multibox detector (SSD), the you-only-look-once (YOLO), and the region-

based fully convolutional network (R-FCN).

Redmon et al. (2015) proposed the YOLO model, which uses a single CNN to

locate and classify the objects in one evaluation instead of the previous pipeline, which

performed the classification on many regions of interest. It forwards the whole image

through the neural network only once outputting the class probabilities and bounding

boxes of each object detection. This approach presented a better speed when compared

with other methods while keeping good accuracy. It uses a neural network with convolu-

tional and pooling layers plus two fully connected layers at the end. The model splits the

input image in a grid of S × S cells where each cell will be responsible for detecting one

object which geometric center falls on it. The output of the system is a list of bounding-

box and a confidence score. Each bounding box contains four variables that localize the

object into the image by giving the position (x, y) and the size (w, h) of the detected

object, also the confidence class score of the object inside the box which represent the

probability of the detected object by a specific class label.
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2.3 Tracking

The tracker component in a tracking-by-detection approach is responsible for as-

signing an identification per-frame basis for each detected object received from the previ-

ous detector component. To achieve this goal, it often makes use of techniques for state

prediction, dissimilarity modeling, data association, and pedestrian reidentification.

2.3.1 Prediction

The use of a state predictor is valuable for an online tracker because they do not

have any information about the next frame, so they need to make an estimation of vari-

ables of interest to increase the chances of making a correct association. In addition,

filtering is also valuable for recursively generating optimal values, given a system where

measurement and estimation uncertainties exist. The literature presents different ways

to accomplish this, such as Kalman Filter (KF), Extended Kalman Filter, Particle Filter,

and even recurrent neural networks. This work will focus on the use of KF as a filtering

algorithm.

The KF is a linear optimal recursive state estimator that works at discrete time

steps. It predicts and corrects initially defined state variables using linear processes to

handle measurements containing statistical noise and estimation of uncertain variables

by estimating a joint probability distribution over the variables for each time frame. In

other words, it uses information from predicted states and noisy measurements that are

combined to produce an ideal estimation of system variables in which the truthful values

are unknown.

The KF has long been regarded as the optimal solution to many tracking and data

prediction tasks. Although the pedestrian movement is not linear, the linear estimation

realized by the filter can still be useful where the time difference between two consec-

utive frames in small enough to make the target movement looks linear. However, for

low frame-rate cameras, a non-linear model movement should be considered, such as the

Extended Kalman Filter or the Particle Filter.

The KF estimates the state vector ~x ∈ <n of a system assuming the linear stochas-

tic model presented in equation (2.1). The measurement ~z ∈ <n at time k is a linear

combination between the state vector and the measurement noise v given in equation
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(2.2).

~xk = A~xk−1 +B~uk−1 + wk−1 (2.1)

~zk = Hk~xk + vk (2.2)

Matrix A represents the transition model, which modifies the state from the pre-

vious frame ~xk−1 to the state of the current frame ~xk; matrix B relates the control input

model applied to the control vector ~uk; matrix H represents the observation model, which

relates the state vector values with the measurement vector space. The variables w is the

prediction noise and v is the measurement noise, both modeled as Gaussian distributions

with zero mean, where Q is the process noise covariance and R is the measurement noise

covariance, as shown by equations (2.3) and (2.4).

p(w) ∼ N(0,Q) (2.3)

p(v) ∼ N(0,R) (2.4)

The first practical step is to define the state variables to be estimated over time.

For a pedestrian tracker that will receive the output directly from the object detector, the

state of each pedestrian can be defined as containing at least four variables: x, y, vx and

vy, which represent the horizontal and vertical position, and the horizontal and vertical

velocity, respectively.

The prediction of the state x̂k from ~xk−1 and the covariance P̂k from Pk−1 a priori

are given by:

~xk = A~xk−1 +B~uk−1 (2.5)

Pk = APk−1A
T +Q (2.6)

Where matrix A and B are from equation (2.1) and Q from equation (2.3).

After a measurement is made, the posteriori variables estimates are given by:

Kk = PkH
T(HPkH

T +R)-1 (2.7)
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~xk = ~xk +Kk(~zk −H~xk) (2.8)

Pk = (I−KkH)Pk (2.9)

Where equation (2.7) calculates the Kalman gain K. The equation (2.8) corrects

the a priori predicted state. And the equation (2.9) updates the a priori state error covari-

ance. The I is the identity matrix.

After each prediction and correction steps, the process is repeated to estimate the

optimal state recursively. More deep information about the filter can be found at (SOREN-

SON, 1970; MAYBECK et al., 1979; WELCH; BISHOP, 2006).

2.3.2 Data Association

The multiple object tracking has the problem in which there are many detections

that need to be assigned to many pedestrian candidates already being tracked from the

previous frame. Each pedestrian has a unique numeric identifier that must be assigned to

every future detection that contains the same pedestrian. Jianguo, Peikun and Wei (2007)

says that data association is one of the central problems in multiple object tracking.

A technique often used is to model a dissimilarity function between two pedes-

trians, followed by an optimal assignment algorithm to find the minimum global cost

between candidates, also known as the assignment problem (AP). Typical techniques for

AP in multiple targets association include the Hungarian algorithm, the Joint Probabilistic

Data Association Filter (JPDAF), and the Multi Hypothesis Tracking (MHT). However,

it is also possible to use a greedy algorithm to find a match between two detections.

Assignment problem: has been studied at the academy for less than 50 years

(CHAOBO; QIANCHUAN, 2008). It can be view as a scheduling problem where n

workers are assigned to finish m jobs in which every worker can only be assigned to

one job. Each worker has a cost to finish each job; then the goal is to find an optimal

assignment where the overall cost is minimal. As provide in (Li; Li; Qian, 2016), the

mathematical formulation can be expressed by equation (2.10) subject to equations (2.11)
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and (2.12).

min(γ) =
n∑

i=1

n∑

j=1

CijPij, (2.10)

n∑

i=1

Pij = 1, j = {1, 2, 3, ..., n} , (2.11)

n∑

j=1

Pij = 1, i = {1, 2, 3, ..., n} , (2.12)

where Cij is the cost of the assignment between worker i and job j and Pij represents

whether i is assigned to job j (Pij = 1 if yes, otherwise Pij = 0).

Kuhn–Munkres: is an optimal algorithm for the assignment problem, also known

as the Hungarian algorithm (KUHN, 1955). It is a combinatorial optimization algorithm

that solves the assignment problem in polynomial time O(N3). The algorithm takes as

input a cost matrix C, where Cij is the cost between two pedestrian states i and j. It

solves in four steps in which the matrix C is manipulated to give the optimal matching.

Applied to the MOT problem, each entry in the cost matrix C is populated with

the dissimilarity between two pedestrians in a way that a high dissimilarity represents

a high cost, and vice versa. In the literature, it is possible to find several techniques

for calculating dissimilarity between two pedestrians. Geometric techniques include the

simple Euclidean distance between two central points, the Jaccard index, or template

matching. Non-geometric methods use a trained model to generate deep features, in a

similar way commented in section 2.2.1, of an image crop that can be compared using

metrics such as the cosine distance, the Mahalanobis distance, or the Hamming distance.

Some of these metrics are presented next.

Jaccard index: is defined by equation (2.13) which computes the intersection area

over the union area JC of two bounding boxesA andB. It is a simple geometric approach

that works well while the difference between two boxes is small enough to cause overlap-

ping, which often happens in high frame videos where the pedestrian movement between

two consecutive frames is small. However, it can be a problem when two bounding box

does not overlap since it will return the cost value zero or when the scene presents high

crowed pedestrians whose boxes overlap several others boxes.

JC(A,B) =
| A ∩B |
| A ∪B | =

| A ∩B |
| A | + | B | − | A ∩B | (2.13)
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Cosine similarity: is used to compute the similarity between two feature vectors

(e.g. deep features extracted by a CNN model trained for pedestrian reidentification). The

cosine similarity CS can be computed between two vectors ~A e ~B using equation (2.14)

where Ai and Bi are components of the respectively vectors.

CS( ~A, ~B) =
~A · ~B∥∥∥ ~A
∥∥∥
∥∥∥ ~B
∥∥∥
=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(2.14)

The total cost of matching a pair of pedestrians can be computed using more than

one technique. For example, equation (2.15) shows the total cost W between two pedes-

trian A and B represented by a weighted combination of two techniques, the Jaccard

index, and the cosine similarity. The parameters α and β weights the importance of each

technique for the total cost between the pedestrians.

W (A,B) = α · JC + β · CS (2.15)

Pedestrian reidentification: is a technique used to try to reidentify a dead pedes-

trian. A pedestrian is considered dead when he is too many frames without receiving

detection. Usually, when this happens, no attempt is made to associate a detection with

it again. However, in some scenarios, it may happen that the pedestrian is only occluded

by some background structure, but it takes so many frames that is enough for the tracker

to kill it. To handle this, the tracker can compare the detections of the current frame

with all pedestrians considered dead using the cosine distance from equation (2.14), if the

similarity is less than a threshold, the pedestrian can be considered active again.
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3 THE PROPOSED METHODS

This chapter presents the details about the proposed method for online tracking

of multiple pedestrians from a sequence of frames. The implementation was made using

the C++11 language in a Linux environment. Two methods to compute the dissimilarity

between pedestrian were implemented, and both were tested with and without pedestrian

reidentification, summing up four methods tested to achieve the goal.

Section 3.1 briefly presents the organization of the application as a whole. Sec-

tions 3.2 and 3.3 go through implementation details about the detection and tracker com-

ponents.

3.1 Overview

This work implemented an application to perform pedestrian tracking from a sin-

gle camera using the tracking-by-detection paradigm. Hence, the application consists of

two independent components: the detector and the tracker. The figure 3.1 illustrates the

idea of this paradigm. The application makes use of the detector to create a list of pedes-

trians detected in each frame; then, it feeds the next component using the list to associate a

numeric identification for each detection. Each identification number represents a unique

pedestrian.

Figure 3.1: Simplified pipeline of the application

Source: The author

The detector component uses a pre-trained CNN model to identify the pedestrians

present in the scene. The YOLO v3 (REDMON; FARHADI, 2018) model was used since

it is the state-of-the-art in single-shot detection, being able to return the confidence scores

on pre-determined regions relatively accurate and fast. Note that any other type of pedes-

trian detector can be used as long as the same input and output interface is maintained.

The network output layers contain a fixed number of regions with a confidence
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score for each one of the objects of interest that the model was trained to detect. Only

results with confidence above a threshold value are selected determined by the detconf

command-line argument of the application. Then, the non-maximum suppression (NMS)

algorithm is used in an attempt to eliminate multiple detections for the same object when

the Jaccard index is larger than a threshold value of given by detnms argument. Finally,

a linear search is performed to select only pedestrians from all possible objects that the

model was trained to detect. The results are stored in a list type data structure.

The tracker component receives the detection list and attempts to give a unique nu-

meric identifier to each detection asserting that it is unique for each pedestrian throughout

the whole video sequence. A cost function is modeled to compute the dissimilarity be-

tween two pedestrians in which a high cost means that the detections are not similar.

Thus, each of the detections sent by the detector is compared to each active pedestrian

in the tracker producing a cost matrix C where each row of the matrix contains an active

pedestrian and each column a current frame detection. All metrics used to fill the cost

matrix are normalized into range (0, 1). Two different technique were implemented to

compute the cost between two detections.

(1) Geometric method: uses the Kalman filter as a state estimator to predict the

bounding box position of each active pedestrian. Then the cost is computed using the

Jaccard index between each predicted box and each detected pedestrian on the current

frame. If a match occurs, the detection boundary box is used to fill the measurement

vector ~z to update the filter. The filtering is realized by using the information about the

updated filter state (a posteriori) as a result instead of the detected pedestrian box. Figure

3.2 illustrates the pipeline using this method.

Figure 3.2: Geometric method pipeline

Source: The author

(2) Appearance method: uses the Intel OpenVINO person-reidentification-retail-

0031 (OpenVINO, 2019) model trained for pedestrian reidentification to create a deep

feature vector from the frame pixels that are within the bounding box given by the detec-
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tion. Then the cost is computed using the cosine distance between two vectors containing

the deep features of pedestrians. No prediction is used, and the assigned detection box

information is used as a result without any kind of filtering. Figure 3.3 illustrates the

pipeline using this method.

Figure 3.3: Appearance method pipeline

Source: The author

Both methods use the Hungarian algorithm to solve the assignment problem in

complexity O(N3) by finding the best matches between a detection and a pedestrian

(D,P ) in which the global cost is minimum given a cost matrix C. However, the associa-

tion of a detection with a pedestrians is only accepted if the cost is less than the threshold

value. The threshold value for the cosine distance is determined by the argument thcos,

while the Jaccard index by thiou.

Track births and deaths are performed by analyzing the solution given by the as-

sociation algorithm. If a detection from the current frame is not present in the assignment

solution, a new pedestrian containing a new unique numerical identifier is created, formal-

izing a birth event. The death of a pedestrian occurs when he does not receive detection

for a number of frames. Each pedestrian has an age property that is incremented at each

frame in which it receives no detection, but zeroed when an association is made. If the

age counter exceeds a threshold value given by thage, the pedestrian track is killed.

3.2 Detection

The pedestrian detector component receives a single frame as input and returns a

list of detected pedestrians, which is encapsulated inside a detection class that contains

the data needed for the tracking operation. The most essential is the position and the size

of detection in image coordinates, a normalized (0, 1) score about how sure the detector is

about the classification of the object as a pedestrian, the frame number at which detection
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occurred, and a slice of the frame containing the pixels delimited by the boundary box of

detection. The list of information encapsulated by the class that can be seen in table 3.1.

We tested two loaders for the pre-trained model YOLO v3. The first was com-

piling the Darknet framework from source with CUDA support to take advantage of the

computational power of the GPU. The second was using the CNN module of the OpenCV

library, which only uses CPU instructions to forward an image through the network. Al-

though only Darknet uses GPU support, both methods detect objects using approximately

the same time. This can be explained because the CNN module loader is exceptionally

optimized for CPU usage using specific instructions that were able to approximate the

performance of the GPU installed on the testing machine, which is specified in section

4.2.

A different approach can also be used to grab detection by reading comma-separated

lines from text files containing pedestrian detections provided by the dataset MOTChal-

lenge (LEAL-TAIXé et al., 2015) used in this work to perform the evaluation. These text

files contain current detections of different methods for each of the videos provided by

the dataset. This allows for a diversified and standardized way to evaluate the tracker

component by feeding it with different detector types and at the same time ensuring that

all proposed benchmark solutions use the same detections.

When using a model loader, each frame is forwarded through the pre-trained net-

work, which contains the right weights and nonlinear functions to transform the frame

image until the output layer be filled with confidence scores for each target object of

interest. The frame is an array of pixels containing three bytes per pixel (RGB colour-

space). Before sending it to the network, the frame needs to be modified as the network

expects it in a particular input standard. The model used in this work requires that each

image should use the RGB color-space with normalized values (between zero and one at

each channel), and have a size of 416 rows and 416 columns. After forwarded through the

network, the resulting structure contains a matrix of size 10, 647 × 85 (rows x columns)

that is grabbed from the output layers of the CNN model. It can be decomposed as three

matrix of size 507× 85, 2028× 85, and 8112× 85. Each matrix contains different scales

of the region of interest that may contain a pedestrian.

Each row of the matrix contains information about the size and position of the

region of interest followed by 81 confidence scores, one per each object class in which the

CNN was trained since it was used the COCO dataset. The matrix contains 10, 647 rows.

In other words, the model analyses 10, 647 regions of interest grouped in three different



29

Table 3.1: Detection class structure

Variable Type Description

Id Integer Unique identification number of the detection
per frame

x1 Float The left most x-axis value of the boundary
box

y1 Float The top most y-axis value of the boundary box
x2 Float The right most x-axis value of the boundary

box
y2 Float The bottom most y-axis value of the boundary

box
Conf Float Confidence about the detected object being a

pedestrian
Img Image A reference to the vector of pixels containing

inside the boundary box of the detection
AssignId Integer The pedestrian identification assigned by the

tracker

Source: The author

scales (small, medium, and big) and fills up 81 confidence scores for each object class.

At the end of each network forward, a linear search is made to find the best candidates

by checking which ones have the highest scores in the column containing the pedestrian

class. Candidates with a low confidence score are discarded by a confidence threshold

specified by detconf . After that, a non-maximum-suppression (NMS) algorithm is used

to try to filter objects that may contain more than one boundary box over them. A Jaccard

index threshold is given by detnms.

If the detections come from the dataset text file, the detector reads the text file,

and it keeps in memory a data structure containing a list of detection objects. The text

file is a comma separated values containing ten variables but only six are used: frame,

x, y, w, h and confidence. The variable frame contains the frame number to which the

detection belongs. The two variables x and y report the position in image coordinates of

the top-left point of the detected boundary box, while w and h report the width and height

of this box. The last variable confidence contains the detector’s confidence score on the

object contained in the boundary box being a pedestrian class.
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Table 3.2: Pedestrian class structure
Variable Type Description

Id Integer The unique identification number of this
pedestrian

DetList Pointer Reference to a list of detections objects as-
signed to this pedestrian

Age Integer How many frames since the last detection as-
signed to this pedestrian

IsDead Boolean Keep information if the pedestrian is active or
not

Estimator Pointer The estate estimator object of this pedestrian

Source: The author

3.3 Tracking

In each frame, the tracker receives a list of detections of the current frame from the

detector. Then it needs to give an identification number to each detection. If a frame de-

tection is not associated with any pedestrian, it generates a new pedestrian. If a pedestrian

receives no detection, the tracker must decide whether to kill him or not.

In the first frame containing pedestrian detections, no pedestrian is being tracked.

Thus, the tracker creates a new pedestrian ID for each detection received without any

filtering. When the tracker creates a new pedestrian object, an instance of the pedestrian

class is allocated in heap memory. This object is initialized with a list containing only the

detections that originated it. The KF is also initialized at this time since each pedestrian

has its owns estate estimator.

The tracker maintains a pedestrian list that contains pedestrians that may be active

or inactive. A pedestrian is considered active when the class variable IsDead has the

logical value false. Each pedestrian holds information about its state, such as the list of

detections that was assigned to it. The last detection of the list holds information about

the last boundary box of the pedestrian. Table 3.2 shows the pedestrian class structure.

3.3.1 Prediction

The KF algorithm is used to estimate a priori the state of the pedestrian at the

current frame instead of using the last assigned detection information from some previ-

ous frame. This technique may increase the chances of a correct match when using the

Jaccard index to compare the bounding boxes of two pedestrians. It is also used as a filter
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since the tracker outputs data extracted from the current filter state vector ~x, which com-

bine information about prediction and measurement, instead of the raw data from the last

assigned detection.

The state vector ~x and the covariance of the state error P are predicted each frame

and updated when an assignment of a frame detection to a pedestrian object is made.

The position, size, and position difference between the last two assigned bounding boxes

(x1, y1, x2, y2, vx, vy) is used to populate the measurement vector ~z which is then used by

the algorithm to update its variables. The covariance of the state error P requires that the

covariance matrix of the process Q and measurement noise R be defined.

Finding the right parameters to optimize the algorithm is challenging since there

is no information about camera calibration. And even if we find it for one type of video,

it may not work well for another type of camera perspective and target motion. In other

words, it is difficult to find the right parameters that work well for all kind of camera

position and camera movement available in real world or in the dataset used to test the

application. Furthermore, each pedestrian can have its own random movement, but this

tends to follow a small variance that can be modeled into the algorithm.

Figure 3.4: Kalman simulation

Source: The author

As a guide for choosing acceptable parameters for Q and R, we implemented a

Python script to simulate the filtering and prediction of the movement of a pedestrian in

the x-axis from real values found by analyzing the PETS09 sequence, and the plot of the

simulation is shown in Figure 3.4. Since our motion model for prediction is simplified,

we chose to trust more in the detector information, and hence selected high values for

process noise Q and lower for measurement noise matrix R. The process noise matrix

is an identity matrix with diagonal filled with value 12.0, while the measurement noise

matrix is an identity matrix with diagonal filled with value 5.0. A small covariance value
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of 0.1 was added to all elements to both matrices.

The vector state ~xwas modeled using six variables: x1, y1, x2, y2, vx, vy. Variables

x1 and y1 represent the top-left point of the bounding box, delimiting the last associated

detection of that pedestrian; x2 and y2 relate to the bottom-right point. The last two

variables vx and vy represent the position difference between the two last detected box

assigned (i.e., the velocity).

The filter requires an initial guess of the state vector ~x. The four positional vari-

ables are initialized with the information about the first boundary box, and the velocity

information was initialized with zero values.

The prediction of the state ~x is made simple by modeling the classical mechanics

model for constant velocity motion. The control matrix B and the control vector ~u was

not used, and we defined the transition matrix F as a 6 × 6 as shown in equation (3.1).

This matrix was built assuming the constant velocity motion model provided in equation

(3.2).

F =




1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1




(3.1)





x̂1 = x1 + vx

ŷ1 = y1 + vy

x̂2 = x2 + vx

ŷ2 = y2 + vy

v̂x = vx

v̂y = vy

(3.2)

The measurement relation matrix H is specific in order to mask which state values

will be taken into account when calculating the error between the measured vector ~z and

the predicted state ~̂x where it will later be used to correct the prediction by a factor dictate

by the Kalman gain value. Since our measurement matrix contains all the elements used

inside the state vector, the relation matrix H is modeled as a 6 × 6 identity matrix to

account for all the six variables of the state vector ~x.

The state velocity variables vx and vy are updated whenever an association is made

on the pedestrian, calculating a horizontal and vertical distance between the last two de-

tections associated with the pedestrian.

Figure 3.5 shows an empirical example of this tracker predicting the new state of

one pedestrian where it is possible to notice a satisfactory result in the prediction of the

state. The red box shows the last assigned detection at frame twhile the orange box shows
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Figure 3.5: Prediction result

Source: Adapted from PETS09

the predicted state at frame t + 1. The blue box shows the detected pedestrian at frame

t+ 1, notice how it almost matches the predicted orange box in this frame example.

3.3.2 Data Association

The goal of the association task is to find the best match between a pedestrian P

and a frame detection D. At each frame, the detector feeds the tracker component with

a list of detections. Each detection needs to be analyzed and compared with all currently

active pedestrians to see if an association is possible.

We have implemented two methods to calculate dissimilarity between two pedes-

trians: a geometric and an appearance method. Both may or may not be followed by a

function that attempts to reidentify pedestrians considered dead.

The geometric method: uses the KF algorithm to a priori estimate the bounding

box (x1, y1, x2, y2) of each active pedestrian P in the tracker. A pedestrian is considered

active if he is within four frames without receiving associations. Each predicted bound-

ing box is compared to the detected bounding box coming from the previous detector

component.

The comparison is performed using the Jaccard index, which returns a normalized

value (0, 1) containing a metric of how much intersection area there is between the two

rectangles. Thus, a cost matrix C is populated by computing the metric among all can-

didates. Each row of the matrix represents a prediction of an active pedestrian, and each

column represents a frame detection. Figure 3.6 illustrates this idea.
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Figure 3.6: Geometric method pipeline

Source: The author

The appearance method: uses the pre-trained pedestrian reidentification model

person-reidentification-retail-0031 (OpenVINO, 2019) to produce a vector of deep fea-

tures for each detection fed by the detector component. This model is based on the RMNet

backbone that was developed for fast inference. At the Market-1501 benchmark (Zheng et

al., 2015), used for pedestrian reidentification, it got an accuracy of 0.7791 and a precision

of 0.6180.

The detection bounding box is used to delimit a section area in the frame in which

the detection was made. The frame is cropped to create a separated sub-image, then it is

resized to 96 × 48 (rows x columns), and forwarded throughout the model. The output

layer contains 256 floating-point numbers, where each element represents a deep feature

of the pedestrian image.

To compute the dissimilarity between active pedestrians and current frame detec-

tions, equation (2.14) is used to compute the cosine similarity between two deep feature

vectors. The vector of the last detection associated with the pedestrian is compared to

the vector of each detection sent by the previous component. This way, all applicants are

compared until the cost matrix C is populated. This process is illustrated by figure 3.7.

Figure 3.7: Appearance method pipeline

Source: The author

In both methods, a cost matrix C of size M x N is filled in each frame. The value

M is the number of active pedestrians, and N is the number of detections fed by the



35

detector component. All elements of matrix C are normalized values in the range range

(0, 1).

The Hungarian algorithm is used to solve the data association problem optimally.

The algorithm receives a cost matrix C and outputs the solution vector S. Each vector

position represents a pedestrian used when the cost matrix was computed. The value of

each position contains an integer representing the detection assigned to the pedestrian.

By analyzing the solution vector, it is possible to extract each match (D,P ) between a

detection and a pedestrian asserting that the overall cost is the minimum.

This solution contains the best matches in order to minimize the overall cost; how-

ever it may not contain the best solution for the tracker. To try to reduce the number of

wrong matches, only matches whose cost is less than a threshold value are accepted. The

variables, passed as command line argument, thcos and thiou define the threshold values

for the cosine distance and the Jaccard index, respectively. When a match has a higher

cost than the set threshold value, it is removed from the solution. The figure 3.8 shows

the assignment pipeline from the cost matrix to the solution vector.

Figure 3.8: Assignment problem pipeline

Source: The author

Birth: is an event that occurs for every detection received by the detector that

was not associated with any pedestrian. This occurs when there are more detections than

pedestrians or when the detection is removed from the solution because it does not cost

less than the configured threshold value. The figure 3.9 shows an example where the

detection D1 is not present in the solution vector causing the creation of a new pedestrian.
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Figure 3.9: Birth event pipeline

Source: The author

Death: is an event that occurs when the pedestrian’s age becomes greater than

the threshold value. The age of the pedestrian is a variable that is incremented in every

frame that it receives no detection. The threshold value used to cause a pedestrian to die

is defined by thage. Thus, in each frame, every pedestrian has his age checked. If he is

older than thage, he is killed by the tracker. The figure 3.10 shows an example where

pedestrian P1 is aged since it receives no detection in the current frame.

Figure 3.10: Death event pipeline

Source: The author

Pedestrian reidentification: is the last step of the tracker component, and it is

used as an attempt to revive dead pedestrians. The same technique used in the appear-

ance method (2), i.e., the cosine distance between two deep feature vectors is used to

attempt to reidentify a dead pedestrian. If the cosine distance between a dead pedestrian

and a detection not assigned to any pedestrian is less than a threshold value specified by

threborn (reborn-threshold), an association between them is made. Then the pedestrian

is considered live again for the next frames.

A time variable can be used to control the maximum time to try to reborn a dead

pedestrian. Applications that may benefit from a long time are surveillance systems as

having in memory the characteristics of an pedestrian to try to reidentify after a long time

may be beneficial for future investigation. Other types of applications where pedestrians

are unlikely to return after a certain time can benefit from the implementation of this
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control variable. This work does not implement this feature, considering that the time is

infinite, i.e., the application keeps trying to reidentify dead pedestrians while there are

frames coming from the stream. The figure 3.11 illustrates an example where a single

detection is compared to all dead pedestrian using the cosine distance between the deep

features of each patch, the last comparison showing a distance less than the threshold, so

that detection is assigned to the dead pedestrian, creating a reborn event.

Figure 3.11: Reidentification pipeline

Source: The author
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4 RESULTS

4.1 MOT Evaluation

A popular benchmark for evaluating solutions to the MOT problem is the MOTChal-

lenge (LEAL-TAIXé et al., 2015; MILAN et al., 2016). It provides a selection of public

videos and standardized evaluation metrics, which includes the CLEARMOT (BERNARDIN

KENI, 2008) and another set of metrics by Li, Huang and Nevatia (2009). The videos are

selected from other public datasets such as the PETS (Ferryman; Shahrokni, 2009), which

is a well know dataset targeted for video surveillance.

The MOTChallenge includes the two widely used metrics into the community: the

Multiple Object Tracking Accuracy (MOTA) and the Multiple Object Tracking Precision

(MOTP) (KASTURI et al., 2009; Mekonnen; Lerasle, 2019) as shown by equations (4.1)

and (4.2), respectively.

MOTA = 1− (Fp + Fn + Idsw), (4.1) MOTP =

∑
i,td

i
t∑

tCt

, (4.2)

where Fp =
∑

t FPt∑
t gt

is the ratio of false positives over the number of ground truth

objects from the whole dataset, Fn =
∑

t FNt∑
t gt

the ratio of false negatives, and Idsw =∑
t Idsw,t∑

t gt
the ratio of identification switches. The dit is the Euclidean distance between the

matched ground-truth location and the tracker target location. The Ct is the total number

of matches made.

The MOTA accounts for all errors, such as missed target or false positives. The

MOTP tries to account for the ability of the tracker to estimate precise positions, in-

dependent of its results from the detection step, keeping consistent trajectories. Detailed

information is presented in (BERNARDIN; STIEFELHAGEN, 2008). This work will use

the MOTA and MOTP to evaluate the implementation since those metrics are widely

used in the literature. From Leal-Taixé et al. (2015), “MOTA is perhaps the most widely

used figure to evaluate a tracker’s performance because it combines three important error

metrics in one”.

To generate the evaluation metrics, we used the python implementation py-motmetrics

(HEINDL, 2019) compatible with the original MOTChallenge devkit scripts in Matlab.

We used the training group of videos because it was the only one we could access
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with ground truth to perform the evaluation locally. We did not use any of the videos

named as training to train any kind of model in our implementation. All videos were used

for testing purposes only. To perform the evaluation using the videos from the test group,

it is necessary to send the results in a text file to the benchmark server. However, to be

able to do this, it is necessary to register on the site with an institutional email. Until the

publication of this work, we did not obtain registration approval with the email used.

4.2 Environment

The evaluation was made using the Ubuntu Linux 18.04 environment installed on

a computer using Intel i7 4710HQ CPU up to 2.50GHz, 16GB memory, and NVIDIA

GeForce GTX 970M GPU which offers 1280 CUDA cores and 980MHz maximum clock

rate. The major implementation of the tracker was compiled using C++11 standard, al-

though some libraries used the C++98 standard and later linked to the main program. Ad-

ditional libraries like Darknet, OpenCV, NVIDIA CUDA, Intel OpenVINO, and NVIDIA

cuDNN were compiled from sources and installed into the environment or static linked to

the main program.

The use of CUDA and cuDNN support was motivated since they increase the per-

formance of machine learning models, which are known by being computational heavy,

by using GPU resources which allow high parallelization and avoid the use of the main

bus since the computation is made inside the cores and memory of the GPU. For example,

the frame process time when using the Darknet loader was improved from 16 seconds per

frame to an average of 30 milliseconds per frame after the compilation of the framework

using CUDA support.

4.3 Results

Different threshold values informed via the command line was tested to try to im-

prove the results using a shell script to partially automate the generation of the evaluation

metrics, i.e., all threshold values used in this work was found by trial and error. The best

threshold values was found by selection the highest metrics generated by the dataset eval-

uation script and also visually analyzing the results. Once the values were found, they

were used to produce the results of the four methods tested. Tables 4.2, 4.3, 4.4 and 4.5
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show the results obtained by each method when tested in each of the 11 MOTChallenge

dataset videos when using the threshold values given by table 4.1. Table 4.6 displays

statistical data on the MOTA metric for each method.

Table 4.1: Threshold values used to produce the results

Threshold Value

-detconf 0.73

-detnms 0.33

-thcos 0.81

-thiou 0.60

-threborn 0.72

-thage 4

Source: The author

The first four tables have five columns each, where Sequence is the video being

tested, MOTA the value computed from equation (4.1), MOTP from equation (4.2), Dt

is the average time duration per frame of the detector component in milliseconds, and Tt

is the average time duration per frame of the tracker component also in milliseconds.

The last table (4.6) contains the average (AVG), the standard deviation (SD), the

maximum value (Max), and minimum value (Min) of the MOTA metric for each tested

method among all videos. The blue background means the best score between all meth-

ods, and the red background the worst.

Table 4.7 presents the results of the top 10 trackers published on the MOTChal-

lenge (LEAL-TAIXé et al., 2019) website in the benchmark 2D-MOT-2015 ordered by

MOTA metric. They were tested on another group of videos (test videos) and not the

videos used to evaluate our work (train videos), so we understand that it is not fair to

make a comparison between the methods. Even so, we are publishing the results here as

an example of what value of MOTA is achieved by these works.

Two frames are presented containing an empirical result of the track lines after

running the application into the PETS2009 sequence. Figure 4.3 shows the state of the

tracker after few frames analyzed. It is possible to notice that two pedestrians were born

in the right corner and began to be tracked by the application. Figure 4.3 shows the state

of the tracker after several frames of the PETS2009 sequence are processed. Each track

line color represents a pedestrian identified by the tracker. The same color may be used

more than one time for two different pedestrians since the number of pedestrians is high
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in this sequence. In the footer is the cropped images of the detected pedestrians whose

pixels are used to produce the deep features.

Table 4.2: Evaluation of appearance method using reidentification

Sequence MOTA MOTP Dt Tt

ETH-Bahnhof 21.7% 0.232 445 59

ADL-Rundle-8 40.7% 0.268 744 58

Venice-2 40.4% 0.247 389 61

KITTI-17 42.3% 0.272 722 66

TUD-Campus 56.8% 0.252 400 45

KITTI-13 14.8% 0.298 724 66

ADL-Rundle-6 52.2% 0.241 462 51

ETH-Pedcross2 56.0% 0.243 445 40

ETH-Sunnyday 66.4% 0.199 398 55

TUD-Stadtmitte 79.9% 0.229 380 44

PETS09-S2L1 79.5% 0.261 344 38

OVERALL 48.3% 0.245 495 53

Source: The author
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Table 4.3: Evaluation of appearance method without reidentification

Sequence MOTA MOTP Dt Tt

ETH-Bahnhof 21.6% 0.232 334 39

ADL-Rundle-8 40.4% 0.267 342 40

Venice-2 40.3% 0.247 331 36

KITTI-17 41.4% 0.271 384 22

TUD-Campus 56.0% 0.252 340 28

KITTI-13 14.8% 0.297 331 06

ADL-Rundle-6 52.0% 0.241 332 33

ETH-Pedcross2 55.8% 0.243 340 28

ETH-Sunnyday 66.4% 0.199 341 32

TUD-Stadtmitte 79.5% 0.228 342 29

PETS09-S2L1 79.2% 0.261 339 28

OVERALL 48.1% 0.245 341 29

Source: The author

Table 4.4: Evaluation geometric method using reidentification

Sequence MOTA MOTP Dt Tt

ETH-Bahnhof -26.0% 0.232 509 82

ADL-Rundle-8 25.9% 0.267 501 82

Venice-2 34.0% 0.246 665 69

KITTI-17 27.4% 0.271 501 35

TUD-Campus 47.9% 0.252 499 53

KITTI-13 -0.8% 0.295 495 14

ADL-Rundle-6 44.7% 0.240 496 65

ETH-Pedcross2 29.7% 0.242 497 52

ETH-Sunnyday 47.0% 0.199 504 65

TUD-Stadtmitte 78.3% 0.225 498 54

PETS09-S2L1 63.6% 0.261 497 54

OVERALL 29.7% 0.245 514 56

Source: The author
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Table 4.5: Evaluation of geometric method without reidentification

Sequence MOTA MOTP Dt Tt

ETH-Bahnhof 15.2% 0.232 885 128

ADL-Rundle-8 38.1% 0.267 721 111

Venice-2 39.7% 0.247 517 77

KITTI-17 35.9% 0.271 530 36

TUD-Campus 52.9% 0.252 514 56

KITTI-13 -0.7% 0.295 517 14

ADL-Rundle-6 50.7% 0.242 511 70

ETH-Pedcross2 52.6% 0.243 548 66

ETH-Sunnyday 61.5% 0.199 552 79

TUD-Stadtmitte 79.1% 0.228 539 64

PETS09-S2L1 74.3% 0.261 496 58

OVERALL 44.8% 0.245 575 69

Source: The author

Table 4.6: Statistics of MOTA for each method

Method AVG SD Max Min

(1) Appearance using reidentification 50.06 20.97 79.9 14.8

(2) Appearance without reidentification 49.76 20.90 79.5 14.8

(3) Geometric using reidentification 33.79 28.72 78.3 -26.0

(4) Geometric without reidentification 45.39 23.62 79.1 -0.7

Source: The author
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Table 4.7: Result from 2D MOT 2015 benchmark

Tracker MOTA SD +/-

MPNTrack15 48.3 12.0

Tracktor15 44.1 11.7

TLO 41.3 13.7

DeepMP 40.5 12.8

MHTREID15 40.0 16.2

CRFTrack_ 40.0 14.5

TLO15 40.0 14.9

KCF 38.9 14.5

CRF-RNN15 38.9 15.1

AP_HWDPL_p 38.5 9.9

Source: Adapted from MOTChallenge

Figure 4.1: Track lines over PETS2009 sequence

Source: Adapted from PETS2009
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Figure 4.2: Track lines over PETS2009 sequence

Source: Adapted from PETS2009

4.4 Discussion

The use of KF and the Jaccard index as geometric dissimilarity – methods (3) and

(4) – is an acceptable approach when the pedestrian presents a small position difference

between two consecutive frames and when the multiple pedestrians present are sparsely

located in the scene. However, the accuracy drops dramatically when the detector fails

to detect a pedestrian for a number of frames enough for having no more intersection

area between the bounding boxes, which causes the Jaccard index to return a zero value.

Moreover, this method also fails in scenarios with a dense number of pedestrians because

several detected boundary boxes start to have intersection area in common which it is no

longer sufficient to accurately distinguish which detection belongs to which pedestrian.

By using pedestrian reidentification, the results become much worse. This can

be explained because reidentification begins to associate detections previously associated

with other pedestrians; since the Jaccard index only uses geometric area information to

associate a detection with a pedestrian, without looking at whether the other features are

similar. So, when using deep features, the tracker begins to associate detections with

pedestrians that actually have similar pedestrian deep features, increasing the number of

identification switches, causing the MOTA metric to drop. As shown in Table 4.6, it
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presents the worst metrics of all evaluated methods.

The method that uses only the cosine distance between deep feature vectors pre-

sented the two best MOTA metrics overall. Moreover, the use of pedestrian reidentifi-

cation helped improve the metric. Thus, the method using deep features followed by a

pedestrian reidentification achieved the best MOTA over the four tested methods. How-

ever, it still not enough to avoid identification switches because the same pedestrian can

change appearance from one frame to another (in turn for example), so the cosine distance

can produce a low similarity even if they are the same pedestrian causing the tracker to

create a new pedestrian and lowering the MOTA metric. It also presented the lowest

standard deviation, which indicates that this method got a not so sparse accuracy when

different types of videos are being evaluated.

Method (1) showed a high MOTA metric of 79.5% in the sequence PETS09-S2L1,

which has a scenario very close to what is found in surveillance videos. This video was

used as a test during the implementation of this work, which corroborates the fact that it

is possible to calibrate the tracker threshold variables to obtain a high metric for a video

type, but an accurate result in a sequence does not imply that it will work well on other

types of video. It is challenging to find a method and configuration that produces high

accuracy for various types of scenarios.

All four methods presented very low accuracy in ETH-Bahnhof and KITTI-13 se-

quences. Both are sequences made by a moving camera at a low altitude. The method (3)

had a negative MOTA for both sequence and method (4) only for the KITTI-13 sequence.

A negative MOTA means that they had more errors than hits. Such types of videos feature

very dynamic camera movements, pedestrian reflections over surfaces, and focus shifting.

All of these videos present challenges that none of the methods were prepared to handle,

featuring low MOTA metric.
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5 CONCLUSIONS

In this work, we presented an application to track multiple pedestrians online from

a single camera using the tracking-by-detection paradigm. For that purpose, we have met

all the specific goals mentioned in the proposal (see section 1.2).

The evaluation of our work showed that the technique using the cosine distance

between arrays of deep features followed by pedestrian reidentification had the best over-

all result among the 11 video types tested. The results presented different accuracy for

different types of videos, ranging from a maximum MOTA metric of 79.9% to a minimum

of 14.8% for the same method. In fact, the MOT problem presents a very diverse type of

scenarios that are challenging to handle by a single method configuration.

The four methods presented difficulties when dealing with high levels of occlusion

in scenes where the detector fails in feeding the tracker component. Even though the

tracking-by-detection paradigm allows us to use two components that work separately,

the result of the first component strongly affects the result of the second.

5.1 Future work

The implementation of this tracker makes use of components that can be improved

in isolation by exploring new techniques, thereby verifying how they improve the overall

results of the tracker.

• New techniques to perform pedestrian detections on each frame can be analyzed,

such as the use of two-stage object detectors, which are slower, but may present

better accuracy.

• The use of nonlinear motion model filtering can be used to try to improve the pre-

diction and filtering.

• The use of new models to produce deep features of each pedestrian can be explored

as well as types of metrics for computing distance between two deep feature vectors.

• Study filtering models that integrate linear and angular velocity to increase uncer-

tainty when the target is changing direction.

• New template matching techniques to get better accuracy when modeling the dis-

similarity between pedestrians.

• The study of the use of stereo cameras to make use of the additional depth informa-
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tion to improve the tracking results.

• The use of camera calibration for background modeling to better accurate target

movements.

• The study of techniques to better handle false positive detections from reflected

pedestrians.
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Abstract. Automated video analysis is a growing demand since technology has
been allowing the creation of visual data in increasing rates coming from dif-
ferent real-world applications. Pedestrian detection and tracking are specific
needs of this demand, as they enable the automation of applications such as re-
tail analysis and video surveillance. Using the tracking-by-detection approach,
this work proposes the implementation of a pedestrian tracking system using
deep learning object detector with a recursive filtering algorithm for tracking.
It also proposes the use of an algorithm for the assignment problem due to the
probable presence of multiple pedestrians on the video frame.

Resumo. A análise automatizada de vı́deo é uma demanda crescente uma
vez que a tecnologia permite a criação de dados visuais em taxas cres-
centes provenientes de diferentes tipos de aplicações. A detecção e ras-
treamento de pedestres são uma necessidade particular dessa demanda ao
permitir automações de aplicações como análise de varejo e vigilância por
vı́deo. Usando a abordagem de tracking-by-detection, este trabalho propõe a
implementação de um sistema de detecção e rastreamento de pedestres usando
um detector baseado em técnicas de aprendizado profundo para a detecção e um
algoritmo de filtragem recursiva para o rastreamento. Também propõe o uso de
um algoritmo para o problema de associação devido à provável presença de
múltiplos pedestres no frame de vı́deo.

1. Introduction

1.1. Motivation

The technology has been leading us toward a world in which it is incredibly affordable
to have equipment to capture and store visual data. In video surveillance, it is increas-
ingly common to install video cameras in public or private spaces. However, the vi-
sual data from these cameras is usually monitored without proper attention or not at all
[Dick and Brooks 2003]. New Scientist Magazine once said, “there are too many cam-
eras and too few pairs of eyes to keep track of them” [Hogan 2003]. In retail analysis,
the use of camera equipment allows to capture visual information about the customer, but
an automated application can go further allowing the creation of better statistics about
customer behaviour allowing retailers to make better business decisions. In both applica-
tions, the amount of visual data being generated is vast, making the manual analysis of
such applications impractical.



In the context of manual video surveillance, usually, the cameras capture the mon-
itored environment and send the images to another room containing small screens where
the images are visualized, often these screens contain the video from more than one cam-
era, inside a room that can contain multiple monitors. In this scenario, the human operator
must be watching all the videos seeking for some suspect which requires skills that are
beyond human capacity, especially the ability to maintain concentration. For example,
a study shows that humans watching a single video monitor for more than 20 minutes
lose 95% of the ability to maintain concentration enough to distinguish important events
[Green 1999]. This only corroborates the demand for automated video analysis.

This problematic context creates the demand for automated video analysis. Fur-
thermore, the constant increase in computational power by CPUs and the parallel pro-
cessing by GPUs, as well as the advances in technologies provided by researches in the
computer science community, only increase the demand. Therefore, the computer vi-
sion community is always trying to find new approaches for algorithms be able to extract
high-level information from visual data. As a result, it allows applications to automate
tasks before performed by the human visual system, such as video surveillance. Com-
puter vision is an interdisciplinary field that makes use of various technologies to reach
its goals. Moreover, it has been gaining much attention in recent years due to the potential
of applications in various areas of human knowledge, from biological to aerospace.

The visual object tracking (VOT), visual tracking or target tracking is one of the
most fundamental processes for an understanding of video content [Jalal and Singh 2012].
It can be defined as the process of keeping track of one or more moving objects in a video
stream [Acharya and Ray 2005]. It is time-expansive due to a large amount of data that
must be processed, and consequently, it is a complex problem to propose a solution that
satisfies both accuracy and speed. Even though several approaches have already been
proposed, it remains an open problem in the community.

The VOT can be separated into two broad categories: single object tracking (SOT)
and multiple object tracking (MOT). While SOT will be concerned with detecting and
tracking only a single object for the duration of the video, MOT will need to detect and
track multiple targets that may appear and disappear for the duration of the video. Both
groups share almost all the challenges for visual object tracking. However, the last one
will have to handle new types of challenges due to occlusion and collision between targets,
identifying among multiple objects, and birth/death of targets.

The MOT problem is one of the most challenging areas of research in the com-
puter vision [Guan et al. 2016, Li et al. 2013]. It can be defined as the process of cre-
ating a record of the trajectory of each target in time and space in each frame of a se-
quence of generated images [Fan et al. 2016, Li et al. 2013]. The problem has a long his-
tory spanning about 50 years [Mallick et al. 2013], receiving a lot of attention in recent
years due to its potential applications in the research community and commercial fields
[Fan et al. 2016]. It allows a wide range of applications in various areas of human knowl-
edge such as public safety, air traffic control, autonomous vehicles, statistics generation,
robotics, oceanography, astronomy, molecular biology [Guan et al. 2016].

The pedestrian tracking falls under multiple object tracking and its most popu-
lar application is video surveillance [Jalal and Singh 2012], due to the fact that it is not



just digitally recording some space in video: it also includes more complex tasks such
as extracting information about the movement of targets, and recently even analyzing
suspicious behaviors from the watched scene [M. Shah and Shafique 2007]. Though the
MOT application could track several targets such as vehicles, airplanes, and even mi-
croorganisms, the pedestrian class is the primary tracking target for the video surveillance
application. In addition, other pedestrian tracking applications are sports analysis, retail
analysis, file/video comprehension, drive assist, autonomous vehicles.

For retail analysis, a pedestrian tracker can be a powerful tool for generating infor-
mation about customer behavior inside the store. For example, the application in a store
could track all pedestrians who frequent a particular space over some time to generate
a heat map with the areas most frequented by customers. Additionally, the application
could generate data about how long customers are waiting to be serviced in a particu-
lar line. As a result, all of these statistical data would allow the retailer to make better
decisions to benefit their customers and their business.

The implementation of a pedestrian tracking system is the first step to propose so-
lutions for those applications because it allows knowing where people have been walking
giving each pedestrian a unique identifier through the whole video sequence.

The tracking-by-detection approach has been shown in the literature that helps
to tackle the inherent object tracking challenges that will be addressed in Section 1.2
[Mekonnen and Lerasle 2018]. In this approach, the system consists of three main com-
ponents: detection, tracking, and assignment. However, it is in the object detector which
plays the main role. That is, the system relies on it to perform the main tasks involved in
tracking such as localization, classification and representation of each pedestrian.

Traditionally, the pedestrian trackers have been tackled by using geometric
algorithms to correlate objects between frames, for example, the optical flow to
analysis moving objects, leaving a great territory for machine learning techniques
[Bhooshan and Garg 2017]. Moreover, machine learning techniques have been improv-
ing results in several areas of human knowledge, including specific areas of computer
vision, from the reconstruction of scenes to the detection of objects. The first approaches
of object detectors using machine learning techniques improved the accuracy of detec-
tion, but they required a lot of processing, as result their speed were low. New approaches
known as single-shot object detectors presented great results in both accuracy and speed
as shown by Table 1.

1.2. Challenges
The tracker needs to extract the right information to well describe the target over the
whole duration of the video. To be able to achieve that, the information needs to be
generic enough to handle the indeed variation of appearance that each pedestrian could
have. However, at the same time, it also needs to be precise enough to be able to keep a
unique identification to each pedestrian through the frames of the video sequence. This
leads to a complex overall challenge since all objects are just projections onto the image
domain. Additionally, it is necessary taking into account the amount of information to
be processed because a large amount of data that needs to be processed is one of the
challenges of tracking.

A video V can be defined as a sequence of images Ii of same resolution where i



is the frame number. Each image is composed by a set of pixels pi,j where i and j are the
pixel coordinate on the image plane. Additionally, each pixel p is represented by one or
more integer number depending on the color model used. Altogether, the amount of data
is related to both image resolution and color model. As an example, an 800× 600 image
will have 480,000 pixels if the image has only one color channel, but if the RGB color
model is being used it will be three times that or 1,440,000 integer numbers per frame. A
video with a frame-rate of 30 frames per second can have on average 40 megabytes per
second of uncompressed data to be processed by the application.

The majority of the challenges are due to the variations that the pixels composing
an object could suffer due to factors such as ambient illumination or occlusions. Even
state-of-art visual object trackers cannot handle well in severe occlusions and illumination
changes. The pedestrian class offers additional challenges due to the dynamics of the
human being. For example, they have a significant internal class variability that can be
caused simply by the reason that each pedestrian could be wearing clothes with different
color and texture.

The challenges due to the temporal variations of the pixels that represent each tar-
get through the video sequence can cause a phenomenon called clutter in which two target
are very similar between themselves or between it and the background. This phenomenon
can cause two symptoms that affect the operation of the tracker. The first symptom oc-
curs when the tracker can no longer find the targets that are present in the video frame.
The second occurs when it merges two different targets into a single identification. The
reasons that temporal variations of the pixels occur are varied. The main ones are due to
the indeed dynamics of the targets, ambient illumination and occlusions.

The dynamics of the target such as changes in pose modifies the pixels that are
being projected into the image. Types of pose changes include deformation, rotation, and
translation. An example of deformation could occur when a pedestrian crouches to pick
up some object that is dropped on the ground. Because of the crouched pose, the target
has no more the expected proportion of a pedestrian or very different pixel values that
used to be in previous frames.

The ambient lighting can interfere with how objects are represented in the image.
A sunny day or a cloudy day in an external environment, the intensity and color of artificial
lights in an indoor environment, and even the light color temperature can change the
appearance of the targets. Shadows and reflections also play a role. For example, a
problem that a reflection can cause is in the scenario where the reflection of a pedestrian
appears in some mirror. This can lead to some state where the tracker detects a new object
from the reflection.

The occlusions of a target are problematic because they can not only alter the
appearance of targets, called partial occlusion, but also cause the object to no longer be
detected for a considerable period, called total occlusion. If the tracker uses some filtering
estimator, theoretically it can maintain the trajectory for a period, but it is subject to the
target drifting problem if the target moves abruptly under occlusion. Another challenge of
occlusion is the lack of context of the movement. For example, a target that fails to appear
for some frames needs to be finalized if he does not come back to the scene or continue
with its identification if the occlusion is temporary. It could be a challenge for the tracker



to decide whether to finalize target detection or to maintain identification in the hope that
it will reappear.

The camera is the hardware that creates input data to feed the tracker, so its char-
acteristics will shape the approach that the tracker will use to perform its function. The
position, viewpoint, static/moving, image color model, video framerate, noise, and cali-
bration parameters play an important step when dealing with tracking of objects.

A calibrated camera can help to optimize the tracking since calibration parameters
such as the main point, the focal length and the distortion coefficients are known. The
known parameters could used to do some image processing, such as measuring the size of
an object, determining the location of a camera in a scene, correcting distortions of lens,
and get better estimate on target movement. Additionally, the camera position can change
the amount of information per target. For example, an external surveillance camera placed
at the top of a building will produce images in which the targets will be projected as
points due to the large distance between the camera and the targets. On the other hand, a
surveillance camera inside a convenience store will be closer to the targets, being able to
capture more information about them such as their shape, color or texture.

All mentioned problems can be reduced to perform specific tests. For example,
collecting only videos that do not contain target occlusions or only videos generated from
static cameras may be useful for generating specific evaluation analysis.

1.3. Main Goals

This work proposes the development and implementation of a pedestrian tracking algo-
rithm using the tracking-by-detection approach. The main objective is to evaluate the use
of state-of-art deep learning object detectors coupled with classical filtering algorithm for
the tracking of pedestrian from a video sequence that is in some way similar with what
could be found in video surveillance or retail analyses. The secondary goals are enumer-
ated as the following.

i) Study the use of state-of-art deep learning object detectors;

ii) Study filtering approaches to improve the estimation of the tracks;

iii) For MOT, study and develop methods for target association.

The rest of this paper is organized as follows. Section 2 gives a brief background
in visual object tracking architectures and components. It also presents some of the related
work available in the literature. Section 3 presents more details about the work proposal
of this paper. Lastly, section 4 concludes the paper.

2. Background and Related Work

2.1. Pedestrian Tracking

The goal of an application that tracks pedestrian is to be able to give a unique identification
to each detected pedestrian on the video to create a trace from the first moment it is visible
(target-birth) to the last frame (target-death). It is a particular case of MOT, and a vast
number of approaches have been proposed in the literature. This section will present a



brief overview of some conventional approaches already used in pedestrian tracking. Next
section will focus only on the tracking-by-detection approach, the focus of this work.

The tracker applications are complicated systems made up of several separate
components [Wang et al. 2015]. According to [Maggio and Cavallaro 2011], an object
tracker architecture can be divided into five main components: extraction, representa-
tion, propagation, birth/death management and metadata extraction. In another taxon-
omy presented in [Fiaz et al. 2018], the tracking process is divided into four compo-
nents: initialization, appearance modeling, motion estimation, and target positioning.
This work will focus on the tracking-by-detection approach where it is common to split
the application into three main components: detection, tracking and association module
[Mekonnen and Lerasle 2018].

The features are the useful information the tracker will extract to try to find and
represent the target. In the sense of complexity, there are three classifications for features:
low, middle and high-level features. The low-level features are the most basic ones such as
position, size and color. The mid-level features are more complex and normally extracted
from a region of pixels from the image, may using low-level features as well. Example of
mid-level features could be image edges or orientations. Finally, the high-level features
are the most complex ones and could represent a whole object.

In [Mekonnen and Lerasle 2018], it was presented a short history of more com-
plex features used in the context of pedestrian tracking. The haar-like features were one
of the first successes in pedestrian detection and it was inspired by the haar wavelets
[Viola and Jones 2001]. Later, the histogram of oriented gradients (HOG) improved the
state-of-art and it was followed by using more than one features in a technique called fea-
ture pooling. The work [Dalal and Triggs 2005] proposed the use of HOG to human de-
tection. Next significant improvement towards better pedestrian detection was presented
with deformable parts model (DPM), which models an object as a set of parts conditioned
in the spatial arrangement. Lastly, the channel features which an intermediate layer filter-
ing low-level features in combination with a boosted decision forest which obtained top
performance on the challenging Caltech and KITTI datasets [Zhang et al. 2015].

The HOG+SVM detector is a traditional detector and it was proposed in
[Dalal and Triggs 2005] as a better descriptor for human detection. This approach origi-
nally proposed for the detection of people, however, future articles presented results for
objects in general [Siji Joseph 2017]. It calculates the histogram of the gradient orienta-
tion on an equally spaced grid, generating a vector gradient, and uses a linear Support
Vector Machine (SVM) as a classifier. It is immune to deformation as it stores gradi-
ent magnitudes and normalization is realized to try to maintain illumination invariant.
However, the [Mekonnen and Lerasle 2018] says it performs poor in recent benchmarks
when compared with new approaches. The related work [Sugano et al. 2010] explores the
use of HOG for optimized pedestrian tracking using the GPU to perform parallelism of
processing.

The sliding window is a classical tracking approach, but it has a high computation
cost since it relies on exhaustive search over the image, applying some similarity function
between the multiple patches that are being extracted from the image and a predefined
template of the target. The comparison can be done with any image similarity algorithm,



usually proposed for the image retrieval problem, such as normalized cross-correlation.
The candidate with the closest similarity to the original template is chosen to be the target
of the current frame. Although this example is very simplified, this approach, with proper
optimization, remains one of the very important for object detection. However, this ap-
proach may not be good for pedestrian tracking, since it will be hard to create a universal
model for all possible pedestrians that could appear in the video.

Another approach is to use information about the pixel’s movement to detect and
track targets. The motion is a powerful information that can be extracted in videos when
two or more consecutive frames are compared to detect which areas have been moved.
The optical flow is a vector field of apparent motion that can be used to detect moving
targets, such as pedestrians. The features that are moving together could be treated as
belonging to the same object. This may cause a problem in videos with a high density of
moving objects since they are too close to be detected as a single object. Additionally,
another downside of this approach is that issues can happen if the target stop to move for
some time, also called the sleeping object problem. Related work of this approach can be
found at [Hariyono J. 2014] where optical flow and HOG was used to detect pedestrian
using motion information to optimize the time-consuming sliding window approach. In
the work of [Viola et al. 2003], the information about motion over two consecutive frames
was used to detect pedestrians. They also presented an efficient representation of image
motion.

The background subtraction is a key technique for automatic video analysis in
the domain of video surveillance [Mekonnen and Lerasle 2018]. The basic concept of
background subtraction is to create an initial template to describe the background be-
fore the video analysis start. Next, it uses this model to subtract the background in each
video frame, so only the foreground will be visible allowing the detection of targets. In
[Kumar and Yadav 2016], it was used this approach to extract and track objects in com-
plex environments. It also uses an adapting Kalman filter to track the targets. Additionally,
the work [Zhang and Ding 2012] uses adaptive background subtraction to track moving
objects.

2.2. Tracking-by-Detection

The tracking-by-detection approaches rely on an object detector to start, update, restart,
or terminate a tracker [Elie Moussy 2015]. It is not necessary to have any informa-
tion from previous frames since each frame is analyzed separated, applying an ob-
ject detector to locate and classify the targets. The tracking-by-detection approach has
been shown in the literature that helps to tackle the inherent object tracking challenges
[Mekonnen and Lerasle 2018]. It can be divided into three main components: detection,
tracking and assignment. A basic framework can be seen in Figure 1.

The detector component performs the localization and classification of the targets,
creating a model that represents the object such as a bounding-box containing information
about location, size and class-score, and then delivering it to the assignment component.

In each frame, once the detector finishes the detection of all the target, the associa-
tion algorithm take place to keep the same identification for each target. After, the filtering
process is started, and the tracker takes place to create a trace of each target through the
frames of the video sequence.



Figure 1. A basic framework of a tracking-by-detection approach from
[Mekonnen and Lerasle 2018]

2.2.1. Detection Component

In the tracking-by-detection approach, the detection of objects is the crucial step. The
detection of objects by itself is a challenging computer vision problem. A large number of
researches have already been done in the area of object detection in the last two decades
involving several areas such as image processing, linear algebra, statistical/probability,
machine learning [Prasad 2012].

Thus, there are several approaches to address the problem such as the classical
ones mentioned in the previous section, and also more advanced ones like the aggregated
channel features (ACF) and locally decorrelated channel features (LDCF).

Recently, with advances in technology in machine learning techniques, region-
based convolutional neural networks (RCNN) have been used to detect objects with in-
teresting accuracy results [Mekonnen and Lerasle 2018]. The approaches presented good
results in accuracy, but not in speed because of one way or another they still doing an
extensive search over the image to detect objects. In other words, they are an optimized
sliding window approach which provides region of proposals followed by a classifier to
classify these proposals.

Examples of the use of CNN for object detection were presented with OverFeat
published in 2003 [Sermanet et al. 2013]. Shortly after the publication of OverFeat, a
method using regions was proposed in which it defined around 2000 potential regions
of interest to apply a classifier in each of them [Girshick et al. 2013]. The Fast RCNN
[Girshick 2015] and Faster RCNN [Ren et al. 2015] presented an optimization by using a
neural network to propose objects of interest to avoid the extensive search of applying the
classifier in each patch thousands of times.

A time later, new approaches started to propose a combination of those two tasks,
i.e. the creation of regions of proposals and the classifier, into one single network. They
presented techniques to analysis the whole image once instead of a sliding window or
selective region of interest allowing much better results in speed. Those type of network



will be the focus for the pedestrian detection problem proposed by this work.

As mentioned earlier, the first approaches using CNN used to apply a classifier
to several regions of interest extracted from the image. It has a cost of speed since it is
necessary to send a huge number of regions to a classifier with the goal of finding some
target. An alternative to this approach is the known as single-shot object detector where
the entire image is passed only once to the classifier. Examples of these types of detectors
are the single-shot multibox detector (SSD), the you-only-look-once (YOLO), the region-
based fully convolutional network (R-FCN), the feature pyramid networks (FPN) and the
focal loss (FL).

An example of a popular algorithm that uses this method is YOLO, which is a
system proposed in 2015 for real-time object detection [Redmon et al. 2015]. The author
proposed a new approach using a single CNN to locate and classify the objects in one
evaluation instead of the previous pipeline which performed the classification on many
regions of interest. The YOLO passes the whole image through the neural network only
once, and it outputs class probabilities and bounding boxes for predictions. Using this
approach, the system has the best speed when compared with other methods, as shown by
Table 1, it also has very good accuracy.

Figure 2. Yolo framework [Redmon et al. 2015]

The YOLO framework follows a standard convolutional neural network, with con-
volutional and pooling layers and connected in the end by two fully connected layers. The
system splits the input image in a grid of S × S cells. Each cell will be responsible for
detecting one object which geometric center falls on it. The output of the system is a
bounding-box and a classification score. Each bounding box contains four variables that
localize the object into the image by giving the position (x, y) and the size (w, h) of
the detected object, also the class-score of the object inside the box which represent the
probability of the detected object be a specific class label.

2.2.2. Tracking Component

In the tracking-by-detection approach, the tracker is the process where the state of the de-
tected object is propagated through the frames of the video sequence. The use of filtering
algorithms is widely used because they allow the target state in the current frame to be



Table 1. Comparison of some object detectors
Algorithm Pascal 2007 mAP Speed
DPM v5 33.7 .07 FPS
R-CNN 66.0 .05 FPS
Fast R-CNN 70.0 .5 FPS
Faster R-CNN 73.2 7 FPS
YOLO 69.0 45 FPS

optimally estimated from the information of the previous frame and the information of
the current frame as well. The filter has this name in the sense that it is discretized in the
time domain. In VOT, the use of estimators is interesting because the state of the object
can be estimated even if the detector fails due to some occlusion event.

Following the taxonomy provided by [Mekonnen and Lerasle 2018], the tracker
component can be divided into two classes: the purely probabilistic based on the Monte
Carlo approach and the stochastic/deterministic ones. They also can be organized in de-
centralized and centralized. In the first one, each target receives a unique instance of
the filtering algorithm while the last one does not assume that. The trackers can also be
classified between online and offline. The online trackers perform the tracking as the
data is received, while the offline tracker analyzes the entire video before performing the
tracking.

There are several algorithms in the literature such as the Kalman filter (KF), the ex-
tended Kalman filter (EKF), the particle filter (PF), the decentralized particle filter (DPF),
the reversible jump Markov chain Monte Carlo (RJMCMC), the simple online and real-
time tracker (SORT), the Markov decision process (MDP), the kernelized Correlation
filter (KFC), and the Rao-Blackwellised particle filter, to list some. The survey provided
in [Mekonnen and Lerasle 2018] is a good source of information.

The filters accomplished the optimal estimation by an iterative process of predic-
tion and correction. The predictions step is made using a motion model to estimate the
current frame state from the previous frame. The correction step is calculated based on
the observation model in the way that minimizes the error of the estimated parameters in
an optimal way. Three motion models are commonly found in MOT: random walk model,
linear autoregressive model, and non-linear models [Mekonnen and Lerasle 2018].

For example, the Kalman filter is a single-hypothesis optimal linear estimator that
uses a series of measurement data that may contain a statistical Gaussian noise to estimate
the object state statistically minimizing the mean square error by getting a joint probability
distribution over the variables in each frame. In other words, the algorithm recursively
estimates the state of the target xk from the previous frame state xk−1 where k is a time
interval such as millisecond or frame number. [Kalman 1960] proposed this recursive
technique for the discrete-data linear filtering problem.

Usually, it is used in systems that have a linear motion and noise model with
a Gaussian distribution. For non-linear systems, other methods may work better such
as the Extended Kalman filters or particle filters. The Kalman filter has been estab-
lished as the optimal solution for many tracking problems [Lacey ]. When used with
the Hungarian algorithm, they are two extremely efficient algorithms to handle the mo-



tion prediction and data association components of the tracking problem respectively
[Mekonnen and Lerasle 2018]. Related work using Kalman filter in the context of pedes-
trian tracking can be seen at the work of [Mittal et al. 2012] where the Kalman filter is
used together with DPM detector to track pedestrian. Also, [Beymer and Konolige 1999]
made use of a Kalman filter based tracker and a template based person detector to track
the targets.

The Kalman filter estimates the state ~x ∈ <n of a system assuming the linear
stochastic equation (1). The measurement ~z ∈ <n at time k is a linear combination
between the state values and the measurement noise v given in equation (2).

~xk = A~xk−1 +B~uk−1 + wk−1 (1)

~zk = Hk~xk + vk (2)

The matrix A is the transition model and relates the state from the previous frame
to the state of the current frame. The matrix B relates the control input model applied to
the control vector ~uk. The matrix H is the observation model and relates the space state
with the measured space. The variablesw is the prediction noise and v is the measurement
noise, they represent a random noise assuming they have a Gaussian distribution, where
Q is the process noise covariance and R is the measurement noise covariance.

p(w) ∼ N(0,Q) (3)

p(v) ∼ N(0,R) (4)

The first practical step is to define the state variables to be estimated over time. For
a pedestrian tracker that will receive the output directly from the object detector, the state
of each pedestrian can be defined as containing at least four variables: x, y, vx and vy.
Respectively the horizontal and vertical position, and the horizontal and vertical velocity.

The prediction of the state x̂k from ~xk−1 and the covariance P̂k from Pk−1 a priori
is given by

~xk = A~xk−1 +B~uk−1 (5)

Pk = APk−1A
T +Q (6)

Where matrix A and B are from equation (1) and Q from equation (3).

The measurement update is given by

Kk = PkH
T(HPkH

T +R)-1 (7)

~xk = ~xk +Kk(~zk −H~xk) (8)

Pk = (I−KkH)Pk (9)

Where equation (7) calculates the Kalman gain K. The equation (8) corrects the
predicted state. And the equation (9) updates the error covariance. The I is the identity
matrix.



After each prediction and correction steps, the process is repeated to recursively
estimate the optimal estate. More deep information about the filter can be found at
[Sorenson 1970, May , Welch and Bishop 2006].

2.2.3. Association Component

In MOT, the problem of associating targets between frames needs to be solved. The
goal is to match the detection of the current frame with the same detected pedestrian of
the previous frame. In other words, once a pedestrian is detected and given a numeric
identification, it must continue with it throughout the entire lifespan. The Hungarian
algorithm is commonly used for the association problem [Mekonnen and Lerasle 2018],
although a basic greedy algorithm also could solve it.

The Hungarian algorithm solves the assignment problem given a cost matrix that
defines the cost between target from two consecutive frames. For example, a cost matrix
Si,j , where j represents the jth target from the previous frame and i the ith target on the
actual frame, that contains metrics such as distance and scale similarity can be modeled
as following

Si,j = αd

[
xi − xj
yi − yj

]
+ αs

[
si − sj

]
(10)

where αd and αs are adjustable parameters for image distance and scale, respec-
tively. The x and y are the geometric center of the objects. And s could represent the area
of the detected target.

2.2.4. Evaluation

The evaluation could be made using public dataset and standards metrics. The time per
frame of the tracking processing is a basic metric for speed. For object detection, there
are two important metrics: precision and recall. They are defined according to equations
(11) and (12) [Mekonnen and Lerasle 2018].

Precision =
TP

TP + FP
(11) Recall =

TP

TP + FN
(12)

TP stands for the number of true positives, FP for false positives and FN for false
negatives. A false positive happens when the module detects an object that is not in the
image. A false negative when it does not detect an object that is in the image. And true
positive when the module correctly detects the object. More detail about the calculation
is presented in the work [Dollar et al. 2012].

In MOT, the two most important metrics were presented by CLEAR-MOT met-
rics as Multi-Object Tracking Accuracy (MOTA) and Multi-Object Tracking Precision
(MOTP) [Kasturi et al. 2009, Mekonnen and Lerasle 2018], equations (13) and (14), re-
spectively.



MOTA = 1− (Fp + Fn + Idsw) (13) MOTP =

∑
i,td

i
t∑

tCt

(14)

From equation (13), the variable Fp =
∑

t
FPt

gt
is the total number of false posi-

tives, Fn =
∑

t
FNt

gt
the total number of false negatives, and Idsw =

∑
t
Idsw,t

gt
the total

number of identification switches. The gt is the number of ground truth objects from the
whole dataset. From equation (14), the dit is the Euclidean distance between the matched
ground truth location and the tracker target location. TheCt is the total number of matches
made.

The MOTA accounts for all errors such as missed target or false positives. The
MOTP try to account for the ability of the tracker to estimate precise positions, inde-
pendent of its results from the detection step, keeping consistent trajectories. Detailed
information is presented in [Bernardin and Stiefelhagen 2008].

3. Work Proposal
As mentioned in Section 1.3, this work proposes the implementation of a pedestrian track-
ing using the tracking-by-detection approach where the main objective is to evaluate the
use of state-of-art deep learning object detectors coupled with classical filtering algorithm
for the tracking of pedestrian from a video sequence that is in some way similar with was
could be found in video surveillance or retail analyses.

The video sequences used will first come from the standardized public data-set
for the SOT/MOT problem. Some personal video may be created for personal test using
a cellphone. Due to the complexity of the tracker implementation due to the variety of
challenges to achieve accuracy and speed, the use of video sequences with restrictions
may be applied, for example, the number of pedestrian and occlusion events.

The software output will be a sequence of locations for each target in the video
sequence.

Table 2. Schedule of activities
Activity Jan Feb Mar Apr May Jun
Detection component X X
Filtering component X X
Assignment component X X
Integration of components X X X X
Tests and Results X X X
Monograph writing X X X X

4. Conclusion
This article presented a brief description of approaches to track pedestrians, including the
tracking-by-detection approach, in which the system consists of three main and indepen-
dent components to detect, track and assign, respectively.

The proposed work will be useful to evaluate the use a pedestrian tracking using
the tracking-by-detection approach where the main objective is to evaluate the use of
state-of-art deep learning object detectors coupled with classical filtering algorithm for



the tracking of pedestrian from video sequence that is in some way similar with what
could be found in video surveillance or retail analyses.
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