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ABSTRACT

Scheduling problems have been a subject of interest to the optimization researchers for

many years. Flow shop problems, in particular, are one of the most widely studied

scheduling problems due to their application to many production environments. A large

variety of solution methods can be found in the literature and, since many flow shop prob-

lems are NP-hard, the most frequently found approaches are heuristic methods.

Heuristic search methods are often complex and hard to design, requiring a significant

amount of time and manual work to perform such a task, which can be tedious and prone

to human biases. Automatic algorithm configuration (AAC) comprises techniques to au-

tomate the design of algorithms by selecting and calibrating algorithmic components. It

provides a more robust approach which can contribute to improving the state of the art.

In this thesis we present a study on the permutation and the non-permutation flow shop

scheduling problems. We follow a grammar-based AAC strategy to generate iterated lo-

cal search or iterated greedy algorithms. We implement several algorithmic components

from the literature in a parameterized solver, and explore the search space defined by the

grammar with a racing-based strategy. New efficient algorithms are designed with mini-

mal manual effort and are evaluated against benchmarks from the literature. The results

show that the automatically designed algorithms can improve the state of the art in many

cases, as evidenced by comprehensive computational and statistical testing.

Keywords: Flow shop scheduling problem. automatic algorithm configuration. iterated

local search. iterated greedy algorithm.



Configuração Automática de Algoritmos para Problemas de Agendamento em Flow

Shop

RESUMO

Problemas de agendamento tem sido assunto de interesse para pesquisadores em otimiza-

ção por muitos anos. Problemas de flow shop, em particular, são alguns dos problemas de

agendamento mais amplamente estudados devido à sua aplicação em muitos ambientes

de produção. Uma grande variedade de métodos de resolução pode ser encontrada na

literatura e, visto que muitos problemas de flow shop são NP-difíceis, as abordagens mais

frequentemente encontradas são métodos heurísticos.

Métodos heurísticos de busca podem ser complexos e difíceis de projetar, requerendo

uma significativa quantia de tempo e trabalho manual para realizar tal tarefa, que pode

ser tediosa e propensa a viés humano. Configuração Automática de Algoritmos (CAA)

compreende técnicas para automatizar o projeto de algoritmos, selecionando e calibrando

componentes algorítmicos. Ela fornece uma abordagem mais robusta que pode contribuir

para melhorar o estado da arte.

Nesta tese apresentamos um estudo sobre os problemas de agendamento em flow shop

permutacional e não-permutacional. Nós seguimos uma estratégia de CAA baseada em

gramática para gerar buscas locais iteradas ou algoritmos gulosos iterados. Nós imple-

mentamos vários componentes algorítmicos da literatura em um solver parametrizado, e

exploramos o espaço de busca definido pela gramática com uma estratégia baseada em

corridas. Novos algoritmos eficientes são obtidos com esforço manual mínimo e são ava-

liados em benchmarks da literatura. Os resultados mostram que os algoritmos projetados

de maneira automatizada podem melhorar o estado da arte em muitos casos, conforme

evidenciado por abrangentes testes computacionais e estatísticos.

Palavras-chave: Problema de agendamento em flow shop, Configuração automática de

algoritmos, Busca local iterada, Algoritmo guloso iterado.
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1 INTRODUCTION

The efficient solving of optimization problems helps to improve our lives, even

though it often remains unnoticed. For example, we benefit from reduced delivery times

for products bought online due to the improvement of solution methods for problems in

logistics, or from reduced costs for products due to the efficiency gains in manufacturing

processes. Shop scheduling problems, in particular, model many optimization problems

that manufacturing and service industries face. These problems usually consist of ef-

ficiently allocating resources to jobs whose processing requires a certain time in such

a way that minimizes a cost metric. Since the costs involved in the industry are often

high, the research for more efficient resolution methods is highly desirable. However, op-

timization in production environments can involve challenging combinatorial problems.

Most of them are NP-hard (COOK, 1971; LEVIN, 1973), i.e., no efficient polynomial-

time algorithms for solving them are known. Besides, it is frequently impractical to solve

large-sized problems that arise from the industry in a short time through exact approaches,

such as mathematical programming. A common solution in these cases is the adoption of

heuristic methods.

Heuristics often produce high-quality results, but on the other hand, they can be

complex and hard to design. Furthermore, shop scheduling problems have a large number

of variants to represent the differences in production processes in practice. The variants

can include different objective functions, job sequence constraints, and machine config-

urations. However, most heuristics are explicitly designed to a single or a few variants,

generating an increase in development cost when the methods have to be adapted to solve

different problem variants. In addition, the methods usually have a set of parameters that

have to be calibrated to ensure good results. The calibration is often performed manually,

requiring a significant amount of time and effort, and being vulnerable to human error.

The automation of the design and calibration processes has been a useful technique that

can reduce the workload of designers and increase the robustness compared to a manual

approach.

In this work, we address the permutation and the non-permutation flow shop

scheduling problems. In these problems, each job is composed of a sequence of oper-

ations, and each operation has to be processed without interruption by a specific machine

for a certain time. All jobs go through the same sequence of machines, one job at a time.

We focus on minimizing the maximum completion time, i.e., the completion time of the
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last job of the schedule, and the total completion time, i.e., the sum of the completion

times of all jobs. We go beyond the typical goal of proposing a new algorithm. Instead,

we build a solver that efficiently implements individual algorithmic components, and al-

lows one to combine them into iterated local search or iterated greedy algorithms. We use

an automated methodology to find efficient combinations of components, thus generating

a set of new algorithms, and compare them to the state of the art.

1.1 Objectives

Our objective is to automate the design process of heuristics for flow shop prob-

lems based on a library of individual components that can be combined to generate full

methods. We aim to reduce the manual effort required during the design process while

producing equivalent algorithms. The specific objectives of this work are:

• Study if it is possible to automate the design process.

• Implement a library of algorithmic components in a solver.

• Automate the design process through automatic algorithm configuration techniques.

• Compare the obtained methods to the state of the art.

1.2 Contributions

The main contributions of this work are a solver that uses efficiently implemented

algorithmic components from the literature, and a set of algorithms for each problem

variant and objective function. Some components rely on an efficient implementation of

non-trivial acceleration procedures, therefore providing such an implementation can be of

high interest. We also studied non-permutation flow shops and provided more evidence

in favor of its relevance. The source code of our solver is publicly available at <https:

//github.com/arturfb/FSSolver>.

Regarding the contributions to the literature, we have the following published pa-

pers:

• BRUM, A.; RITT, M. Automatic algorithm configuration for the permutation flow

shop scheduling problem minimizing total completion time. In: LIEFOOGHE, A.;

https://github.com/arturfb/FSSolver
https://github.com/arturfb/FSSolver
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LÓPEZ-IBÁÑEZ, M. (Ed.). Evolutionary Computation in Combinatorial Opti-

mization. Cham: Springer International Publishing, 2018. p. 85–100. ISBN 978-3-

319-77449-7. The European Conference on Evolutionary Computation in Combi-

natorial Optimization is classified by CAPES WebQualis as B1. The contributions

of this paper are presented in Section 3.1.

• BRUM, A.; RITT, M. Automatic design of heuristics for minimizing the makespan

in permutation flow shops. In: IEEE Congress on Evolutionary Computation.

[S.l.: s.n.], 2018. p. 1–8. The IEEE Congress on Evolutionary Computation is clas-

sified by CAPES WebQualis as A1. The contributions of this paper are presented

in Section 3.2.

And the following article which has been submitted:

• BRUM, A.; RUIZ, R.; RITT, M. Automatic generation of iterated greedy algorithms

for the non-permutation flow shop scheduling problem with total completion time

minimization. 2020, submitted to Computers & Operations Research. The contri-

butions of this paper are presented in Section 4.1.

1.3 Overview

This thesis is organized as follows. Chapter 2 presents an introduction regarding

flow shop problems (Section 2.1) and automatic algorithm configuration (Section 2.2).

Chapter 3 presents our study on automatic algorithm configuration for permutation flow

shop scheduling problems, and Chapter 4 presents our work on non-permutation flow shop

scheduling problems. In both cases, we studied the minimization of the total completion

time and the makespan, and describe our experiments and its results in respective sections.

Finally, we present our conclusions and remarks in Chapter 5.
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2 BACKGROUND

2.1 Flow Shop Scheduling Problems

Flow shop problems consist of scheduling a set of n jobs, each one comprising

m operations, that have to be processed by a set of m machines so that the ith ma-

chine processes the ith operation. The machines are organized in a sequence, defined

as M1,M2, . . . ,Mm, and each job goes through this sequence in that specific order, one

machine at a time. Each job j has a processing time pij linked to its operation on ma-

chine i. Each machine can process only one job at a time, and preemption is not allowed.

A solution for the problem consists of the assignment of a start time for the processing

of each job on each machine, commonly referred to as a schedule. Schedules are usually

represented as a sequence of jobs for each machine, in which each job is processed as

soon as possible.

Let [k] denote the job at position k in the schedule, and Ci[k] denote the comple-

tion time of the job at position k on machine i. The following recurrence defines the

completion times:

Ci[k] = max{Ci−1,[k], Ci,[k−1]}+ pi[k], ∀i = 1, . . . ,m, ∀k = 1, . . . , n,

with Ci0 = 0,∀i = 1, . . . ,m and C0[k] = 0,∀k = 1, . . . , n. That is, a job is immediately

processed on machine i once (i) its processing on the previous machine, if any, is finished,

and (ii) machine i is available. If a machine i is available, but its next job is still being

processed by machine i − 1, then i has to wait and stays idle. Idle time can only occur

on machines 2 to m as the first machine always has its next job available immediately.

Besides, machines 2 to m have idle time before processing the first job in the schedule

as they have to wait for the job to be processed by the other machines. This idle time is

referred to as the front delay. Similarly, machines 1 to m − 1 stay idle after processing

the last job of the sequence until machine m finishes its last operation. This idle times is

referred to as the back delay. Figure 2.1 shows an example of a problem instance with

three jobs and three machines. The blocks represent the operations of each job on each

machine, and the operations of a job share the same color. The hatched areas indicate the

idle time between jobs, the front delay, and the back delay.

The most frequent objective functions in the literature consist of minimizing the

maximum completion time, or makespan, and the total completion time. The makespan
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Figure 2.1: Example of idle time, front delay and back delay in a schedule.
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is defined as

Cmax = Cm[n],

which is the completion time of the last job on the last machine. The total completion

time is defined as

Csum =
n∑
j=1

Cmj,

which is the sum of the completion times of all jobs on the last machine. Optimizing the

total completion time is equivalent to optimizing the mean completion time, which is the

total completion time divided by n. In some variants of flow shops, jobs have a release

time rj . This means that the processing of job j cannot start before time rj . The flow

time of j is defined by fj = Cmj − rj . When all jobs are available since the beginning,

i.e., rj = 0 for each job j, minimizing total flow time is equivalent to minimizing total

completion time.

When introducing the problem, Johnson (1954) showed that the first two ma-

chines and the last two machines have the same sequences in optimal solutions when

minimizing the makespan. Hence, optimal solutions have the same job order for all ma-

chines if m ≤ 3. In this case, a solution can be represented by a single permutation

of jobs. These are known as permutation schedules and are represented with the nota-
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tion π = (π1, . . . , πn). When m > 3, however, machines can have different sequences

in optimal solutions, therefore a solution representation requires multiple permutations.

Schedules in which the job sequence is not identical in all machines are known as non-

permutation schedules. The permutation flow shop scheduling problem (PFSSP) is a

simplification that considers only permutation schedules, regardless of the number of ma-

chines. Note, however, that this simplification can exclude optimal solutions. The more

general problem, known as the non-permutation flow shop scheduling problem (NPF-

SSP), allows non-permutation schedules.

Figure 2.2 shows Gantt charts for two schedules for a problem instance with six

jobs and five machines. Operations of a job have the same color. The top one is an

optimal permutation schedule with makespan Cmax = 1046, and the bottom one is an

optimal non-permutation schedule with slightly shorter makespan Cmax = 994. Note that

the last two machines have a different sequence than the first three machines on the latter.

Flow shop problems can also be represented by a disjunctive graph, as shown in

Figure 2.3, for a problem instance with three jobs and three machines. Let oij denote

the operation of job j on machine i. This graph contains one vertex for each operation

oij , with weight pij , for i = 1, . . . ,m and j = 1, . . . , n. It also contains two artificial

nodes “0” and “∗” with weight zero, respectively connected to the first operation and

the last operation of each job. The arcs are classified as conjunctive or disjunctive. The

former are directed arcs that define the sequence of operations of each job. The sequence

is the same for all jobs in flow shops, i.e., from 1 to m. The latter are undirected arcs

that connect vertices of operations that are processed on the same machine. They are the

dashed arcs in Figure 2.3. The problem consists of defining a sequence for the operations

on each machine through the attribution of a direction to each disjunctive arc. If the

resulting graph is acyclic, then it represents a valid schedule. The topological ordering of

the graph results in the sequence of operations. The objective is to minimize the longest

path from “0” to “∗”. This path is called the critical path and its length is equivalent

to the makespan of the schedule. A critical path can also be seen as the longest path of

consecutive operations (without idle time) from the start to the end of a schedule.

Figure 2.4 presents the optimal sequence for the considered instance, π = (1, 3, 2),

with makespan Cmax = 251. A critical path is highlighted in red.

Graham et al. (1979) introduced a three-field notation α|β|γ to classify scheduling

problems. The α field contains information related to the machine environment. For flow

shops with m machines, we have α = Fm. The β field contains the characteristics
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Figure 2.2: Example of a permutation and a non-permutation schedule.

1046
Time

Machines

M1

M2

M3

M4

M5

100 300 500 700 900

(a) Permutation.

994
Time

Machines

M1

M2

M3

M4

M5

100 300 500 700 900

(b) Non-permutation.

of the jobs. Permutation and non-permutation flow shops have β = prmu and β = ◦,

respectively. The third field, γ, is the objective function, e.g., γ = Cmax denotes makespan

minimization and γ =
∑
Cj total completion time minimization.

Despite the simplicity to describe these problems, it has been shown that most

flow shop problems are NP-hard. For example, Fm|prmu|Cmax is strongly NP-hard

for m ≥ 3 (GAREY; JOHNSON; SETHI, 1976). The same is true for Fm|prmu|
∑
Cj

with m ≥ 2 (GAREY; JOHNSON; SETHI, 1976).

In the next subsections, we provide a literature review regarding both exact and

heuristic methods for the variants that we address in this work: the PFSSP and the NPF-

SSP.
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Figure 2.3: Example of a disjunctive graph.
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Figure 2.4: Optimal schedule and critical path for the example.
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2.1.1 Permutation Flow Shops

One of the most frequently cited reasons to support the adoption of permutation

schedules is the vast reduction of the search space from n!max{m−2,1} (when minimizing

the makespan, the first two and the last two machines have the same sequence) to n!

solutions. However, the size of the search space does not necessarily define how hard the

problem is. For example, the assignment problem has a search space with n! solutions,

but there are algorithms to solve the problem in polynomial time (KUHN; YAW, 1955),

while the PFSSP is NP-hard. Despite that, the PFSSP is the most studied variant in the

literature. Due to the vast number of papers addressing the problem (Fernández-Viagas,

Ruiz and Framiñan (2017) report more than a hundred new algorithms over the last decade

only), we focus on the most notable methods or those that are more related to our work.
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2.1.1.1 Exact Methods

There are polynomial-time algorithms for theF2|prmu|Cmax in the literature (JOHN-

SON, 1954), but the general case with m machines isNP-hard. In this case, the problem

has been addressed by mathematical programming, through mixed-integer programming

(MIP) mathematical models and generic MIP solvers, or with branch-and-bound (B&B)

algorithms, which can often outperform the MIP solvers, especially as the problem di-

mensions increase. In this section, we review two polynomial-time algorithms for two-

machine problems and present some of the most common mathematical models and B&B

methods for the m-machine problem.

Besides showing that the first two machines and the last two machines have the

same sequence in optimal solutions, Johnson (1954) also showed that a job j is scheduled

before a job k in optimal solutions if min{p1j, p2k} ≤ min{p2j, p1k} in a two-machine

problem. This rule is known as Johnson’s rule. A procedure to obtain the optimal schedule

in polynomial time O(n log n) based on Johnson’s rule can be summarized as follows.

Start with an empty schedule and build a list containing pij for all i = 1, . . . ,m and

j = 1, . . . , n sorted in non-decreasing order. Iterate through the sorted elements, starting

from the first one. If i = 1, schedule job j at the leftmost available position and remove p2j

from the list. Otherwise, schedule j at the rightmost position and remove p1j from the list.

Repeat this step until all jobs have been scheduled. The procedure can also be applied to

flow shops with three machines, provided that min p1j ≥ max p2k or min p3j ≥ max p2k.

More recently, Silva (2010) proposed an algorithm for the F2||Cmax with lower

complexity Θ(n log κ), where κ is the minimum number of cliques needed to cover a cer-

tain interval graph. The number of vertices in the graph is equal to n, therefore κ ≤ n, re-

sulting in an algorithm that is asymptotically faster than the procedure of Johnson (1954).

Regarding the general case with m machines, a few distinct mathematical models

can be found in the literature. The most common models for the problem can be di-

vided into the Wagner family and the Manne family. The former started with the integer

formulation introduced by Wagner (1959) for the F3||Cmax, which was based on the clas-

sical assignment problem, i.e., it assigns jobs to positions of the schedule. Baker (1974)

and Stafford (1988) extended the model to a mixed-integer formulation that supports m-

machine permutation flow shops, which was later improved by Stafford and Tseng (2002).

Other members of the Wagner family include the formulations of Wilson (1989), mod-

eled around the starting times of job on each machine, and of Stafford, Tseng and Gupta

(2005), modeled around the completion times.
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Consider the following variables:

xjk =

 1, if job j is scheduled at the kth position,

0, otherwise.

Pik = processing time of the job at the kth position on machine i.

Iik = idle time on machine i between the completion of (k − 1)th job and the start of

kth job.

Wik = waiting time of the kth job between the completion on machine i and the start on

machine i+ 1.

The Wagner model for the F ||Cmax is:

Minimize Cmax =
∑
k∈[n]

Imk +
∑
k∈[n]

Pmk (2.1)

subject to

∑
k∈[n]

xjk = 1, j = 1, . . . , n, (2.2)

∑
j∈[n]

xjk = 1, k = 1, . . . , n, (2.3)

Pik =
∑
j∈[n]

pijxjk, i = 1, . . . ,m; k = 1, . . . , n, (2.4)

Ii,k+1 + Pi,k+1 +Wi,k+1 = Wik + Pi+1,k + Ii+1,k+1,

i = 1, . . . ,m− 1; k = 1, . . . , n− 1, (2.5)

Ii+1,1 = Ii1 +Wi1 + Pi1, i = 1, . . . ,m− 1, (2.6)

Wi1 = 0, i = 1, . . . ,m− 1, (2.7)

Iik ≥ 0, xjk ∈ {0, 1}, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , n, (2.8)

Wik ≥ 0, i = 1, . . . ,m− 1; k = 1, . . . , n. (2.9)

The objective function (2.1) minimizes the makespan Cmax, obtained as the total

idle time plus the total processing time of machine m. Constraints (2.2) and (2.3) en-

sure that each job is assigned to one position, and each position is occupied by one job.

Constraints (2.4) define the processing times according to the job in each position. Con-

straints (2.5) and (2.6) ensure that (i) the job at (k + 1)th position cannot be processed
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on machine i until the previous job on the same machine has been processed, and (ii) the

kth job cannot be processed on machine i + 1 until it has been processed on machine i.

Constraints (2.7) ensure that the first job of the schedule will be immediately processed

on each sucessive machine once it is completed on the current machine. Finally, con-

straints (2.8) and constraints (2.9) define the domains of the variables.

The model that gave the name to the Manne family is due to Manne (1960) and was

initially proposed for the job shop scheduling problem. It was adapted for flow shops by

Stafford and Tseng (1990) with a formulation that uses pairs of dichotomous constraints.

Liao and You (1992) extend the job shop model of Manne (1960) with a formulation with

fewer constraints but more variables, which was adapted to flow shops by Pan (1997).

Despite being based on the model of Manne (1960), this formulation did not retain the

dichotomous constraints that characterize the Manne family and uses surplus variables

instead.

Consider a sufficiently large constant M , e.g., M =
∑

i∈[m]

∑
j∈[n] pij , and the

following variables:

yjk =

 1, if job j is scheduled before job k,

0, otherwise.

Cij = completion time of job j on machine i.

Manne’s model is as follows.

Minimize Cmax (2.10)

subject to:

C1j ≥ p1j, j = 1, . . . , n, (2.11)

Ci+1,j − Cij ≥ pi+1,j, i = 1, . . . ,m− 1; j = 1, . . . , n, (2.12)

Cij − Cik +Myjk ≥ pij, i = 1, . . . ,m; 1 ≤ j < k ≤ n, (2.13)

Cik − Cij +M(1− yjk) ≥ pik, i = 1, . . . ,m; 1 ≤ j < k ≤ n, (2.14)

Cmax ≥ Cmj, j = 1, . . . , n. (2.15)
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Constraints (2.11) ensure the correct completion time of each job on the first ma-

chine, while constraints (2.12) ensure that a job is processed on the current machine before

starting on the subsequent machine. Constraints (2.13) and (2.14) are the dichotomous

pairs of constraints that determine the job sequence, allowing a job j to either precede

or succeed a job k. Constraints (2.15) define the makespan as the maximum completion

time.

Tseng, Stafford and Gupta (2004) presented an empirical analysis of formulations

from both families. The computational experiment considered problem instances with

m ∈ {5, 7, 9}, n ∈ {6, 7, 8, 9} and pij ∈ [1, 100], according to a uniform distribution. It

was observed that the models from the Wagner family always requires less computational

time than Manne models, with an increasing difference as m and n increased. In partic-

ular, the model of Wagner was the fastest to find the optimal solution in 52 out of the 60

problems solved.

Although all the cited papers addressed makespan minimization, the formula-

tions can be adapted to total completion time minimization (STAFFORD, 1988; TSENG;

STAFFORD, 2008).

Despite the increase of computational power and the improvement of mixed-integer

programming solvers in recent years, only small instances are solvable in a reasonable

time with mathematical programming formulations. For example, Tseng and Stafford

(2008) reported an average of six hours to solve instances with 15 jobs and 10 machines.

Another type of exact approach are branch-and-bound (B&B) methods (LAND;

DOIG, 1960), which can often tackle larger instances in less time. A B&B algorithm is

an enumerative technique that recursively divides the problem into smaller subproblems

according to a so-called branching rule. Bounds are used to avoid an exhaustive enumer-

ation through the elimination of branches with a lower bound that is greater than an upper

bound for the optimal solution (assuming a minimization problem). Dominance rules can

also be used to further eliminate from consideration branches that are shown to never

lead to a solution better than a solution of another branch. The tree is usually explored

following a depth-first or a breadth-first strategy.

The first applications of B&B techniques to flow shop problems are dated from

the 1960s. Lomnicki (1965) proposed an approach for three-machine flow shops with

makespan minimization. At the same time, Ignall and Schrage (1965) presented proce-

dures for makespan minimization in three-machine flow shop and mean completion time

in two-machine flow shops. Both Lomnicki (1965) and Ignall and Schrage (1965) use
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a branching rule that appends unscheduled jobs at the end of a partial schedule, known

as forward branching, and use the same machine-based bound. Methods proposed subse-

quently included multiple bounds and alternate between forward and backward branching,

in which unscheduled jobs are prepended to a partial schedule (POTTS, 1980; CARLIER;

REBAÏ, 1996; LADHARI; HAOUARI, 2005).

The state-of-the-art method for the Fm|prmu|Cmax is the cyclic best-first search

algorithm proposed by Ritt (2016). The algorithm is initialized with a solution found by

an iterated greedy (IG) algorithm (RUIZ; STÜTZLE, 2007) that runs for a set amount of

time. The branching strategy considers both forward and backward directions, selecting

the one with least subproblems, while the search follows a cyclic best-first search (CBFS)

strategy (KAO; SEWELL; JACOBSON, 2008). Starting at the first level, CBFS selects

the subproblem with the best lower bound. The subproblem is explored until its deepest

level, always selecting the node with the smallest lower bound at each level. After that,

the search returns to the first level and selects the next subproblem, repeating the whole

process. CBFS can be seen as a hybrid that combines breadth-first and depth-first search.

The method of Ritt (2016) implements two distinct lower bounds from the literature but

no dominance rules. The computational experiments showed that the method could solve

instances with 10 machines and up to 200 jobs in about one hour.

As for total completion time minimization, the number of papers about B&B algo-

rithms in the literature is much smaller when compared to makespan minimization. The

two-machine problem is addressed by Ignall and Schrage (1965), Croce, Narayan and

Tadei (1996) and Croce, Ghirardi and Tadei (2002). Bansal (1977) extended the B&B

method of Ignall and Schrage (1965) to the m-machine problem. Chung, Flynn and Kirca

(2002) proposed a new machine-based lower bound, which was shown to dominate the

lower bound of Bansal (1977), and introduced a dominance rule. Madhushini, Rajendran

and Deepa (2009) also addressed the problem with m machines, although focusing on the

minimization of weighted total flow time.

2.1.1.2 Heuristic Methods

Since flow shop problems are usually NP-hard, many heuristic methods have

been proposed. Framiñan, Gupta and Leisten (2004) proposed a classification for heuris-

tics for the PFSSP according to the strategies used for (i) job ordering, (ii) solution con-

struction, i.e., how jobs are selected and added to a partial solution, and (iii) solution

improvement, e.g., with metaheuristics. We review some of the most relevant methods
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for makespan and total completion time minimization in the following sections.

Makespan

One of the most known methods is the constructive heuristic NEH of Nawaz, En-

score and Ham (1983). The method has two phases. It starts by sorting the jobs in

non-increasing order of their total processing time. This results in a priority order for

the next phase, in which the jobs are inserted into a partial schedule one at a time at the

position that minimizes the makespan. A solution is obtained when all the jobs have been

inserted. The method generates schedules with an average relative deviation of about 3%

from the optimal (VASILJEVIC; DANILOVIC, 2015). A naive implementation of NEH

has polynomial-time complexity of O(n3m). However, Taillard (1990) introduced an ac-

celeration procedure, to reduce that complexity. Consider the insertion of job l into a

partial schedule with k jobs π = π1 . . . πk, and the following values:

• ei,j , the earliest completion time (head) of job πj on machine i, defined as:

ei,j = max{ei−1,j, ei,j−1}+ pi,πj , ∀i = 1, . . . ,m; ∀j = 1, . . . , k, (2.16)

with e0,j = ei,0 = 0. Figure 2.5a shows the head of the fourth job on the second

machine for a given schedule.

• qi,j , the time between the start of the processing of job πj on machine i and the end

of the processing of the last job of the schedule on the last machine (tail), defined

as:

qi,j = max{qi+1,j, qi,j+1}+ pi,πj , ∀i = 1, . . . ,m; ∀j = 1, . . . , k, (2.17)

with qm+1,j = ei,k+1 = 0. Figure 2.5a shows the tail of the fourth job on the second

machine for a given schedule.

• fi,j , the earliest relative completion time on machine i of job πj after the insertion

of job l into some position, defined as:

fi,j = max{fi−1,j, ei,j−1}+ pi,l, ∀i = 1, . . . ,m; ∀j = 1, . . . , k + 1,

with f0,j = ei,0 = 0. Figure 2.5b shows the earliest relative completion time on the

second machine of a new job inserted into the fourth position.
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Figure 2.5: Taillard’s accelerations.
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The makespan Mj after the insertion of job l at position j is given by:

Mj = max
i∈[m]
{fij + qij}.

With these values, it is possible to evaluate the insertion of job l into all possible

positions in time O(nm). As this is repeated for every job, we have an overall complexity

ofO(n2m). This complexity makes NEH one of the most efficient methods for the PFSSP.

Many authors have proposed improvements for NEH, such as new priority orders

for the first phase or new tie-breaking rules. Framiñan, Leisten and Rajendran (2003)

tested 177 priority orders and concluded that the standard strategy is the best one when

minimizing the makespan. Kalczynski and Kamburowski (2008) present a new order
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based on two indexes:

aj =

[(
m− 1

2

)
+m

]
Pj −

∑
i∈[m]

ipij,

bj =

[(
m− 1

2

)
− 1

]
Pj +

∑
i∈[m]

ipij,

where Pj is the total processing time of job j. The jobs are sorted in non-increasing order

according to min{aj, bj}.

Kalczynski and Kamburowski (2009) present another priority order based on two

different indexes:

aj = Tj + Uj,

bj = Tj − Uj,

where

Tj =
m∑
i=1

pij,

Uj =
s∑

h=1

(
h− 3/4

s− 3/4
− ε
)

(ps+1−h,j − pt+h,j) ,

s = bm/2c,

t = dm/2e,

and ε is a small positive real number. Again, the jobs are sorted in non-increasing order

according to min{aj, bj}. The computational experiments showed that both priority or-

ders improved over the one in the original NEH, while the resulting procedures, named

NEHKK1 and NEHKK2, retain the same overall complexity.

Furthermore, in NEH and other insertion-based methods, we often observe ties

when looking for a job’s best insertion position. Several tie-breaking rules to decide

among the multiple positions can be found in the literature. Kalczynski and Kamburowski

(2008) and Kalczynski and Kamburowski (2009) use aj and bj indexes to decide ties, se-

lecting the position of smallest index if aj ≤ bj , or the position of biggest index otherwise.

Dong, Huang and Chen (2008) proposed a priority order called AvgDev that con-

sists of sorting the jobs in non-decreasing order according to the sum of their average
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processing time over the m machines, and their standard deviation. More formally:

AvgDevj = pj + σj,

where pj and σ are the mean and the standard deviation of the processing times of job j

over the m machines. Dong, Huang and Chen (2008) also proposed a tie-breaking rule

based on a measure Dπj for each job j, defined as follows:

Dπj =
m∑
i=1

(
pi,πj

qi,πj+1
− ei,πj−1

− Eπj
)2

,

Eπj =
1

m

m∑
i=1

pi,πj
qi,πj+1

− ei,πj−1

,

where πj denotes the job scheduled at the j th position, and ei,j and qi,j are defined as in

Eqns. (2.16) and (2.17). If there is a tie, the position that minimizes Dπj is chosen. The

procedure adopting both this tie-breaking rule and the AvgDev order is named NEH-D

and has the same complexity as NEH. The reported results show improvements of about

0.4% over NEH, and 0.2% over NEHKK1.

More recently, Fernández-Viagas and Framiñan (2014) presented a rule that fo-

cuses on minimizing the front delay of each machine, using estimations computed taking

advantage of the Taillard’s accelerations. The method, named NEHFF, uses the priority

order of Dong, Huang and Chen (2008), and also the same complexity as NEH. NEHFF

yields a small improvement of about 0.05% over NEH-D on average.

Lastly, Liu, Jin and Price (2017) introduced a priority rule in which jobs are sorted

in non-increasing order of the sum AvgDevj + |SKEj|, where AvgDevj is as defined in

Dong, Huang and Chen (2008) and SKEj is the skewness of job j. This priority order was

coupled with a tie-breaking rule that aims to minimize the front delay and the partial idle

time before the insertion position. The reported results showed an average improvement

of 0.15% over NEHFF.

Moreover, Vasiljevic and Danilovic (2015) presented a study on the NEH heuris-

tic and several tie-breaking rules found in the literature and concluded that repeatedly

executing NEH with random tie-breaking for the priority order and the insertion phase

yields results that are competitive with those obtained using the best tie-breaking rules.

The proposed procedure was named NEHI, and the computational experiments showed

an improvement of about 0.45% over NEHFF. To the best of our knowledge, this is the
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best NEH variant regarding solution quality with complexity O(n2m) in the literature.

However, it uses more time, as it performs NEH several times.

Rad, Ruiz and Boroojerdian (2009) present five new constructive heuristics that

generate better solutions when compared to NEH, but at a higher computational cost. The

method with the best results, FRB5, can be seen as an extension to NEH, in which a local

search phase is added after each job insertion. The main steps are the same as in NEH,

i.e., the jobs are sorted in non-increasing order of their total processing time, and added

one at a time to a partial schedule. However, after each addition, a local search with an

insertion neighborhood is performed. In this local search, each one of the jobs on the

partial schedule is removed and reinserted into the position that minimizes the makespan.

This is repeated until a local optimum is found.

Rossi, Nagano and Tavares Neto (2016) proposed new constructive heuristics that

work similarly to FRB5. The difference lies in the local search phase: the methods of

Rossi, Nagano and Tavares Neto (2016) reinsert pairs of adjacent jobs, while FRB5 rein-

serts single jobs only. The heuristic with the best performance is called G8, and evaluates

the reinsertion of jobs at positions j and j+1, with j = 1, 3, 5, . . . , n−1, and then repeats

the same process with j = 2, 4, 6, . . . , n − 2. As opposed to FRB5, the local search is

not repeated until a local optimum is found, possibly resulting in a shorter computational

time at the expense of solution quality. G8 was tested with several priority orders and tie-

breaking rules from the literature, and the results showed that the strategies of Kalczynski

and Kamburowski (2009) yield the best solution quality on average. In general, G8 is

competitive with other methods in the literature.

Fernández-Viagas, Ruiz and Framiñan (2017) compared 19 constructive heuristics

from the literature, showing that FRB5 yields the best solution quality, but also requires

the highest computational effort. In a comparison using a measure that also takes the com-

putational time in consideration, NEHKK2 and NEHFF were the best-ranked methods.

Regarding metaheuristics, flow shop problems have been addressed with a variety

of methods, such as simulated annealing (SA) by Osman and Potts (1989), Wodecki and

Bożzejko (2002) and Low, Yeh and Huang (2004), tabu search by Taillard (1990), Reeves

(1993), Nowicki and Smutnicki (1996b) and Grabowski and Wodecki (2004), and genetic

algorithms by Chen, Vempati and Aljaber (1995), Murata, Ishibuchi and Tanaka (1996)

and Ruiz, Maroto and Alcaraz (2006), just to cite a few. Many metaheuristics start from

a solution obtained by the NEH heuristic and perform local searches with an insertion

neighborhood. This is mainly because the accelerations can also be applied to find the
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Algorithm 1 Iterative improvement insertion local search
Input: Solution π
Output: Best solution found π∗

1: function INSERTION(π)
2: repeat
3: π′ = π
4: for k = 1 to n do
5: j = kth job in π′

6: π′ = REMOVE(j,π′)
7: π′ = INSERTBESTPOSITION(j,π′)
8: if f(π′) < f(π) then
9: π = π′

10: end if
11: end for
12: until no improvement is found
13: return π∗
14: end function

best insertion position in such local searches at a reduced computational cost, resulting

in a significantly increased performance. A common strategy is to remove each job and

reinsert it into the position that minimizes the objective function value, repeating this

process until a local optimum is found. Pseudocode for an iterative improvement insertion

local search is presented in Algorithm 1. We consider that the best solution π∗ is implicitly

maintained in all algorithms presented in this thesis.

Another neighborhood used in methods for flow shops is the one proposed by

Nowicki and Smutnicki (1996a). This is a reduced neighborhood based on blocks of jobs

on the critical path. A block is a sequence of consecutive jobs on the same machine on

the critical path. The neighborhood, hereafter referred to as NS, swaps the first two jobs

or the last two jobs of each block, except the first two jobs of the first block and the last

two jobs of the last block of the schedule. This strategy is used to discard swaps that will

not immediately improve the makespan.

Fernández-Viagas, Ruiz and Framiñan (2017) review the state-of-the-art meta-

heuristics. Out of dozens, the 12 most promising methods were reimplemented and eval-

uated under the same conditions. The results showed that the best metaheuristics are

based on the IG algorithm of Ruiz and Stützle (2007), IGrs, one of the most prominent

metaheuristics in the literature.

IGrs is an algorithm that repeatedly applies a two-phase procedure. In the first

phase, called destruction, d randomly selected jobs are removed from the current sched-

ule. During the second phase, called construction, the removed jobs are reinserted greed-
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Algorithm 2 Metropolis acceptance criterion

Input: Current solution π, new solution π′, temperature T
Output: Solution π

1: function METROPOLIS(π, π′, T)
2: r = RANDOM(0, 1) . random number in [0,1)
3: ∆ = f(π′)− f(π)
4: if ∆ ≤ 0 or r ≤ e−∆/T then
5: π = π′

6: end if
7: return π
8: end function

ily into the schedule. Additionally, a local search procedure can be applied to optimize

the resulting solution. After that, the new solution is accepted according to certain a crite-

rion, and the whole process is repeated until a termination criterion is met. In particular,

Ruiz and Stützle (2007) use the insertion local search presented in Algorithm 1, and the

Metropolis acceptance criterion (METROPOLIS et al., 1953) with a constant temperature

T , i.e., a solution is always accepted if it is better than the current one. Otherwise, it is

accepted with a probability that decreases as the difference in the objective function value

increases, as shown in Algorithm 2. The temperature value is defined by Ruiz and Stützle

(2007) as:

T = α
∑
j∈[n]

Pj/10nm,

where α is a parameter.

IGrs is presented in Algorithm 3, where f(π) denotes the objective function value

of solution π. We consider that the best solution visited so far π∗ is implicitly maintained

in all algorithms presented in this thesis. Note that the underlying idea is similar to an

iterated local search (ILS) (LOURENÇO; MARTIN; STÜTZLE, 2003).

An ILS method repeatedly performs a local search, followed by a perturbation

to escape from the current local optimum. The perturbation is done through a certain

number of random movements, e.g., reinserting a job at a random position, or swapping

a pair of randomly selected jobs. A solution is accepted according to a certain criterion.

Pseudocode for an ILS method is presented in Algorithm 4.

The IG of Ruiz and Stützle (2007) is a particular ILS variant in which the pertur-

bation is performed by a randomized greedy procedure, represented by “Destruct” and

“Construct” in lines 5 and 6 of Algorithm 3, and the acceptance of solutions follows a
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Algorithm 3 IGrs

Input: Perturbation intensity d
Output: Best solution found π∗

1: function IGrs(d)
2: π = INITIALSOLUTION

3: π = LOCALSEARCH(π)
4: while termination criterion not met do
5: π′ = DESTRUCT(π, d)
6: π′ = CONSTRUCT(π′)
7: π′ = LOCALSEARCH(π′)
8: if ACCEPT(π, π′) then
9: π = π′

10: end if
11: end while
12: return π∗
13: end function

Algorithm 4 ILS
Input: Perturbation intensity d
Output: Best solution found π∗

1: function ILS(d)
2: π = INITIALSOLUTION

3: π = LOCALSEARCH(π)
4: while termination criterion not met do
5: π′ = PERTURBATION(π, d)
6: π′ = LOCALSEARCH(π′)
7: if ACCEPT(π, π′) then
8: π = π′

9: end if
10: end while
11: return π∗
12: end function

Metropolis criterion.

Apart from providing solutions of high quality, this IG has several advantages. In

particular, it is simple to implement and can be easily adapted to other flow shop variants.

This has motivated a noticeable adoption of IG-based algorithms in the literature, e.g., by

Pan and Ruiz (2012), Fernández-Viagas and Framiñan (2014), Benavides and Ritt (2016)

and Fernández-Viagas, Valente and Framiñan (2018).

Dubois-Lacoste, Pagnozzi and Stützle (2017) proposed the addition of an iterative

improvement insertion local search to optimize the partial schedule that is obtained after

the destruction phase in IGrs. It results in an average improvement of about 0.02 % for

the Taillard benchmark, and about 0.33 % for the VRF benchmark. These benchmarks are
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presented in Section 2.1.3.

Benavides and Ritt (2018) present two new constructive heuristics that extend

NEH with the addition of local searches that reinsert pairs of consecutive jobs after each

job is added to the partial schedule. The first constructive heuristic uses a local search

that considers the full neighborhood, while the second considers a reduced neighborhood

based on critical paths. Similarly, two new local search methods that reinsert pairs of

consecutive jobs, one with the full neighborhood and the other with the reduced neighbor-

hood, are proposed. A total of 21 IG algorithms combining the newly proposed methods

with constructive heuristics and local search procedures from the literature are evaluated.

The best algorithm uses the local search with the reduced neighborhood and the construc-

tive heuristic with the full neighborhood.

Lastly, Fernández-Viagas and Framiñan (2019) proposed an IG that combines the

constructive heuristic with the full neighborhood of Benavides and Ritt (2018), the local

search applied to the partial solution after the destruction phase proposed by Dubois-

Lacoste, Pagnozzi and Stützle (2017), the local search procedure with the reduced neigh-

borhood of Benavides and Ritt (2018), and the tiebreaker of Fernández-Viagas and Framiñan

(2014). The resulting method yielded the lowest overall ARD compared to the original

methods on both Taillard and VRF benchmarks. To the best of our knowledge, this is the

state-of-the-art heuristic for the Fm|prmu|Cmax.

Total Completion Time

Some of the best constructive heuristics for total completion minimization origi-

nated from the makespan literature, such as NEH and FRB5. Others were explicitly de-

signed for this objective, such as LR (LIU; REEVES, 2001) and BSCH (FERNÁNDEZ-

VIAGAS; FRAMIÑAN, 2017). The adaptation of NEH and FRB5 consists of replacing

the non-increasing order of total processing time with a non-decreasing order. During the

subsequent steps, the jobs are inserted into the positions that minimize the total comple-

tion time. The same is true for the insertion local search in FRB5. However, without

Taillard’s accelerations, which are specific to compute the makespan, evaluating the pos-

sible insertion positions for a job takes O(n2m) steps, leading to an overall complexity of

O(n3m) for NEH. Li, Wang and Wu (2009) proposed an acceleration strategy that con-

sists in reducing the number of updates regarding job completion times when the schedule

changes. The strategy is based on the observation that, when inserting a job into a posi-

tion k, the schedule remains unchanged from positions 1 to (k − 1). Therefore it is not
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necessary to recompute the completion time of the jobs in those positions. Duan et al.

(2013) further observed that the completion times of operations on a critical path depend

only on other operations also on the critical path. Therefore only operations on the high-

est critical path and above have to be recomputed. Duan et al. (2013) reported that the

average computational time of NEH was reduced by 30% when using both strategies.

The LR constructive heuristic starts by ordering the jobs according to a measure

that considers both the weighted idle time induced when appending a job j at the end of a

schedule and an estimation for the completion time of jobs to be appended after j. Then,

x schedules are created, each starting with one of the first x jobs of this order, and the

remaining jobs are appended one by one using the same measure. The final schedule is

the best one out of the x generated schedules. The method has an overall complexity of

O(xn2m). Framiñan, Leisten and Ruiz-Usano (2005) compared heuristics from the liter-

ature and combined them to generate composite methods that outperformed the former.

Pan and Ruiz (2013) reviewed simple and composite constructive heuristics and proposed

the LR-NEH method, which inserts the first d jobs into the schedule according to LR, and

the remaining n− d jobs according to NEH. Four other composite heuristics with higher

complexity were also proposed. They could increase the solution quality at an increased

computational effort.

Fernández-Viagas and Framiñan (2015) proposed a modified measure for LR, in-

tended for reducing the method’s complexity to O(n2m). The resulting procedure was

named FF, and the computational experiments showed that it could replace LR in the

composite heuristics presented by Pan and Ruiz (2013) for increased performance.

Finally, BSCH is a more recent beam search heuristic. Also similar to LR, the

method appends jobs at the end of w partial sequences. The underlying idea of beam

search (LOWERRE, 1976) is similar to a branch-and-bound algorithm, but only a reduced

number of nodes is kept at each level. This number is defined by a parameter commonly

called the beam width (w). In each level and for each node, a job is appended at the end

of the partial sequence. To select such jobs, a forecast index that considers not only the

current partial schedule but also the unassigned jobs is used. After evaluating all the can-

didates, only the w best nodes are kept, and this is repeated until the nodes are complete

schedules, in which case the best one is selected. The computational experiments showed

that BSCH significantly improves over the other constructive heuristics in the literature.

Regarding local search procedures, Rajendran and Ziegler (1997) proposed an ap-

proach with an insertion neighborhood. Starting with the first job of a given schedule,
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each job is removed and reinserted into the position that minimizes the total completion

time. Improvements are immediately accepted, and the search is resumed with the up-

dated schedule.

Liu and Reeves (2001) introduced two swap-based local search procedures named

FPE and BPE. FPE stands for forward pairwise exchange, and the procedure consists

in evaluating the exchange of each job with all those scheduled after it. An exchange

is immediately performed if it leads to an improvement. This is repeated until a local

optimum is obtained. BPE stands for backward pairwise exchange and works similarly,

but in a reversed direction, i.e., it evaluates swapping of a job with those preceding it in

the schedule.

Jarboui, Eddaly and Siarry (2009) proposed an insertion-based and a swap-based

procedure. The former is similar to the one of Rajendran and Ziegler (1997), and the latter

swaps every pair of jobs, immediately accepting improvements, and iterating until a local

optimum is found.

Tasgetiren et al. (2011) also adopts a swap-based and an insertion-based local

search. Both are similar to the procedures of Jarboui, Eddaly and Siarry (2009), except

that they restart the search from the beginning of the schedule when improvements are

found. Additionally, a procedure that repeatedly applies the insertion local search fol-

lowed by the swap local search is presented. Similarly, this is repeated until no improve-

ments can be found. A fourth local search proposed by Tasgetiren et al. (2011) cyclically

performs reinsertions, stopping when no improvements are found after n consecutive tries.

More recently, Benavides and Ritt (2015) introduce a swap-based based local

search which exchanges the jobs in positions p and p + q, immediately accepting im-

proving swaps. If none of the swaps improves the current permutation, q is incremented,

and the search is restarted. Otherwise, when an improvement is found, q is set to a value

of qmin. The search stops when q > qmax or a total number of swaps smax is performed.

Regarding metaheuristics, many approaches have been applied, such as ant colony

optimization (RAJENDRAN; ZIEGLER, 2004; RAJENDRAN; ZIEGLER, 2005), dis-

crete differential evolution (PAN; TASGETIREN; LIANG, 2008), genetic algorithms

(TSENG; LIN, 2009; ZHANG; LI; WANG, 2009; TSENG; LIN, 2010), discrete arti-

ficial bee colony (TASGETIREN et al., 2011), IG (PAN; RUIZ, 2012) and ILS (PAN;

RUIZ, 2012; DONG et al., 2013; BENAVIDES; RITT, 2015).

Similar to what is observed for makespan minimization, the current best-performing

methods include IG and ILS. Pan and Ruiz (2012) proposed an ILS and an IG algorithm
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for total completion time minimization. Both methods are initialized with LR and re-

peatedly perform the insertion local search of Rajendran and Ziegler (1997) until a lo-

cal optimum is found. The difference between the proposed IG and ILS algorithms is

the perturbation procedure, which reinserts the removed jobs greedily in the former, and

randomly in the latter. The computational experiments showed that both methods out-

performed the other existing approaches, with a marginal advantage in favor of the IG.

Population-based variants for the IG and ILS were also introduced. However, they were

outperformed by the standard methods. Benavides and Ritt (2015) further improved the

IG by using a local search that alternates between an insertion and a swap neighborhood.

Dong et al. (2013) introduced an ILS with a pool of solutions, called MRSILS.

The pool maintains the best solutions visited so far and is used to restart the search when

no improvements can be found for a certain number of consecutive iterations. Fernández-

Viagas and Framiñan (2017) used BSCH to initialize MRSILS and improved the state of

the art. To the best of our knowledge, this is the best performing method in the literature.

2.1.2 Non-permutation Flow Shops

Potts, Shmoys and Williamson (1991) showed that optimal permutation schedules

can be worse than optimal non-permutation schedules by a factor Ω(min{
√
m,
√
n}) for a

certain family of instances, and Nagarajan and Sviridenko (2009) later proved the bound

to be Θ(min{
√
m,
√
n}). Despite that, the majority of published works nowadays still

addresses only the PFSSP. Rossit, Tohmé and Frutos (2018) presented a literature review

in which 72 papers addressing the NPFSSP were identified, constrasting with the sev-

eral hundreds of papers concerning the permutational variant (FERNÁNDEZ-VIAGAS;

RUIZ; FRAMIÑAN, 2017). About 65% of the papers on the NPFSSP were published

after 2006, showing that the interest in this variant has grown recently.

The following subsections give an overview on the most important exact and

heuristic methods for makespan and total completion time in the literature.

2.1.2.1 Exact Methods

Most of the literature on the NPFSSP is about heuristics. The exact approaches

are limited to some of the mathematical models for the PFSSP, such as those of Wagner

(1959), Wilson (1989), and Manne (1960), which can be adapted for non-permutation
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flow shops, as shown by Pan (1997). Methods for the job shop scheduling problem (JSSP)

can be used since the NPFSSP is a particular case of the JSSP in which all jobs go through

the same machine sequence. However, to the best of our knowledge, these are the only

works addressing the NPFSSP in specific.

2.1.2.2 Heuristic Methods

In this section we present the most important heuristic methods for the F ||Cmax

and F ||
∑
Cj .

Makespan

Tandon, Cummings and LeVan (1991) performed computational experiments to

compare permutation and non-permutation schedules. The solutions were obtained by an

enumerative search algorithm and a simulated annealing method, which initially explores

permutation schedules and transitions to non-permutation schedules when a certain tem-

perature is reached. It was observed that non-permutation solutions have a considerably

shorter makespan. The difference increases with the range of the processing times and

the dimensions of the instance.

Koulamas (1998) proposed a two-phase constructive heuristic. The first phase

generates a permutation schedule, which is used as input for the second phase. The

second phase evaluates job passing by swapping pairs of adjacent jobs on some of the

machines, generating non-permutation schedules. The method has an overall complexity

of O(n2m2) and was able to build solutions with a shorter makespan (about 2.5 % on

average) than the permutation solutions obtained by NEH.

Jain and Meeran (2002) proposed a framework that aims to balance intensification

and diversification. The primary intensification mechanism is based on tabu search with

a reduced neighborhood proposed by Nowicki and Smutnicki (1996a) for the job shop

scheduling problem, and scatter search and path relinking techniques perform the diversi-

fication. The method improved solution quality by about 2% when compared to the tabu

search of Nowicki and Smutnicki (1996a).

Liu and Ong (2002) compared tabu search, simulated annealing, and threshold

acceptance approaches applied to both the PFSSP and the NPFSSP. The methods for the

PFSSP use an insertion neighborhood, while the methods for the NPFSSP use the reduced

neighborhood of Nowicki and Smutnicki (1996a). Both methods run for the same number
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of iterations, but the PFSSP took 25% longer to finish on average since the insertion

neighborhood requires higher computational effort. The results showed that the methods

for the PFSSP obtained solutions with shorter makespan by about 2% on average.

Liao, Liao and Tseng (2006) proposed a tabu search with an insertion local search

and a dynamic tabu duration, and compare it on six objective functions to a version of the

genetic algorithm of Reeves (1995) adapted to the NPFSSP. Both methods run for a cer-

tain time in order to find a good permutation schedule. In a second phase, some machines

have their sequences fixed, and non-permutation schedules are evaluated through changes

in the sequences of the remaining machines. The experiments considered instances with

10 machines, and 20 and 50 jobs. Regarding makespan minimization, the tabu search

was superior in solving the smaller instances, while the genetic algorithm had better per-

formance on the larger ones. Moreover, out of the different objectives evaluated, the

makespan of non-permutation schedules improved the least over permutation schedules,

with 0.09 % on average. The average improvement when minimizing total completion

time was 0.25%.

Haq et al. (2007) introduced a scatter search with an insertion neighborhood and a

diversification mechanism to avoid duplicate solutions. The method was able to reduce the

makespan by about 5.5% and 1% on average when compared to the tabu search methods

of Nowicki and Smutnicki (1996a) and Jain and Meeran (2002) on the benchmark of

Demirkol, Mehta and Uzsoy (1998).

Ying and Lin (2007) address the NPFSSP with a multi-heuristic desirability ant

colony system (MHD-ACS). The method works over the disjunctive graph representation

of the problem. The ants attempt to find the shortest path that includes all vertices, guided

by a heuristic desirability measure and the pheromone quantity. The computational ex-

periments showed that the proposed method was able to obtain new best-known values

for 32 out of the 40 instances of the benchmark of Demirkol, Mehta and Uzsoy (1998).

Ying (2007) proposed an IG to address a simplification of the NPFSSP, based on

the observation of Conway, Maxwell and Miller (1967) that the first two machines and

the last two machines have the same job sequence on optimal solutions when minimizing

the makespan. The simplification consists in representing a schedule with three permuta-

tions. The first permutation defines the job sequence for the first and second machine, the

second permutation for all machines except the first two and the last two, and the third

permutation for the last two machines. This effectively reduces the search space from

n!max{m−2,1} to n!3 solutions, but may prevent some candidates or even optimal solutions
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from being found. The computational experiments showed an average improvement of

almost 9% over MHD-ACS, although using a faster computer and different time limits.

Furthermore, Lin and Ying (2009) introduce a hybrid approach that combines sim-

ulated annealing and tabu search. The same simplification with three permutations is used.

The results showed that the approach could outperform MHD-ACS, with an average im-

provement of about 8% in solution quality and using lower computational time.

Sadjadi, Bouquard and Ziaee (2008) used an ant colony optimization (ACO) al-

gorithm. It is initialized with NEH and builds a permutation schedule, which is then

improved with a local search that evaluates non-permutation schedules and runs for 10

seconds. This local search performs a pairwise exchange of jobs on the k first or the k

last machines, with a maximum distance between the pair of jobs set to two. The compu-

tational experiments showed that the average makespan of the permutation schedules is

about 0.35% better than the best ACO algorithm of Rajendran and Ziegler (2004) for the

PFSSP, named PACO. The experiments with non-permutation schedules showed that the

proposed local search could yield an average improvement of 0.12%.

Gharbi, Labidi and Louly (2014) presented new procedures to generate lower and

upper bounds for the NPFSSP. The new lower bound procedure improved the typically

used one-machine lower bound (ADAMS; BALAS; ZAWACK, 1988) in 14 out of 24

tested cases. However, it always required more time to be computed, sometimes up to

three orders of magnitude. Regarding upper bounds, five heuristics named H1 to H5 were

introduced. The average gaps to the proposed lower bound are 3.18%, 3.26%, 2.51%, 3.33%,

and 2.54%. Furthermore, there was a clear trade-off between quality and computational

time, with H5 offering the best balance.

Rossi and Lanzetta (2014) proposed a non-permutation ant colony optimization

algorithm. Instead of building an initial permutation and then evaluating job passing,

the algorithm directly explores the non-permutation solution space. The method was

compared to MHD-ACS of Ying and Lin (2007), showing an average improvement of

about 3% in solution quality, but also running for almost five times longer on average.

Benavides and Ritt (2016) took into consideration that optimal non-permutation

schedules often require only a few inversions of operations over a permutation schedule,

and proposed a constructive heuristic and an IG algorithm to minimize the makespan on

the NPFSSP. The constructive heuristic inserts jobs into a partial schedule considering

anticipation or delay of operations after a certain machine. At the same time, the IG algo-

rithm uses a local search also based on this idea, allowing job passing. In both cases, an
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acceleration method that is a generalization of Taillard’s procedure (TAILLARD, 1990)

is used, reducing the computational complexity to find the best insertion position. The re-

ported results show an average improvement of 0.75% over permutation schedules, which

is substantial compared to the progress observed in the literature in recent years.

Benavides and Ritt (2018) presented new constructive heuristics and local search

procedures that explore non-permutation schedules. A total of 28 IG algorithms combin-

ing the newly proposed methods is evaluated. The best method combines a constructive

heuristic that extends NEH by adding a local search that reinserts pairs of consecutive

jobs and a local search that swaps adjacent jobs at the beginning or at the end of blocks

of operations on a critical path. The method reduces the overall average relative deviation

by about 0.3% compared to the method of Benavides and Ritt (2016). To the best of our

knowledge, this is the state-of-the-art method for makespan minimization in the literature.

Total Completion Time

Liao, Liao and Tseng (2006) compared the tabu search and the genetic algorithm

of Reeves (1995) mentioned in the previous subsection under total completion time min-

imization. The tabu search had substantially better results, and the average improvement

with non-permutation schedules was 0.25%.

Sadjadi, Bouquard and Ziaee (2008) applied an ACO algorithm to minimize total

completion time. The same procedure used for makespan minimization is applied, i.e.,

an initial permutation is constructed with NEH, improved with the ACO approach, and a

local search that explores non-permutation solutions is applied as the last step. Regarding

permutation schedules, the approach yielded an average improvement of approximately

0.12% over the PACO method of Rajendran and Ziegler (2004), and the non-permutation

schedules had an average improvement of about 0.8% over permutation schedules.

Benavides and Ritt (2015) proposed a two-phase IG. First, an ILS for the PFSSP is

used to obtain a good initial permutation schedule. This ILS is initialized with a solution

obtained by the constructive heuristic LR, and alternates between an insertion and a swap

neighborhood. The second phase explores non-permutation schedules by iteratively re-

moving random jobs and reinserting them, allowing delayed or anticipated operations on

some machines. The computational experiments showed an average improvement close

to 0.45% when allowing non-permutation schedules. To the best of our knowledge, this

is the state-of-the-art method for total completion time minimization in the literature.

We summarize the methods mentioned through Section 2.1 and their respective
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references in Tables 2.1 and 2.2.

Table 2.1: Summary of the mentioned methods for the PFSSP.
Method Reference

Exact algorithm for F2||Cmax
Johnson (1954),
Silva (2010)

Mathematical model

Wagner (1959),
Baker (1974),
Stafford (1988),
Wilson (1989),
Stafford and Tseng (1990),
Pan (1997),
Stafford and Tseng (2002),
Stafford, Tseng and Gupta (2005),
Tseng and Stafford (2008)

B&B

Land and Doig (1960)
Lomnicki (1965),
Ignall and Schrage (1965),
Bansal (1977),
Potts (1980),
Carlier and Rebaï (1996),
Croce, Narayan and Tadei (1996),
Croce, Ghirardi and Tadei (2002),
Chung, Flynn and Kirca (2002),
Ladhari and Haouari (2005),
Madhushini, Rajendran and Deepa (2009),
Ritt (2016)

Constructive heuristic

Nawaz, Enscore and Ham (1983),
Liu and Reeves (2001),
Kalczynski and Kamburowski (2008),
Dong, Huang and Chen (2008),
Kalczynski and Kamburowski (2009),
Rad, Ruiz and Boroojerdian (2009),
Pan and Ruiz (2013),
Fernández-Viagas and Framiñan (2014),
Fernández-Viagas and Framiñan (2015),
Vasiljevic and Danilovic (2015),
Rossi, Nagano and Tavares Neto (2016),
Liu, Jin and Price (2017),
Fernández-Viagas and Framiñan (2017),
Benavides and Ritt (2018)

Simulated annealing
Osman and Potts (1989),
Wodecki and Bożzejko (2002),
Low, Yeh and Huang (2004)

Tabu search

Taillard (1990),
Reeves (1993),
Nowicki and Smutnicki (1996b),
Grabowski and Wodecki (2004)

Genetic algorithm

Chen, Vempati and Aljaber (1995),
Murata, Ishibuchi and Tanaka (1996),
Ruiz, Maroto and Alcaraz (2006),
Tseng and Lin (2009),
Zhang, Li and Wang (2009),
Tseng and Lin (2010)

IG

Ruiz and Stützle (2007),
Pan and Ruiz (2012),
Fernández-Viagas and Framiñan (2014),
Benavides and Ritt (2016),
Dubois-Lacoste, Pagnozzi and Stützle (2017),
Fernández-Viagas, Valente and Framiñan (2018),
Benavides and Ritt (2018)

ILS

Pan and Ruiz (2012),
Dong et al. (2013),
Benavides and Ritt (2015),
Fernández-Viagas and Framiñan (2017)

Local search procedure

Rajendran and Ziegler (1997),
Liu and Reeves (2001),
Jarboui, Eddaly and Siarry (2009),
Tasgetiren et al. (2011),
Benavides and Ritt (2015),
Benavides and Ritt (2018)

Ant colony optimization Rajendran and Ziegler (2004),
Rajendran and Ziegler (2005)

Discrete differential evolution Pan, Tasgetiren and Liang (2008)

Artificial bee colony Tasgetiren et al. (2011)
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Table 2.2: Summary of the mentioned methods for the NPFSSP.

Method Reference

Mathematical models Pan (1997)

Lower bound procedure Gharbi, Labidi and Louly (2014)

Constructive heuristic Koulamas (1998)
Benavides and Ritt (2018)

Simulated annealing
Tandon, Cummings and LeVan (1991),
Liu and Ong (2002)

Hybrid heuristic
Jain and Meeran (2002),
Lin and Ying (2009)

Threshold acceptance Liu and Ong (2002)

Genetic algorithm Liao, Liao and Tseng (2006)

Tabu search
Liu and Ong (2002),
Liao, Liao and Tseng (2006)

Scatter search Haq et al. (2007)

Ant colony optimization
Ying and Lin (2007),
Sadjadi, Bouquard and Ziaee (2008),
Rossi and Lanzetta (2014)

IG
Benavides and Ritt (2015),
Benavides and Ritt (2016)
Benavides and Ritt (2018)

2.1.3 Benchmarks

Recent works addressing the PFSSP or NPFSSP with makespan or total comple-

tion time minimization usually consider the benchmarks of Taillard (1993), and Vallada,

Ruiz and Framiñan (2015) referred to as the VRF benchmark. The former contains 12

groups, each with 10 instances of the same dimensions. The dimensions range from 20

jobs and 5 machines to 500 jobs and 20 machines. The latter contains 48 groups, each

one also with 10 instances with the same dimensions, which range from 10 jobs and 5

machines to 800 jobs and 60 machines.

We present upper bounds from the literature for Cmax and Csum minimization for

each instance of the Taillard benchmark in Appendix A, in Table A.1. These are the values

we used as a reference in our computational experiments. Regarding the VRF benchmark,

we present the upper bounds in Table A.2. To the extent of our knowledge, there were

no upper bounds for Csum minimization in the literature before this thesis. The values in

Table A.2 were obtained during our experiments.
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2.2 Automatic Algorithm Configuration

The design of a heuristic search method often consists of a trial-and-error approach

guided by intuition and previous knowledge about the problem. During the design pro-

cess, one usually considers multiple options for algorithmic components, such as different

local search procedures or perturbation strategies, and tries to identify the combination

that yields the best performance through empirical experiments. This is no trivial task

since (i) the components interact with themselves in different manners, (ii) the compo-

nents can have parameters that need to be tuned, (iii) the evaluation of a candidate can

take a long time, as it usually consists of running the candidate over a set of problem in-

stances. The problem that arises is called algorithm configuration problem, and a solution

for such a problem is commonly called a configuration. Moreover, the components can

be seen as parameters of the algorithm. In this case, we want to find the optimal values for

the parameters linked to the component selection, along with the parameters that deter-

mine the algorithm behavior, e.g., the perturbation intensity in an ILS, or the temperature

in simulated annealing.

More formally, consider an algorithmA that we want to configure, with parameter

configuration space Θ, a set of problem instances Π and a cost metric C. Hutter et al.

(2009) define the algorithm configuration problem as finding the best configuration θ∗,

which minimizes C considering the instances in Π. That is:

θ∗ ∈ arg min
θ∈Θ

∑
π∈Π

C(θ, π).

Since A can be stochastic, C(θ, π) is often a random variable and its value has to be

estimated through observations c(θ, π).

Since modern algorithms are often complex and have several parameters, a man-

ual configuration can take a long time and require a large amount of manual effort. The

automation of the design of algorithms, also referred to as automatic algorithm config-

uration (AAC), can significantly reduce the necessary manual effort, make the design

process more efficient, and result in better algorithms (MARMION et al., 2013; KHUD-

ABUKHSH et al., 2016). A more systematic approach also increases the robustness and

makes the whole process less prone to human error and bias.

The first techniques to automate algorithm configuration in the literature are dated

from as far back as the 1960s (BURKE et al., 2013), however the area has only gained
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popularity more recently. Current relevant approaches include genetic programming (GP)

(KOZA, 1992), grammatical evolution (GE) (RYAN; COLLINS; NEILL, 1998), ParamILS

(HUTTER et al., 2009), SMAC (HUTTER; HOOS; LEYTON-BROWN, 2011) and irace

(LÓPEZ-IBÁÑEZ et al., 2016).

GP was introduced by Koza (1992) and consists of applying genetic algorithms to

configure programs, using a fitness that measures how well they solve a set of instances

of a target problem. As in standard genetic algorithms, individuals are represented as a

sequence of genes called genotype, and the evolution can be done with typical strategies,

such as two-point crossover.

GE is a type of GP, in which a grammar is used to specify how individual algo-

rithmic components can be combined to form a full heuristic search method. The search

space defined by the grammar is explored with a genetic algorithm in which each individ-

ual corresponds to an instantiation of the grammar.

In the approach introduced by Ryan, Collins and Neill (1998), each gene has

a value in the interval [0, 255] and serves the purpose of defining how to expand the

non-terminals from the grammar to generate an algorithm. The decodification proce-

dure works as follows. The grammar is traversed with a leftmost derivation strategy, i.e.,

the leftmost non-terminal is expanded at each stage. When a non-terminal is expanded,

the next available gene is consumed to select an expansion option. Each option is mapped

to an integer value, starting from zero. The gene value modulo the number of options

determines which one is to be selected.

For example, consider the grammar in Figure 2.6 and the genotype g = (8, 122, 109).

The first choice is associated with the start symbol <START>, which has two expansion

options: neh, mapped to value 0, and frb5, mapped to value 1. The first gene, with value

8, is consumed to decide how to expand <START>, thus we have 8 mod 2 = 0. This se-

lects the option mapped to value 0, neh. Now, we have the <ORDER> and <TIEBREAK>

non-terminals. We continue with the leftmost, <ORDER>, which has four expansion op-

tions. The next gene, with value 122, is consumed. We have 122 mod 4 = 2, thus kk1 is

selected. The remaining non-terminal <TIEBREAK> has five expansion options and the

third gene is 109, thus we have 109 mod 5 = 4, resulting in random being selected.

This strategy has some issues, such as its high redundancy and low locality (MCKAY

et al., 2010). High redundancy is an issue because several different genotypes can induce

the same phenotype (many-to-one mapping), resulting in an unnecessarily large search

space. Considering the previous example, <START> has two expansion options. Even



42

Figure 2.6: An example of a grammar in Backus-Naur Form.

1 <START> ::= neh(<ORDER>,<TIEBREAK>) |
2 frb5(<ORDER>,<TIEBREAK>)
3 <ORDER> ::= noninc | nondec | kk1 | kk2
4 <TIEBREAK> ::= kk1 | kk2 | first | last | random

values for the first gene values will result in neh being selected, while odd values select

frb5. Thus, since the gene value is in [0, 255], we have 128 different values that will

select each option.

The locality of a mapping between genotype and phenotype is determined by the

extent of the changes induced to the phenotype when the genotype is modified. A mapping

is said to have a high locality if a small change in the genotype leads to a small change

in the phenotype. This is important to the efficiency of search methods, as a low locality

can result in a search trajectory similar to a random walk. In the case of Ryan, Collins

and Neill (1998), it is easy to see that a simple increment or decrement to the value of

a gene may change the decisions to which the subsequent genes are linked to, possibly

generating a highly dissimilar neighbor.

Structured grammatical evolution (SGE) is an approach proposed by Lourenço,

Pereira and Costa (2016) that addresses the high redundancy and low locality of GE. In

SGE, each non-terminal is linked to a specific gene, increasing locality. This allows the in-

terval for the value of a gene to be adjusted according to the number of expansion options

of the respective non-terminal, resulting in a less redundant mapping between genotype

and phenotype (one-to-one mapping). If a non-terminal can be expanded multiple times,

the respective gene contains a list of values, one for each possible expansion. We provide

a detailed example of a genotype and its decoding in Section 3.1.

One of the biggest challenges in AAC is the high computational time required to

evaluate the algorithms. Some of the most relevant AAC methods in the literature use

adaptive capping mechanisms to reduce the overall length of the configuration process.

The mechanisms typically include the early termination of candidates with poor perfor-

mance. However, the implementation of this idea has been almost exclusively limited to

runtime minimization problems, such as the propositional satisfiability problem (SAT). In

this case, a candidate run is terminated early if it has been running for a time higher than

an upper bound based on the best candidates obtained so far.

Furthermore, the high evaluation time issue has also been addressed through sur-
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rogate models trained to estimate the candidates’ empirical performance over a set of

problem instances. The models can be trained in an offline step with data from previ-

ous configuration runs and are useful to reduce the time necessary to evaluate a candi-

date (EGGENSPERGER et al., 2018). Commonly used models include random forests

(BREIMAN, 2001) and gaussian processes (RASMUSSEN; WILLIAMS, 2006). An ex-

ample of a model-based method for AAC is SMAC. It builds regression models based

on random forests to predict candidates’ performance and select promising candidates

to evaluate. The method repeatedly searches the model for configurations with a high-

performance prediction and compares them to the incumbent over a set of instances. The

model is then updated, and the whole process is repeated until a time budget is exhausted.

ParamILS is an AAC tool that applies ILS to configurations. It implements a

first-improvement local search that modifies the value of one parameter at a time (one-

exchange neighborhood) and includes a capping mechanism for runtime minimization

that discards poorly performing configurations. The perturbation step performs a se-

quence of random moves. The acceptance criterion admits solutions of equal or better

quality than the incumbent, with a probability to randomly reinitialize the search. More-

over, ParamILS implements two search strategies named BasicILS and FocusedILS. Ba-

sicILS evaluates each neighbor on a fixed number of instances, while FocusedILS adjusts

this number according to the quality of the neighbor.

Cáceres and Stützle (2017) propose a variable neighborhood search (VNS) for

configurations, on k-exchange neighborhoods Nk, with two search strategies. The first

visits the neighborhoods in a round-robin manner in order of increasing k, the second

in order of decreasing k. The computational experiments compared VNS and ILS for

the tuning of 74 parameters of the MIP solver CPLEX and showed a slight improvement

compared to ParamILS.

Ansótegui, Sellmann and Tierney (2009) addressed the algorithm configuration

problem with a gender-based genetic algorithm (GGA). The so-called gender is an at-

tribute of the candidates and is used to divide them into competitive and non-competitive

subsets. Individuals in the former compete for the right to reproduce, while the individ-

uals of the latter are selected at random as a diversification mechanism. Reproduction

always considers one individual from each subset. Computational experiments showed

that GGA was able to find better configurations than ParamILS for three out of four tested

SAT solvers.

Ansótegui et al. (2015) investigated the use of regression models based on random
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Algorithm 5 irace
Input: Set of instances I , parameter space S
Output: A set of elite candidates E

1: function IRACE(I, S)
2: C = INITIALCANDIDATES(S)
3: E = RACE(C, I)
4: while termination criterion not met do
5: UPDATEDISTRIBUTIONS(E)
6: C ′ = SAMPLECANDIDATES(E, S)
7: C = C ′ ∪ E
8: E = RACE(C, I)
9: end while

10: return E
11: end function

forests in GGA. They contributed a surrogate model to predict and improve offspring

quality, and another model to select individuals for the crossover step. The resulting

method was named GGA++, and the experimental results showed a small improvement

over GGA when configuring two SAT solvers.

One of the best known tools for AAC is irace. It implements an elitist iterated

racing procedure that repeatedly performs three main steps: (i) it generates new candidates

according to certain sampling distributions for the parameters, (ii) evaluates the candidates

on a subset of problem instances, discarding the inferior ones according to statistical tests,

and (iii) and updates the sampling distributions to generate new candidates that are more

similar to the best ones obtained so far. The main idea is similar to an estimation of

distribution algorithm (EDA).

An EDA is an evolutionary method that builds a probabilistic model to sample

promising candidates for a given problem. The sampled candidates are iteratively eval-

uated, and the model is updated to propagate the characteristics of good candidates to

future generations. irace introduces racing (BIRATTARI et al., 2002), which eliminates

candidates with poor performance early, reducing the overall length of the configuration

process. Pseudocode for the iterated racing procedure implemented in irace is presented

in Algorithm 5.

There are three main types of parameters in irace: categorical, numerical, and

ordinal. Categorical parameters have a set of unrelated discrete values as the domain.

Ordinal parameters are similar, but with an ordered set of values. An example of the

categorical type is a parameter with values {yes, no} that defines whether to apply a local

search at some point during the execution of an algorithm. And an example of ordinal
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parameter is the intensity of the perturbation to be applied to a solution, with the ordered

set of values {low,medium, high}. Finally, numerical parameters are divided into integer

and real types: integer parameters have integer values within a given interval, and real

parameters can take floating-point values within a given interval.

Each parameter of the algorithm to be configured is linked to an independent dis-

tribution. Truncated normal distributions are used for numerical and ordinal parameters,

and discrete distributions for categorical parameters. The initial set of candidates is gen-

erated uniformly at random (line 2 in Algorithm 5), and after that, the method iteratively

performs races. Each race consists of evaluating the candidates over a set of instances,

one instance at a time. In regular intervals, statistical tests are performed to verify the

significance of the difference between candidates, and a candidate is discarded if it is sta-

tistically worse than at least another candidate. The statistical tests implemented in irace

are the Friedman test and the paired t-test. The race continues until there is a certain

number of surviving candidates or until a budget is exhausted. When a race ends, the best

candidates obtained so far are kept in an elite set and are used to sample new candidates

(lines 5 and 6 in Algorithm 5). This is done in such a way that each new candidate inherits

distributions based on those of a certain elite candidate, which is selected at random with

a probability proportional to its rank in the elite set. In normal distributions, the inherited

mean is equal to the value of the respective parameter in the parent configuration. The

standard deviation is inherited with a slight decrease in value in order to sample values

closer to the elite configuration as the search progresses. Similarly, in discrete distribu-

tions, the discrete probability of selecting the same value as the parent configuration is

inherited with a slight increase. The next race is started with the new candidates, in addi-

tion to those in the elite set (lines 7 and 8 in Algorithm 5). The whole process is repeated

until a global time limit, or a budget of evaluations is exhausted. The output of irace is

the ranked elite set.

Further contributions to irace include the adaptive capping strategy based on run-

time of Cáceres et al. (2017), and the surrogate models to predict the performance of

candidates of Cáceres, Bischl and Stützle (2017) and Dang et al. (2017).

Some solvers for hard combinatorial problems similar to the one we present in

this thesis include SATzilla (XU et al., 2008) and SATenstein (KHUDABUKHSH et al.,

2016), both for the SAT problem. The former uses an approach based on an algorithm

portfolio, i.e., it selects one algorithm from a collection of fixed algorithms according to

some of the characteristics of the problem instance to be solved. Identifying when to use
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which algorithm is a challenging task since algorithms can have different performance

across different instances. The related problem is called the algorithm selection problem

(RICE, 1976). In contrast, SATenstein uses a similar strategy to the one we use in this

work: individual components are combined to build the algorithms. In this latter case,

ParamILS is used as the search method. Both solvers yield results that are competitive

with the state of the art. Moreover, López-Ibáñez and Stützle (2012) proposed a generic

framework to generate multi-objective ACO algorithms that facilitates the usage of auto-

matic algorithm configuration. The framework was used to generate new algorithms for

a bi-objective traveling salesman problem. The computational experiments showed that

these algorithms significantly outperformed other multi-objective ACO algorithms in the

literature.

Regarding the application of AAC techniques to flow shop problems, Vázquez-

Rodríguez and Ochoa (2011) used GP to discover new priority orders for NEH for five

objective functions. Computational experiments considering modified Taillard instances

showed that the new priority orders could improve the original orders with statistical

significance in 49 out of 60 tested cases. However, in an additional experiment with

makespan minimization over the standard instances of Taillard, the new priority order

was unable to improve the original one, yielding equivalent results on average.

The PFSSP has also been addressed by means of AAC by Mascia et al. (2013) and

Marmion et al. (2013). Both works use a similar grammar-based approach to generate

algorithms for weighted tardiness minimization. They use a parametric representation

for the algorithms, in which each possible expansion of a non-terminal is linked to a

parameter of a solver. The search space defined by the grammar is explored with irace.

The grammar of Mascia et al. (2013) generates IG algorithms, whereas the grammar of

Marmion et al. (2013) generates hybrid methods that can combine simulated annealing,

variable neighborhood search, iterated greedy algorithms, among others. Mascia et al.

(2013) compared the parametric representation to the one used in GE and showed that the

former outperformed the latter. Marmion et al. (2013) compared three hybrid algorithms

obtained with irace to a state-of-the-art IG. The reported results were mostly equivalent

for instances with 50 jobs and 20 machines. For instances with 100 jobs and 20 machines,

the hybrid algorithms outperformed the IG.

Pagnozzi and Stützle (2019) and Pagnozzi (2019) presented a solver for the PFSSP

that implements several individual algorithmic components and combined them through

AAC to obtain efficient methods. In general, the solver was built with similar goals and
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used techniques similar to the one presented in this thesis, such as the grammar-based

approach, the parametric representation for the algorithms, and the application of irace as

the search method. The main difference to our work is that Pagnozzi and Stützle (2019)

and Pagnozzi (2019) focused on representing a broader range of heuristics. They particu-

larly focused on metaheuristics and on generating hybrid recursive local search methods

that combine tabu search, variable neighborhood descent, ILS, and IG algorithms. In con-

trast, we focus exclusively on non-recursive ILS and IG algorithms based on their known

efficiency for solving flow shop problems. Pagnozzi (2019) also conducted computational

experiments to compare algorithms with one or two recursion levels to non-recursive al-

gorithms. The results showed that they have similar performance. Finally, besides study-

ing the classical PFSSP, Pagnozzi (2019) studied additional constraints for the PFSSP,

such as sequence-dependent setup times. We took a different direction and studied the

non-permutation variant of the problem.

We refer the reader to the review of Branke et al. (2016) for a more extensive

description of the literature regarding the AAC of heuristics for production scheduling

problems.
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3 AUTOMATED DESIGN OF HEURISTICS FOR PERMUTATION FLOW SHOPS

In this section, we present our approach and the results we obtained in our work

on automating the design process of heuristics for the PFSSP through AAC techniques.

We addressed makespan and total completion time minimization, the two most common

objectives in the literature.

For each problem and objective function, we defined a context-free grammar that

establishes how individual algorithmic components can be combined to form full heuris-

tics. These algorithmic components are, for example, constructive heuristics, local search

procedures, and tiebreakers. The grammar and its components were implemented in a

parameterized solver, in such a way that a heuristic can be instantiated with a set of pa-

rameter values. To convert a grammar to parameters, we use an approach similar to the

one in SGE in which categorical parameters are linked to the non-terminal symbols. More

precisely, we use one parameter for each time each non-terminal can be expanded (we

provide a detailed example in the next section). The value of each parameter determines

which component is to be selected. Finally, the solver instantiates the corresponding al-

gorithm and uses it to solve a given problem instance.

The search space defined by the grammar is explored with the parameter configu-

ration tool irace. Our goal is to obtain new algorithms by combining individual compo-

nents, seeing how well they perform compared to the state of the art, and identifying good

combinations that were unknown.

Overall, our approach is similar to Mascia et al. (2013), Marmion et al. (2013),

Pagnozzi and Stützle (2019). However, instead of using an approach that aims to represent

a broader range of heuristic strategies and generate hybrid methods, we focus on IG and

ILS algorithms only. Although simpler, our algorithms are fine-grained. For example, we

implement generic tie-breaking rules for constructive heuristics, perturbation functions,

and local search procedures. We chose these types of algorithms based on their known

efficiency to solve flow shop problems, as shown in previous sections.

In the following sections, we present the grammar, describe the algorithmic com-

ponents, and the computational experiments and its results for total completion time and

makespan minimization.
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Figure 3.1: A grammar of iterated local search and iterated greedy algorithms. For sim-
plicity, the numerical parameters have been omitted.

1 <START> ::= IG(<INI_SOL>,<TIEBREAK>,<PARTIAL>,<LS>) |
2 ILS(<INI_SOL>,<LS>,<PERTURB>)
3 <INI_SOL> ::= NEHCsum(<TIEBREAK>) | LR | BSCH |
4 FRB5(<TIEBREAK>)
5 <TIEBREAK> ::= KK1 | KK2 | first | last | random
6 <PARTIAL> ::= ε | insertion(<TIEBREAK>)
7 <LS> ::= <LS_PROC> | alternate(<LS_PROC>,<LS_PROC>)
8 <LS_PROC> ::= insertLS(<TIEBREAK>) | swapTasgetiren |
9 swapInc | insertTasgetiren |

10 lsTasgetiren | fpe | bpe | iRZ |
11 riRZ | raiRZ | insertFPR | swapFirst |
12 swapBest | swapR
13 <PERTURB> ::= swap | shift

3.1 Methods to Minimize the Total Completion Time

3.1.1 Grammar and Components

The grammar we used is presented in Backus-Naur Form (BNF) in Figure 3.1. We

omitted numerical parameters for the sake of simplicity. They are presented in the fol-

lowing sections. The algorithmic components comprise metaheuristic search strategies,

constructive heuristics to generate initial permutations, tie-breaking rules, local search

procedures, and perturbation strategies.

The algorithms generated by derivations of such a grammar have the form of two

state-of-the-art metaheuristics for the PFSSP: they can be either an IG algorithm, as the

one proposed by Ruiz and Stützle (2007) (see Algorithm 3), or an iterated local search

with a pool of solutions, as proposed by Dong et al. (2013).

Regarding the IG, Dubois-Lacoste, Pagnozzi and Stützle (2017) proposed the ad-

dition of a local search to improve the partial solution during the perturbation step. The

insertion local search presented in Algorithm 1 is applied to optimize the solution obtained

after the destruction and before the start of the construction phase. The results showed

that such a strategy could improve the makespan and contributed to the improvement of

the state of the art. We, therefore, evaluate it for total completion time minimization.

The strategy is represented by the <PARTIAL> non-terminal in the grammar, which is

optional and specific to the IG.

Furthermore, ties are often found when looking for the best insertion for a job.
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This can occur, for example, during the perturbation step in the IG, in which each removed

job is inserted into the best position in the schedule. We implemented five tiebreakers to

decide among tied positions. The tiebreakers are linked to the <TIEBREAK> symbol

and are as follows: (i) first selects the position of smallest index among the tied posi-

tions, (ii) last selects the position of biggest index, (iii) KK1 is the tie-breaking rule of

Kalczynski and Kamburowski (2008), (iv) KK2 is the tie-breaking rule of Kalczynski and

Kamburowski (2009), and (v) random selects a random position among the tied ones.

Finally, the temperature for the Metropolis acceptance criterion in the IG is defined

as: T = αp/10n, where p =
∑

i∈[m]

∑
j∈[n] pij/nm and α is a parameter.

The second metaheuristic in our grammar is similar to the multi-restart iterated

local search (MRSILS) proposed by Dong et al. (2013). MRSILS is an ILS that includes

a pool of solutions used to restart the search once it is unable to improve the incum-

bent solution for a certain number of iterations. Algorithm 6 presents the method in

pseudocode. The functions in the algorithm perform the following: (i) Perturb applies

a perturbation to a given solution. The perturbation performs p random movements and

is represented by the <PERTURB> non-terminal in the grammar. The two derivation op-

tions determine if the movements performed are shift or swap movements. A shift move-

ment reinserts a given job in a random position, while a swap movement exchanges the

positions of two random jobs. (ii) InsertIntoPool adds a solution to the pool, and (iii) Re-

moveWorstFromPool removes the worst solution from the pool. (iv) PoolSize returns the

number of solutions currently in the pool, (v) ClearPool empties the pool of solutions,

and (vi) NotInPool returns true if a solution is not in the pool and false otherwise. Fi-

nally, (vii) SelectFromPool determines the current solution. If the solution pool is not

full (parameter ps determines the maximum pool size) then the best one in it is returned,

otherwise a randomly selected solution from the pool is returned. Note that the pool size

is equivalent to the number of iterations without improvement after which restarts from

random solutions from the pool are done.

Both the IG and the ILS start from a solution built by a constructive heuris-

tic. We implemented four constructive heuristics: LR (LIU; REEVES, 2001), BSCH

(FERNÁNDEZ-VIAGAS; FRAMIÑAN, 2017), and adaptations of NEH (NAWAZ; EN-

SCORE; HAM, 1983) (here named NEHCsum) and FRB5 (RAD; RUIZ; BOROOJER-

DIAN, 2009) to minimize the total completion time. The initial solution is linked to the

<INI_SOL> non-terminal.

As mentioned in Section 2.1.1.2, NEH and FRB5 can be adapted for total com-
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Algorithm 6 MRSILS for the PFSSP
Input: Perturbation intensity p, maximum pool size ps
Output: Best solution found π∗

1: function MRSILS(p, ps)
2: π = INITIALSOLUTION

3: π = LOCALSEARCH(π)
4: while termination criterion not met do
5: π′ = PERTURB(π, p)
6: π′ = LOCALSEARCH(π′)
7: if UPDATEDINCUMBENT then
8: CLEARPOOL

9: end if
10: if NOTINPOOL(π′) then
11: INSERTINTOPOOL(π′)
12: if POOLSIZE > ps then
13: REMOVEWORSTFROMPOOL

14: end if
15: end if
16: π = SELECTFROMPOOL

17: end while
18: return π∗
19: end function

pletion time minimization by simply sorting the jobs in non-decreasing order according

to the sum of their processing times across all m machines. The other steps remain the

same. Both NEHCsum and FRB5 break the ties according to one of the rules presented

earlier. LR is the constructive heuristic proposed by Liu and Reeves (2001). We fix the

number of schedules x = dn/me, the best value found by Liu and Reeves (2001). BSCH

is the beam search method proposed by Fernández-Viagas and Framiñan (2017). We set

the beam width w = n, as it performed best according to Fernández-Viagas and Framiñan

(2017).

Benavides and Ritt (2015) observed that some local search procedures often com-

plement each other, and adopted a strategy in which two different procedures are applied

alternately. In their proposed ILS method, a swap-based local search is performed if the

current iteration is even, and a shift-based local search is performed otherwise. We imple-

mented an analogous strategy in this work. The <LS> non-terminal in Figure 3.1 can be

derived into a single local search or an alternation between two local search procedures.

The <LS_PROC> non-terminal determines the procedures to be performed. We present a

brief description of each of the 14 local search procedures we implemented. In addition,

we provide algorithms in pseudocode for each method in Appendix B.
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(i) iRZ (RAJENDRAN; ZIEGLER, 1997) is an insertion local search in which,

starting with the first job in the schedule, each job is removed and reinserted into the

best position. The method follows a first-improvement strategy and iterates until no im-

provements are found after a full neighborhood evaluation, limited to nls full evaluations.

(ii) riRZ is the same as iRZ, except that jobs are removed in reverse order, i.e., it starts

from the last job in the schedule, while in (iii) raiRZ jobs are removed in random order.

(iv) insertLS is an insertion local search that removes and reinserts each job into the best

position, similarly to iRZ. However, it was implemented to break ties according to one

of the five rules presented subsequently. All the other procedures were implemented as

described in the original papers. When no tie-breaking strategy is specified, we select the

first position by default. (v) insertFPR (TASGETIREN et al., 2011) is also similar to iRZ,

except that the search immediately stops after n iterations without improvement, whereas

iRZ only checks the stopping criterion after reinserting the last job in the schedule. (vi) in-

sertTasgetiren (TASGETIREN et al., 2011) is an insertion local search in which a job is

removed, and its insertion is evaluated only after its previous position. (vii) swapTasge-

tiren (TASGETIREN et al., 2011) is a standard swap local search that swaps all pairs of

jobs with a first-improvement strategy. Improvements restart the search, which continues

until no improvements are found after a full neighborhood evaluation. (viii) lsTasge-

tiren (TASGETIREN et al., 2011) applies insertTasgetiren, followed by swapTasgetiren.

This is repeated while improvements are found. (ix) swapFirst is a first-improvement

adjacent swap local search that cyclically swaps adjacent jobs, while (x) swapBest is a

best-improvement adjacent swap local search that evaluates all possible swaps of adjacent

jobs and performs the best one if it improves the current solution. (xi) fpe (LIU; REEVES,

2001) exchanges each job with its x successors with a first-improvement strategy. We set

x = dn/me, the best value according to Liu and Reeves (2001). (xii) bpe (LIU; REEVES,

2001) works similarly to fpe, except that the jobs are exchanged with their predecessors.

(xiii) swapInc (BENAVIDES; RITT, 2015) is similar to fpe, but uses an incremental value

for x. It starts with x = 1 and increments x by one each time improvements are not found

after a full neighborhood evaluation, up to x = n. Both the search and the value for x are

restarted when an improvement is found. (xiv) And finally, in the swapR (DEROUSSI;

GOURGAND; NORRE, 2006) method, for each pair of job positions (i, j), the jth job

is swapped with the ith job, which is then reinserted into the best possible position. The

method follows a first-improvement strategy.

We use the nls parameter to limit the number of times the full neighborhood is
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Table 3.1: Categorical parameters required to instantiate algorithms from the grammar.

Parameter Decision

alg Metaheuristic (IG or ILS).
ini_sol Constructive heuristic to generate the initial solution.
tb_ini_sol Tiebreaker for constructive heuristic (NEHCsum or FRB5).
tb_ig Tiebreaker for the IG.
partial If the partial solution is to be improved with a local search.
tb_partial Tiebreaker for the local search to be applied to the partial solution.
ls If one or two local search procedure are to be applied.
ls_proc1 First local search procedure.
ls_proc2 Second local search procedure.
tb_ls_proc1 Tiebreaker for the first local search procedure.
tb_ls_proc2 Tiebreaker for the second local search procedure.
pert Perturbation strategy for the ILS.

evaluated in insertLS, iRZ, riRZ, raiRZ, swapFirst and swapBest. Low values for nls

can reduce the running time of the local search, but at a possible cost in solution quality

(DUBOIS-LACOSTE, 2014).

We now describe how to transform the grammar into a parametric representa-

tion through an example. Given the grammar in Figure 3.1 we have 7 non-terminals

(<START>, <INI_SOL>, <TIEBREAK>, <PARTIAL>, <LS>, <LS_PROC> and

<PERTURB>). We observe that <START>, <INI_SOL>, <PARTIAL>, <LS>, and

<PERTURB> can be expanded only once. The <TIEBREAK> symbol can be expanded

up to five times: one if iga is selected in line 1, one if the initial solution is generated with

FRB5, another if the partial solution is optimized, and other two times if two local search

procedures are selected and derived to insertLS. Lastly, the <LS_PROC> non-terminal

can be expanded up to two times, if two local search procedures are to be applied. As each

possible expansion is linked to a parameter, we therefore have a total of 12 parameters.

The parameters and their respective decisions are summarized in Table 3.1.

The value of each parameter defines which option is to be selected, e.g. ini_sol =

LR selects the LR option, and defines that the LR constructive heuristic is used to build

the initial solution. The solver takes the parameter values as input and instantiates the

corresponding algorithm. Moreover, some parameters are conditional to certain options

being selected, e.g., the parameter pert, which decides the perturbation strategy for the

ILS, is ignored if the algorithm is an IG (alg = IG).

Having established a grammar that determines how individual components can

be combined to generate an algorithm and having defined the parametric approach to

represent instantiations of the grammar, we use the parameter configuration tool irace to
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find good configurations. Besides the 12 categorical parameters, other parameters linked

to the components must be configured as well. If the algorithm is an IG, then the number

of jobs removed in the destruction phase d and the temperature multiplier α have to be

calibrated. For the ILS, we have the pool size ps and the number of moves performed

by the perturbation procedure p. We used ranges including typical values used in the

literature: d ∈ [1, 20], α ∈ [0.01, 1], p ∈ [1, 20], ps ∈ [2, 20] and nls ∈ [1, 20]. We

present a list with all the parameters that were configured with irace in Table 3.2. Column

“Parameter” presents the parameter name, and “Type” is the parameter type specified

in irace. Column “Values” defines the values each parameter can assume and column

“Conditions” lists for each parameter the conditions under which it is enabled. If no

conditions are specified, then the parameter is always enabled.
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Table 3.2: Tunable parameters of the algorithm construction.

Parameter Type Values Conditions

alg Categorical IG, ILS
ini_sol Categorical NEHCsum, LR, BSCH, FRB5
tb_ini_sol Categorical KK1, KK2, first, last, random ini_sol ∈ {NEHCsum,FRB5}
tb_ig Categorical KK1, KK2, first, last, random alg = IG
partial Categorical yes, no alg = IG
tb_partial Categorical KK1, KK2, first, last, random partial = yes
ls Categorical 1, 2
ls_proc_1 Categorical insertLS, fpe, bpe, swapTasgetiren, insertTasgetiren,

lsTasgetiren, swapInc, iRZ, riRZ, raiRZ, viRZ,
swapFirst, swapBest, swapR

ls_proc_2 Categorical insertLS, fpe, bpe, swapTasgetiren, insertTasgetiren, ls = 2
lsTasgetiren, swapInc, iRZ, riRZ, raiRZ, viRZ,
swapFirst, swapBest, swapR

tb_ls_proc_1 Categorical KK1, KK2, first, last, random ls_proc_1 = insertLS
tb_ls_proc_2 Categorical KK1, KK2, first, last, random ls_proc_2 = insertLS
pert Categorical swap, shift alg = ILS
d Integer [1, 20] alg = IG
α Real [0.01, 1] alg = IG
p Integer [1, 20] alg = ILS
ps Integer [2, 20] alg = ILS
nls Integer [1, 20] ls_proc_1 ∈ {insertLS, iRZ, riRZ, raiRZ} or

ls_proc_2 ∈ {insertLS, iRZ, riRZ, raiRZ}

The columns contain the name of the parameter, the type specified in irace, the domain, and the conditions for the parameter to
be active. If no condition is shown, the parameter is always active.
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3.1.2 Computational Experiments

In this work we considered the benchmarks of Taillard (1993) and Vallada, Ruiz

and Framiñan (2015). We ran irace 10 times, each with its own set of randomly generated

training instances to avoid overtuning. Each set contains 120 instances with the same

dimensions as in the Taillard benchmark and with uniform random processing times in the

interval [1, 99]. Furthermore, each irace run was restricted to a budget of 2400 candidate

runs, and each candidate run was limited to 10nmmilliseconds. The best algorithm found

in each run was then evaluated on the Taillard benchmark.

The experiments were conducted on a PC with an Intel Core i7 930 processor, and

12 GB of main memory, running Ubuntu 16.04.3. Our method was implemented in C++

and compiled with g++ 5.4.0 using -O3 flag. In irace (version 2.4.1844), we allowed the

parallel evaluation of candidates, limited to four threads.

First, we present the best algorithm of each irace run in Table 3.3. The columns

present the algorithm name (“Alg.”), the chosen metaheuristic (“M”), the constructive

heuristic to generate an initial permutation (“CH”), the tiebreaker for the construction

phase in IG (“Tie”), whether the local search for partial solutions is applied or not (“Par-

tial”), the first and the second local search procedures (“Proc. 1”, “Proc. 2”), and the

numerical parameters d, nls and α.

Analyzing the obtained algorithms, we observed that all of them are IG algorithms.

All did select BSCH as the constructive heuristic, which was to be expected since the

results reported in Fernández-Viagas and Framiñan (2017) show a significant advantage

over other constructive heuristics. Another choice common to all algorithms was the

exclusion of the local search for partial permutations, which suggests that this strategy

is less useful for total completion time minimization. The most frequently selected local

search procedures were iRZ and its variants (riRZ and raiRZ) and insertFPR. The choice

of tiebreakers had a significant variation: KK1 and KK2 were selected more frequently,

but all rules were selected at least once. Regarding the numerical parameters, the values

for d in [5, 11] confirm previous findings that removing and reinserting a higher number

of jobs is beneficial when minimizing completion time (BENAVIDES; RITT, 2015), in

comparison to makespan minimization. The high values for nls are mostly equivalent

since the local search usually terminates earlier in a local minimum. The α-values were

very similar, except when the local searches included non-adjacent swaps.

We evaluated algorithms A0 to A9 on the Taillard benchmark and compared them
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Table 3.3: Automatically designed algorithms for minimizing the total completion time
on the PFSSP.

Perturbation Local search

Alg. M CH Tie d Partial Proc. 1 Proc. 2 nls α

A0 IG BSCH KK1 6 No riRZ - 9 0.2
A1 IG BSCH KK1 11 No insertFPR - - 0.1
A2 IG BSCH First 8 No riRZ fpe 19 0.1
A3 IG BSCH KK2 9 No raiRZ - 15 0.1
A4 IG BSCH KK2 8 No iRZ - 15 0.1
A5 IG BSCH Random 7 No fpe - - 0.2
A6 IG BSCH KK2 5 No swapTasgetiren riRZ 16 0.5
A7 IG BSCH KK1 7 No swapInc insertFPR - 0.3
A8 IG BSCH First 6 No fpe - - 0.1
A9 IG BSCH Last 7 No bpe iRZ 7 0.1

Each row contains the components and parameter values for one of the algorithms obtained
with irace, named A0 to A9 in the first column. All methods are IG algorithms, as indicated
in column “M”, and all use BSCH to build the initial solution, as seen in column “CH”. The
following three columns refer to the perturbation step and contain the tiebreaker, perturbation
intensity d, and whether or not to optimize the partial solution between destruction and
construction phases. The next three columns contain the first local search procedure, the
second local search procedure, and the maximum number of full neighborhood scans nls.
The last column is the value for α, used in the Metropolis acceptance criterion.

to the state-of-the-art metaheuristic MRSILS(BSCH) of Fernández-Viagas and Framiñan

(2017). The results are presented in Table 3.4 as the average relative deviation (ARD) in

percent from the upper bounds reported by Pan and Ruiz (2012) (see Appendix A). For a

fair comparison, we reimplemented MRSILS(BSCH) and presented the results in column

“MRSILS”. The parameter values used for MRSILS(BSCH) were the same as in Dong et

al. (2013). For each algorithm, ten replications per instance were performed, each with

a time limit of 30nm milliseconds. Columns “A0” to “A9” show the results for each

algorithm. Since algorithms’ performance often varies according to the dimensions of the

instances, we present a combination of the best results in column “Best”. This provides a

theoretical estimate of the best results obtained with the components from the grammar if

we were able to combine the best characteristics of the ten algorithms in a single method.
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Table 3.4: ARD for the Taillard benchmark.

Inst. MRSILS A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Best

20× 5 0.007 0.002 0.001 0.004 0.006 0.006 0.000 0.000 0.000 0.006 0.005 0.000
20× 10 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.005 0.000 0.000
20× 20 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.010 0.000 0.000
50× 5 0.173 0.219 0.178 0.152 0.173 0.162 0.177 0.248 0.190 0.141 0.153 0.141
50× 10 0.551 0.464 0.536 0.564 0.534 0.536 0.503 0.397 0.313 0.705 0.556 0.313
50× 20 0.462 0.435 0.462 0.483 0.449 0.458 0.483 0.345 0.379 0.645 0.481 0.345
100× 5 0.089 0.105 0.101 0.085 0.100 0.098 0.105 0.099 0.102 0.070 0.082 0.070
100× 10 0.251 0.255 0.244 0.246 0.241 0.238 0.256 0.278 0.248 0.237 0.234 0.234
100× 20 0.473 0.462 0.452 0.473 0.452 0.458 0.463 0.503 0.437 0.512 0.461 0.437
200× 10 -0.657 -0.661 -0.663 -0.670 -0.668 -0.665 -0.657 -0.657 -0.666 -0.673 -0.672 -0.673
200× 20 -0.846 -0.841 -0.856 -0.851 -0.860 -0.860 -0.837 -0.837 -0.862 -0.849 -0.855 -0.862
500× 20 -1.889 -1.888 -1.891 -1.890 -1.891 -1.890 -1.885 -1.888 -1.890 -1.887 -1.891 -1.891

Avg. -0.115 -0.121 -0.120 -0.117 -0.122 -0.122 -0.116 -0.126 -0.146 -0.090 -0.121 -0.157

Instances have been grouped according to their dimensions in the first column. The results presented in this table are
the ARD from the upper bounds in Table A.1. Column “MRSILS” contains the results for the state-of-the-art method
MRSILS(BSCH) proposed by Fernández-Viagas and Framiñan (2017). A0 to A9 are the algorithms found with irace. The
last column contains a combination of the best results obtained by algorithms A0 to A9. The best results for each instance
group are highlighted in bold.



59

In general, we can see that the results obtained with the automatically designed

algorithms and those obtained with MRSILS(BSCH) were similar. The algorithm with

the best overall ARD, A7, is an IG that alternates between insertFPR and swapInc. Since

insertFPR is similar to the strategy in MRSILS(BSCH), the observed improvement is

probably due to the choice of an IG algorithm instead of an ILS, and due to the use of a

second, swap-based local search. Algorithm A8 had slightly higher ARD, while all the

other methods, including MRSILS(BSCH), had similar results with a maximum differ-

ence of 0.01 % among them. Furthermore, the ARD of the automatically designed meth-

ods is only 0.01 % to 0.07 % higher than the combination of the best results. This shows

that the algorithms have consistent performance across the different groups of instances,

and are not overfitted for specific dimensions.

We applied a Wilcoxon signed-rank test between MRSILS(BSCH) and each of

the algorithms from A0 to A9 to verify whether the differences are statistically significant.

For a significance level of 0.01, with Bonferroni correction, the results indicated that the

difference is significant for A3, A4, A7 and A9 (p < 0.0006 in all cases). We have also

computed the average solution quality of a random derivation of the grammar over 50

samples and found it to be 1.04 %. This shows that irace was effective in selecting good

algorithms.

We conducted an additional experiment to evaluate A7 on the VRF benchmark

and compared it to MRSILS(BSCH). The results are presented as the ARD from MR-

SILS(BSCH) in Table 3.5. The instances are divided into “Small” and “Large” according

to the number of jobs. Ten replications per instance were performed for both algorithms.

We note an improvement of 0.064% on average for the smaller instances, while the results

are very close for the larger instances. A Wilcoxon signed-rank test confirmed that the

difference between the two methods is statistically significant (p < 2.2× 10−16). It is

also worth mentioning that the best algorithm obtained via AAC never performed worse

than MRSILS(BSCH).

Overall, the results showed that the automatically designed algorithms are com-

petitive compared to the state of the art, and one of them, in particular, has a slightly

superior performance.
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Table 3.5: ARD to MRSILS(BSCH) for the VRF benchmark.

Small Large

Inst. ARD Inst. ARD Inst. ARD Inst. ARD

10× 5 0.000 40× 5 -0.126 100× 20 -0.043 500× 20 -0.002
10× 10 0.000 40× 10 -0.147 100× 40 -0.042 500× 40 -0.005
10× 15 0.000 40× 15 -0.111 100× 60 -0.020 500× 60 -0.003
10× 20 0.000 40× 20 -0.109 200× 20 -0.006 600× 20 -0.001
20× 5 0.000 50× 5 -0.042 200× 40 -0.010 600× 40 -0.003
20× 10 0.000 50× 10 -0.182 200× 60 -0.013 600× 60 -0.004
20× 15 0.000 50× 15 -0.090 300× 20 0.000 700× 20 -0.002
20× 20 -0.000 50× 20 -0.143 300× 40 -0.010 700× 40 -0.002
30× 5 -0.085 60× 5 -0.005 300× 60 -0.011 700× 60 -0.004
30× 10 -0.069 60× 10 -0.076 400× 20 -0.001 800× 20 -0.002
30× 15 -0.034 60× 15 -0.153 400× 40 -0.002 800× 40 -0.001
30× 20 -0.024 60× 20 -0.129 400× 60 -0.005 800× 60 -0.004

Avg. -0.064 -0.008

3.2 Methods to Minimize the Makespan

In this section, we present the grammar, describe the algorithmic components, and

present the computational experiments and its results for makespan minimization on the

PFSSP.

3.2.1 Grammar and Components

We propose the grammar presented in Figure 3.2. For simplicity, the figure shows

only the main algorithmic components and not the numerical parameters of the individual

components. The numerical parameters are presented at the end of the section.

Our methods are based on ILS. We refer to them as ILS instead of IG because

some of the perturbation options are purely random, without the greedy element. To

generate the initial solution for the ILS, we have implemented three constructive heuris-

tics. The first one is the well-known NEH constructive heuristic (NAWAZ; ENSCORE;

HAM, 1983). The second one is FRB5 (RAD; RUIZ; BOROOJERDIAN, 2009). For

both, NEH and FRB5, our grammar considers a priority order and a tiebreaker for the

job insertion phase. The ordering options we implemented are a non-increasing and

a non-decreasing order of total processing time, and the KK1 (KALCZYNSKI; KAM-

BUROWSKI, 2008) and KK2 (KALCZYNSKI; KAMBUROWSKI, 2009) orders. The

third constructive heuristic, named RC, repeatedly constructs solutions with the same
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Figure 3.2: A grammar of iterated local search algorithms. For simplicity, the numerical
parameters have been omitted.

1 <START> ::= ILS(<INI_SOL>,<PERTURB>,<LS>,
2 <ACCEPT>)
3 <INI_SOL> ::= NEH(<ORDER>,<TIEBREAK>) |
4 FRB5(<ORDER>,<TIEBREAK>) |
5 RC
6 <ORDER> ::= noninc | nondec | KK1 | KK2
7 <TIEBREAK> ::= KK1 | KK2 | first | last |
8 random
9 <PERTURB> ::= ri | gi(<TIEBREAK>) | rs | gs |

10 ras | gi_asls(<TIEBREAK>) |
11 ils_gi(<TIEBREAK>) |
12 gi_ils(<TIEBREAK>)
13 <LS> ::= ε | <LS_PROC> |
14 alternate(<LS_PROC>,<LS_PROC>)
15 <LS_PROC> ::= insertLS(<TIEBREAK>) | NS |
16 Pc(<TIEBREAK>)
17 <ACCEPT> ::= met | lac | rrt

strategy as NEH, although it breaks ties both in the priority order and in the insertion

phase at random. The method builds r solutions and returns the best one. As in Sec-

tion 3.1.1, the tiebreakers (lines 7 and 8 in Figure 3.2) are (i) first which selects the posi-

tion of smallest index, (ii) last which selects the position of biggest index, (iii) KK1 which

is the tiebreaker of Kalczynski and Kamburowski (2008), (iv) KK2 which is the tiebreaker

of Kalczynski and Kamburowski (2009) and (v) random which selects a random position.

Moreover, Lomnicki (1965) showed that solutions for the problem with reversed

machine order, i.e., with machine m as the first machine and machine 1 as the last ma-

chine, have reversed job order compared to solutions for the problem with the regular

machine order. Lomnicki (1965) states that in some cases, it is more efficient to explore

the problem with the reversed machine order and revert the job order of the obtained so-

lution at the end. We implemented this strategy for the construction of the initial solution.

Parameter rev determines if the reversed instance is to be considered. If so, the construc-

tive heuristic is first used to build a solution for the regular instance, and then for the

instance with reversed machine order. The best out of the two solutions is kept.

Regarding perturbation functions, we implemented eight strategies (FERNÁNDEZ-

VIAGAS; VALENTE; FRAMIÑAN, 2018). All methods perform dmoves every iteration

but differ in the types of moves performed. The strategies are presented in lines 9 to 12
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in Figure 3.2 and are briefly described as follows: (i) random insertion (ri) removes d

randomly selected jobs and inserts them into random positions. (ii) Greedy insertion (gi)

removes d randomly selected jobs and inserts them one at a time, and in the same order

they were removed into the best position. This is the destruction-construction operator

in IG_RS. (iii) Random swap (rs) swaps the positions of two randomly selected jobs.

(iv) Random adjacent swap (ras) swaps a randomly selected job in positions 1 to n − 1

with its immediate successor. (v) Greedy swap (gs) randomly selects a job and swaps its

position with the job that results in the best objective function value. (vi) Greedy insertion

followed by an adjacent swap local search (gi_asls) works similarly to greedy insertion

with the addition of an adjacent swap local search performed after each removed job is

reinserted. This local search evaluates the swapping of all adjacent jobs that are sched-

uled after the newly inserted job. (vii) Insertion local search followed by greedy inser-

tion (ils_gi) removes d randomly selected jobs, applies an insertion-based local search

to the partial solution and then reinserts the removed jobs, one at a time and in the same

order they were removed. The local search removes each job of the partial solution and in-

serts it into the best position, immediately accepting improvements. The search is stopped

when there are no improvements after a full neighborhood evaluation, limited to nls full

evaluations. (viii) Greedy insertion followed by an insertion local search (gi_ils) removes

d randomly selected jobs and inserts them one at a time, and in the same order they were

removed into the best position. After each insertion, both the predecessor and successor

of the newly inserted job, if any, are removed and reinserted into the best positions.

During the local search phase, we can apply none, one or two local search proce-

dures (lines 13 and 14 in Figure 3.2). If two procedures are selected, they are performed

in alternation, i.e., the first procedure is performed if the current iteration is an even num-

ber, and the second procedure is performed otherwise. The implemented procedures are:

(i) insertLS, which is an insertion local search in which each job is removed and reinserted

greedily. This is repeated until a local minimum is reached, i.e., no better neighbors are

found, or up to nls full neighborhood scans. (ii) NS, which is a local search procedure with

the NS neighborhood. It evaluates swapping the first two or the last two jobs of each block

of jobs on the critical path (except the first two and last two jobs of the schedule) (NOW-

ICKI; SMUTNICKI, 1996a). The method follows a best-improvement strategy. (iii) Pc,

which is similar to NS, but instead of being swapped, the jobs are removed and reinserted

greedily (BENAVIDES; RITT, 2018).

Finally, we implemented three options for the acceptance criterion (line 17 in Fig-



63

Table 3.6: Categorical parameters required to instantiate algorithms from the grammar.

Parameter Decision

ini_sol Constructive heuristic to build the initial solution.
order Criterion for job ordering during the construction of the initial solution.
tb_ini_sol Tiebreaker for the construction of the initial solution.
perturb Perturbation strategy.
tb_perturb Tiebreaker for the perturbations that perform greedy insertions.
ls Number of local search procedures.
ls_proc_1 First local search procedure.
ls_proc_2 Fecond local search procedure.
tb_ls_proc_1 Tiebreaker rule for the first local search procedure.
tb_ls_proc_2 Tiebreaker rule for the second local search procedure.
accept acceptance criterion.

ure 3.2). The first one is the Metropolis criterion (met) (METROPOLIS et al., 1953), in

which a new solution is always accepted if it improves the current solution. Otherwise

it is accepted with probability e−∆/T , where ∆ is the difference between the objective

function value of the new and the current solution, and T is a parameter called the tem-

perature. The second option is late acceptance (lac) (BURKE; BYKOV, 2017), in which

a new solution is accepted if it improves the current solution or the solution visited l iter-

ations before. The third option is record-to-record travel (rrt) (DUECK, 1993), in which

a new solution is accepted if its objective function value is smaller than the value of the

current solution plus a deviation rrtd.

Having described the grammar and the individual components, we now present

the parametric representation for instantiations of such a grammar. Our strategy links

each possible expansion of a non-terminal in the grammar to a categorical parameter.

Each parameter value determines which of the expansion options is to be selected for the

respective non-terminal. We can see that <INI_SOL>, <PERTURB>, <LS>, <ACCEPT>

and <ORDER> are expanded at most once, while <LS_PROC> can be expanded twice and

<TIEBREAK> up to four times: one if either NEH or FRB5 are selected to build the initial

solution, one if the perturbation performs greedy insertions, and two more times if two

local search procedures are used and both perform greedy insertions. Thus, we have a set

with 11 parameters to represent the instantiations of the grammar. The parameters and

their respective decisions regarding component selection are summarized in Table 3.6.

Additionally, some parameters are conditional to others, e.g., tb_ini_sol is not needed if

ini_sol = RC, as RC always uses a random tiebreaker.

We used the parameter configuration tool irace to search for good algorithms. As
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mentioned earlier, numerical parameters are not shown in Figure 3.2, but are calibrated by

irace as well. These parameters are the number of moves performed by the perturbation

function d, the number of solutions r built by the RC constructive heuristic, whether or not

to consider the reversed machine order when building the initial solution (parameter rev),

the length of the list for late acceptance l and the deviation for record-to-record travel rrtd.

The temperature T in the Metropolis acceptance criterion is defined as T = α× p/10,

where p =
∑

i∈[m]

∑
j∈[n] pij/nm and α is a parameter which we calibrate. The last

parameter is the limit of full neighborhood evaluations nls, which is applied to all local

search methods. This includes the local searches performed in FRB5, in the perturbation

ils_gi, and in the procedures insertLS, NS, and Pc.

A summary is presented in Table 3.7, where column “Parameter” presents the

parameter name, and “Type” is the parameter type specified in irace. Column “Values”

defines the values each parameter can assume. For the numerical parameters, these values

were defined according to the typical values used in the literature. Column “Conditions”

lists for each parameter the conditions under which it is enabled. If no conditions are

specified, then the parameter is always enabled.
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Table 3.7: Tunable parameters of the algorithm construction.

Parameter Type Values Conditions

ini_sol Categorical NEH, FRB5, RC
order Categorical noninc, nondec, KK1, KK2 ini_sol ∈ {NEH,FRB5}
tb_ini_sol Categorical KK1, KK2, first, last, random ini_sol ∈ {NEH,FRB5}
tb_perturb Categorical KK1, KK2, first, last, random perturb ∈ {gi, gi_asls, ils_gi, gi_ils}
tb_ls_proc_1 Categorical KK1, KK2, first, last, random ls_proc_1 ∈ {insertLS,Pc}
tb_ls_proc_2 Categorical KK1, KK2, first, last, random ls_proc_2 ∈ {insertLS,Pc}
perturb Categorical ri, gi, rs, gs, ras, gi_asls, ils_gi, gi_ils
ls Categorical 0, 1, 2
ls_proc_1 Categorical insertLS, NS, Pc ls ∈ {1, 2}
ls_proc_2 Categorical insertLS, NS, Pc ls = 2
accept Categorical met, lac, rrt
rev Categorical no, yes
r Ordinal 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 1000 ini_sol = RC
d Integer [1, 20]
nls Ordinal 1, 2, 3, 4,∞ ini_sol = FRB5 or ls ∈ {1, 2} or perturb = ils_gi
α Real [0.01, 1] accept = met
l Ordinal 1, 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 accept = lac
rrtd Ordinal 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500 accept = rrt

The columns contain the name of the parameter, the type specified in irace, the domain, and the conditions for the param-
eter to be active. If no condition is shown, the parameter is always active.
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3.2.2 Computational Experiments

In this section, we report the results of the automatic configuration and compare

them to the state-of-the-art. To evaluate our algorithms we considered the benchmarks of

Taillard (1993) and Vallada, Ruiz and Framiñan (2015) (VRF-large).

Our experiments were performed on a PC with an AMD FX-8150 processor run-

ning at 3.6 GHz, and 32 GB of main memory, under Ubuntu 16.04.3. Our solver was

implemented in C++ and compiled with g++ 5.4.0 using the optimization flag -O3. We

used version 2.4.1844 of irace with the option of parallel execution set to eight threads.

We ran irace ten times, with a budget of 30000 candidate runs and a time limit of

10nm milliseconds per run. The training set contained 120 randomly generated instances

with the same dimensions of those in the Taillard benchmark. The instances were gener-

ated according to Taillard (TAILLARD, 1993), with uniform random processing times in

the interval [1, 99].

We present the best algorithm for each of the 10 runs in Table 3.8. Column “Alg.”

presents the name of the algorithm. For the initial solution, columns “CH”, “Order”, and

“Tie” report the chosen constructive heuristic, job priority order, and tiebreaker for the

constructive heuristic. Column “rev” presents whether or not the reversed instance is also

solved by the constructive heuristic, while column “r” contains the value for the respec-

tive parameter when RC was selected. The next three columns contain the perturbation

method, its tie-breaking rule, and the perturbation intensity d. The next five columns refer

to the local search phase and present the first local search procedure, the tiebreaker for

the first procedure, the second local search procedure, the tiebreaker for the second pro-

cedure, and the value for nls. The last two columns contain the acceptance criterion and

its respective parameter.



67

Table 3.8: Automatically designed algorithms for minimizing the makespan on the PFSSP.

Initial solution Perturbation Local search Acceptance

Alg. CH Order Tie r rev Method Tie d Proc. 1 Tie 1 Proc. 2 Tie 2 nls Crit. α

A0 RC - - 30 yes ils_gi KK1 1 insertLS first - - 4 met 0.6
A1 RC - - 60 yes gi random 6 insertLS KK1 - - 4 met 0.8
A2 NEH noninc last - yes ils_gi KK2 1 insertLS last - - ∞ met 0.8
A3 NEH noninc last - no ils_gi last 1 insertLS KK2 - - 4 met 0.7
A4 NEH KK1 last - no ils_gi KK2 1 Pc KK2 insertLS last 4 met 0.9
A5 RC - - 1 yes ils_gi last 1 insertLS KK1 - - 2 met 0.6
A6 RC - - 50 no ils_gi random 2 insertLS KK1 - - 3 met 0.3
A7 FRB5 nondec KK1 - no gi_ils KK1 3 insertLS KK2 - - 4 met 0.5
A8 RC - - 60 no gi first 9 insertLS KK1 - - ∞ met 0.2
A9 RC - - 40 no ils_gi KK2 1 insertLS random - - ∞ met 0.8

Each row contains the components and parameter values for one of the ten algorithms obtained with irace, named A0 to
A9 in the first column. The following five columns refer to the initial solution and contain, respectively, the constructive
heuristic, the ordering criteria for the constructive heuristic, the tiebreaker, and the values for parameters r and rev. The
following three columns contain the perturbation method, its tiebreaker, and the perturbation intensity d. The following
columns refer to the local search phase and contain the procedures, the tiebreakers, and the maximum number of full
neighborhood scans nls. The last two columns present the acceptance criterion and the values for its parameter α.
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Analyzing the results, we observe that regarding the construction of the initial

solution, RC is the most frequently selected option, with low values for r in all cases.

Algorithm A5, in particular, has r = 1 which is equivalent to selecting the NEH heuris-

tic with the noninc order and the random tiebreaker. Four algorithms use the reversed

instance, but there was no clear pattern of choice.

Regarding the perturbation function, the most frequently selected strategy was

ils_gi with seven occurrences, always with low intensity. In the tiebreakers, however,

there was a substantial variation, and four different options were selected. The gi strategy

was chosen two times, both with the KK1 tiebreaker, but with different values for d.

The choices concerning the local search were very homogeneous: all algorithms

use insertLS, mostly with KK1 or KK1 tiebreakers. Algorithm A4, in particular, also

performs the Pc procedure. Another choice common to all algorithms is the Metropolis

acceptance criterion, although there was substantial variation in the value of α.

In summary, we observe that the automatically designed algorithms resemble ei-

ther the method of Ruiz and Stützle (2007) or the method of Dubois-Lacoste, Pagnozzi

and Stützle (2017). A4 and A7 are exceptions: A4 alternates between two local search

procedures, and A7 has a different perturbation strategy.

We have evaluated algorithms A0 to A9 on the Taillard benchmark and present the

results in Table 3.9. For each group of instances (column “Inst.”), we report the ARD in

percent from the values in Table A.1. For the VRF-large benchmark, we use the same

values as in Dubois-Lacoste, Pagnozzi and Stützle (2017). Five replications per instance

were performed. Each run had a time limit of 30nm milliseconds.

To compare our results to the literature, we instantiate in our solver the algorithms

IGrs of Ruiz and Stützle (2007) and the state-of-the-art IGlsps of Dubois-Lacoste, Pag-

nozzi and Stützle (2017). Since the authors do not specify the tie-breaking rules, we eval-

uated all our implemented rules and used the one with the best results, which was KK2.

The results are presented in columns “IGrs” and “IGlsps”. Columns “A0” to “A9” contain

the individual results for the algorithms obtained via AAC. Column “Best” contains the

combined best results.
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Table 3.9: ARD for the Taillard benchmark.

Inst. IGrs IGlsps A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Best

20× 5 0.000 0.024 0.040 0.000 0.016 0.000 0.016 0.016 0.016 0.016 0.000 0.040 0.000
20× 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.000 0.000
20× 20 0.008 0.003 0.023 0.000 0.012 0.012 0.006 0.021 0.014 0.005 0.008 0.006 0.000
50× 5 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50× 10 0.425 0.487 0.390 0.482 0.410 0.416 0.428 0.380 0.356 0.420 0.409 0.429 0.380
50× 20 0.550 0.520 0.478 0.499 0.381 0.404 0.427 0.428 0.571 0.395 0.587 0.450 0.381
100× 5 0.003 0.002 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000
100× 10 0.109 0.085 0.038 0.061 0.051 0.040 0.055 0.043 0.041 0.059 0.059 0.034 0.034
100× 20 0.925 0.881 0.667 0.842 0.620 0.603 0.707 0.658 0.848 0.760 0.896 0.667 0.603
200× 10 0.045 0.045 0.040 0.043 0.037 0.043 0.044 0.041 0.041 0.038 0.043 0.040 0.037
200× 20 1.142 1.006 0.788 1.073 0.807 0.822 0.874 0.868 1.004 1.048 1.079 0.770 0.770
500× 20 0.429 0.402 0.292 0.391 0.303 0.332 0.317 0.328 0.341 0.374 0.382 0.285 0.285

Avg. 0.303 0.288 0.230 0.283 0.220 0.223 0.240 0.233 0.270 0.260 0.289 0.227 0.207

Instances have been grouped according to their dimensions in the first column. The results presented in this table are the ARD
over the upper bounds from Dubois-Lacoste, Pagnozzi and Stützle (2017). IGrs is method proposed by Ruiz and Stützle
(2007), and IGlsps is the state-of-the-art IG proposed by Dubois-Lacoste, Pagnozzi and Stützle (2017). A0 to A9 are the
algorithms found with irace. The last column contains a combination of the best results obtained by algorithms A0 to A9.
The best results for each instance group are highlighted in bold.



70

All ten algorithms have lower ARD than IGrs. When compared to IGlsps, A0, A2

to A7 and A9 have better performance, while A1 and A8 are equivalent. Note that A1 and

A8 are the algorithms with a greedy insertion (gi) perturbation, while the others (except

A7) have the same perturbation strategy as IGlsps. The algorithm with the best overall

ARD is A2, which is similar to IGlsps. The main differences are the smaller value for d,

which was recurrent in similar algorithms, and the different combinations of tie-breaking

rules. These differences reduced the ARD by about 0.07% compared to IGlsps, and by

about 0.08% compared to IGrs. Furthermore, the ARD of A2 is only 0.01% higher than

the combination of the best results. Using the best results per instance group as reference,

we can see that the algorithms perform well over different dimensions, and there was no

overfitting for specific groups.

We applied a Wilcoxon signed-rank test between IGlsps and each one of the al-

gorithms from A0 to A9 to verify the statistical significance of the differences. For a

significance level of 0.01 with Bonferroni correction, the test indicates that the difference

is statistically significant for A0, A2, A3, A4, A5 and A9 (p < 1.3× 10−8 in all cases).

We have repeated the previous experiments for the VRF-large benchmark. The

results are presented in Table 3.10, where we compare the algorithms obtained via AAC

to IGrs and IGlsps.
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Table 3.10: ARD for the VRF-large benchmark.
Inst. IGrs IGlsps A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Best

100× 20 0.225 0.350 0.114 0.293 0.033 0.115 0.156 0.142 0.431 0.160 0.503 0.126 0.033
100× 40 0.271 0.097 0.007 0.086 -0.050 -0.072 0.045 0.025 0.436 0.118 0.484 0.025 -0.072
100× 60 0.279 0.018 0.052 0.062 -0.034 -0.021 -0.039 0.014 0.447 0.098 0.423 -0.018 -0.039
200× 20 0.461 0.475 0.227 0.476 0.126 0.164 0.209 0.259 0.493 0.505 0.582 0.201 0.126
200× 40 0.419 0.195 0.041 0.057 -0.138 0.016 -0.071 0.185 0.463 0.217 0.438 -0.007 -0.138
200× 60 0.246 0.028 -0.052 0.002 -0.226 -0.134 -0.157 -0.010 0.303 0.116 0.395 -0.162 -0.226
300× 20 0.274 0.243 0.124 0.299 0.130 0.110 0.141 0.167 0.219 0.328 0.326 0.088 0.088
300× 40 0.510 0.257 0.060 0.176 0.004 0.050 -0.075 0.144 0.367 0.305 0.457 -0.033 -0.075
300× 60 0.504 0.217 0.069 0.184 -0.078 0.011 -0.072 0.136 0.331 0.256 0.443 -0.040 -0.078
400× 20 0.233 0.204 0.073 0.248 0.131 0.103 0.129 0.145 0.176 0.224 0.221 0.062 0.062
400× 40 0.636 0.249 0.115 0.223 0.089 0.033 -0.112 0.120 0.373 0.387 0.303 0.075 -0.112
400× 60 0.678 0.333 0.097 0.321 -0.030 0.064 -0.044 0.111 0.302 0.267 0.495 0.008 -0.044
500× 20 0.192 0.145 0.062 0.170 0.088 0.085 0.101 0.136 0.140 0.175 0.165 0.042 0.042
500× 40 0.388 0.196 0.017 0.098 0.044 -0.074 -0.175 0.003 0.216 0.293 0.143 -0.027 -0.175
500× 60 0.732 0.480 0.253 0.504 0.079 0.167 0.071 0.234 0.366 0.481 0.615 0.194 0.071
600× 20 0.108 0.088 0.025 0.117 0.044 0.063 0.048 0.072 0.059 0.105 0.090 0.024 0.024
600× 40 0.253 0.106 -0.026 0.125 0.050 -0.068 -0.133 -0.005 0.169 0.358 0.107 -0.003 -0.133
600× 60 0.877 0.538 0.224 0.520 0.161 0.129 0.122 0.174 0.350 0.482 0.558 0.235 0.122
700× 20 0.108 0.092 0.040 0.126 0.047 0.074 0.075 0.102 0.067 0.087 0.117 0.029 0.029
700× 40 0.061 0.030 -0.216 0.016 -0.017 -0.232 -0.255 -0.137 0.011 0.177 0.003 -0.126 -0.255
700× 60 0.938 0.542 0.242 0.531 0.139 0.150 0.081 0.126 0.321 0.447 0.530 0.213 0.081
800× 20 0.067 0.046 0.022 0.055 0.027 0.031 0.029 0.034 0.033 0.047 0.067 0.008 0.008
800× 40 0.004 -0.018 -0.257 -0.006 -0.095 -0.197 -0.202 -0.125 -0.046 0.170 0.011 -0.135 -0.257
800× 60 1.032 0.542 0.370 0.528 0.254 0.185 0.166 0.293 0.468 0.542 0.548 0.393 0.166

Avg. 0.396 0.227 0.070 0.217 0.032 0.031 0.002 0.098 0.271 0.264 0.334 0.049 -0.031

Instances have been grouped according to their dimensions in the first column. The results presented in this table
are the ARD from the values in Table A.2. IGrs is algorithm proposed by Ruiz and Stützle (2007), and IGlsps is the
method proposed by Dubois-Lacoste, Pagnozzi and Stützle (2017). A0 to A9 are the algorithms found with irace. The
last column contains a combination of the best results obtained by algorithms A0 to A9. The best results for each
instance group are highlighted in bold.
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As in the previous experiments, all algorithms have lower ARD when compared to

IGrs, and seven algorithms have lower ARD when compared to IGlsps. In general, there

is a more substantial variation of the results, although they are still mostly better than the

state of the art. Even though the training was carried out using instances more similar to

those of the Taillard benchmark, the performance of the algorithms scales well to larger

instances.

Overall, the results are similar to those of the first experiment. However, the algo-

rithm with the best overall ARD is A4. The best results per instance group were obtained

mainly by three methods. A2 had the best results for most of the instances with up to 200

jobs, A9 was the best method when solving instances with 20 machines, and A4 was the

best when solving instances with 40 and 60 machines. We also noticed that, even though

A3 had the best results for only one instance group, its average results are equivalent to

those of A2. These four methods are similar, with the main differences lying in the ini-

tial solution construction and the combinations of tiebreakers. Moreover, A4 is the only

method that alternates two local search procedures. This indicates that such a strategy is

more helpful when solving large instances such as those in this benchmark.

Once again, we applied a Wilcoxon signed-rank test between IGlsps and each one

of the algorithms from A0 to A9. For a significance level of 0.01 with Bonferroni correc-

tion, the test indicates that the difference is statistically significant for A0, A2, A3, A4, A5,

A8 and A9 (p < 4.6× 10−13), and A7 (p < 2× 10−5).
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4 AUTOMATED DESIGN OF HEURISTICS FOR NON-PERMUTATION FLOW

SHOPS

In this section, we present our methods for the NPFSSP. For both total completion

time and makespan minimization, we implemented two-phase IG algorithms: during the

first phase, the algorithms build and improve a permutation solution. In contrast, during

the second phase, the search space is explored with procedures that evaluate job passing

and generate non-permutation solutions. Pseudocode is presented in Algorithm 7.

Algorithm 7 IG for the NPFSSP.
Input: Perturbation intensities d, dNP, time percentage npf allocated to the non-

permutation phase
Output: Best solution found s∗

1: function IG_NPFSSP
2: π = ILS_PFSSP(d,npf )
3: s = (π, . . . , π)
4: repeat
5: s′ = s
6: Remove dNP random jobs from s′

7: for each removed job j do
8: for each position k ∈ 1, . . . , n do
9: Evaluate inserting j into position k without job passing

10: Evaluate inserting j into position k with anticipation
11: Evaluate inserting j into position k with delay
12: end for
13: Perform the best insertion
14: end for
15: s′ = LOCALSEARCH(s′)
16: if ACCEPT(s, s′) then
17: s = s′

18: end if
19: until global time limit is reached
20: return s∗
21: end function

An intuitive approach is to start from a permutation solution and then evaluate non-

permutation solutions through job passing. Likely, assigning very different sequences for

the machines does not result in short schedules. Therefore, we focus on starting with

a high-quality permutation schedule and then evaluating job passing with inversions on

the order of pairs of adjacent jobs on some machines. Since our IG algorithms run for

a certain time, we introduced the parameter npf to determine what fraction of the global

time limit is to be allocated to the non-permutation phase, e.g. npf = 0.65 determines that
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the permutation phase will take 35% of the total time, while the non-permutation phase

will take 65% of the total time.

To obtain the permutation solution, we run an ILS for the PFSSP for some time

and keep the best solution (line 2 in Algorithm 7). We then assign this solution to all m

machines before starting the non-permutation phase (line 3 in Algorithm 7). The ILS for

the PFSSP has its configurable components: the initial solution generator, perturbation

function, the local search, and the acceptance criterion. We refer to it as an ILS and not

IG because some of the perturbation options are not greedy procedures.

Regarding the non-permutation phase, the perturbation strategy consists of remov-

ing dNP randomly selected jobs and reinserting them without job passing, with anticipa-

tion after a certain machine, or with delay after a certain machine (BENAVIDES; RITT,

2015), according to which one results in the best objective function value. In more detail,

after removing the randomly selected jobs, we reinsert them into the solution in the same

order they were removed, one at a time, into the best position for each one. First, we

evaluate the insertion of the job j into position k ∈ [1, n] on all machines. Then, for each

machine i = 2, . . . ,m − 1, we keep j at position k on machines 1 to i, and insert j into

position k− 1 on machines i′ > i, i.e., we anticipate j on machines after i. After that, for

each machine i = 2, . . . ,m− 1, we evaluate inserting j into position k on machines 1 to

i, and into position k + 1 on machines i′ > i, i.e., we delay the job on machines after i.

We keep the same sequence of jobs for the first two machines, as optimal solutions have

this characteristic (JOHNSON, 1954). When there are ties between different insertions

for j, we prioritize those without anticipation nor delay, then insertions with anticipation.

If there are ties for different k values, we use a configurable tiebreaker.

After the perturbation step, a local search is performed, and the acceptance crite-

rion defines whether to accept or discard the new solution. Both the local search and the

acceptance criterion are configurable components. We present the grammar and compo-

nents for total completion time and makespan minimization in the following sections.

4.1 Methods to Minimize the Total Completion Time

4.1.1 Grammar and Components

The grammar for IG algorithms for total completion time minimization is pre-

sented in Figure 4.1. The numerical parameters were omitted, but are presented later in
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this section. The symbol <ILS_PFSSP> represents the ILS for the PFSSP that is used

to build the permutation solution in the first phase. Note that the part of the grammar

concerning the PFSSP shares most of the components with the grammar of Section 3.1.1.

As our work on the NPFSSP succeeded the one on the PFSSP, some additional compo-

nents that were not present in the previous grammar (see Figure 3.1) were added later.

These components are (i) the RC constructive heuristic, which has been mentioned in

Section 3.2.1, although for makespan minimization. In the case of total completion time,

RC builds r solutions with NEHCsum with a random tiebreaker for both the priority order

and the insertion phase, and returns the best solution. (ii) We added the eight perturba-

tion strategies presented in Section 3.2.1, adapted for total completion time minimization,

and (iii) we implemented four acceptance criteria: Metropolis, late acceptance, record–

to-record travel, and threshold acceptance. The first three were explained in Section 3.2.1.

Threshold acceptance (thr in Figure 4.1) is similar to record-to-record travel, although

with a deviation that is relative to the current solution. The deviation is calculated by mul-

tiplying a parameter thres ∈ [0, 1] by the objective function value of the current solution.

Since the addition of these components significantly increases the number of possible al-

gorithms the grammar can generate, we repeated the computational experiments for the

PFSSP with total completion time minimization, including these new components. We

present the results in Appendix C.

Regarding the non-permutation phase, we chose a fixed perturbation strategy, de-

scribed in the previous section. The configurable components are the local search and the

acceptance criterion.

The local search of the non-permutation phase consists of a single procedure or

an alternation between two local search procedures. We introduced the parameter fNP
ls

to determine the frequency to apply the second procedure, e.g. fNP
ls = 10 determines

that the second local search procedure is to be applied every ten iterations. This was

introduced with the different complexity of the methods in mind, as the insertion local

search has a higher complexity and requires more computational time. The idea is that

applying it with a low frequency may increase the general efficiency of the method. We

have implemented five procedures as follows: (i) insertNP is a standard insertion local

search with the addition of insertions with job passing. Similarly to the strategy used in

the perturbation step, we evaluate insertions without job passing, with anticipation after

a machine i, and with delay after a machine i, for all i ∈ [2,m − 1]. We give priority to

insertions without job passing, then with anticipation when breaking ties. The method also
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Figure 4.1: A grammar of iterated greedy algorithms for the NPFSSP. For simplicity, the
numerical parameters have been omitted.

1 <START> ::= IG(<ILS_PFSSP>,<TIEBREAK>,<LS_NP>,
2 <ACCEPT>)
3 <ILS_PFSSP> ::= ILS_PFSSP(<INI_SOL>,<PERTURB>,<LS>,
4 <ACCEPT>)
5 <INI_SOL> ::= NEHCsum(<TIEBREAK>) | LR |
6 FRB5(<ORDER>,<TIEBREAK>) | RC | BSCH
7 <ORDER> ::= noninc | nondec | KK1 | KK2
8 <TIEBREAK> ::= KK1 | KK2 | first | last | random
9 <PERTURB> ::= ri | gi(<TIEBREAK>) | rs | gs |

10 ras | gi_asls(<TIEBREAK>) |
11 ils_gi(<TIEBREAK>) |
12 gi_ils(<TIEBREAK>)
13 <LS> ::= ε | <LS_PROC> |
14 alternate(<LS_PROC>,<LS_PROC>)
15 <LS_PROC> ::= insertLS(<TIEBREAK>) | swapTasgetiren |
16 swapInc | insertTasgetiren |
17 lsTasgetiren | fpe | bpe | iRZ |
18 riRZ | raiRZ | insertFPR | swapFirst |
19 swapBest | swapR
20 <ACCEPT> ::= met | lac | rrt | thr
21 <LS_NP> ::= ε | <LS_PROC_NP> |
22 alternate(<LS_PROC_NP>,<LS_PROC_NP>)
23 <LS_PROC_NP> ::= insertionNP(<TIEBREAK>) | RNASLS |
24 ASLS | ASLS_r | ASLS_G8

uses a given tiebreaker for deciding between different insertion positions. The complexity

of this method is a factor of m higher in comparison to insertLS (see Section 3.1.1), as it

evaluates job passing on some of the machines. (ii) ASLS is an adjacent swap local search

that swaps each job with its successor if any. It starts from the first job of the schedule and

swaps each pair of jobs on all machines, then only on machines from 1 to i, and finally

only on machines after i, for all i ∈ [2,m− 1]. The method follows a best-improvement

strategy, giving preference to neighbors without job passing and then with anticipation of

jobs. It iterates until no improvements are found after a full neighborhood scan or after

nNPls full neighborhood scans. (iii) ASLS_r is a variant of ASLS in which the jobs are

swapped in reverse order, i.e. each job is swapped with its predecessor, if any, starting

from the last job of the schedule. (iv) ASLS_G8 is another variant that works similarly.

In this case, the jobs are swapped in the same order as in the G8 heuristic proposed by

Rossi, Nagano and Tavares Neto (2016): first it swaps the jobs at positions k and k + 1,

for k = 1, 3, 5, . . . , n − 1, and then for k = 2, 4, 6, . . . , n − 2. Finally, (v) RNASLS is
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similar to ASLS, but uses a reduced neighborhood instead. This method swaps adjacent

jobs only at the beginning or at the end of blocks of consecutive operations on the critical

path of a schedule, except the first two and the last jobs of the schedule, as in the NS

neighborhood for makespan minimization. When minimizing the total completion time,

we aim to minimize the completion time of every job, instead of only the last job in

the schedule as happens when minimizing the makespan. Therefore, at each iteration j,

we consider the jth job as the last job in the schedule and apply a local search with the

described reduced neighborhood to this partial schedule.

Finally, the implemented acceptance criteria are the same ones previously pre-

sented for the ILS to build the permutation solution, i.e., Metropolis, record-to-record

travel, threshold and late acceptance. There are different numerical parameters linked to

the acceptance criteria of the permutation and non-permutation phases: the multiplier α

for the Metropolis criterion, the threshold thres, the record-to-record travel deviation rrtd,

and the list length l for late acceptance refer to the permutation phase, while the equivalent

αNP, thresNP, rrtdNP and lNP refer to the non-permutation phase.

When using the parametric representation for the grammar, we have 18 categorical

parameters. The parameters and their respective decisions regarding component selection

are summarized in Table 4.1.

The parameters to be configured by irace are summarized in Table 4.2. The

columns contain the name of the parameter, the type, which can be categorical, integer,

ordinal or real. We discretized r, d, dNP, nls, n
NP
ls , l, l

NP, rrtd, rrtdNP, thres, thresNP, and

fNP
ls and defined them as ordinal parameters to reduce the search space for irace. Finally,

the last two columns contain the domain and the conditions for the parameter to be active.

If no condition is shown, the parameter is always active.

4.1.2 Computational Experiments

In the computational experiments, we used irace to configure the components and

numerical parameters. First, we ran irace ten times and selected the best algorithm of

each run, and then we evaluated the algorithms on Taillard’s (TAILLARD, 1993) and

VRF-large (VALLADA; RUIZ; FRAMIÑAN, 2015) benchmarks.

Each irace run had a budget of 105 candidate evaluations, and each candidate had

a time limit of 60nm milliseconds. The training set contained 120 randomly generated

instances with the same dimensions as those of the Taillard benchmark, with processing
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Table 4.1: Categorical parameters required to instantiate algorithms from the grammar.

Parameter Decision

Permutation phase

ini_sol Constructive heuristic to build the initial solution.
order Criterion for job ordering during the construction of the initial solution.
tb_ini_sol Tiebreaker for the construction of the initial solution.
tb_perturb Tiebreaker for the perturbation functions that perform greedy insertions.
tb_ls_proc_1 Tiebreaker for the first local search procedure.
tb_ls_proc_2 Tiebreaker for the second local search procedure.
perturb Perturbation strategy.
ls Number of local search procedures to be applied.
ls_proc_1 First local search procedure.
ls_proc_2 Second local search procedure.
accept Acceptance criterion.

Non-permutation phase

np_tb_perturb Tiebreaker for the perturbation.
np_tb_ls_proc_1 Tiebreaker for the first local search procedure.
np_tb_ls_proc_2 Tiebreaker for the second local search procedure.
np_ls Number of local search procedures to be applied.
np_ls_proc_1 First local search procedure.
np_ls_proc_2 Second local search procedure.
np_accep Acceptance criterion.

times in the interval [1, 99]. We used version 3.0 of irace, with all parameters set to default

values.

The best algorithm of each of the ten runs is presented in Table 4.3, named IG0 to

IG9. Overall, we can see that the algorithms have many similarities. Regarding the per-

mutation phase, all algorithms use BSCH to build an initial permutation solution, which

was expected since the results in Fernández-Viagas and Framiñan (2017) indicate that the

method considerably outperforms the other options. For the perturbation, gi was selected

seven times, with d between five and seven, except for IG5. There was a significant vari-

ation in the tiebreakers, and most options were selected at least once, except for KK2.

This indicates that they yield similar results during the perturbation step. For the local

search, four algorithms perform a single procedure, while the other six alternate between

two procedures. The pairwise exchange methods (fpe and bpe), and iRZ and its vari-

ants (raiRZ and insertFPR) were selected more frequently. Note that when there is an

alternation between two procedures, they are always an insertion-based and a swap-based

procedure, suggesting that they have complementary characteristics. Finally, record-to-

record travel is the acceptance criterion of seven algorithms, with a deviation between 50

and 80, except for IG2 and IG3. As record-to-record travel does not use a relative value
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for the deviation, the low values indicate that the algorithms will accept worse solutions

more easily for small instances, since they have a smaller objective function value than

large instances. When the search space is smaller, more diversification yields better re-

sults, while it is better to intensify the search when the search space is larger. Moreover,

these low deviation values are mostly equivalent to zero when solving large instances due

to the much bigger magnitude of the objective function value.

Regarding the non-permutation phase, we can see that all algorithms allocate more

time for this phase, with IG0 allocating the least amount, 58%, and IG5 the biggest

amount, 81%. All algorithms have a similar perturbation intensity, and the tiebreaker is

usually KK1 or KK2, except for IG3, IG5 and IG6. The local search phase is also similar

for all algorithms, since they all perform the ASLS method, although with different orders.

Furthermore, seven of them alternate between different orders. Finally, record-to-record

travel is the most frequently selected acceptance criterion, with low deviation values, as

in the permutation phase, except for IG6, which never accepts worse solutions.
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Table 4.2: Tunable parameters of the algorithm construction.

Parameter Type Values Conditions

ini_sol Categorical LR, NEHCsum, FRB5, BSCH, RC

order Categorical noninc, nondec, KK1, KK2 ini_sol ∈ {NEHCsum,FRB5}

tb_ini_sol Categorical KK1, KK2, first, last, random ini_sol ∈ {NEHCsum,FRB5}

tb_perturb Categorical KK1, KK2, first, last, random perturb ∈ {gi, gi_asls, ils_gi, gi_ils}

tb_ls_proc_1 Categorical KK1, KK2, first, last, random ls_proc_1 ∈ {insertLS}

tb_ls_proc_2 Categorical KK1, KK2, first, last, random ls_proc_2 ∈ {insertLS}

perturb Categorical ri, gi, rs, gs, ras, gi_asls, ils_gi, gi_ils

ls Categorical 0, 1, 2

ls_proc_1 Categorical insertLS, fpe, bpe, swapTasgetiren, insertTasgetiren, ls ∈ {1, 2}

lsTasgetiren, swapInc, iRZ, riRZ, raiRZ, viRZ,

swapFirst, swapBest, swapR

ls_proc_2 Categorical insertLS, fpe, bpe, swapTasgetiren, insertTasgetiren, ls = 2

lsTasgetiren, swapInc, iRZ, riRZ, raiRZ, viRZ,

swapFirst, swapBest, swapR

accept Categorical met, lac, rrt, thr

np_tb_perturb Categorical KK1, KK2, first, last, random

np_tb_ls_proc_1 Categorical KK1, KK2, first, last, random np_ls_proc_1 = insertionNP

np_tb_ls_proc_2 Categorical KK1, KK2, first, last, random np_ls_proc_2 = insertionNP

np_ls Categorical 0, 1, 2

np_ls_proc_1 Categorical insertionNP, ASLS, ASLS_r, ASLS_G8, ARNASLS np_ls ∈ {1, 2}

np_ls_proc_2 Categorical insertionNP, ASLS, ASLS_r, ASLS_G8, ARNASLS np_ls = 2

np_accep Categorical met, lac, rrt, thr

npf Real [0, 1.0]

r Ordinal 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, ini_sol = RC

300, 400, 500, 1000

d, dNP Integer [1, 20]

nls, n
NP
ls Ordinal 1, 2, 3, 4,∞ ini_sol = FRB5 or ls ∈ {1, 2} or perturb = ils_gi,

np_ls ∈ {1, 2}

α, αNP Real [0.01, 1.0] accept = met, np_accept = met

l, lNP Ordinal 1, 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, accept = lac, np_accept = lac

700, 800, 900, 1000

rrtd, rrtdNP Ordinal 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, accept = rrt, np_accept = rrt

300, 400, 500

thres, thresNP Ordinal 0, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02, accept = thr, np_accept = thr

0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.2, 0.3, 0.4, 0.5

fNP
ls Ordinal 2, 3, 4, 5, 10 np_ls = 2

The columns contain the name of the parameter, the type specified in irace, the domain and the conditions for the parameter to be active.

If no condition is shown, the parameter is always active.
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Table 4.3: Automatically designed algorithms for minimizing the total completion time on the PFSSP.
Permutation phase Non-permutation phase

Alg. Init. Pert. d Tie Proc.1 Proc.2 nls Accep. α, rrtd, l Time dNP Tie Proc.1 Proc.2 fNP
ls nNP

ls Accep. rrtdNP, lNP

IG0 BSCH gi_asls 6 KK1 fpe raiRZ ∞ rrt 80 0.58 5 KK2 ASLS ASLS_r 10 ∞ lac 25
IG1 BSCH gi 7 KK1 fpe - - lac 200 0.60 4 KK2 ASLS_r ASLS 3 ∞ rrt 30
IG2 BSCH gi 7 random fpe - - rrt 200 0.60 4 KK1 ASLS ASLS_r 3 4 rrt 70
IG3 BSCH gi 5 random raiRZ bpe 3 rrt 500 0.74 5 first ASLS ASLS_G8 3 ∞ rrt 60
IG4 BSCH gs 3 - raiRZ bpe 4 rrt 80 0.76 5 KK2 ASLS_G8 ASLS 3 ∞ rrt 30
IG5 BSCH gi 11 last bpe insertFPR - met 0.24 0.81 5 last ASLS_G8 ASLS_r 4 4 rrt 10
IG6 BSCH ras 4 - iRZ bpe ∞ rrt 80 0.62 5 last ASLS_G8 ASLS_r 5 ∞ rrt 0
IG7 BSCH gi 6 KK1 fpe - - rrt 50 0.73 5 KK2 ASLS - - 4 rrt 60
IG8 BSCH gi 7 last swapInc - - rrt 60 0.78 5 KK2 ASLS - - ∞ rrt 40
IG9 BSCH gi 5 first swapTasgetiren insertFPR - met 0.19 0.79 4 KK1 ASLS_r - - ∞ rrt 40

Each row contains the components and parameter values for one of the algorithms obtained with irace, named IG0 to IG9 in the first column.
The following nine columns refer to the permutation phase and contain the constructive heuristic to build the initial solution, perturbation strategy
and intensity d, the tiebreaker, first and second local search procedures, nls value, the acceptance criterion, and its respective parameter value,
depending on the acceptance criterion. The other columns refer to the non-permutation phase and contain the percentage of time allocated for
the non-permutation phase, the perturbation intensity dNP , the tiebreaker, first and second local search procedures, the values for fNP

ls and nNP
ls ,

the acceptance criterion, and the value for its respective parameter.
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We evaluated algorithms IG0 to IG9 against the benchmark of Taillard (1993).

The algorithms were implemented in C++ and compiled with the GNU C++ compiler

version 7.4 with an optimization level of 3. Each algorithm ran for 60nm milliseconds

with 10 replications on a computer with two Intel Xeon E5-2697 v2 processors (12 phys-

ical cores each) at 2.7 GHz, running Ubuntu 18.04.3. We present the results grouped by

instance dimensions as the average relative deviation (ARD) in percent from the values in

Table A.1.

First, we use the best method for the PFSSP from Section 3.1.2 (algorithm A7) as

a baseline for the comparison with non-permutation schedules. The results are presented

in column “A7”. Regarding the NPFSSP, we compare the algorithms to the state-of-art

IG of Benavides and Ritt (2015), which we instantiated in our solver. This IG starts with

a permutation schedule built by an ILS that runs for half of a global time limit, while this

ILS itself is initialized with a schedule built with the LR constructive heuristic. Then the

destruction phase consists of removing d randomly selected jobs, whereas the construc-

tion phase evaluates the insertion of each job without job passing, with anticipation after

some machine i, or with delay after some machine i, with i = 2, . . . ,m − 1. The results

are presented in column “B&R”. Furthermore, since the recently proposed BSCH out-

performed other similar methods, we evaluated replacing LR with BSCH in the method

of Benavides and Ritt (2015) to make clear what portion of the improvements are due to

simply using BSCH, and what is due to the new algorithms found with irace. We refer

to the resulting algorithm as “B&R′” in Table 4.4. All these algorithms were run for

the same time limit as the algorithms found with irace, which are presented in columns

“IG0” to “IG9”. In addition, column “Best” contains a combination of the best results

per instance group to provide a theoretical estimate of the best results obtained with the

components from the grammar if we were able to combine the best characteristics of the

ten algorithms in a single method.
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Table 4.4: ARD for the Taillard benchmark.

Inst. A7 B&R B&R′ IG0 IG1 IG2 IG3 IG4 IG5 IG6 IG7 IG8 IG9 Best

20× 5 0.000 -0.667 -0.662 -0.673 -0.723 -0.774 -0.787 -0.735 -0.796 -0.661 -0.777 -0.765 -0.755 -0.796
20× 10 0.000 -1.288 -1.290 -1.667 -1.681 -1.785 -1.800 -1.734 -1.869 -1.600 -1.814 -1.755 -1.746 -1.869
20× 20 0.000 -1.129 -1.211 -1.964 -1.876 -1.998 -2.152 -2.059 -2.173 -1.954 -2.048 -2.066 -2.000 -2.173
50× 5 0.182 0.081 0.039 -0.001 0.010 0.007 0.025 -0.009 0.013 0.018 -0.009 -0.011 -0.016 -0.016
50× 10 0.225 -0.031 -0.065 0.057 0.187 0.061 -0.192 0.018 -0.150 0.046 0.127 0.096 -0.019 -0.192
50× 20 0.313 -0.398 -0.346 -0.616 -0.452 -0.487 -0.742 -0.582 -0.720 -0.553 -0.441 -0.512 -0.609 -0.742
100× 5 0.105 0.520 0.031 -0.004 0.005 0.001 0.017 0.002 0.025 0.012 0.002 0.003 0.012 -0.004
100× 10 0.234 0.526 0.036 0.001 0.015 0.003 0.015 0.009 0.021 0.005 0.021 0.009 -0.004 -0.004
100× 20 0.406 0.389 -0.193 -0.331 -0.333 -0.318 -0.394 -0.350 -0.370 -0.374 -0.287 -0.339 -0.393 -0.394
200× 10 -0.671 0.422 -0.760 -0.792 -0.784 -0.791 -0.791 -0.784 -0.779 -0.785 -0.787 -0.793 -0.787 -0.793
200× 20 -0.875 0.043 -1.169 -1.257 -1.266 -1.262 -1.267 -1.281 -1.279 -1.289 -1.254 -1.265 -1.274 -1.289
500× 20 -1.892 0.124 -1.977 -2.025 -2.022 -2.022 -2.024 -2.026 -2.023 -2.029 -2.023 -2.023 -2.025 -2.029

Avg. -0.164 -0.117 -0.631 -0.773 -0.743 -0.780 -0.841 -0.794 -0.842 -0.764 -0.774 -0.785 -0.801 -0.858

A7 is the best method for the PFSSP from Section 3.1.2, B&R is the method for the NPFSSP proposed by Benavides and Ritt (2018), and
B&R′ is the modified version of B&R. IG0 to IG9 are the algorithms found with irace. The last column contains a combination of the
best results obtained by algorithms IG0 to IG9. The best results for each instance group are highlighted in bold.
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Most of the values are negative because the results improve over the upper bounds

from Table A.1, which are bounds for the PFSSP. We can see that most methods for the

NPFSSP have considerably lower ARD than the method for the PFSSP. The exception is

B&R, which has higher ARD than A7 even though it only considers permutation sched-

ules. This is due to BSCH, as we can see that A7 has a much lower ARD on the three

largest instance groups, where BSCH is superior in comparison to LR. The overall ARD

improved by about 0.5 % when we replaced LR with BSCH in the reference method.

All algorithms found with irace had lower ARD than the reference methods, with

improvements between 0.62 % and 0.72 % over the method for the PFSSP. Overall, all

generated algorithms had a very similar performance for the three largest groups of in-

stances. Using the best results as a reference, we did not identify algorithms overfitted for

certain instance dimensions. We applied Wilcoxon signed-rank tests with Bonferroni cor-

rection between B&R′ and each one of the obtained methods, and the tests indicated that

the difference is statistically significant in all cases (99 % confidence, p < 1.12× 10−10

in all cases).

IG3 and IG5 are the algorithms with the best results on average and good per-

formance across the different instance dimensions. They have many similarities: during

the permutation phase, both perform greedy insertions, although IG5 has a stronger per-

turbation and both alternate between insertion and swap local search procedures. As for

the non-permutation phase, they use similar time allocation, same perturbation intensity,

although with different tiebreakers, both alternate between different orders for the ASLS

procedure on similar intervals, and both accept solutions with a record-to-record travel

criterion with low deviation values. They have similar performance all instance groups.

Furthermore, we can see that the advantage IG3 and IG5 have over the other algorithms

is gained on 20×20, 50×10 and 50×20 instances, i.e., they perform considerably better

than the others for medium-sized instances with a lower n/m ratio.

We noticed that although IG4 is very similar to IG3, one of the best methods,

it performed slightly worse. The main differences are its perturbation strategy during

the permutation phase, which greedily swaps three pairs of jobs, its significantly lower

rrtd for the permutation phase, and the tiebreaker and slightly lower rrtd for the non-

permutation phase. We investigated the solutions obtained at the end of the permutation

phase by both methods and noticed that the IG4 found better permutation solutions for

about 44 % of the instances, while IG3 for about 31 % of the instances. Therefore, the

difference in performance is probably due to a more efficient non-permutation phase in
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IG3, with KK2 tiebreaker and the slightly higher rrtd.

We performed experiments with the VRF-large benchmark to see how well the

algorithms perform when solving larger instances than those of the Taillard benchmark.

The results are shown in Table 4.5 as the ARD from the values in Table A.2.

Again, we can see that the methods for the NPFSSP had considerably lower ARD,

except for B&R, which performed worse than A7 due to BSCH significantly outperform-

ing LR when solving large instances. When replacing LR with BSCH, the overall ARD

decreased by more than 2%. In this benchmark, all the algorithms found with irace had

similar ARD and consistent performance across instance dimensions, as evidenced by the

small differences to the best results per group. The improvements ranged from 0.44 % to

0.47 % over A7, and all had lower ARD than B&R′. The results showed that even though

the training instances were similar to those of Taillard’s benchmark, the algorithms gen-

eralized well to the larger instances. Again, we applied Wilcoxon signed-rank tests with

Bonferroni correction between B&R′ and each one of the obtained methods, and the

tests indicated that the difference is statistically significant in all cases (99 % confidence,

p < 2.2× 10−16 in all cases).
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Table 4.5: ARD for the VRF-large benchmark.
Inst. A7 B&R B&R′ IG0 IG1 IG2 IG3 IG4 IG5 IG6 IG7 IG8 IG9 Best

100× 20 0.046 0.037 -0.521 -0.692 -0.668 -0.684 -0.750 -0.708 -0.714 -0.709 -0.648 -0.678 -0.733 -0.750
100× 40 0.062 -0.241 -0.606 -0.786 -0.846 -0.847 -0.926 -0.927 -0.887 -0.910 -0.815 -0.886 -0.923 -0.927
100× 60 0.063 -0.282 -0.683 -0.835 -0.887 -0.894 -0.950 -0.965 -0.968 -0.961 -0.855 -0.900 -0.949 -0.968
200× 20 0.010 1.196 -0.321 -0.417 -0.426 -0.428 -0.435 -0.441 -0.443 -0.442 -0.432 -0.427 -0.439 -0.443
200× 40 0.028 0.892 -0.535 -0.666 -0.709 -0.713 -0.723 -0.728 -0.728 -0.735 -0.702 -0.710 -0.725 -0.735
200× 60 0.019 0.723 -0.580 -0.693 -0.731 -0.751 -0.763 -0.777 -0.775 -0.762 -0.749 -0.727 -0.758 -0.777
300× 20 0.008 1.682 -0.207 -0.281 -0.282 -0.289 -0.291 -0.291 -0.294 -0.297 -0.291 -0.286 -0.292 -0.297
300× 40 0.016 1.625 -0.461 -0.620 -0.641 -0.646 -0.650 -0.651 -0.657 -0.657 -0.641 -0.638 -0.657 -0.657
300× 60 0.010 1.425 -0.499 -0.651 -0.662 -0.682 -0.685 -0.689 -0.698 -0.677 -0.669 -0.662 -0.674 -0.698
400× 20 0.005 2.030 -0.123 -0.178 -0.179 -0.176 -0.178 -0.182 -0.179 -0.183 -0.180 -0.179 -0.181 -0.183
400× 40 0.009 2.174 -0.326 -0.487 -0.502 -0.503 -0.500 -0.511 -0.507 -0.511 -0.502 -0.502 -0.510 -0.511
400× 60 0.020 2.023 -0.367 -0.554 -0.558 -0.565 -0.565 -0.579 -0.578 -0.573 -0.561 -0.559 -0.568 -0.579
500× 20 0.003 2.253 -0.091 -0.146 -0.148 -0.146 -0.148 -0.151 -0.146 -0.151 -0.146 -0.150 -0.151 -0.151
500× 40 0.011 2.666 -0.251 -0.434 -0.435 -0.422 -0.441 -0.442 -0.429 -0.441 -0.416 -0.433 -0.444 -0.444
500× 60 0.007 2.579 -0.299 -0.544 -0.548 -0.507 -0.552 -0.553 -0.517 -0.554 -0.504 -0.546 -0.550 -0.554
600× 20 0.002 2.178 -0.060 -0.101 -0.104 -0.102 -0.100 -0.103 -0.101 -0.105 -0.101 -0.101 -0.102 -0.105
600× 40 0.006 2.693 -0.192 -0.390 -0.390 -0.362 -0.397 -0.394 -0.368 -0.398 -0.360 -0.392 -0.394 -0.398
600× 60 0.008 2.831 -0.214 -0.458 -0.464 -0.418 -0.489 -0.492 -0.438 -0.476 -0.417 -0.481 -0.487 -0.492
700× 20 0.002 2.084 -0.042 -0.078 -0.076 -0.078 -0.077 -0.079 -0.077 -0.079 -0.078 -0.076 -0.075 -0.079
700× 40 0.003 2.854 -0.138 -0.341 -0.343 -0.291 -0.347 -0.344 -0.300 -0.344 -0.290 -0.345 -0.345 -0.347
700× 60 0.008 3.096 -0.150 -0.377 -0.369 -0.326 -0.403 -0.402 -0.338 -0.387 -0.329 -0.394 -0.403 -0.403
800× 20 0.002 1.839 -0.035 -0.071 -0.067 -0.068 -0.070 -0.069 -0.069 -0.072 -0.068 -0.065 -0.067 -0.072
800× 40 0.003 2.853 -0.095 -0.290 -0.290 -0.235 -0.311 -0.301 -0.242 -0.292 -0.235 -0.301 -0.310 -0.311
800× 60 0.007 3.197 -0.117 -0.344 -0.339 -0.290 -0.371 -0.366 -0.304 -0.349 -0.290 -0.364 -0.368 -0.371

Avg. 0.015 1.850 -0.288 -0.435 -0.444 -0.434 -0.463 -0.464 -0.448 -0.461 -0.428 -0.450 -0.463 -0.469

A7 is the best method for the PFSSP from Section 3.1.2, B&R is the method for the NPFSSP proposed by Benavides and Ritt (2018), and
B&R′ is the modified version of B&R. IG0 to IG9 are the algorithms found with irace. The last column contains a combination of the best
results obtained by algorithms IG0 to IG9. The best results for each instance group are highlighted in bold.
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4.2 Methods to Minimize the Makespan

The algorithms for makespan minimization in the NPFSSP have the same over-

all form as those presented in Section 4.1, i.e., a two-phase IG in which a permutation

solution is built during the first phase, and methods that consider job passing are applied

during the second phase. The algorithmic components and the computational experiments

are presented in the following sections.

4.2.1 Grammar and Components

The grammar is presented in Figure 4.2. Note that the grammar for ILS methods

for the PFSSP from Section 3.2.1 is contained within this one. In a comparison to the

grammar in Section 3.2.1, two new components were added, namely the FF tiebreaker of

Fernández-Viagas and Framiñan (2014), and threshold acceptance (thr in the grammar).

These components can be used in any of the two phases. Moreover, we introduce a

parameter fls to determine the frequency to apply the second local search procedure, if

any, during the permutation phase. We repeated the same experiments as in Section 3.2.2

with these additions, and present the results in Appendix D.

As mentioned earlier, we used a fixed approach for the perturbation in which dNP

randomly selected jobs are removed and reinserted without job passing, with anticipation,

or with delay after machine i, for all i ∈ [2,m− 1]. Regarding the local search, we apply

a single procedure or alternate between two local search procedures. Moreover, we allow

procedures with tiebreakers to be selected twice if with different rules. Parameter fNP
ls de-

termines the frequency to apply the second procedure, if any, and nNP
ls limits the number

of full neighborhood evaluations. We implemented the following four local search proce-

dures: (i) insertionNP is an insertion-based local search in which each job is removed and

reinserted into the position that minimizes the makespan. The jobs are reinserted as in

the perturbation step, i.e., without job passing, with anticipation, or with delay. (ii) RNB

is a swap-based local search with a reduced neighborhood (BENAVIDES; RITT, 2018).

The reduced neighborhood is the same one used in the NS local search for the PFSSP (see

Section 3.2.1), i.e., it contains pairs of adjacent jobs that have consecutive operations at

the beginning or at the end of blocks of jobs on the critical path. The method evaluates

swapping each pair of jobs in the reduced neighborhood on all machines, before machine

i, and after machine i, for all i ∈ [2,m− 1]. (iii) PcNP: similar to RNB. However, instead
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Figure 4.2: A grammar of iterated greedy algorithms for the NPFSSP. For simplicity, the
numerical parameters have been omitted.

1 <START> ::= IG(<ILS_PFSSP>,<TIEBREAK>,<LS_NP>,
2 <ACCEPT>)
3 <ILS_PFSSP> ::= ILS_PFSSP(<INI_SOL>,<PERTURB>,<LS>,
4 <ACCEPT>)
5 <INI_SOL> ::= NEH(<TIEBREAK>) | RC |
6 FRB5(<ORDER>,<TIEBREAK>)
7 <ORDER> ::= noninc | nondec | KK1 | KK2
8 <TIEBREAK> ::= FF | KK1 | KK2 | first | last | random
9 <PERTURB> ::= ri | gi(<TIEBREAK>) | rs | gs |

10 ras | gi_asls(<TIEBREAK>) |
11 ils_gi(<TIEBREAK>) |
12 gi_ils(<TIEBREAK>)
13 <LS> ::= ε | <LS_PROC> |
14 alternate(<LS_PROC>,<LS_PROC>)
15 <LS_PROC> ::= insertion(<TIEBREAK>) | NS |
16 Pc(<TIEBREAK>)
17 <ACCEPT> ::= met | lac | rrt | thr
18 <LS_NP> ::= ε | <LS_PROC_NP> |
19 alternate(<LS_PROC_NP>,<LS_PROC_NP>)
20 <LS_PROC_NP> ::= insertionNP(<TIEBREAK>) | RNB |
21 PcNP(<TIEBREAK>) | ASLS

of swapping each pair of jobs, they are removed and reinserted into the best positions,

considering insertions without job passing, with anticipation, and with delay. (iv) ASLS:

also similar to RNB, but with the full adjacent-swap neighborhood, i.e., all pairs of adja-

cent jobs are swapped on all machines, only on machines before i, and only on machines

after i, for all i ∈ [2,m− 1].

The acceptance criterion options are the same four as in the permutation phase:

Metropolis, late acceptance, record-to-record travel, and threshold acceptance. Each cri-

terion is linked to a numerical parameter to control the acceptance, namely αNP, thresNP,

rrtdNP and lNP. Finally, the time distribution between the two phases is controlled by the

parameter npf.

The set with the necessary categorical parameters to instantiate an algorithm from

the grammar contains 18 parameters. We show a summary and the decision linked to each

parameter in Table 4.6. The list with all the parameters configured with irace, including

numerical parameters, is shown in Table 4.7.
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Table 4.6: Categorical parameters required to instantiate algorithms from the grammar.

Parameter Decision

Permutation phase

ini_sol Constructive heuristic to build the initial solution.
order Criterion for job ordering during the construction of the initial solution.
tb_ini_sol Tiebreaker for the construction of the initial solution.
tb_perturb Tiebreaker for the perturbation functions that perform greedy insertions.
tb_ls_proc_1 Tiebreaker for the first local search procedure.
tb_ls_proc_2 Tiebreaker for the second local search procedure.
perturb Perturbation strategy.
ls Number of local search procedures to be applied.
ls_proc_1 First local search procedure.
ls_proc_2 Second local search procedure.
accept Acceptance criterion.

Non-permutation phase

np_tb_perturb Tiebreaker for the perturbation.
np_tb_ls_proc_1 Tiebreaker for the first local search procedure.
np_tb_ls_proc_2 Tiebreaker for the second local search procedure.
np_ls Number of local search procedures to be applied.
np_ls_proc_1 First local search procedure.
np_ls_proc_2 Second local search procedure.
np_accep Acceptance criterion.

4.2.2 Computational Experiments

In this section, we present the computational experiments on the NPFSSP with

makespan minimization. We ran irace ten times and selected the best algorithm of each

run. Each algorithm was evaluated against the benchmarks of Taillard (1993) and Vallada,

Ruiz and Framiñan (2015) (VRF-large).

Each irace run had a budget of 105 candidate evaluations, and each candidate had

a time limit of 30nm milliseconds. The training set contained 120 randomly generated

instances with the same dimensions as those in the Taillard benchmark, with processing

times in the interval [1, 99]. We used version 3.0 of irace, with all parameters set to default

values.

We present the best algorithm of each run in Table 4.3, named IG0 to IG9. Starting

with the permutation phase, we can see that all the constructive heuristics were selected,

with varying orders and tiebreakers. For the perturbation step, six different strategies were

selected, mostly with the FF tiebreaker. The algorithms with the perturbation that applies

the insertion local search to the partial solution followed by the greedy insertion of he

removed jobs (ils_gi) have a low perturbation intensity (d = 1 or d = 4), a pattern that
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can also be seen in Section 3.2.2 (see Table 3.8). The other strategies have perturbation

intensities d ∈ [4, 8], which are compatible with values in the literature. All algorithms

perform the insertLS local search. Three of them alternate between different tiebreakers,

and a single algorithm uses NS in addition to insertLS. The FF tiebreaker was selected

more frequently, while KK1 and KK2 were the other selected tiebreakers. Metropolis and

late acceptance were the most selected acceptance criteria.

Regarding the non-permutation phase, all algorithms allocate most of the time for

this latter phase, with npf ranging from 0.52 to 0.81. For the perturbation step, random

was selected more frequently, and the values for dNP were very close, ranging from two to

four. Regarding the local search, all algorithms use RNB as the single procedure. Finally,

Metropolis is the acceptance criterion of seven algorithms, while the other three use late

acceptance.
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Table 4.7: Tunable parameters of the algorithm construction.

Parameter Type Values Conditions

ini_sol Categorical NEH, FRB5, RC

order Categorical noninc, nondec, KK1, KK2 ini_sol ∈ {NEH,FRB5}

tb_ini_sol Categorical FF, KK1, KK2, first, last, random ini_sol ∈ {NEH,FRB5}

tb_perturb Categorical FF, KK1, KK2, first, last, random perturb ∈ {gi, gi_asls, ils_gi, gi_ils}

tb_ls_proc_1 Categorical FF, KK1, KK2, first, last, random ls_proc_1 ∈ {insertLS,Pc}

tb_ls_proc_2 Categorical FF, KK1, KK2, first, last, random ls_proc_2 ∈ {insertLS,Pc}

perturb Categorical ri, gi, rs, gs, ras, gi_asls, ils_gi, gi_ils

ls Categorical 0, 1, 2

ls_proc_1 Categorical insertLS, NS, Pc ls ∈ {1, 2}

ls_proc_2 Categorical insertLS, NS, Pc ls = 2

accept Categorical met, lac, rrt, thr

np_tb_perturb Categorical KK1, KK2, first, last, random

np_tb_ls_proc_1 Categorical KK1, KK2, first, last, random np_ls_proc_1 ∈ {insertionNP,PcNP}

np_tb_ls_proc_2 Categorical KK1, KK2, first, last, random np_ls_proc_2 ∈ {insertionNP,PcNP}

np_ls Categorical 0, 1, 2

np_ls_proc_1 Categorical insertionNP, RNB, ASLS, PcNP np_ls ∈ {1, 2}

np_ls_proc_2 Categorical insertionNP, RNB, ASLS, PcNP np_ls = 2

np_accep Categorical met, lac, rrt, thr

npf Real [0, 1.0]

r Ordinal 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, ini_sol = RC

300, 400, 500, 1000

d, dNP Integer [1, 20]

nls, n
NP
ls Ordinal 1, 2, 3, 4,∞ ini_sol = FRB5 or ls ∈ {1, 2} or perturb = ils_gi,

np_ls ∈ {1, 2}

α, αNP Real [0.01, 1.0] accept = met, np_accept = met

l, lNP Ordinal 1, 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, accept = lac, np_accept = lac

700, 800, 900, 1000

rrtd, rrtdNP Ordinal 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, accept = rrt, np_accept = rrt

300, 400, 500

thres, thresNP Ordinal 0, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02, accept = thr, np_accept = thr

0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.2, 0.3, 0.4, 0.5

fls, f
NP
ls Ordinal 2, 3, 4, 5, 10 ls = 2, np_ls = 2

The columns contain the name of the parameter, the type specified in irace, the domain, and the conditions for the parameter to be

active. If no condition is shown, the parameter is always active.



92

Table 4.8: Automatically designed algorithms for minimizing the makespan on the NPFSSP.
Permutation phase Non-permutation phase

Initial solution Perturbation Local search Acceptance Perturbation Local search Acceptance

Alg. CH Order Tie r rev Method Tie d Proc.1 Tie1 Proc.2 Tie2 fls nls Accep. α, rrtd, l npf Tie dNP Proc. nNP
ls Accep. αNP, lNP

IG0 NEH noninc FF - yes gs - 8 insertLS FF insertLS KK2 5 ∞ lac 50 0.57 KK2 3 RNB ∞ lac 300
IG1 NEH nondec last - no ils_gi FF 1 insertLS KK1 - - - 2 met 0.85 0.61 rand 4 RNB 4 lac 300
IG2 FRB5 noninc random - yes gi_asls FF 7 insertLS FF insertLS KK1 10 ∞ lac 700 0.68 rand 4 RNB ∞ met 0.30
IG3 RC - - 5 no ils_gi FF 2 insertLS KK1 - - - 3 lac 25 0.79 last 4 RNB ∞ met 0.49
IG4 RC - - 80 yes gi_asls KK2 5 insertLS FF - - - ∞ met 0.66 0.52 rand 2 RNB ∞ met 0.65
IG5 RC - - 70 no gs - 6 insertLS FF - - - 3 lac 25 0.56 rand 3 RNB ∞ met 0.48
IG6 RC - - 5 no gi FF 8 insertLS FF insertLS KK2 3 4 lac 10 0.67 rand 3 RNB 3 met 0.59
IG7 NEH noninc FF - no gs - 8 insertLS FF - - - 4 rrt 10 0.81 KK1 3 RNB 4 met 0.50
IG8 FRB5 KK1 KK2 - no gi_ils FF 6 insertLS FF - - - ∞ met 0.95 0.65 rand 4 RNB 3 lac 700
IG9 NEH KK2 random - yes ras - 4 insertLS FF NS - 10 4 met 0.27 0.80 rand 3 RNB ∞ met 0.31

The rows contain the components and parameter values for the algorithms obtained with irace, named IG0 to IG9 in the first column. The following 16 columns refer
to the permutation phase. They contain the constructive heuristic to build the initial solution and its ordering criteria and tiebreaker, the value for parameter r when RC
is selected, the value for parameter rev, the perturbation strategy and its tiebreaker and intensity d, the first and second local search procedures with their tiebreakers,
the values for fls and nls, the acceptance criterion, and the value for parameters α, rrtd or l, depending on the acceptance criterion. The following seven columns refer
to the non-permutation phase and contain, the percentage of time allocated for the non-permutation phase, the tiebreaker for the perturbation and the intensity dNP ,
the local search procedure (all methods perform a single procedure), the value for nNP

ls , the acceptance criterion, and the value for its respective parameter.
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Next, we evaluated the algorithms on the Taillard and VRF-large benchmarks.

Each algorithm ran for 60nm milliseconds with 10 replications per instance on a com-

puter with two Intel Xeon E5-2697 v2 processors (12 physical cores each) at 2.7 GHz,

running Ubuntu 18.04.3. The algorithms were implemented in C++ and compiled with

the GNU C++ compiler version 7.4 with an optimization level of 3.

We present the results for the Taillard benchmark in Table 4.9 as the ARD in

percent from the values in Table A.1. The algorithms found with irace are presented in

columns “IG0” to “IG9”. Column “Best” contains a combination of the best results per

instance group to provide a theoretical estimate of the best results that could be obtained

with the components from the grammar. We compare our results to the A2 algorithm for

the PFSSP from Section 3.2.2, as this was the best method for the Taillard benchmark

in that section. We also compare our results to the best IG algorithm for the NPFSSP

proposed by Benavides and Ritt (2018) (column “B&R”). This IG uses the same per-

turbation strategy as the one we used, with a random tiebreaker, the RNB local search,

and a Metropolis acceptance criterion. It is, therefore, similar to the second phase in

IG2, IG4, IG5, IG6, and IG9. The main difference, besides numerical parameter values,

is that this IG algorithm uses a constructive heuristic that builds a non-permutation initial

solution. In contrast, our algorithms build a permutation solution and improve it with

methods for the PFSSP before evaluating non-permutation solutions. Moreover, one of

the most important contributions in Benavides and Ritt (2018) is a different solution rep-

resentation. This representation allowed the implementation of acceleration procedures

similar to those of Taillard (1990) that reduced the complexity of job insertions and the

RNB local search by a factor of n when compared to our approach. Instantiating the

method in solver without its solution representation and acceleration procedures would

hinder its performance. Therefore, to establish a fair comparison, we used the publicly

available source code of Benavides and Ritt (2018) to reproduce their results.

Most of the values in Table 4.9 are negative because the results improve over

the upper bounds from Table A.1, which are bounds for the PFSSP. We can see that

all algorithms had considerably lower ARD compared to the state-of-the-art method for

the PFSSP. However, all algorithms performed worse than B&R, although with ARD’s

higher by only 0.08% to 0.17%.

The improvements obtained by algorithms IG0 to IG9 over the method for the

PFSSP range from 0.43% to 0.51%, and out of these algorithms, IG4 has the best ARD.

This algorithm allocates the time between the two phases almost evenly and has the lowest
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Table 4.9: ARD for the Taillard benchmark.
Inst. A2 B&R IG0 IG1 IG2 IG3 IG4 IG5 IG6 IG7 IG8 IG9 Best

20× 5 0.004 -0.396 -0.351 -0.376 -0.393 -0.388 -0.367 -0.369 -0.383 -0.358 -0.379 -0.381 -0.393
20× 10 0.000 -1.535 -1.157 -1.258 -1.507 -1.585 -1.536 -1.543 -1.601 -1.588 -1.226 -1.517 -1.601
20× 20 0.007 -2.335 -1.827 -1.843 -2.079 -2.202 -2.101 -2.061 -2.230 -2.157 -1.885 -2.032 -2.230
50× 5 0.000 -0.165 -0.162 -0.162 -0.164 -0.165 -0.165 -0.165 -0.165 -0.165 -0.162 -0.165 -0.165
50× 10 0.368 -0.040 0.103 0.121 0.035 0.123 0.075 0.073 0.108 0.098 0.174 0.036 0.035
50× 20 0.317 -0.841 -0.341 -0.526 -0.436 -0.314 -0.530 -0.408 -0.428 -0.437 -0.408 -0.415 -0.530
100× 5 0.000 -0.123 -0.111 -0.117 -0.133 -0.131 -0.129 -0.134 -0.130 -0.131 -0.119 -0.132 -0.134
100× 10 0.033 -0.097 -0.035 -0.051 -0.066 -0.023 -0.069 -0.026 -0.034 -0.002 -0.073 -0.039 -0.073
100× 20 0.524 0.115 0.291 0.191 0.409 0.505 0.232 0.328 0.346 0.368 0.304 0.352 0.191
200× 10 0.036 -0.044 -0.042 -0.049 -0.041 -0.035 -0.040 -0.052 -0.044 -0.049 -0.053 -0.052 -0.053
200× 20 0.713 0.373 0.488 0.521 0.667 0.691 0.524 0.567 0.641 0.601 0.591 0.660 0.488
500× 20 0.275 0.210 0.248 0.237 0.284 0.274 0.259 0.286 0.259 0.303 0.267 0.276 0.237

Avg. 0.190 -0.407 -0.241 -0.276 -0.285 -0.271 -0.320 -0.292 -0.305 -0.293 -0.247 -0.284 -0.352

The results presented in this table are the ARD over the upper bounds in Table A.1. A2 is
the state-of-the-art method for the PFSSP presented in Section 3.2.2, B&R is the state-of-the-
art method for the NPFSSP proposed by Benavides and Ritt (2018), and IG0 to IG9 are the
algorithms found with irace. The best results obtained by IG0 to IG9 for each instance group
are highlighted in bold, and column “Best” contains a combination of the best results.

perturbation intensity in the non-permutation phase. IG5 and IG6 were the second and

third best-performing methods. Both have a similar non-permutation phase compared to

IG4, with the same tiebreaker and acceptance criterion, and the value for dNP higher by

only one. Regarding the permutation phase, however, the similarities are limited to the

usage of RC constructive heuristic, and the insertLS local search with FF tiebreaker. IG7

yielded an ARD that is close to IG5 and IG6, although with a different tiebreaker in the

non-permutation phase and a significantly higher value for npf. Regarding the permutation

phase, this algorithm is considerably different from the other mentioned methods.

In general, IG4, IG5, IG6, and IG7 have similar performance across all instance

dimensions, andB&R has the best results for most instance groups. We applied Wilcoxon

signed-rank tests with Bonferroni correction between B&R and each one of the obtained

algorithms, and the tests indicated that the difference is statistically significant in all cases

(99 % confidence, p < 1.03× 10−8 in all cases).

The following experiment considered the VRF-large benchmark. The results are

presented in Table 4.10 as the ARD from the upper bounds of Vallada, Ruiz and Framiñan

(2015) (see Appendix A). All algorithms had considerably higher ARD compared to

B&R. The difference in the performance due to the lower complexity of B&R is more

noticeable in this benchmark since it contains larger instances than the previous one. In

comparison to the method for the PFSSP, all algorithms had lower ARD, except for IG9,

which did not generalize as well as the other methods to this benchmark. In this exper-

iment, IG5 had the lowest ARD, followed by IG0 and IG4, with similar results. IG4

and IG5 had also performed well in the previous experiment. They were two of the best-
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Table 4.10: ARD for the VRF benchmark.
Inst. A2 B&R IG0 IG1 IG2 IG3 IG4 IG5 IG6 IG7 IG8 IG9 Best

100× 20 -0.102 -0.861 -0.427 -0.566 -0.322 -0.169 -0.490 -0.278 -0.184 -0.201 -0.364 -0.156 -0.566
100× 40 -0.235 -0.860 -0.286 -0.707 -0.516 -0.404 -0.918 -0.554 -0.517 -0.559 -0.301 -0.459 -0.918
100× 60 -0.260 -1.120 -0.094 -0.550 -0.457 -0.492 -0.912 -0.524 -0.530 -0.519 -0.164 -0.508 -0.912
200× 20 0.009 -0.346 -0.221 -0.220 -0.084 0.013 -0.185 -0.051 -0.005 0.100 -0.135 0.086 -0.221
200× 40 -0.430 -0.953 -0.592 -0.668 -0.493 -0.516 -0.764 -0.628 -0.353 -0.436 -0.323 -0.175 -0.764
200× 60 -0.505 -0.939 -0.386 -0.595 -0.440 -0.599 -0.883 -0.751 -0.584 -0.613 -0.209 -0.369 -0.883
300× 20 0.041 -0.292 -0.241 -0.168 -0.089 -0.034 -0.135 -0.106 -0.078 -0.024 -0.067 -0.038 -0.241
300× 40 -0.350 -0.869 -0.673 -0.609 -0.551 -0.519 -0.609 -0.620 -0.400 -0.227 -0.486 -0.117 -0.673
300× 60 -0.423 -0.953 -0.589 -0.506 -0.466 -0.575 -0.722 -0.824 -0.483 -0.547 -0.311 -0.277 -0.824
400× 20 0.048 -0.148 -0.108 -0.123 -0.034 0.015 -0.052 -0.018 -0.042 0.027 -0.063 -0.004 -0.123
400× 40 -0.264 -1.006 -0.639 -0.548 -0.533 -0.555 -0.500 -0.566 -0.472 -0.100 -0.599 -0.115 -0.639
400× 60 -0.368 -1.175 -0.725 -0.531 -0.575 -0.611 -0.661 -0.886 -0.551 -0.413 -0.503 -0.276 -0.886
500× 20 0.028 -0.071 -0.064 -0.054 0.009 0.002 -0.007 0.024 0.002 0.031 -0.016 0.063 -0.064
500× 40 -0.231 -0.871 -0.701 -0.557 -0.585 -0.577 -0.460 -0.537 -0.569 -0.032 -0.718 -0.150 -0.718
500× 60 -0.225 -1.076 -0.599 -0.367 -0.512 -0.468 -0.469 -0.729 -0.462 -0.272 -0.507 -0.138 -0.729
600× 20 -0.003 -0.120 -0.100 -0.087 -0.024 -0.046 -0.031 -0.012 -0.024 0.008 -0.016 0.016 -0.100
600× 40 -0.206 -0.746 -0.628 -0.515 -0.501 -0.492 -0.373 -0.446 -0.516 -0.019 -0.697 -0.098 -0.697
600× 60 -0.130 -1.094 -0.647 -0.360 -0.565 -0.521 -0.441 -0.704 -0.563 -0.264 -0.627 -0.172 -0.704
700× 20 -0.007 -0.018 -0.045 -0.043 -0.003 -0.015 -0.002 -0.002 -0.016 0.036 -0.015 0.030 -0.045
700× 40 -0.268 -0.830 -0.747 -0.592 -0.540 -0.555 -0.456 -0.507 -0.619 -0.079 -0.755 -0.263 -0.755
700× 60 -0.106 -1.144 -0.627 -0.362 -0.568 -0.536 -0.440 -0.690 -0.656 -0.242 -0.740 -0.221 -0.740
800× 20 -0.008 -0.046 -0.030 -0.037 -0.004 -0.019 -0.018 -0.003 -0.023 0.010 -0.022 -0.006 -0.037
800× 40 -0.283 -0.775 -0.675 -0.572 -0.509 -0.504 -0.439 -0.442 -0.575 -0.079 -0.739 -0.227 -0.675
800× 60 0.053 -0.941 -0.487 -0.202 -0.435 -0.419 -0.349 -0.528 -0.558 -0.074 -0.650 -0.105 -0.650

Avg. -0.176 -0.719 -0.430 -0.397 -0.367 -0.358 -0.430 -0.433 -0.366 -0.187 -0.376 -0.153 -0.565

The results presented in this table are the ARD over the upper bounds in Table A.2. A2 is the state-
of-the-art method for the PFSSP presented in Section 3.2.2, B&R is the state-of-the-art method
for the NPFSSP proposed by Benavides and Ritt (2018), and IG0 to IG9 are the algorithms found
with irace. The best results obtained by IG0 to IG9 for each instance group are highlighted in
bold, and column “Best” contains a combination of the best results.

performing methods in the previous experiment, as opposed to IG0, with the highest ARD

among the algorithms obtained with irace. We can see that IG4 has lower ARD for in-

stances with up to 200 jobs, and instances with 20 machines, while IG5 performed better

on the rest. When comparing IG0 to IG5, we can see that the former yields better results

for instances with m = 20 when the number of machines n = 100 or n = 200, and for

instances with m = 20 and m = 40 when n > 200. On the other hand, IG5 always had

an advantage when m = 60, especially on the instances with a smaller number of jobs.

Finally, IG1, IG2, IG3, IG6 and IG8 have close ARD values, while IG7 and IG9 yielded

the worst results. Again we applied Wilcoxon signed-rank tests with Bonferroni correc-

tion between B&R and each one of the obtained algorithms, and the tests indicated that

the difference is statistically significant in all cases (99 % confidence, p < 2.2× 10−16 in

all cases).
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5 CONCLUSIONS

Flow shop scheduling problems have many applications and consequently have

been studied for decades, with hundreds of new articles being published every year. Due

to the considerable number of solving methods that have been proposed, establishing a

comprehensive comparison is an onerous task. Moreover, the methods in the literature

are often complex and hard to reproduce, which is a challenge in comparative studies.

In this thesis, we built a solver for flow shop problems that implements many algo-

rithmic components and allows one to combine them to generate new algorithms quickly.

By integrating multiple algorithmic components in a single solver, we (i) facilitate the

reproduction of the literature, (ii) simplify the comparison to many published methods,

including the state of the art, and (iii) allow researchers to focus on the development of

new algorithmic components.

Furthermore, we used an automated approach to explore combinations of compo-

nents and generate high-performing algorithms. This approach aims to reduce the high

level of human effort required during the design process and increase its robustness, since

the it often consists of trial-and-error approaches and can be biased by previous experi-

ence. Previous experience with the problem is valuable in guiding the design process to-

wards promising directions. However, the bias can also be detrimental, e.g., certain design

options can be prematurely discarded without systematic experimentation that evaluates

its interactions with other components.

We focus on ILS and IG algorithms, which are known to be efficient for flow shop

problems, and automate the configuration of its components and their related parameters.

We present a total of 40 automatically designed algorithms (and 20 more in the appen-

dices), and evaluate them on two benchmarks. The computational experiments show that

the automatically designed algorithms are competitive with the state of the art and can

improve it in some cases.

Our experiments with the NPFSSP showed that despite involving methods with

higher computational complexity, exploring non-permutation solutions can yield better

schedules within the same time limit, leading to significant reductions of the makespan

and the total completion time. We hope that our evidence in favor of using non-permutation

schedules encourages further research in the area.

As for future research, an interesting topic is the study of total tardiness mini-

mization in flow shops. This objective function is of high interest since they model many
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current real-world scenarios in which completing a job after a due date is undesirable and

can result in a certain cost. The recent literature review of Vallada, Ruiz and Minella

(2008) supports the relevance of this objective function. Moreover, Liao, Liao and Tseng

(2006) showed that the improvements when adopting non-permutation schedules are more

substantial when minimizing due-date-based objectives. More precisely, the average im-

provement was 2.28 % for total tardiness minimization, which is considerable and can

motivate the adoption of non-permutation schedules and further studies in this direction.

Despite that, the only published paper addressing the Fm||
∑
Tj we were able to find is

due to Liao and Huang (2010). Thus, we believe that there is room for further improve-

ments, which may be a promising line of research.

Another topic to be considered for future research are flow shops with missing

operations, also referred to in the literature as flowline-based manufacturing systems. In

this variant, some jobs can have operations only on some of the machines. The study of

this scenario is highly relevant since it models many real-world environments (RAJEN-

DRAN; ZIEGLER, 2001). Missing operations can introduce forced idleness in permuta-

tion schedules, as a job with a missing operation cannot pass another job even if a machine

is available, resulting in poor solution quality. In this case, the use of non-permutation

schedules can alleviate such an issue (PUGAZHENDHI et al., 2003). Additionally, Potts,

Shmoys and Williamson (1991) showed that optimal permutation schedules are worse

than non-permutation schedules by a factor of
√
m/2 for a certain set of instances with

missing operations, further motivating a study on the topic.
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WAŚNIEWSKI, J. (Ed.). Parallel Processing and Applied Mathematics. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002. p. 236–244.

XU, L.; HUTTER, F.; HOOS, H. H.; LEYTON-BROWN, K. SATzilla: Portfolio-based
algorithm selection for SAT. Journal of Artificial Intelligence Research, AI Access
Foundation, El Segundo, CA, USA, v. 32, n. 1, p. 565–606, jun. 2008.

YING, K.-C. Solving non-permutation flowshop scheduling problems by an effective
iterated greedy heuristic. The International Journal of Advanced Manufacturing
Technology, v. 38, n. 3, p. 348, 2007.

YING, K.-C.; LIN, S.-W. Multi-heuristic desirability ant colony system heuristic
for non-permutation flowshop scheduling problems. The International Journal of
Advanced Manufacturing Technology, v. 33, n. 7, p. 793–802, 2007.

ZHANG, Y.; LI, X.; WANG, Q. Hybrid genetic algorithm for permutation flowshop
scheduling problems with total flowtime minimization. European Journal of
Operational Research, v. 196, n. 3, p. 869–876, 2009.



109

APPENDIX A — BENCHMARKS

Table A.1: Upper bounds for the Taillard benchmark.
Inst. n m Cmax Csum Inst. n m Cmax Csum Inst. n m Cmax Csum

ta001 20 5 1278 14033 ta041 50 10 2991 87114 ta081 100 20 6202 365463
ta002 20 5 1359 15151 ta042 50 10 2867 82820 ta082 100 20 6183 372449
ta003 20 5 1081 13301 ta043 50 10 2839 79931 ta083 100 20 6271 370027
ta004 20 5 1293 15447 ta044 50 10 3063 86446 ta084 100 20 6269 372393
ta005 20 5 1235 13529 ta045 50 10 2976 86377 ta085 100 20 6314 368915
ta006 20 5 1195 13123 ta046 50 10 3006 86587 ta086 100 20 6364 370908
ta007 20 5 1234 13548 ta047 50 10 3093 88750 ta087 100 20 6268 373408
ta008 20 5 1206 13948 ta048 50 10 3037 86727 ta088 100 20 6401 384525
ta009 20 5 1230 14295 ta049 50 10 2897 85441 ta089 100 20 6275 374423
ta010 20 5 1108 12943 ta050 50 10 3065 87998 ta090 100 20 6434 379296
ta011 20 10 1582 20911 ta051 50 20 3850 125831 ta091 200 10 10862 1046314
ta012 20 10 1659 22440 ta052 50 20 3704 119247 ta092 200 10 10480 1034195
ta013 20 10 1496 19833 ta053 50 20 3640 116459 ta093 200 10 10922 1046902
ta014 20 10 1377 18710 ta054 50 20 3723 120261 ta094 200 10 10889 1030481
ta015 20 10 1419 18641 ta055 50 20 3611 118184 ta095 200 10 10524 1034027
ta016 20 10 1397 19245 ta056 50 20 3681 120586 ta096 200 10 10329 1006195
ta017 20 10 1484 18363 ta057 50 20 3704 122880 ta097 200 10 10854 1053051
ta018 20 10 1538 20241 ta058 50 20 3691 122489 ta098 200 10 10730 1044875
ta019 20 10 1593 20330 ta059 50 20 3743 121872 ta099 200 10 10438 1026137
ta020 20 10 1591 21320 ta060 50 20 3756 123954 ta100 200 10 10675 1030299
ta021 20 20 2297 33623 ta061 100 5 5493 253266 ta101 200 20 11195 1227733
ta022 20 20 2099 31587 ta062 100 5 5268 242281 ta102 200 20 11203 1245271
ta023 20 20 2326 33920 ta063 100 5 5175 237832 ta103 200 20 11281 1269673
ta024 20 20 2223 31661 ta064 100 5 5014 227738 ta104 200 20 11275 1238349
ta025 20 20 2291 34557 ta065 100 5 5250 240301 ta105 200 20 11259 1227214
ta026 20 20 2226 32564 ta066 100 5 5135 232342 ta106 200 20 11176 1227604
ta027 20 20 2273 32922 ta067 100 5 5246 240366 ta107 200 20 11337 1243707
ta028 20 20 2200 32412 ta068 100 5 5094 230945 ta108 200 20 11301 1246123
ta029 20 20 2237 33600 ta069 100 5 5448 247921 ta109 200 20 11145 1234936
ta030 20 20 2178 32262 ta070 100 5 5322 242933 ta110 200 20 11284 1250596
ta031 50 5 2724 64802 ta071 100 10 5770 298385 ta111 500 20 26040 6698656
ta032 50 5 2834 68051 ta072 100 10 5349 274384 ta112 500 20 26520 6770735
ta033 50 5 2621 63162 ta073 100 10 5676 288114 ta113 500 20 26371 6739645
ta034 50 5 2751 68226 ta074 100 10 5781 301044 ta114 500 20 26456 6785991
ta035 50 5 2863 69351 ta075 100 10 5467 284681 ta115 500 20 26334 6729468
ta036 50 5 2829 66841 ta076 100 10 5303 269686 ta116 500 20 26469 6724085
ta037 50 5 2725 66253 ta077 100 10 5595 279463 ta117 500 20 26389 6691468
ta038 50 5 2683 64332 ta078 100 10 5617 290908 ta118 500 20 26560 6783916
ta039 50 5 2552 62981 ta079 100 10 5871 301970 ta119 500 20 26005 6711305
ta040 50 5 2782 68770 ta080 100 10 5845 291283 ta120 500 20 26457 6755722
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Table A.2: Upper bounds for the VRF-large benchmark.
Inst. m Cmax Csum Inst. m Cmax Csum Inst. m Cmax Csum Inst. m Cmax Csum

n = 100 n = 300 n = 500 n = 700

1 20 6198 370505 1 20 16149 2523289 1 20 26411 6627488 1 20 36394 12462020
2 20 6306 376870 2 20 16512 2587590 2 20 26681 6651569 2 20 36337 12493179
3 20 6238 371265 3 20 16173 2527732 3 20 26409 6591256 3 20 36568 12546348
4 20 6245 371611 4 20 16181 2535577 4 20 26124 6569889 4 20 36452 12505160
5 20 6296 372351 5 20 16342 2553971 5 20 26781 6723570 5 20 36584 12615626
6 20 6321 371304 6 20 16137 2543509 6 20 26443 6610095 6 20 36671 12613222
7 20 6434 380903 7 20 16266 2534488 7 20 26433 6623457 7 20 36624 12633435
8 20 6104 360718 8 20 16416 2566575 8 20 26318 6605760 8 20 36522 12582915
9 20 6354 380394 9 20 16376 2572219 9 20 26442 6660460 9 20 36329 12472593
10 20 6145 365528 10 20 16899 2614287 10 20 26072 6523495 10 20 36417 12435677
1 40 7881 521213 1 40 18298 3132230 1 40 28548 7704603 1 40 38964 14369819
2 40 8007 528423 2 40 18454 3156461 2 40 28793 7758178 2 40 38775 14331534
3 40 7935 523271 3 40 18457 3166587 3 40 28607 7763377 3 40 38621 14225505
4 40 7932 522267 4 40 18351 3131237 4 40 28828 7770027 4 40 38785 14322418
5 40 8011 526676 5 40 18484 3163630 5 40 28683 7764420 5 40 38671 14247857
6 40 8023 528140 6 40 18449 3154768 6 40 28524 7673231 6 40 38710 14234796
7 40 8006 525428 7 40 18419 3150785 7 40 28760 7790028 7 40 38585 14197707
8 40 7979 525889 8 40 18392 3129925 8 40 28698 7787592 8 40 39059 14370105
9 40 7931 520608 9 40 18394 3160251 9 40 28870 7818312 9 40 38814 14287743
10 40 7952 525072 10 40 18401 3139338 10 40 28758 7788876 10 40 38850 14318043
1 60 9395 648645 1 60 20522 3707175 1 60 30861 8714335 1 60 41436 15798728
2 60 9596 671835 2 60 20399 3643848 2 60 30828 8722191 2 60 41375 15748792
3 60 9349 649076 3 60 20434 3691014 3 60 31125 8788261 3 60 41317 15761936
4 60 9426 663003 4 60 20395 3664961 4 60 30928 8751520 4 60 41401 15818918
5 60 9465 657055 5 60 20341 3672274 5 60 30935 8746090 5 60 41262 15792995
6 60 9667 676821 6 60 20388 3658510 6 60 31027 8762638 6 60 41340 15824919
7 60 9391 648846 7 60 20457 3692011 7 60 30928 8802172 7 60 40876 15699749
8 60 9534 671043 8 60 20410 3667736 8 60 30988 8745641 8 60 41474 15885806
9 60 9527 655747 9 60 20549 3702836 9 60 30978 8754250 9 60 41291 15824197
10 60 9598 668132 10 60 20472 3683425 10 60 31050 8787967 10 60 41377 15890062

n = 200 n = 400 n = 600 n = 800

1 20 11305 1218846 1 20 21120 4314350 1 20 31433 9387438 1 20 41558 16210004
2 20 11265 1218865 2 20 21457 4377793 2 20 31418 9331959 2 20 41407 16175223
3 20 11327 1238395 3 20 21441 4385256 3 20 31429 9332251 3 20 41425 16232883
4 20 11208 1220315 4 20 21247 4342427 4 20 31547 9347021 4 20 41426 16189964
5 20 11208 1222215 5 20 21553 4359068 5 20 31448 9309212 5 20 41710 16279305
6 20 11367 1245221 6 20 21214 4333730 6 20 31717 9442067 6 20 42010 16393581
7 20 11380 1242387 7 20 21625 4407540 7 20 31527 9309328 7 20 41425 16046562
8 20 11141 1208818 8 20 21277 4310045 8 20 31564 9341869 8 20 41492 16141953
9 20 11123 1202829 9 20 21346 4312657 9 20 31577 9343846 9 20 41796 16162928
10 20 11310 1231792 10 20 21538 4382884 10 20 31130 9280685 10 20 41574 16167724
1 40 13132 1587197 1 40 23578 5200164 1 40 33839 10823949 1 40 43671 18233265
2 40 13102 1580719 2 40 23456 5189295 2 40 33467 10678033 2 40 43746 18295624
3 40 13264 1594558 3 40 23575 5222161 3 40 33866 10799825 3 40 43749 18317278
4 40 13232 1592167 4 40 23409 5205544 4 40 33693 10741208 4 40 43892 18337563
5 40 13043 1574224 5 40 23339 5153042 5 40 33553 10699427 5 40 43905 18400263
6 40 13124 1588395 6 40 23444 5194071 6 40 33809 10832704 6 40 43811 18311339
7 40 13299 1577987 7 40 23556 5229211 7 40 33686 10788797 7 40 43766 18184174
8 40 13238 1570803 8 40 23411 5195887 8 40 33482 10680459 8 40 43839 18292850
9 40 13166 1576462 9 40 23637 5224918 9 40 33697 10809443 9 40 43879 18276197
10 40 13228 1576366 10 40 23720 5236043 10 40 33642 10791755 10 40 43861 18326210
1 60 14990 1905428 1 60 25607 5970180 1 60 36198 12041857 1 60 46470 20155848
2 60 14954 1909316 2 60 25656 5953027 2 60 36184 12045538 2 60 46493 20165942
3 60 15200 1918779 3 60 25821 5977399 3 60 36201 12025222 3 60 46389 20079863
4 60 15044 1890335 4 60 25837 6013511 4 60 36136 12026209 4 60 46457 20079888
5 60 15130 1911805 5 60 25877 5941405 5 60 36153 12076881 5 60 46401 20126125
6 60 15035 1898598 6 60 25536 5905353 6 60 36116 11996401 6 60 46421 20121428
7 60 15040 1901833 7 60 25600 5948560 7 60 36179 12038658 7 60 46319 20097752
8 60 14968 1905974 8 60 25800 5955653 8 60 36185 12067964 8 60 46474 20130414
9 60 15022 1894955 9 60 25882 5999431 9 60 36195 12109094 9 60 46538 20140038
10 60 15000 1891278 10 60 25767 5964812 10 60 36163 12052077 10 60 46244 20024895

The upper bounds for Cmax are due to Vallada, Ruiz and Framiñan (2015), while the upper bounds for Csum are the best
solutions obtained by A7 or MRSILS(BSCH) in the experiments described in Section 3.1.2.
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APPENDIX B — ALGORITHMS

In this chapter, we present algorithms in pseudocode for each one of the imple-

mented local search procedures for minimizing total completion time in permutation flow

shops. We consider that the best solution visited so far π∗ is implicitly mantained, and

that n and m are the number of jobs and machines, respectively.

Algorithm 8 insertLS
Input: Solution π, Tiebreaker T
Output: Best solution found π∗

function INSERTLS(π, T )
repeat

π′ = π
for j = 1 to n do

k = jth job in π′

π′ = REMOVE(k,π′)
π′ = INSERTBESTPOSITION(k,π′,T )
if f(π′) ≤ f(π) then

π = π′

end if
end for

until no improvement is found
return π∗

end function

Algorithm 9 lsTasgetiren
Input: Solution π
Output: Best solution found π∗

function LSTASGETIREN(π)
do

π′ = π
π′′ = INSERTTASGETIREN(π′)
π′′ = SWAPTASGETIREN(π′′)
if f(π′′) ≤ f(π) then

π = π′′

end if
while π′′ 6= π′

return π∗
end function
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Algorithm 10 swapTasgetiren
Input: Solution π
Output: Best solution found π∗

function SWAPTASGETIREN(π)
i = 1
while i < n do

j = i+ 1
while j ≤ n do

π′ = π
π′ = SWAP(i,j,π′)
if f(π′) ≤ f(π) then

π = π′

i = 1
j = i+ 1

else
j = j + 1

end if
end while
i = i+ 1

end while
return π∗

end function

Algorithm 11 insertTasgetiren
Input: Solution π
Output: Best solution found π∗

function INSERTTASGETIREN(π)
i = 1
while i < n do

j = i+ 1
while j ≤ n do

π′ = π
k = ith job in π′

π′ = REMOVE(k,π′)
π′ = INSERTATPOSITION(k,j,π′)
if f(π′) ≤ f(π) then

π = π′

i = 1
j = i+ 1

else
j = j + 1

end if
end while
i = i+ 1

end while
return π∗

end function
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Algorithm 12 insertFPR
Input: Solution π
Output: Best solution found π∗

function INSERTFPR(π)
π′ = π
i = 1
t = 0
while t < n do

i = (i+ 1)%n
j = ith job in π′

π′′ = REMOVE(j,π′)
π′′ = INSERTBESTPOSITION(j,π′′)
if f(π′′) ≤ f(π′) then

π′ = π′′

t = 0
else

t = t+ 1
end if

end while
return π∗

end function

Algorithm 13 fpe
Input: Solution π, Integer x
Output: Best solution found π∗

function FPE(π, x)
π′ = π
do

π′′ = π′

for i = 1 to n do
k = ith job in π′′

for j = 1 to x do
π′′′ = π′

p = position of job k in π′′′

if p+ j > n then
break

end if
π′′′ = SWAP(p,p+ j,π′′′)
if f(π′′′) ≤ f(π′) then

π′ = π′′′

end if
end for

end for
while f(π′) < f(π′′)
return π∗

end function
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Algorithm 14 bpe
Input: Solution π, Integer x
Output: Best solution found π∗

function BPE(π, x)
π′ = π
do

π′′ = π′

for i = n to 1 do
k = ith job in π′′

for j = 1 to x do
π′′′ = π′

p = position of job k in π′′′

if p− j < 1 then
break

end if
π′′′ = SWAP(p,p− j,π′′′)
if f(π′′′) ≤ f(π′) then

π′ = π′′′

end if
end for

end for
while f(π′) < f(π′′)
return π∗

end function

Algorithm 15 iRZ
Input: Solution π
Output: Best solution found π∗

function IRZ(π)
π′ = π′′ = π
do

π′ = π′′

for i = 1 to n do
j = ith job in π′

π′′′ = REMOVE(j,π′′)
π′′′ = INSERTBESTPOSITION(j,π′′′)
if f(π′′′) ≤ f(π′′) then

π′′ = π′′′

end if
end for

while f(π′′) < f(π′)
return π∗

end function
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Algorithm 16 riRZ
Input: Solution π
Output: Best solution found π∗

function RIRZ(π)
π′ = π′′ = π
do

π′ = π′′

for i = n to 1 do
j = ith job in π′

π′′′ = REMOVE(j,π′′)
π′′′ = INSERTBESTPOSITION(j,π′′′)
if f(π′′′) ≤ f(π′′) then

π′′ = π′′′

end if
end for

while f(π′′) < f(π′)
return π∗

end function

Algorithm 17 raiRZ
Input: Solution π
Output: Best solution found π∗

function RAIRZ(π)
π′ = π′′ = π
do

π′ = π′′

πR = random permutation of jobs
for i = 1 to n do

j = ith job in πR

π′′′ = REMOVE(j,π′′)
π′′′ = INSERTBESTPOSITION(j,π′′′)
if f(π′′′) ≤ f(π′′) then

π′′ = π′′′

end if
end for

while f(π′′) < f(π′)
return π∗

end function
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Algorithm 18 swapInc
Input: Solution π, Integers qmin, qmax and smax
Output: Best solution found π∗

function SWAPINC(π)
q = qmin
do

π′ = π
i = 1
do

j = i+ q
π′′ = π
π′′ = SWAP(i, j, π′′)
if f(π′′) < f(π) then

π = π′′

end if
i = i+ 1

while i+ q ≤ n
if f(π) < f(π′) then

q = qmin
else

q = q + 1
end if

while q < qmax
return π∗

end function

Algorithm 19 swapFirst
Input: Solution π, Integer nls
Output: Best solution found π∗

function SWAPFIRST(π, x)
π′ = π
p = 1
r = nls × (n− 1)
while r > 0 do

π′′ = SWAP(p,p+ 1,π′)
if f(π′′) ≤ f(π′) then

π′ = π′′

end if
if p+ 1 < n then

p = p+ 1
else

p = 1
end if
r = r − 1

end while
return π∗

end function
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Algorithm 20 swapBest
Input: Solution π, Integer nls
Output: Best solution found π∗

function SWAPBEST(π, x)
π′ = π
r = nls × (n− 1)
while r > 0 do

Evaluate all possible adjacent swaps in π′ and choose the best pair of jobs i, i+1
π′′ = SWAP(i,i+ 1,π′)
if f(π′′) ≤ f(π′) then

π′ = π′′

else
break

end if
r = r − 1

end while
return π∗

end function

Algorithm 21 swapR
Input: Solution π
Output: Best solution found π∗

function SWAPR(π)
π′ = π′′ = π
for i = 1 to n do

for j = 1 to n do
if i 6= j then

π′′ = SWAP(i,j,π′)
k = jth job in π′

π′′ = REMOVE(k,π′′)
π′′ = INSERTBESTPOSITION(k,π′′)
if f(π′′) ≤ f(π′) then

π′ = π′′

end if
end if

end for
end for
return π∗

end function
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APPENDIX C — ADDITIONAL EXPERIMENTS WITH TOTAL COMPLETION

TIME MINIMIZATION

Our work on the NPFSSP involved generating a high-quality initial permutation

solution. Therefore, we updated our grammar for the PFSSP presented in Figure 3.1 as

part of our work on the NPFSSP. We repeated our computational experiments for the PF-

SSP with the updated grammar and presented the updated results in this appendix. In

comparison to the grammar in Figure 3.1, there are six new perturbation strategies, a new

constructive heuristic (RC), three new acceptance criteria, and the possibility of defin-

ing the frequency to apply the second local search procedure through parameter fls. We

removed the option to use a pool of solutions, as it was never selected in our previous ex-

periments. Instead, we focus on simpler ILS methods without the pool. The new grammar

is shown in Figure C.1, and the set of parameters to be configured with irace is presented

in Table C.1.

We ran irace ten times and selected the best candidate of each run. Each irace run

had a budget of 50000 candidate runs with a time limit of 10nmmilliseconds. The training

set contained 120 randomly generated instances with the same dimensions as those in the

Taillard benchmark, with processing times in the interval [1, 99]. We used version 3.0 of

irace, with all parameters set to default values. The algorithms are presented in Table C.2.

Many similarities with the algorithms from Section 3.1.2 can be seen, such as the

initial solution being built with BSCH, the variation in the tiebreaker for the perturbation,

and the alternation between insertion and swap neighborhoods for the methods that use

two local search procedures. On the other hand, record-to-record travel is the acceptance

criterion of all algorithms (as opposed to Metropolis in Section 3.1.2), and seven methods

use newly introduced perturbation strategies.

We evaluated the algorithms on Taillard’s and VRF-large benchmarks. Each algo-

rithm ran for 30nm milliseconds with 10 replications per instance on a computer with

two Intel Xeon E5-2697 v2 processors (12 physical cores each) at 2.7 GHz, running

Ubuntu 18.04.3. The algorithms were implemented in C++ and compiled with the GNU

C++ compiler version 7.4 with an optimization level of 3.

We present the results for the Taillard benchmark in Table C.3 as the ARD in

percent from the values in Appendix A. The results are mostly similar to those of Sec-

tion 3.1.2, although the best algorithm in that section had lower ARD than the best one in

Table 4.4.
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Figure C.1: A grammar of iterated local search algorithms for the PFSSP. For simplicity,
the numerical parameters have been omitted.

1 <START> ::= ILS(<INI_SOL>,<PERTURB>,<LS>,<ACCEPT>)
2 <INI_SOL> ::= NEHCsum(<TIEBREAK>) | LR |
3 FRB5(<ORDER>,<TIEBREAK>) | RC | BSCH
4 <ORDER> ::= noninc | nondec | KK1 | KK2
5 <TIEBREAK> ::= KK1 | KK2 | first | last | random
6 <PERTURB> ::= ri | gi(<TIEBREAK>) | rs | gs |
7 ras | gi_asls(<TIEBREAK>) |
8 ils_gi(<TIEBREAK>) |
9 gi_ils(<TIEBREAK>)

10 <LS> ::= ε | <LS_PROC> |
11 alternate(<LS_PROC>,<LS_PROC>)
12 <LS_PROC> ::= insertion(<TIEBREAK>) | swapTasgetiren |
13 swapInc | insertTasgetiren |
14 lsTasgetiren | fpe | bpe | iRZ |
15 riRZ | raiRZ | insertFPR | swapFirst |
16 swapBest | swapR
17 <ACCEPT> ::= met | lac | rrt | thr

The results for the VRF-large benchmark are presented in Table C.4 as the ARD

from the upper bounds of Vallada, Ruiz and Framiñan (2015) (see Appendix A). We

cannot compare these results to the previous ones because we only evaluated the best

algorithm of Section 3.1.2 on this benchmark.



120

Table C.1: Tunable parameters of the algorithm construction.

Parameter Type Values Conditions

ini_sol Categorical LR, NEHCsum, FRB5, BSCH, RC

order Categorical noninc, nondec, KK1, KK2 ini_sol ∈ {NEHCsum,FRB5}

tb_ini_sol Categorical KK1, KK2, first, last, random ini_sol ∈ {NEHCsum,FRB5}

tb_perturb Categorical KK1, KK2, first, last, random perturb ∈ {gi, gi_asls, ils_gi, gi_ils}

tb_ls_proc_1 Categorical KK1, KK2, first, last, random ls_proc_1 ∈ {insertLS}

tb_ls_proc_2 Categorical KK1, KK2, first, last, random ls_proc_2 ∈ {insertLS}

perturb Categorical ri, gi, rs, gs, ras, gi_asls, ils_gi, gi_ils

ls Categorical 0, 1, 2

ls_proc_1 Categorical insertLS, fpe, bpe, swapTasgetiren, insertTasgetiren, ls ∈ {1, 2}

lsTasgetiren, swapInc, iRZ, riRZ, raiRZ, viRZ,

swapFirst, swapBest, swapR

ls_proc_2 Categorical insertLS, fpe, bpe, swapTasgetiren, insertTasgetiren, ls = 2

lsTasgetiren, swapInc, iRZ, riRZ, raiRZ, viRZ,

swapFirst, swapBest, swapR

accept Categorical met, lac, rrt, thr

r Ordinal 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, ini_sol = RC

300, 400, 500, 1000

d Integer [1, 20]

nls Ordinal 1, 2, 3, 4,∞ ini_sol = FRB5 or ls ∈ {1, 2} or perturb = ils_gi

α Real [0.01, 1.0] accept = met

l Ordinal 1, 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, accept = lac

700, 800, 900, 1000

rrtd Ordinal 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, accept = rrt

300, 400, 500

thres Ordinal 0, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02, accept = thr

0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.2, 0.3, 0.4, 0.5

fls Ordinal 2, 3, 4, 5, 10 ls = 2

The columns contain the name of the parameter, the type specified in irace, the domain, and the conditions for the parameter to be

active. If no condition is shown, the parameter is always active.
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Table C.2: Automatically designed algorithms for minimizing the total completion time
on the PFSSP.

Perturbation Local search Acceptance

Alg. CH Method Tie d LS Proc. 1 LS Proc. 2 fls nls Crit. rrtd

A0 BSCH gi_asls first 8 raiRZ bpe 4 4 rrt 100
A1 BSCH gi_asls KK1 7 swapR riRZ 3 2 rrt 200
A2 BSCH gi_ils KK2 4 fpe riRZ 5 4 rrt 200
A3 BSCH gi_asls first 6 fpe iRZ 4 4 rrt 200
A4 BSCH gi_asls KK2 7 raiRZ swapR 3 ∞ rrt 80
A5 BSCH gi_asls first 5 bpe iRZ 5 2 rrt 100
A6 BSCH gi first 8 fpe insertFPR 3 - rrt 100
A7 BSCH gi last 7 bpe raiRZ 3 2 rrt 300
A8 BSCH gi last 8 swapR iRZ 2 3 rrt 90
A9 BSCH gi_asls rand 5 insertFPR - - - rrt 90

Each row contains the components and parameter values for one of the algorithms ob-
tained with irace, named A0 to A9 in the first column. The second column contains
the constructive heuristic. The next three columns contain the perturbation strategy,
its tiebreaker, and the perturbation intensity d. The next four columns refer to the lo-
cal search and contain the first procedure, the second procedure, if any, the parameter
fls that defines the frequency to perform the second local search procedure, and the
maximum number of full neighborhood scans nls. The last two columns contain the
acceptance criterion and its respective parameter.

Table C.3: ARD for the Taillard benchmark.

Inst. A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Best

20× 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20× 10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
20× 20 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50× 5 0.165 0.178 0.177 0.172 0.150 0.157 0.154 0.237 0.145 0.160 0.145
50× 10 0.535 0.515 0.492 0.500 0.528 0.634 0.517 0.416 0.561 0.532 0.416
50× 20 0.439 0.450 0.419 0.454 0.478 0.559 0.470 0.377 0.477 0.489 0.377
100× 5 0.084 0.082 0.078 0.076 0.075 0.071 0.072 0.097 0.073 0.086 0.071
100× 10 0.236 0.230 0.239 0.232 0.236 0.245 0.236 0.238 0.241 0.238 0.230
100× 20 0.464 0.457 0.452 0.459 0.470 0.510 0.468 0.442 0.477 0.468 0.442
200× 10 -0.675 -0.681 -0.677 -0.676 -0.674 -0.672 -0.672 -0.677 -0.671 -0.672 -0.681
200× 20 -0.865 -0.862 -0.861 -0.861 -0.862 -0.848 -0.867 -0.867 -0.858 -0.864 -0.867
500× 20 -1.891 -1.890 -1.890 -1.892 -1.891 -1.891 -1.891 -1.892 -1.890 -1.891 -1.892

Avg. -0.126 -0.127 -0.131 -0.128 -0.124 -0.103 -0.126 -0.136 -0.121 -0.121 -0.146

The results presented in this table are the ARD over the upper bounds in Table A.1. A0 to
A9 are the algorithms found with irace. The best results per instance group are highlighted in
bold, and column “Best” contains a combination of the best results.
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Table C.4: ARD for the VRF-large benchmark.
Inst. A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Best

100× 20 0.114 0.126 0.121 0.117 0.122 0.148 0.125 0.087 0.129 0.117 0.087
100× 40 0.146 0.157 0.129 0.138 0.147 0.173 0.142 0.118 0.165 0.148 0.118
100× 60 0.129 0.139 0.125 0.132 0.131 0.178 0.140 0.102 0.147 0.140 0.102
200× 20 0.012 0.013 0.013 0.013 0.014 0.016 0.015 0.013 0.016 0.014 0.012
200× 40 0.036 0.037 0.035 0.034 0.037 0.048 0.042 0.032 0.046 0.036 0.032
200× 60 0.033 0.039 0.030 0.033 0.029 0.047 0.038 0.034 0.043 0.030 0.029
300× 20 0.009 0.012 0.009 0.012 0.008 0.013 0.010 0.009 0.012 0.011 0.008
300× 40 0.013 0.013 0.012 0.014 0.015 0.020 0.018 0.015 0.020 0.015 0.012
300× 60 0.009 0.011 0.006 0.010 0.008 0.021 0.016 0.010 0.021 0.010 0.006
400× 20 0.004 0.004 0.005 0.005 0.004 0.004 0.005 0.005 0.004 0.005 0.004
400× 40 0.008 0.008 0.007 0.007 0.011 0.011 0.012 0.010 0.013 0.009 0.007
400× 60 0.018 0.020 0.014 0.017 0.016 0.020 0.021 0.017 0.024 0.019 0.014
500× 20 0.003 0.002 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.002
500× 40 0.010 0.011 0.008 0.010 0.010 0.012 0.012 0.011 0.013 0.010 0.008
500× 60 0.007 0.005 0.004 0.007 0.005 0.008 0.009 0.007 0.010 0.007 0.004
600× 20 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.003 0.003 0.002
600× 40 0.005 0.005 0.005 0.005 0.005 0.006 0.006 0.005 0.008 0.006 0.005
600× 60 0.009 0.008 0.008 0.008 0.009 0.011 0.010 0.010 0.013 0.008 0.008
700× 20 0.001 0.000 0.002 0.003 0.002 0.002 0.003 0.000 0.003 0.003 0.000
700× 40 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002
700× 60 0.009 0.009 0.008 0.009 0.010 0.009 0.012 0.009 0.011 0.010 0.008
800× 20 0.001 0.002 0.002 0.003 0.004 0.003 0.004 0.003 0.005 0.004 0.001
800× 40 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.003
800× 60 0.008 0.008 0.007 0.008 0.006 0.009 0.010 0.008 0.012 0.010 0.006

Avg. 0.025 0.027 0.023 0.025 0.025 0.032 0.028 0.022 0.030 0.026 0.020

The results presented in this table are the ARD over the upper bounds in Table A.2. A0 to A9

are the algorithms found with irace. The best results per instance group are highlighted in bold,
and column “Best” contains a combination of the best results.
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APPENDIX D — ADDITIONAL EXPERIMENTS WITH MAKESPAN

MINIMIZATION

In this appendix we address the PFSSP with makespan minimization. As in Ap-

pendix C, we repeated the experiments described in Section 3.2.2 with the updated gram-

mar for the PFSSP that was obtained during our work on the NPFSSP. In a comparison

to the grammar in Figure 3.2, there is a new tiebreaker (FF), a new acceptance criterion

(thr), and the possibility of defining the frequency to apply the second local search pro-

cedure through parameter fls. The new grammar is shown in Figure D.1 and the set of

parameters to be configured with irace is presented in Table D.1.

We ran irace ten times and selected the best candidate of each run. Each irace run

had a budget of 50000 candidate runs with a time limit of 10nmmilliseconds. The training

set contained 120 randomly generated instances with the same dimensions as those in the

Taillard benchmark, with processing times in the interval [1, 99]. We used version 3.0 of

irace, with all parameters set to default values. The algorithms are presented in Table D.2.
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Figure D.1: A grammar of iterated local search algorithms for the PFSSP. For simplicity,
the numerical parameters have been omitted.

1 <START> ::= ILS(<INI_SOL>,<PERTURB>,<LS>,<ACCEPT>)
2 <INI_SOL> ::= NEH(<TIEBREAK>) | RC |
3 FRB5(<ORDER>,<TIEBREAK>)
4 <ORDER> ::= noninc | nondec | KK1 | KK2
5 <TIEBREAK> ::= FF | KK1 | KK2 | first | last | random
6 <PERTURB> ::= ri | gi(<TIEBREAK>) | rs | gs |
7 ras | gi_asls(<TIEBREAK>) |
8 ils_gi(<TIEBREAK>) |
9 gi_ils(<TIEBREAK>)

10 <LS> ::= ε | <LS_PROC> |
11 alternate(<LS_PROC>,<LS_PROC>)
12 <LS_PROC> ::= insertion(<TIEBREAK>) | NS |
13 Pc(<TIEBREAK>)
14 <ACCEPT> ::= met | lac | rrt | thr

Table D.1: Tunable parameters of the algorithm construction.

Parameter Type Values Conditions

ini_sol Categorical NEH, FRB5, RC

order Categorical noninc, nondec, KK1, KK2 ini_sol ∈ {NEH,FRB5}

tb_ini_sol Categorical FF, KK1, KK2, first, last, random ini_sol ∈ {NEH,FRB5}

tb_perturb Categorical FF, KK1, KK2, first, last, random perturb ∈ {gi, gi_asls, ils_gi, gi_ils}

tb_ls_proc_1 Categorical FF, KK1, KK2, first, last, random ls_proc_1 ∈ {insertLS,Pc}

tb_ls_proc_2 Categorical FF, KK1, KK2, first, last, random ls_proc_2 ∈ {insertLS,Pc}

perturb Categorical ri, gi, rs, gs, ras, gi_asls, ils_gi, gi_ils

ls Categorical 0, 1, 2

ls_proc_1 Categorical insertLS, NS, Pc ls ∈ {1, 2}

ls_proc_2 Categorical insertLS, NS, Pc ls = 2

accept Categorical met, lac, rrt, thr

r Ordinal 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, ini_sol = RC

300, 400, 500, 1000

d Integer [1, 20]

nls Ordinal 1, 2, 3, 4,∞ ini_sol = FRB5 or ls ∈ {1, 2} or perturb = ils_gi

α Real [0.01, 1.0] accept = met

l Ordinal 1, 5, 10, 25, 50, 100, 200, 300, 400, 500, 600, accept = lac

700, 800, 900, 1000

rrtd Ordinal 0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, accept = rrt

300, 400, 500

thres Ordinal 0, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.02, accept = thr

0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1,

0.2, 0.3, 0.4, 0.5

fls Ordinal 2, 3, 4, 5, 10 ls = 2

The columns contain the name of the parameter, the type specified in irace, the domain, and the conditions for the parameter to

be active. If no condition is shown, the parameter is always active.
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Table D.2: Automatically designed algorithms for minimizing the makespan on the PFSSP.

Initial solution Perturbation Local search Acceptance

Alg. CH Order Tie r rev Method Tie d LS Proc. 1 Tie 1 LS Proc. 2 Tie 2 fls nls Crit. α, l

A0 FRB5 noninc last - no ils_gi FF 1 insertLS FF - - - ∞ met 0.6
A1 FRB5 KK2 KK1 - no gi_asls FF 6 insertLS FF - - - ∞ met 0.5
A2 RC - - 60 no gi_ils KK2 2 insertLS FF - - - ∞ met 0.7
A3 NEH FF - - no gi_ils KK1 3 insertLS FF - - - ∞ met 0.8
A4 NEH FF - - yes gs - 5 insertLS FF - - - ∞ met 0.7
A5 RC - - 90 no gs - 2 insertLS FF - - - ∞ lac 300
A6 FRB5 FF - - no gi_ils FF 3 insertLS FF insertLS KK1 5 4 met 0.6
A7 FRB5 KK1 rand - yes gi_ils FF 2 insertLS FF insertLS KK2 5 4 met 0.6
A8 FRB5 KK1 KK1 - no gs - 5 insertLS FF insertLS KK1 5 ∞ met 0.6
A9 RC - - 200 no gi_ils FF 3 insertLS FF - - - ∞ met 0.6

Each row contains contains the components and parameter values for one of the algorithms obtained with irace, named A0 to
A9 in the first column. The other columns contain, respectively, the constructive heuristic to generate the initial solution, the
ordering criteria for the constructive heuristic, tiebreaker for the constructive heuristic, the value for parameter r when RC is
selected, whether or not to solve the reversed instance with the constructive heuristic, perturbation strategy, the tiebreaker for the
perturbation, perturbation intensity d, first local search procedure, its tiebreaker, second local search procedure, its respective
tiebreaker, the frequency fls to perform the second local search procedure, the maximum number of full neighborhood scans nls
for local search procedures, the acceptance criterion, and the value for its respective parameter.
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In general, the algorithms have many similarities with those of Section 3.2.2, such

as the variation regarding the initial solution construction, the usage of the insertion local

search procedure, although now mostly with the FF tiebreaker and the met acceptance

criterion. On the other hand, the selected perturbation strategies are mostly different from

those of Section 3.2.2, and frequently use the newly added FF tiebreaker.

We evaluated the algorithms on Taillard’s and VRF-large benchmarks. Each algo-

rithm ran for 30nm milliseconds with 10 replications per instance on a computer with

two Intel Xeon E5-2697 v2 processors (12 physical cores each) at 2.7 GHz, running

Ubuntu 18.04.3. The algorithms were implemented in C++ and compiled with the GNU

C++ compiler version 7.4 with an optimization level of 3.

We present the results for the Taillard benchmark in Table D.3 as the ARD in per-

cent from the values in Appendix A. The results showed improvements in a comparison

to those of Section 3.2.2. The algorithm with the highest ARD in Table D.3 still has lower

ARD than the best algorithm of Section 3.2.2. However, note that the experiments were

performed on a different computer. Thus a direct comparison is not precise.

Table D.3: ARD for the Taillard benchmark.

Inst. A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Best

20× 5 0.000 0.000 0.016 0.016 0.024 0.016 0.000 0.000 0.024 0.000 0.000
20× 10 0.000 0.000 0.000 0.000 0.000 0.044 0.000 0.000 0.000 0.000 0.000
20× 20 0.015 0.000 0.002 0.000 0.003 0.046 0.000 0.003 0.004 0.000 0.000
50× 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
50× 10 0.277 0.307 0.300 0.320 0.329 0.324 0.300 0.295 0.303 0.306 0.277
50× 20 0.369 0.391 0.382 0.386 0.405 0.614 0.395 0.376 0.381 0.345 0.345
100× 5 0.000 0.001 0.001 0.000 0.003 0.010 0.000 0.002 0.004 0.000 0.000
100× 10 0.026 0.026 0.025 0.023 0.046 0.056 0.025 0.026 0.036 0.031 0.023
100× 20 0.498 0.531 0.462 0.521 0.499 0.500 0.514 0.479 0.503 0.502 0.462
200× 10 0.035 0.036 0.033 0.033 0.036 0.037 0.034 0.037 0.034 0.035 0.033
200× 20 0.643 0.681 0.634 0.652 0.627 0.662 0.659 0.671 0.608 0.670 0.608
500× 20 0.283 0.289 0.280 0.269 0.284 0.290 0.259 0.258 0.255 0.286 0.255

Avg. 0.179 0.188 0.178 0.185 0.188 0.216 0.182 0.179 0.179 0.181 0.167

The results presented in this table are the ARD over the upper bounds in Table A.1. A0 to
A9 are the algorithms found with irace. The best results per instance group are highlighted
in bold, and column “Best” contains a combination of the best results.

The results for the VRF-large benchmark are presented in Table D.4 as the ARD

from the upper bounds of Vallada, Ruiz and Framiñan (2015) (see Appendix A).
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Table D.4: ARD for the VRF-large benchmark.
Inst. A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Best

100× 20 0.224 0.234 0.120 0.215 0.231 0.259 0.209 0.165 0.192 0.182 0.120
100× 40 0.222 0.385 0.142 0.201 0.337 0.420 0.246 0.229 0.356 0.175 0.142
100× 60 0.352 0.486 0.221 0.308 0.460 0.515 0.301 0.307 0.492 0.278 0.221
200× 20 0.174 0.219 0.151 0.154 0.165 0.157 0.200 0.178 0.075 0.174 0.075
200× 40 0.140 0.283 0.111 0.108 0.325 0.160 0.384 0.294 0.238 0.261 0.108
200× 60 0.109 0.293 0.000 0.010 0.201 0.191 0.180 0.158 0.182 0.143 0.000
300× 20 0.164 0.188 0.193 0.184 0.154 0.137 0.216 0.165 0.066 0.207 0.066
300× 40 0.217 0.123 0.294 0.289 0.564 0.144 0.412 0.355 0.063 0.391 0.063
300× 60 0.128 0.214 0.130 0.106 0.324 0.071 0.368 0.247 0.190 0.235 0.071
400× 20 0.103 0.127 0.113 0.123 0.116 0.112 0.106 0.092 0.044 0.133 0.044
400× 40 0.202 0.012 0.262 0.268 0.567 0.103 0.382 0.270 -0.100 0.335 -0.100
400× 60 0.101 0.206 0.287 0.249 0.485 0.075 0.284 0.331 0.112 0.359 0.075
500× 20 0.138 0.145 0.140 0.128 0.136 0.130 0.150 0.114 0.073 0.154 0.073
500× 40 0.169 -0.097 0.286 0.369 0.516 0.113 0.344 0.200 -0.197 0.346 -0.197
500× 60 0.116 0.081 0.287 0.234 0.501 0.062 0.230 0.232 0.005 0.318 0.005
600× 20 0.151 0.154 0.133 0.125 0.111 0.155 0.110 0.103 0.069 0.143 0.069
600× 40 0.117 -0.188 0.209 0.254 0.445 0.028 0.168 0.109 -0.215 0.220 -0.215
600× 60 0.145 0.034 0.397 0.328 0.525 0.156 0.265 0.295 0.083 0.441 0.034
700× 20 0.109 0.113 0.099 0.088 0.085 0.107 0.078 0.072 0.054 0.098 0.054
700× 40 0.037 -0.365 0.093 0.190 0.351 -0.066 0.087 -0.004 -0.310 0.139 -0.365
700× 60 0.164 -0.109 0.282 0.283 0.488 0.063 0.144 0.142 -0.131 0.305 -0.131
800× 20 0.048 0.063 0.063 0.048 0.078 0.074 0.050 0.051 0.040 0.058 0.040
800× 40 0.091 -0.337 0.087 0.190 0.283 -0.040 0.069 0.007 -0.256 0.120 -0.337
800× 60 0.153 -0.180 0.272 0.342 0.428 0.065 0.180 0.140 -0.161 0.281 -0.180

Avg. 0.149 0.087 0.182 0.200 0.328 0.133 0.215 0.177 0.040 0.229 -0.011

The results presented in this table are the ARD over the upper bounds in Table A.2. A0 to
A9 are the algorithms found with irace. The best results per instance group are highlighted in
bold, and column “Best” contains a combination of the best results.
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APPENDIX E — CONFIGURAÇÃO AUTOMÁTICA DE ALGORITMOS PARA

PROBLEMAS DE AGENDAMENTO EM FLOW SHOP

A resolução eficiente de problemas de otimização ajuda a melhorar nossas vidas,

embora muitas vezes passe despercebida. Por exemplo, nos beneficiamos da redução dos

prazos de entrega de produtos comprados online devido ao aprimoramento dos métodos

de solução de problemas de logística, ou da redução de custos dos produtos devido aos

ganhos de eficiência nos processos de fabricação. Problemas de agendamento, em particu-

lar, modelam muitos problemas de otimização enfrentados pelas indústrias de manufatura

e serviços. Esses problemas geralmente consistem em alocar recursos de forma eficiente

para tarefas cujo processamento requer um determinado tempo de tal forma que uma

métrica de custo seja minimizada. Uma vez que os custos envolvidos na indústria costu-

mam ser altos, a pesquisa por métodos de resolução mais eficientes é altamente desejável.

No entanto, a otimização em ambientes de produção pode envolver problemas combi-

natórios desafiadores. A maioria deles são NP-difíceis (COOK, 1971; LEVIN, 1973), ou

seja, nenhum algoritmo de tempo polinomial eficiente para resolvê-los é conhecido. Além

disso, muitas vezes é impraticável resolver problemas de grande porte que surgem da in-

dústria em um curto espaço de tempo por meio de abordagens exatas, como programação

matemática. Uma solução comum nesses casos é a adoção de métodos heurísticos.

Heurísticas geralmente produzem resultados de alta qualidade, mas por outro lado

podem ser complexas e difíceis de projetar. Além disso, os problemas de agendamento

da indústria têm um grande número de variantes para representar as diferenças nos pro-

cessos de produção na prática. As variantes podem incluir diferentes funções objetivo,

restrições de sequência de tarefas e configurações de máquina. No entanto, a maioria das

heurísticas é explicitamente projetada para uma única ou algumas variantes, gerando um

aumento no custo de desenvolvimento quando os métodos precisam ser adaptados para

resolver diferentes variantes do problema. Além disso, os métodos geralmente possuem

um conjunto de parâmetros que devem ser calibrados para garantir bons resultados. A

calibração geralmente é realizada manualmente, exigindo uma quantidade significativa

de tempo e trabalho manual e sendo vulnerável a erro humano. A automação dos proces-

sos de projeto e calibração tem sido uma técnica útil que pode reduzir a carga de trabalho

dos projetistas e aumentar a robustez em comparação com uma abordagem manual.

Neste trabalho abordamos problemas de agendamento em flow shop permutacional

e não-permutacional. Nestes problemas cada tarefa é composta por uma sequência de



129

operações e cada operação deve ser processada sem interrupção por uma máquina es-

pecífica por um determinado tempo. Todas as tarefas passam pela mesma sequência de

máquinas, uma de cada vez. Nós abordamos a minimização do tempo máximo de con-

clusão, ou seja, o tempo de conclusão do último trabalho do cronograma e o tempo total

de conclusão, ou seja, a soma dos tempos de conclusão de todas as tarefas. Ainda, neste

trabalho vamos além do objetivo típico de propor um novo algoritmo. Em vez disso,

construímos um solver que implementa componentes algorítmicos individuais e permite

combiná-los para gerar métodos de busca local iterada ou algoritmos gulosos iterados.

Nós utilizamos uma metodologia automatizada para encontrar combinações eficientes de

componentes, gerando assim um conjunto de novos algoritmos, que são comparados com

o estado da arte. Nosso objetivo é automatizar o projeto de heurísticas para problemas de

agendamento em flow shop, reduzindo o trabalho manual necessário e gerando métodos

competitivos com o estado da arte.

Nossa metodologia começa pela definição de uma gramática livre de contexto que

estabelece como componentes algorítmicos individuais podem ser combinados para for-

mar heurísticas. Esses componentes algorítmicos são, por exemplo, heurísticas construti-

vas, procedimentos de busca local e critérios de aceitação de soluções. A gramática e seus

componentes são implementados em um solver parametrizado, de forma que uma heurís-

tica pode ser instanciada com um conjunto de valores de parâmetros. Para converter uma

gramática em parâmetros, usamos uma abordagem semelhante à de SGE (LOURENÇO;

PEREIRA; COSTA, 2016), em que parâmetros categóricos são vinculados aos símbolos

não terminais. Mais precisamente, usamos um parâmetro para cada vez que cada não

terminal pode ser expandido. O valor de cada parâmetro determina qual opção deve ser

selecionada para a expansão. Por fim, o solver instancia o algoritmo correspondente e

o usa para resolver uma dada instância do problema. O espaço de busca definido pela

gramática é explorado com a ferramenta de configuração de parâmetros irace em busca

de boas combinações de componentes.

No Capítulo 3 abordamos problemas de agendamento em flow shops permuta-

cionais com minimização dos tempos de conclusão máximo e total. Nós usamos nossa

metodologia para projetar dez algoritmos de maneira automatizada para cada função ob-

jetivo. Os métodos obtidos foram comparados aos métodos do estado da arte em dois

conhecidos conjuntos de instâncias da literatura. Os resultados dos experimentos com-

putacionais mostram que, embora diferentes do estado da arte, os algoritmos para mini-

mização do tempo total de conclusão obtêm resultados equivalentes. Os algoritmos para
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minimização do tempo máximo de conclusão são em geral similares ao estado da arte, mas

algumas diferenças nos componentes selecionados e nos valores dos parâmetros desses

componentes levam a resultados levemente melhores.

No Capítulo 4 abordamos problemas de agendamento em flow shops não permuta-

cionais com minimização dos tempos de conclusão máximo e total. Nós usamos nossa

metodologia para projetar dez algoritmos de maneira automatizada para cada função ob-

jetivo. Os métodos obtidos foram comparados aos métodos do estado da arte em dois

conhecidos conjuntos de instâncias da literatura. Os resultados dos experimentos com-

putacionais mostram que os algoritmos projetados de maneira automatizada geram uma

substancial melhora em relação ao estado da arte quando minimizamos o tempo total de

conclusão. Em contraste, quando minimizamos o tempo máximo de conclusão, os resul-

tados obtidos são inferiores aos do método do estado da arte. Isso se deve a uma diferente

representação para soluções não permutacionais que não é implementada no solver.

As principais contribuições deste trabalho são um solver que utiliza componentes

algorítmicos da literatura implementados de forma eficiente, e um conjunto de algorit-

mos para cada variante do problema e função objetivo. Muitos componentes depen-

dem de uma implementação eficiente de procedimentos de aceleração não triviais. Por-

tanto, fornecer tal implementação é de grande interesse. Também estudamos proble-

mas de agendamento em flow shops não permutacionais e produzimos mais evidências

em favor de sua relevância. O código-fonte do solver está disponível publicamente em

<https://github.com/arturfb/FSSolver>.

https://github.com/arturfb/FSSolver
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