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ABSTRACT

Confocal microscopy is a useful tool for acquiring 3D datasets of fluorescent specimens.

In hepatology, researchers have been using confocal microscopy for investigating the mi-

croanatomy of bile ducts. Since confocal images are difficult to segment because of the

noise introduced during the specimen preparation, traditional quantitative analyses used

in other medical datasets are difficult to perform on confocal microscopy data and require

extensive user intervention. Thus, the analysis of bile ducts pose challenges for hepatol-

ogy research, requiring different methods.

This thesis provides methods for characterizing structures in confocal image datasets ob-

tained from bile ducts. In our motivating case study, the characterization of such struc-

tures is likely to help hepatologists to distinguish specimens affected by biliary atresia,

a disease that requires a liver transplant to avoid premature death. Our data consists of

3D image datasets containing several slices of mouse bile ducts organized as two fluores-

cence channels. The red channel contains a network of small vessels named Peribiliary

Vascular Plexus (PVP), and the green channel contains the internal bile duct with Peri-

biliary Glands (PBGs). Our approach for characterizing the bile ducts structures includes

a three-stage process: a stage to enhance the 3D visualization of bile ducts, a stage for

extracting important structures and a stage to quantify specific structures of interest.

In the first stage, we proposed an approach to enhance noisy confocal images of bile ducts

by applying anisotropic diffusion. The significant result in this stage was the enhanced

volumetric visualization of the bile duct microanatomy, which allowed the visualization

of details that are hardly seen in the original data.

In the second stage, we have explored the density-based spatial clustering for applications

with noise (DBSCAN) algorithm, using gradient information for guiding the clustering.

As a result, we discovered a representative cluster for each dataset containing the most

prominent vessels (for the red channel) and internal structures (for the green channel).

Finally, we have explored the concepts of fractal dimension and multiscale fractal di-

mension applied to the structures obtained from clustering, which we found useful for

extracting quantitative information aiming at characterizing relevant structures. Our anal-

yses give us some evidence that the fractal dimension is a measure that can be used for

quantification and characterization of bile ducts.

Keywords: Confocal microscopy. clustering. DBSCAN. fractal dimension.



Caracterização de Estruturas em Volumes de Imagens Confocais de Dutos Biliares

RESUMO

A microscopia confocal é uma ferramenta útil para adquirir dados 3D de amostras fluores-

centes. Na hepatologia, pesquisadores vêm usando microscopia confocal para investigar a

microanatomia dos ductos biliares. Como as imagens confocais são difíceis de segmentar

devido ao ruído introduzido durante a preparação das amostras, as análises quantitativas

tradicionais, em geral, são difíceis de serem executadas e requerem extensa intervenção

do usuario. Assim, a análise dos ductos biliares representam um desafio na pesquisa em

hepatologia, exigindo diferentes métodos.

Nesta tese, são propostos métodos para caracterizar estruturas em imagens confocais de

ductos biliares. No estudo de caso motivador, supõe-se que a caracterização dessas es-

truturas ajudará os hepatologistas a distinguir amostras afetadas por atresia biliar, uma

doença que requer transplante de fígado para evitar a morte prematura. Nossos dados

consistem em volumes de imagens de ductos biliares de camundongos organizados em

dois subconjuntos, um para cada canal de fluorescência. O canal vermelho contém uma

rede de pequenos vasos denominados Plexo Vascular Peribiliar (PVP), e o canal verde

representa o ducto biliar interno com as Glândulas Peribiliárias (PBGs). Nossa aborda-

gem para caracterizar as estruturas dos ductos biliares inclui um processo de três estágios:

um estágio para melhorar a visualização 3D dos ductos biliares, um estágio para extrair

estruturas importantes e um estágio para quantificar estruturas específicas de interesse.

Na primeira etapa, propusemos uma abordagem para realçar as imagens confocais dos

ductos biliares, aplicando difusão anisotrópica. O resultado significativo nesta etapa foi

a visualização volumétrica aprimorada da microanatomia do ducto biliar, que permitiu a

visualização de detalhes que dificilmente são vistos nos dados originais.

No segundo estágio, exploramos o agrupamento espacial baseado no método conhecido

como Density-based spatial clustering of applications with noise (DBSCAN), usando,

porém, informações de gradiente para orientar o agrupamento. Como resultado, desco-

brimos um cluster representativo para cada conjunto de dados que contém os vasos mais

representativos (para o canal vermelho) e estruturas internas (para o canal verde).

Por fim, exploramos os conceitos de dimensão fractal e dimensão fractal multiescala apli-

cados às estruturas obtidas do agrupamento, que consideramos úteis para extrair informa-

ções quantitativas com o objetivo de caracterizar estruturas relevantes. Nossas análises



nos dão algumas evidências de que a dimensão fractal é uma medida que pode ser usada

para quantificação e caracterização dos ductos biliares.

Palavras-chave: Microscopia Confocal, clustering, dbscan, dimensão fractal.
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1 INTRODUCTION

The advent of confocal microscope systems in the 1980s opened the door to the

analysis of cells using three-dimensional (3D) images. However, it was not until the

1990s, when computers became powerful enough to handle 3D data and complex 2D

data, that the image processing and computer vision communities really began to take up

the challenge of confocal images processing (MEIJERING, 2012).

Confocal microscopy offers a powerful means to address biological problems and

gives a new understanding of cellular structure and function (MATSUMOTO, 2003).

Qualitative and quantitative characterization of cell images is useful for clinical appli-

cations (e.g., vaccine development and diagnosis and treatment of disease) and biolog-

ical research (e.g., to understand the input mechanisms of the virus in cells). Several

algorithms have been developed for cell identification using different image processing

techniques (GAMARRA et al., 2017).

Some applications of confocal microscopy include:

• Diagnosis and treatment of diseases: determination of corneal thickness, diagnos-

tic virology as a survey tool to identify areas of necrosis, studying cell organelles,

and tissue changes during cancer (MATSUMOTO, 2003).

• Biological research: analysis of gene expression, analysis of changes in mem-

branes, cell division (MATSUMOTO, 2003).

• Automated classification of cells: automated identification and tracking of cellular

features (TSYGANKOV et al., 2014).

• Morphometry and Reconstruction : measure structures in 2D images and 3D re-

constructions, three-dimensional reconstruction, four-dimensional imaging (MAT-

SUMOTO, 2003).

Confocal microscopy has several advantages over conventional optical microscopy,

due to the ability to control the depth of field and the capability of allowing the collection

of serial optical slices from fluorescent specimens. Because of these advantages, confocal

microscopy has been used in research to obtain 3D datasets, mostly from cells (CLAX-

TON; FELLERS; DAVIDSON, 2006), but also for semiconductor inspection (RIDEOUT,

2007)(HONG, 2019) and in materials science(HOHEISEL et al., 2001). Despite these ap-

plications, confocal microscopy is a relatively young field (PRICE; JEROME, 2011).

It is well known that it is difficult to analyze complex 3D tissues by viewing indi-
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vidual 2D slices (DREBIN; CARPENTER; HANRAHAN, 1988). Capturing the spatial

organization of complex tissues, while crucial to understanding their biological function,

represents a challenge for current microscopy imaging and analysis systems (KELCH et

al., 2015).

Microscopy experiments are producing large volumes of data that subsequently

need to be systematically analyzed. Manual image analysis is laborious and not always

objective. Analyzing images with algorithms has become popular for it offers automation

and reproducibility, and often has higher sensitivity than manual observers (WU; MER-

CHANT; CASTLEMAN, 2010).

The analysis of fluorescent images involves several stages, each of which may

influence the results of the subsequent ones. Figure 1.1 shows a typical workflow in

biomedical images analysis. Many steps are needed to extract new knowledge from the

images (MEIJERING et al., 2016):

• image acquisition

• preprocessing (denoising, deconvolution)

• detection, i.e., determining the presence of objects based on image-filtering tech-

niques

• segmentation, i.e., grouping of pixels relating to the same object or class

• tracking, i.e., linking detected objects from frame to frame in a movie

• quantification (of shape, dynamics, texture, and other object properties)

• recognition (clustering or classifying objects and patterns)

• visualization (rendering high-dimensional images)

• analytics (statistical processing of the extracted information), and

• modeling (constructing high-level descriptions of the results).

Quantitative analysis of large 3D datasets is not trivial, and the paucity of pow-

erful post-processing and analysis tools for large 3D image datasets is considered as a

bottleneck in the field (KELCH et al., 2015).

In this context, our work aimed at creating methods for characterizing structures

in confocal microscopy volumetric data. We focus our study on datasets obtained from

bile ducts. Bile ducts are thin tubular structures that carry the bile, and studying their

microanatomy is a hot topic in hepatology research (DIPAOLA et al., 2013; HAMMAD

et al., 2014; LAMETSCHWANDTNER et al., 2015; MORALES-NAVARRETE et al.,

2015; VARTAK et al., 2016). The analysis of microscopic morphological changes in the
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Figure 1.1: Common steps in bioimage analysis.

Source: (MEIJERING et al., 2016).

bile ducts is important in the study of biliary diseases.

Our focus on bile ducts is because the motivating case study was the research

conducted by collaborators at the Hospital de Clínicas de Porto Alegre (the University

hospital) and the Cincinatti Children’s Hospital in search of the causes of the biliary atre-

sia, a disease that requires liver transplant to avoid premature death.

We worked more on methods for detection, segmentation, quantification, and

recognition, although there are connections with the other stages presented in Figure 1.1:

• Detection: We propose a method based on anisotropic diffusion filtering to en-

hance details of the bile duct structures.

• Segmentation: We group pixels based on thresholding and clustering methods to

improve the segmentation of the bile ducts structures

• Quantification: We explore the fractal dimension as a technique for quantification

of relevant structures.

• Recognition: We implement a method for extracting clusters of relevant structures,

using the density-based spatial clustering for applications with noise (DBSCAN).

• Visualization: We use direct volume rendering techniques to visualize all the
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resulting volumetric data.

Although a few existing platforms provide standard tools for 3D segmentation and

methods to process 2D surface layers of cells, the challenges posed by dense and thick

tissue specimens require the development of new algorithms (MORALES-NAVARRETE

et al., 2016). We give further details about such issue in Chapter2.

1.1 Goal and Research Questions

The goal of this thesis is to develop methods for characterizing structures in con-

focal microscopy volumetric data. Our work focuses on datasets obtained from bile ducts.

Aiming at this goal, we state our research questions as follows:

1. The details from bile ducts are hardly visualized in the original images. Thus, the

first challenge in our research is associated with the noise in confocal microscopy

datasets. In this context, our first research question is about how can we improve

the visualization of multichannel confocal datasets to provide a better distinction of

the structures of interest?

2. Our second question is related to which measurements can we use for quantifying

and characterizing 3D structures in confocal images datasets?

To guide the answers of our research questions we hypothesized the following:

• H1: Regarding the 3D visualization of confocal images datasets, it is possible to

achieve quality by enhancing structures using a pre-processing step with appropri-

ate techniques to deal with the noise.

Our first hypothesis assumed that volume rendering of confocal microscopy images

could be improved by appropriate image enhancement techniques. We believed that

treating the noise by considering the properties of confocal data, we could reveal

the 3D organization of bile duct structures using direct volume rendering.

• H2: Regarding the 3D visualization of confocal images datasets, it is possible to

improve the distinction of the relevant structures using an unsupervised image seg-

mentation method before rendering.

We intended to prove with our second hypothesis that we could separate the relevant

structures in confocal images. In some cases, it is common that medical image seg-
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mentation can be performed by manually labeling. However, confocal microscopy

images have complex tissue and cellular structures, and manual segmentation is

only possible in a limited way. This fact motivated our interest in unsupervised

image segmentation algorithms.

• H3: Fractal dimension analysis can be used for the quantification and characteriza-

tion of structures in confocal images datasets.

Our third and last hypothesis was the most challenging one and was concerned with

finding the measures that could be used to characterize the bile ducts. We wanted to

verify that fractal dimension analysis makes it easy to quantify the relevant struc-

tures found in bile ducts confocal images and allow the comparison of specimens.

1.2 Overview

In this thesis, we describe the significant steps performed to address our research

questions, focusing on confocal images taken from bile ducts samples:

• The first step was related to specimen preparation and image acquisition. That pro-

cess was performed by the medical team using confocal microscopy, and provided

the input datasets for our work;

• The acquired datasets required the investigation of pre-processing approaches for

revealing the structures of interest;

• Subsequent three-dimensional image reconstructions evidenced the spatial organi-

zation and morphology of the structures within the bile duct;

• A clustering technique was used for segmenting the structures of interest;

• Fractal dimension analyses were explored for quantification and characterization of

bile ducts.

The remainder of this document is organized as follows: Chapter 2 introduces the

necessary background to understand the context of the thesis, while Chapter 3 presents

the related work on image filtering, clustering techniques, and fractal dimension analysis.

Chapter 4 describes our approach, and Chapters 5 and 6 present and discuss our results.

Finally, in Chapter 7 we revisit our research questions and hypotheses to summarize our

contributions, and draw comments on future work.
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2 BACKGROUND

The thesis is focused on the processing and analysis of 3D confocal microscopy

data (Figure 2.1). In this chapter, first, we describe the most relevant concepts of con-

focal microscopy imaging. This knowledge provides an adequate comprehension of the

advantages and limitations associated with such an acquisition process, which directly

affects the next stages, which correspond to image processing and image analysis tech-

niques. Then, we describe the necessary techniques for image processing and analysis

and, finally, volume rendering.

2.1 Confocal Microscopy

Along the last years, there has been an increase in the use of confocal microscopy

(CLAXTON; FELLERS; DAVIDSON, 2006; MASTERS, 2008; PRICE; JEROME, 2011),

more specifically in cell biology applications using fixed and living cells and tissues. Con-

focal microscopy data have their characteristics, which differ from other biomedical data

(like optical microscopy, tomography, ultrasound among others) (WAN et al., 2012).

In confocal microscopy, the images are acquired point-by-point, using lasers and

based on the principle of fluorescence (Figure 2.2). Fluorescence is the property of some

atoms and molecules to absorb light at a particular wavelength and to subsequently emit

light of a longer wavelength after a brief interval (Michael W. Davidson., 2014). Our data

consists of several slices of extrahepatic bile ducts (Figure 2.3). The biological samples

can be labeled with several appropriate fluorescent antibodies during the staining process

(Figure 2.4), which allows marking different tissues or cells (Figure 2.5) .

Figure 2.1: Representation of a 3D Confocal Image.

Source: (PRICE; JEROME, 2011).

The characteristics of a confocal microscope offer several advantages over con-

ventional optical microscopy such as:
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Figure 2.2: General diagram of the mechanism for collecting signals from a sample la-
beled with three fluorescent antibodies using three laser beams.

Source: (PRICE; JEROME, 2011).

• Confocal Microscopy removes out-of-focus light from the image. When used cor-

rectly, this results in all planes of the final image being in focus(PRICE; JEROME,

2011).

• Capability of controlling the depth of field.

• Capability of collecting several aligned images of the same sample.

However, confocal images are normally affected by several artifacts and noise

sources:

• Low signal-to-noise ratio: confocal images have a strong decrease in the signal-to-

noise ratio over the slices depth (RAMESH; OTSUNA; TASDIZEN, 2013).

• Diversity of density values: the physical meaning of density values is not limited

to image subjects (TORIWAKI; YOSHIDA, 2009). Confocal images have an in-

homogeneous density inherent to the fluorescent staining process (CHEN; CHEN;

CHIANG, 2008).

• Visual occluders: structures irrelevant to the analysis may also be labeled through

the fluorescent staining process, resulting in visual occluders that obscure the struc-

tures to be visualized (WAN et al., 2009).

• Subtle boundaries: meaningful boundaries may be only subtly presented in the con-

focal data (WAN et al., 2009).
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Figure 2.3: Extrahepatic Bile Ducts Anatomy.

Source: Adapted from (BOARD, 2019) and (BABU; SHARMA, 2014).

Confocal microscopes use proprietary formats, which encodes the information

about the images and the microscope configuration used during acquisition. The infor-

mation regarding the process of image acquisition is important for further interpretation

of the obtained data by the hepatologist. However, the downside of proprietary formats

is that they need proprietary software to decode the stored images (PRICE; JEROME,

2011). We use datasets acquired by two kinds of confocal microscope: a Leica and a

Zeiss confocal microscope. These microscopes produce datasets in the formats named

LIF (Leica Image File Format) and LSM (Laser Scanning Microscope), respectively.

Figure 2.4: A mouse bile duct after the specimen preparation.

Source: The author.
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Figure 2.5: Example of confocal microscopy slices of a mouse bile duct.

Source: The author.

2.2 Anisotropic diffusion

Since anisotropic diffusion was used to reduce the noise and enhance details of

the bile duct images, we also present the basic principles of anisotropic diffusion fil-

tering. Anisotropic diffusion was introduced by Perona and Malik (PERONA; MA-

LIK, 1990), and since then, has been used as an effective approach in image process-

ing and computer vision for noise removal, edge detection, and image restoration (WE-

ICKERT, 1998) (FRANGAKIS; HEGERL, 2001) The main idea behind this approach

is that smoothing should be low on relevant edges and stronger in regions dominated by

noise (FORMAGGIA; QUARTERONI; VENEZIANI, 2010). In the classical formula-

tion (PERONA; MALIK, 1990), the anisotropic diffusion equation is given by the follow-

ing Partial Differential Equation (PDE):

∂I

∂t
= ∇ · (c(∇I)∇I) (2.1)

where t is the time parameter, ∇I is the gradient of the image at time t and c is

the diffusivity. The diffusivity can be expressed as a decreasing function of the image

gradient magnitude, such as:

c(x, y, z, t) = e−
‖∇I‖
k

2

, c(x, y, z, t) =
k2

k2 + ‖∇I‖2
(2.2)

where k is the gradient magnitude threshold parameter that controls the rate of the

diffusion and serves as a soft threshold between the image gradients that are attributed

to noise and those attributed to edges (TSIOTSIOS; PETROU, 2013). The great success

of the Perona and Malik’s model can be mainly attributed to its excellent performance in

edge preservation and noise removal (YUAN; WANG, 2016).

Anisotropic diffusion process can be improved with the proper choice of param-
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eters of the anisotropic diffusion equation (VOCI et al., 2004) (TSIOTSIOS; PETROU,

2013). According to Formaggia et al. (FORMAGGIA; QUARTERONI; VENEZIANI,

2010), the anisotropic filter must be tuned for specific applications in terms of k and t.

This implicates that empirical evaluation of the effects of the filter is necessary. Several

papers discuss aspects aimed at optimizing the anisotropic diffusion. However, none of

those proposals are applied to confocal microscopy images.

There are two models for the estimation of the k parameter:

• Estimation of the k parameter using Perona and Malik’s model: The model

for the k estimation proposed by Perona and Malik (PERONA; MALIK, 1990) is

based on a noise estimator using the histogram of the gradient. This noise estimator

consists of calculating the histogram of the absolute values of the gradient for every

image, and the k parameter value is equal to the 90% value of its integral (PERONA;

MALIK, 1990).

• Estimation of the k parameter using Voci et al. model: The model for the k

estimation proposed by Voci et al. (VOCI et al., 2004) is based on mathematical

morphology. The idea of using a morphological approach derives from the fact that

morphology can be used for an estimation of noise intensity in the image. Their

model is based on opening and closing operations from mathematical morphology.

The k is given by the following equation:

k =
∑

i,j∈I

(I(i, j) ◦ st)
(r.c)

−
∑

i,j∈I

(I(i, j) • st)
(r.c)

(2.3)

where I(i, j) refers to the image consisting of r rows and c columns, a structuring

element st (we use a st with size 5x5), and the symbols ◦ and • represent the

opening and closing operations, respectively.

2.3 Density-Based Spatial Clustering of Noisy Images

The process of clustering plays an important role in the fields of knowledge dis-

covery and data mining (MEHMOOD et al., 2016). There are several approaches to

clustering described in the literature of unsupervised learning, including partitioning al-

gorithms, hierarchical methods, density-based algorithms, and models-based algorithms.

Density-based Spatial Clustering has been successfully applied in images datasets ob-
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Figure 2.6: Anisotropic Diffusion using Perona Model and Voci Model.

(a) Original Image (b) Noisy versionl
(c) Perona and Malik’s
Model (d) Voci et al. Model

Source: (TSIOTSIOS; PETROU, 2013)

tained from different sources for application in distinct domains like spectrometer, to-

mography, dermascopy, angiography (HUI; LIU, 2017; HUI; LIU; PARK, 2018; LI et

al., 2017; CELEBI; ASLANDOGAN; BERGSTRESSER, 2005; METE; KOCKARA;

AYDIN, 2011; TRAN et al., 2012), including also confocal images (MU et al., 2009;

CHAN; CHENG; POON, 2007).

Figure 2.7: Concepts used the DBSCAN Clustering: a)Shows examples for the three
point classes, core, border, and noise points. b)Shows the concept of density-reachability
and density-connectivity

(a) Core, border, and noise points
(b) Density-reachability and Density-
connectivity

Source: (HAHSLER; PIEKENBROCK; DORAN, 2017)

Since our approach is exploratory, and we do not know a priori the number of

clusters to partitioning the data, herein, we focus on density-based algorithms. Since

confocal data is often noisy, we choose a density-based clustering algorithm known as

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (ESTER et al.,

1996), which we briefly introduce in this section.

DBSCAN was proposed for knowledge discovery in databases (KDD) and has the

following characteristics:
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• Minimal requirements of domain knowledge: a priori number of clusters is not

necessary.

• It discovers clusters of arbitrary shapes.

• It is robust against noise: less sensitive to outliers and can identify the noise points.

• Deal with large datasets: was proposed to be used in large databases with thousands

of objects.

• Based on only two global parameters: eps, that is the radius around a pixel for

the density calculation, i.e., the size of the eps neighborhood, and minPts, which

corresponds to the minimum number of points required to form a cluster.

The key idea of DBSCAN is that for each point of a cluster the neighborhood of

a given radius has to contain at least a minimum number of points, i.e. the density in the

neighborhood has to exceed some threshold (ESTER et al., 1996).

2.4 Direct Volume Rendering

Direct volume rendering techniques allow visualization of volume data without

extracting intermediate geometry. These methods process the volume data based on fuzzy

segmentation through transfer functions. This means that one group of points can belong

to more than one structure/tissue with different degrees of membership.

Volume rendering is based on the emission-absorption optical model defined by

the Equation 2.4:

I(D) = I0e
−
∫ D

s0
k(t)dt

+
∫ D

s0
q(s)e

∫ D

s
k(t)dtds (2.4)

With optical properties k (absorption coefficient) and q (source term describing emission)

and integration from entry point into the volume, s = s0, to the exit point toward the

camera, s = D.

The basic idea of the ray casting algorithm (LEVOY, 1988)(HADWIGER et al.,

2006) is to directly evaluate the volume-rendering integral along with the rays that are

traced from the camera into the object space. For each point in a projection plane (i.e.,

for each pixel in the image), a single ray is cast into the volume. Then, the volume data

is resampled at discrete positions along the ray. Viewing rays are fired through the data

to sample the volume. After that, the data is evaluated by using a function in order to

compute the final pixel value. The final pixel color is obtained from the accumulation of
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values obtained using a transfer function (TF) that maps data values to optical properties.

The most common type of transfer function is the one-dimensional TF, which as-

signs optical properties (usually color and opacity) to voxels based only on their scalar

value. Notwithstanding, one-dimensional TFs have a limited classification power because

they can not distinguish between volume regions defined by scalar values within the same

range. On the other hand, multi-dimensional transfer functions can perform better classi-

fication because they can take into account not only the scalar value of a voxel (KNISS;

KINDLMANN; HANSEN, 2002), but also other attributes like gradient magnitude, direc-

tional second derivative, curvature (HLADUVKA; KÖNIG; GRÖLLER, 2000; KINDL-

MANN et al., 2003) and statistical measures (TENGINAKAI; LEE; MACHIRAJU, 2001).

2.5 Fractal Analysis

Fractal analysis have been applied in many areas since the seminal work by Man-

delbrot(MANDELBROT, 1983). Literature on its application in biology and medicine is

large, and a thorough review is beyond the scope of this thesis. When it comes to medical

images, we also found the extensive use of fractal and multifractal geometries in the anal-

ysis of medical signals (1D, 2D or 3D) for supporting pattern recognition, texture analysis

and segmentation (LOPES; BETROUNI, 2009).

The main attraction of fractal geometry stems from its ability to describe the ir-

regular or fragmented shape of natural features as well as other complex objects that

traditional Euclidean geometry fails to analyze. Fractal objects have three main features

(MANDELBROT, 1967)(KUIKKA, 2002):

• large degree of heterogeneity,

• self-similarity over many scales of observation, and

• the lack of a well-defined scale

As mentioned by Kuikka (KUIKKA, 2002), the three features have important im-

plications when one wants to interpret experimental observations. First, certain measure-

ments do not have a single ’true’ value, but the value depends on the resolution used for

the measurement. So, there is a scaling relationship between the resolution and the value

measured. Second, self-similarity (or scale invariance), the most known characteristic of

fractals, is generated by a recursive expression, determining a non-linear scaling relation-

ship. The last implication mentioned by Kuikka (KUIKKA, 2002) is the fact that natural
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objects are seldom regular and geometric, but they present an inherent variation in struc-

ture and function, which is related to their scaling properties. The scaling property L(r)

of a fractal object depends non-linearly on the scale r at which some measurement (of the

object) is taken.

Fractals have fractional dimensions, known as fractal dimension, which are a mea-

sure of the complexity of the fractal objects (MANDELBROT, 1983)(MANDELBROT,

1967)(BACKES et al., 2010). A fractal dimension (referred to as FD or D) is said to be

fractional because it is a ratio, i.e., a statistical index of complexity that measures how

the details in a pattern changes with the scale at which it is measured. As so, fractal

dimensions are usually non-integer values.

2.5.1 Fractal Dimension

The fractal dimension (FD) of images can measure the distribution of pixels in-

tensities. Thus, it can be used as a tool to describe the image content (Zhou; Liang,

2014). There are many methods to compute the fractal dimension. Although the ap-

plied algorithms differ, they obey to the same basis summarized by three steps (LOPES;

BETROUNI, 2009):

• Measure the quantities of the object using various step sizes

• Plot log (measured quantities) versus log (step sizes) and fit a least-squares regres-

sion line through the data points

• Estimate FD as the slope of the regression line.

We restrain ourselves to briefly review two methods of calculating the fractal di-

mension of an image, the Box-counting (BCM) and the Bouligand-Minkowski methods.

• Box-counting method (BCM): This is the most popular method (LOPES; BE-

TROUNI, 2009), following principles that are simple and easy to develop (TRI-

COT, 1994). (LI; SUN; DU, 2006). It consists of covering the image A with a

mesh of squares of side r, and count how many squares Nr(A) intercept the image.

FD is estimated according to Equation 2.5.

FD = − lim
r→0

log (Nr(A))

log (r)
(2.5)

The relationship between r and Nr(A) generates a log–log curve, and the slope of
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Figure 2.8: Illustration of the box-counting method for fractal dimension in a binary
image.

Source: (COSTA; CESAR, 2000).

this curve is the Box-Counting fractal dimension FD of the image A.

The original formulation has limitations because it requires signal binarization; for

this reason, some adaptations have been proposed (LOPES; BETROUNI, 2009).

• Bouligand-Minkowski method: This method is based on the study of an influence

area A(r) in image A, which is created by the dilation of the image by a disc of

radius r. The Bouligand-Minkowski fractal dimension FD is estimated according

the Equation 2.6:

FD = N − lim
r→0

log (A(r))

log (r)
(2.6)

with A(r) = {p′ ∈ RN | ∃p ∈ A :| p−p′ |≤ r} where p is a point from image A, p’

is a point in RN whose distance from p is smaller or equal to r and N is the number

of dimensions of the space where image A is inserted. For binary images, N = 2.

As for gray-scale imagens, to compute the Bouligand-Minkowski fractal dimen-

sion, one takes a 3D approach. A surface S is generated by transforming each

image pixel into a point p = (x, y, z), p ∈ S, where x and y correspond to the

coordinates of the pixel in image A and z = A(x, y) is its intensity. By performing

the dilation of surface S by a radius r, the Bouligand-Minkowski fractal dimension

FD of S can be estimated as Equation 2.7:

FD = 3− lim
r→0

log (V (r))

log (r)
(2.7)

with V (r) = {p′ ∈ R3 | ∃p ∈ S :| p − p′ |≤ r} where p′ = (x′, y′, z′) is a

point in R3 whose distance from p = (x, y, z) is smaller or equal to r and V (r) is

the influence volume calculated by dilating each point of S by a sphere of radius r
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(BACKES; CASANOVA; BRUNO, 2009).

Equation 2.7 can also be used to estimate the FD for volumetric objects ((BACKES

et al., 2010)). By using the Bouligand-Minkowski method for 3D obects, the object

is dilated using spheres of every possible radius. As we show in Figure 2.9, as

the radius increases, more interaction among the spheres occurs, thus producing an

influence volume for the set of points. The influence volume V (r) is then used to

calculate the fractal dimension FD, and includes information from various spatial

scales r.

To compute the Minkowski–Bouligand method at the 3D level, for a given radius

r = R, the algorithm visits each point of the 3D object as follows: For each point

(x, y, z), the method calculates V (r) for r ranging from 0 to R. V (r) is equal to the

number of points of the object within the sphere of radius r centered on (x, y, z). In

other words, it works like the box-counting method but considering the spheres.

Figure 2.9: Example of the influence volume V (r) for different radius values (r = 1, 3, 5).

Source: (BACKES et al., 2010).

2.5.2 MultiScale Fractal Dimension

The log–log curve calculated by Bouligand–Minkowski method provides infor-

mation about the complexity of the shape for different values of r, which can be the size

of the box or the radius of a sphere. These values corresponds to various scales. How-

ever, for computing the FD, usually only part of this information is used (the slope of the

curve defined by a specific r). The rest of the information intrinsic to the log-log curve is

discarded. The shapes of objects can have many details, and a single number may not be

enough to discriminate it (BACKES; BRUNO, 2010).
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The Multiscale Fractal Dimension (MFD) approach (EMERSON, 1998; PLOTZE

et al., 2005; BRUNO et al., 2008) can be used to describe the complex shape of an ob-

ject by means of several values of FDs. The multiscale fractal dimension is calculated

by applying a multiscale transformation over the log-log curve u(t) obtained from the

Bouligand–Minkowski method.

Recall that the u(t) curve depicts the logarithm of the area of influence of a given

shape A, A(r), originated from its dilation by a disk of radius r. From the first derivative

of the curve u(t), a function capable of representing the variation of shape complexity

from an observation scale is obtained. This function is called multiscale fractal dimension

and can be defined, as:

MFD = N − dlog(V (r))

dr
(2.8)

where du(t)/dt is the derivative of log–log curve u(t) (Equation 2.6). To compute

the MFD, it is necessary to calculate the derivate of u(t). One way to calculate this

derivative is using the finite differences method, where the derivative of a point is obtained

by analyzing its neighborhood.

So, given a curve C = {ci = (xi, yi) |i = 1, 2, ...n} and a sampling window h, for

each point i of the curve, the slope of the line formed by the points (i− h) and (i+ h) is

calculated as the derivative at that point on the curve as described in Equation 2.9, with k

being the dimension of the data space, in this case, is 3.

c(i) = k − yi+h − yi−h
xi+h − xi−h

(2.9)

An important aspect to consider with the derivative is its tendency to emphasize

high-frequency signals, such as noise. Therefore, it is necessary to apply a smoothing

filter to the curve before calculating the derivative (Equation 2.10, where w is the size

of the window used to average the neighborhood of a point (SMITH; SMITH; SMITH,

1985).

c(i) =

∑i+w
j=i−w c(j))

w
(2.10)

As a final observation, we should notice that for calculating the MFD for a 3D

object, the log-log curve is given by Equation 2.7.
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3 RELATED WORK

In this chapter, we present related research on confocal microscopy data. It is

worthy to emphasize that most of the research devoted to biological/medical studies based

on confocal microscopy data focuses on small structures such as cells. In our work,

differently from these studies, we analyze a macro-structure, the bile duct. Since cells

are thinner than bile ducts samples, this poses a challenge in data processing because

the noisy sources affect the image quality in thick specimens to a greater extent than in

thinner specimens such as cells.

In the following sections, we summarize related works and point out the differ-

ences between them and ours.

3.1 Confocal Microscopy Data in Hepatology Research

We found a few works using confocal microscopy to study the micro-anatomy of

bile ducts, and they are briefly reviewed herein.

DiPaola et al. (DIPAOLA et al., 2013) identified peribiliary glands (PBGs) resid-

ing within the bile duct walls (Figure 3.1). However, the images were visualized using

the confocal microscopy proprietary software, which provided limited features for image

post-processing, like we need for our purposes.

Hammad et al. (HAMMAD et al., 2014) and Vartak et al. (VARTAK et al., 2016)

used confocal microscopy images to visualize intrahepatic bile ducts that are much smaller

than the extrahepatic bile ducts we work with. Figures 3.2 and 3.3 illustrates their works.

3.2 Image Processing: Filtering Confocal Microscopy Images

The median filter is a traditional filter used for noise reduction in confocal mi-

croscopy images. Parazza et al. (PARAZZA; HUMBERT; USSON, 1993) used a 3D

median filter for noise reduction in confocal microscopy images from cell nuclei. A

median filter was also used for noise reduction in images from rat brain (MADDAH;

SOLTANIAN-ZADEH; AFZALI-KUSHA, 2003). In another work, Paul et al. (PAUL et

al., 2010) used median filtering to estimate the global noise variance in images from cells.

Araujo et al. (ARAUJO et al., 2000) propose the use of blurring filters, histogram
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Figure 3.1: Manual identification of the peribiliary glands (PBGs) in a mouse bile duct:
a) A cystic bile duct densely populated by PBGs that are juxtaposed to the mucosa epithe-
lium (white arrowheads). b) An intersection of the cystic duct and hepatic ducts to form
the common bile duct CBD. c) The CBD has PBGs that are unilobulated or multilobulated
(white arrowhead and yellow arrow, respectively) and connect with the main epithelium
or form the peribiliary network containing tubular structures within the wall (white ar-
rows) and with narrow lumen (yellow arrowheads) connecting different segments of the
duct. d) The junction of the CBD and the pancreatic duct (PD).

Source: (DIPAOLA et al., 2013).

Figure 3.2: Imaging and analysis pipeline for reconstruction and quantification of liver
microarchitecture.

Source: (HAMMAD et al., 2014).

equalization, and arithmetic operations to enhance images of cells from the nervous sys-

tem.

In our work, we tried traditional filters, such as the median filter, but they did not
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Figure 3.3: Imaging and analysis pipeline for reconstruction and quantification of liver
microarchitecture: a,b) Location of tissue sectioning. c) Bile duct cross sections. d) Cells
quantification. e) confocal micro-graph tissue section with architectural staining

Source: (VARTAK et al., 2016).

provide significant results in enhancing details like we need for our purposes. That is

because they are filters performing in all the data and do not discriminate the important

structures we need to improve.

In our work, we propose a pipeline to enhance the structures present in the confocal

images and visualize the microvasculature of bile ducts. The pipeline included a non-

linear filtering step based on anisotropic diffusion that we reviewed in Section 2.2. We

present details of this pipeline in Section 5.1.

3.3 Image Segmentation: Using Density-based Spatial Clustering

Density-based Spatial Clustering (Section 2.3) has been successfully applied in

images datasets obtained from different sources for application in distinct domains (HUI;
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LIU, 2017; HUI; LIU; PARK, 2018; LI et al., 2017; CELEBI; ASLANDOGAN; BERGSTRESSER,

2005; METE; KOCKARA; AYDIN, 2011; TRAN et al., 2012), including confocal im-

ages (MU et al., 2009; CHAN; CHENG; POON, 2007). In Table 3.1, we summarize the

main characteristics of these works.

Mu et al. report that the density-based spatial clustering approach is useful for

image segmentation of blood thrombus (MU et al., 2009). They did not use DBSCAN

(ESTER et al., 1996), but a generalized version of the density-based clustering proposed

by Chen et al. (CHEN; SMID; XU, 2005). Figure 3.4 illustrates their work.

Figure 3.4: DBSCAN clustering of blood thrombus: a)One slice of the confocal dataset.
b)A reconstructed 3D clot. c)a 2D example of comparison: expert-produced result (solid
curve) and Mu et al. algorithm (dashed curve)

Source: (MU et al., 2009).

Chan et al. also modified a different density-based clustering method, known as

DENCLUE (HINNEBURG; KEIM, 1998), to perform segmentation in confocal images

to study gene expression in zebrafish (CHAN; CHENG; POON, 2007). The original

method is based on a set of density distribution functions, which are, in fact, influence

functions that model the influence of a given data point in its neighborhood. In the work

by Chan et al., the Density-Based Segmentation (DBS) method, the density function of

each pixel is calculated using the differences of pixel intensity between the neighboring

pixels, which is an approximation of the gradient of each pixel like we did in our approach.

In the three surveyed papers based on the original version of DBSCAN (HUI;

LIU, 2017; HUI; LIU; PARK, 2018; LI et al., 2017), two features are used to guide the

clustering: pixel location (LI et al., 2017) and pixel intensity (with pixel location)(HUI;

LIU, 2017; HUI; LIU; PARK, 2018). Figures 3.5 and 3.6 illustrate the works by Hui and

Liu (HUI; LIU, 2017) and Li et al. (LI et al., 2017), respectively.

In our work, in addition to the spatial position and the size of the neighborhood of
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the voxel, we also use its gradient magnitude to guide the clustering.

Figure 3.5: DBSCAN clustering of 3D Neutron Data: a) Clusters identified by DBSCAN.
b) The two most prominent clusters. c) The next group of eight prominent clusters

Source: (HUI; LIU, 2017).
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Figure 3.6: DBSCAN clustering of CT angiography Data: a) Original volume rendering.
b) Clustering result based on DBSCAN. c) Volume rendering after heart isolation. d)Heart
cross section.

Source: (LI et al., 2017).
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3.4 Image Analysis: Fractal Dimension

In the field of microscopy, the effects of magnification and scaling on morphol-

ogy and the methodological approaches necessary to measure self-similar structures are

related to fractal geometry. Some degrees of self-similarity are present in numerous bio-

logical structures like plants, the spatial distribution of vessels of the circulatory system,

the boundaries of some tumor types, the bronchial airways, the duct system of many se-

cretory glands and the dendritic branching of neurons to name just a few (LANDINI,

2011).

Fractal dimension is used in image analysis studies to characterize a wide range of

medical and biological signals. Some examples are electrocardiogram (ECG) and elec-

troencephalogram (EEG) signals, brain imaging, mammography, retinal images and bone

imaging (LOPES; BETROUNI, 2009). Fractal analysis is used in histopathology to inter-

pret histological images (ANNADHASON, 2012).

Figure 3.7: Generalized fractal dimensions obtained from different images using the Box
Counting Method: a,d) straight line, checkerboard, Sierpinski carpet and retinal vascula-
ture. e,h) Fractal dimensions obtained from images a-d, respectively.

Source: (GOULD et al., 2011).

The use of fractal geometry in vivo confocal microscopy1 has permitted the study

of the microscopic morphology of the cornea with a resolution comparable to that of

histological examination (IEVA et al., 2016).

Some authors apply fractal dimensions in the analyses of patterns (GOULD et al.,

2011), such as the branching patterns in vascular structures of the human retina (ŢĂLU;

GIOVANZANA, 2012). Texture and shape analysis are other applications of fractal analy-

sis (BACKES, 2017) used in different contexts such as characterization of 3d shapes(BACKES

1In vivo confocal microscopy is a noninvasive imaging and diagnostic tool.
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Figure 3.8: Fractal dimension plot of an epithelial cell nuclei. The plot scale is in
log(pixels) and linear regression line (blue).

Source: (LANDINI, 2011).

et al., 2010), plant leaves identification (BACKES; CASANOVA; BRUNO, 2009), clas-

sification of coral specimens analyses (REICHERT et al., 2017), and medical images

retrieval(BACKES; BRUNO, 2010). In some of these applications, multiscale fractal di-

mensions were also employed (REICHERT et al., 2017; BACKES; BRUNO, 2010).

3.5 Volume Visualization: Direct Volume Rendering of Confocal Microscopy Data

Volume rendering of microscopic data has been a research topic along the years

due to its inherent visual complexity (BEYER et al., 2013). In addition to this complexity,

confocal microscopy produces multi-channel data, and this creates a large amount of in-

formation. Transfer functions are the key to volume rendering of medical datasets (HAD-

WIGER et al., 2006). As mentioned before, some approaches can use one-dimensional

transfer functions and, in contrast, other approaches can use multidimensional transfer

functions.

Regarding confocal data, Wan et al. developed an application for enhancement

and rendering of confocal microscopy data, but their approach aimed at specific research

on neuron cells (WAN et al., 2009; WAN et al., 2012). Figure 3.9 illustrates their work.

Kim et al. used gradient information combined with other properties such as cur-

vature and texture to guide the transfer functions specification in the visualization of brain
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cells (KIM et al., 2010). In Figure 3.10, we can observe different transfers functions be-

ing used to enhance different parts of the volumetric dataset.

Figure 3.9: Volume Rendering of Confocal Datasets: A) a zebrafish head dataset, rendered
without any enhancement. B) the same dataset rendered from the same view directions,
with enhancements applied. C) groups and different rendering modes can create clear
visualizations when derived channels are presented.

Source: (WAN et al., 2012).

Figure 3.10: Volume Rendering of mouse brain tissue (Confocal Datasets): All the images
depict the same volume but with different transfer functions.

Source: (KIM et al., 2010).
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As we observed, visualization strategies in these works have been applied to cells.

Our work aims at the analysis and visualization of a macro-structure, the bile duct, and

there are some factors associated with the staining process and image acquisition that

affect the image quality in such thick specimens. Confocal images datasets are noisy

and although they are multichannel data, each channel does not have much variation in

intensity. This characteristic affects image segmentation as well as transfer functions

design, and ultimately, the visualization of the structures of interest.
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4 METHODOLOGY

Our research questions and hypotheses were stated in Chapter 1. In this chapter,

we introduce the methodology we adopted for developing the methods that aimed at the

characterization of confocal images datasets, with emphasis on bile ducts. Herein, we

present the choices we made for investigating alternatives for visualization and analyses

of bile ducts datasets. Specific details about the methods are presented in Chapters 5 and

6.

4.1 Improving the Visualization of Bile Ducts Confocal Images

The acquired confocal images are affected by several sources of noise. For im-

proving the visualization of bile ducts micro-anatomy and validating our first hypothesis,

we investigated methods for improving the quality of the dataset for later characterization.

We proposed an approach to enhance noisy confocal images of bile ducts by ap-

plying anisotropic diffusion (PERONA; MALIK, 1990) in our datasets. We compared

the obtained image quality using quantitative measures such as the Peak Signal-to Noise

Ratio (PSNR) and the Mean Square Error (MSE). We also have the results evaluated

qualitatively by an expert. These approach and results are described in section 5.1.

4.2 Improving the Image Segmentation of Bile Ducts Confocal Images

The visual exploration of bile ducts in the liver is of relevant clinical interest, as it

provides information related to the biliary diseases. However, the study of biliary disease

has been limited by the inability to observe the bile ducts’ structures. Moreover, very

little is known about the internal structure of the bile duct, and there is a lack of image

datasets providing a gold standard of the bile duct microanatomy. Figure 4.1 shows that

in confocal microscopy, cellular structures visualization can be improved due to the good

resolution in the z-axis. However, in the case of tissues like bile ducts, only a very thin

layer through the tissue is visualized (ZIEGLER; BITTERMANN; HOECHLI, 2013).

Considering this scenario, segmenting images from bile ducts’ tissue represent a

challenge in hepatology research. Since cells are thinner than bile ducts, this poses a chal-

lenge associated with the data because the noisy sources affect the image quality in thick
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Figure 4.1: Characteristics of confocal laser scanning microscopy of cellular structures
and tissue.

(a) Cell culture: Cellular structures can be resolved due to the good resolution of depth dimension.

(b) Tissue: Only a very thin layer of the tissue is visualized.

Source: (ZIEGLER; BITTERMANN; HOECHLI, 2013).

specimens to a greater extent than thinner specimens such as cells. Existing software

provides standard methods for 3D segmentation of cells, and the challenges associated

with tissue specimens require the development of new approaches and new algorithms.

Although in some cases image segmentation can be performed by manually labeling the

images, on confocal laser scanning microscopy (CLSM) images showing complex cellu-

lar structures such as microtubules, cytoplasm, or high multiplicity of features, manual

segmentation is only possible in a limited way. Also, in many applications, CLSM im-

age segmentation is a highly repetitive task motivating a growing interest in new CLSM

images segmentation procedures (CALAPEZ; ROSA, 2010).

We explore the Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) algorithm (ESTER et al., 1996), for extracting structures from confocal datasets.

We propose an approach to adapt the DBSCAN algorithm using gradient information for

guiding the clustering in the bile ducts. We describe our approach for improving the

segmentation of bile duct structures and the results we obtained in section 5.2.

4.3 Improving Quantification of Bile Ducts Images

As mentioned before, digital microscopy, such as CLMS, allows biologists and

biomedical end users to obtain high-resolution 3D data sets of biological objects, such as
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cells and tissues (LEEUW; VERSCHURE; LIERE, 2006). However, there is still a lack

of post-processing techniques to quantify specific structures of interest.

In the case of CLSM images, the intensity range of the desired structures is not

known in advance (like the Hounsfield scale for CT scans), which leads to the situation

that pre-segmentation can not be obtained automatically. For this reason, we can not use

the intensity as the first feature to guide the quantification process. Then, quantification

also represents a challenge in hepatology research.

According to the literature, a potential approach to assess shape quantification and

spatial complexity characterization of 3D organisms are 3D fractal dimension analyses.

This approach combines information from various spatial scales, thus enabling a holistic

shape quantification (REICHERT et al., 2017). Fractal dimension analyses include the

Fractal Dimension FD and Multiscale Fractal Dimension MFD as measures for charac-

terization.

We explore the two measures, FD and MFD, for (volumetric) image quantifica-

tion and obtain a characterization of bile ducts structures. We describe our approach for

bile ducts characterization in Chapter 6.
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5 IMPROVING THE VISUALIZATION AND THE IMAGE SEGMENTATION OF

BILE DUCTS CONFOCAL IMAGES

In this chapter, we present the results we obtained in our investigation that aimed at

image visualization and segmentation of bile ducts based on sets of confocal microscopy

images. We have investigated the application of anisotropic diffusion in confocal mi-

croscopy images to deal with the noise found in confocal images. We explored different

models for estimating the parameters of this method, which we describe in section 5.1.

In section 5.2, we present the unsupervised machine learning method we explored for

finding the relevant structures in the bile ducts images datasets.

5.1 Enhancing Confocal Microscopy Images

In our first study, we explored the challenge associated to the noise in confocal mi-

croscopy images. We summarize our results in a paper already published (BELTRAN et

al., 2016). The full paper is available in Appendix A. We aimed at enhancing the quality

of images of bile ducts and associated vessels, both obtained from confocal microscopy.

In this context, image processing techniques are essential to remove noise and enhance

the acquired images. We proposed the use of anisotropic diffusion to enhance the confo-

cal images, and volumetric visualization techniques to create projections of the bile duct

samples in a 3D space so the experts can examine the microvasculature distribution and

interact with the bile ducts.

The main contribution of this study is the enhancement of the volumetric visualiza-

tion of the Peribiliary Vascular Plexus (PVP) obtained from confocal microscopy images.

We explore two models to estimate appropriate parameters for the anisotropic diffusion

equation used to improve the original volume. As result, we enhance details that are

hardly visualized in the original data. Moreover, using interactive manipulation like rota-

tion and zooming operations on the resulting volumetric visualization, the hepatologists

can have different views of the microvasculature.
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5.1.1 Image Acquisition

The specimen preparation of bile ducts included a technique, developed at the

Cincinnati Children’s Hospital (DIPAOLA et al., 2013), which is innovative in relation to

the mounting of the histologic sample for in situ staining in order to preserve the anatomic

structures. Image acquisition was conducted at Hospital de Clinicas de Porto Alegre

(HCPA-Brazil) using the confocal microscopy Leica TCS SP5. An example of a mouse

bile duct after the specimen preparation is shown in Figure 5.1. Table 5.1 illustrates the

information about the datasets obtained for each bile duct. The number of slices varies

depending on the bile duct size and the microscope settings.

Figure 5.1: An extrahepatic mouse bile duct after the clearing and staining process.

Source: The author.

Table 5.1: Size of Acquired Datasets from Extrahepatic Mice Bile Ducts.
Dataset Id Image size (pixels) # Slices

mouse1-day5 512x512 85
mouse2-day5 512x512 102
mouse3-day5 512x512 116
mouse2-day7 512x512 140
mouse3-day7 512x512 100
mouse4-day7 512x512 117

5.1.2 Anisotropic Diffusion in Confocal Microscopy Images

Anisotropic diffusion only affects parts where the gradient value is below a cer-

tain threshold. Therefore, the estimation of this parameter plays an important role in the

anisotropic diffusion process. Methods for estimating a suitable value for the k parameter

are useful in cases in which we have no idea about an appropriate value of the diffusion

coefficient, and we would like to perform noise reduction with low loss of details (VOCI
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et al., 2004). We compared the two approaches described in Section 2.2 to explore the

k estimation in our images: the first model proposed by Perona and Malik (PERONA;

MALIK, 1990) and a second model, proposed by Voci et al. (VOCI et al., 2004). Then,

we use this k values as the input parameter to calculate the anisotropic diffusion. We

calculated the k parameter in several slices from the same dataset. The parameter t that

represents the time in the anisotropic diffusion was experimentally established as ten itera-

tions. Figure 5.2 illustrates some results obtained with our approach, showing the volume

rendering of the original dataset and the resulting volume after the anisotropic diffusion.

The network of vessels surrounding the bile duct can be clearly observed.

For quantitative analyses, we calculated the Peak Signal-to-Noise Ratio (PSNR)

and the Mean Square Error (MSE) for comparing the enhanced images with the original

images. As for quality, the measured values of MSE should be small and PSNR should

be large. The PSNR and the MSE are defined by:

MSE =

∑r
i=1

∑c
j=1 | I(i, j)− Î(i, j) |2

r.c
(5.1)

where I(i, j) is the original image, Î(i, j) is the enhanced image, and r.c the size

of the image.

PSNR = 10 log10(
MAX2

I

MSE
) (5.2)

where MAXI =2n − 1 and n is the number of bits. Since the confocal images are

8-bits depth, n is set to 255.

Table 5.2 and Table 5.3 show the k values and the respective measures of MSE and

PSNR of the enhanced images.

After applying the anisotropic diffusion with both models, we verified that PSNR

values are very similar in the resulting images. In terms of image quality, this means that

the two models are adequate for enhancing our images.

For enhancing the whole confocal dataset using the two models presented in Sec-

tion 2.2, we calculated the average value of k considering all slices. The results for

the enhanced volume are shown in 5.2. As for qualitative analyses, we invited a senior

hepatologist to describe how he found the enhanced volume in comparison to the original

volume. According to the hepatologist, the resulting volumetric visualization solves some

problems associated with the original data such as noise and superposition of vessels. He

also commented that the microvasculature was clearly discernible, which gives a better
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Figure 5.2: Comparison of the anisotropic diffusion using the two models for estimating
the k parameter: (a) Original reconstructed volume, (b) Anisotropic filtering results using
Perona and Malik’s model and (c) Anisotropic filtering results using Voci et al.’s model.

(a) Original reconstructed volume.

(b) Anisotropic filtering results using Perona and
Malik’s model.

(c) Anisotropic filtering results using Voci et al.’s
model.

Source: The author.

idea of the 3D distribution of the vessels. This observation is really important because it

represents that our method allows hepatologists to evaluate morphological alterations in

the bile ducts.
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Table 5.2: k parameter according to Perona and Malik’s model and MSE, PSNR of the
enhanced images

mouse2-day7 k parameter MSE PSNR
Slice #1 131 25.0112 34.1494
Slice #10 139 25.7968 34.0151
Slice #20 139 25.9635 33.9871
Slice #30 138 26.9295 33.8285
Slice #43 137 29.4593 33.4385
Slice #50 155 30.9956 33.2177
Slice #60 156 32.7181 32.9829
Slice #70 145 34.3088 32.7767
Slice #80 138 34.8454 32.7093
Slice # 90 144 35.4471 32.6349
Slice #100 155 34.242 32.7852
Slice #110 137 31.7267 33.1165
Slice #120 147 27.1433 33.7941
Slice #130 141 22.3949 34.6293
Slice #140 144 18.1274 35.5474

Table 5.3: k parameter according to Voci et al.’s model and MSE, PSNR of the enhanced
images

mouse2-day7 k parameter MSE PSNR
Slice #1 243 25.0208 34.1477
Slice #10 240 25.8104 34.0128
Slice #20 242 25.9736 33.9854
Slice #30 242 26.9542 33.8245
Slice #43 236 29.4543 33.4393
Slice #50 238 30.9819 33.2197
Slice #60 223 32.7058 32.9845
Slice #70 124 34.2854 32.7797
Slice #80 123 34.8371 32.7103
Slice # 90 123 35.4506 32.6345
Slice #100 126 34.2397 32.7854
Slice #110 139 31.7235 33.1169
Slice #120 140 27.1388 33.7948
Slice # 130 159 22.4014 34.628
Slice #140 182 18.141 35.5441
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5.2 Extracting Relevant Structures from Confocal Microscopy Images

In our second study, we investigated the application of unsupervised machine

learning to extract relevant structures from confocal microscopy datasets representing

bile ducts. Our approach consists of pre-processing, clustering, and 3D visualization.

For clustering, we explore the density-based spatial clustering for applications with noise

(DBSCAN) algorithm, using gradient information for guiding the clustering. We obtained

a better visualization of the most prominent vessels and internal structures. We summa-

rize these results in our paper (BELTRAN et al., 2019), which is available in Appendix

B.

To the best of our knowledge, there is no reported application of this technique

in the study of data from hepatological samples. Our approach is based on adapting

the DBSCAN method for extracting structures from confocal images of bile ducts. The

main challenge is to find the appropriate similarity features between voxels that allow for

differentiating such structures.

The main contributions of this study are the use of gradient information as a feature

to guide the clustering process and the proposal of a specific pre-processing step that can

also be used in other applications involving confocal microscopy images.

5.2.1 Image Acquisition

The input datasets that we use in this study were acquired at the Cincinnati Chil-

dren’s Hospital (DIPAOLA et al., 2013). The mice bile duct was stained with two dif-

ferent fluorescent antibodies, α-tubulin and Cytokeratin CK, to mark different tissues.

The resulting dataset consists of two channels: the first one (red channel) represents the

microvasculature or blood vessels around the bile duct with (α-tubulin staining) (Figure

5.3a); the second one (green channel) represents the bile duct wall containing the peribil-

iary glands with CK staining (Figure 5.3b).

5.2.2 Discovering structures in bile ducts confocal images datasets

In hepatology research, the a priori labels (ground truth) on the pixels are not

available. Creating labels by hand is a hard task due to the complexity of the structures and
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Figure 5.3: View of a single slice from a bile duct dataset: (a) the red channel encodes the
microvasculature, while (b) the green one encodes the peribiliary glands. The dataset has
192 slices (512 x 512 image each) ≈ 50 millions of points.

(a) Red channel (b) Green channel (c) Superimposed channels

Source: the author

the high dimensionality of data. Thus, we formulate our problem of extracting structures

from these data sets as a clustering problem.

5.2.2.1 Pre-processing

We use two operations to normalize the image stacks and prepare the data for the

clustering process.

• Normalization: We apply contrast stretching to increase the visibility of the struc-

tures.

• Data Reduction: We remove all points with intensity 0 (background), for elimi-

nating unnecessary points and reducing the amount of data that will undergo the

clustering phase.

5.2.2.2 Density-Based Spatial Clustering

The spatial information, i.e., the coordinates (x,y,z) are a typical candidate clus-

tering feature. As for images, any kind of pixel (or voxel) attribute can be used as a

clustering feature. Confocal images have an inhomogeneous intensity inherent to the

fluorescent staining process (TORIWAKI; YOSHIDA, 2009), and the gradient was inves-

tigated as a more robust candidate feature. After experimenting with the intensity and

gradient values, we found out that the gradient was a richer source of information for

distinguishing the regions of interest. Then, we adopted the gradient magnitude to guide

the clustering process (BELTRAN et al., 2019).
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• Determining the parameters for 3D clustering: In the original DBSCAN algo-

rithm (ESTER et al., 1996), the key idea is that, for each point of a cluster, the

neighborhood defined by a given radius (eps) around it has to contain at least a

minimum number of points (minPts), i.e., the local density in the neighborhood has

to exceed some threshold. Based on some heuristics we determined the appropriate

eps parameter, and set minPts empirically. In the following, we give details about

the configuration of DBSCAN for clusterizing our dataset.

The eps-neighborhood of a point dictates the maximum distance (radius) between

two points for them to reside in the same neighborhood. A general heuristic to es-

tablish the value for eps is by computing the k-nearest neighbor distances. However,

in a recent application of DBSCAN (HUI; LIU, 2017), a simplified calculation for

eps was proposed. The author’s idea is that the coordinates of the data points in the

case of 3D image datasets are uniformly distributed voxels. Then, it is possible to

use the Cartesian coordinate system and Euclidean distance to obtain the neighbor-

hood. Values of eps in the interval [1,
√
2] includes the six first nearest neighbors,

values in [
√
2,
√
3] to include the twelve second nearest neighbors, and so on. Based

on this last approach, we fixed the eps to 1.7≈ (
√
3). This value means that the local

density function uses 18 nearest neighbors of a given point data in the clustering.

minPts denotes the minimum number of points located in an eps-neighborhood,

and is data dependent. If we select a low minPts value, we get more clusters from

noise. We have experimented minPts values from 50 to 300, and finally set it to 200

points for the green channel and 50 points for the red channel.

The density in a neighborhood is just the sum of the weights of the points inside the

neighborhood. By default, each data point has weights 1, so the density estimate

for the neighborhood is just the number of data points inside the neighborhood.

We can use the parameter weight to change the importance of points (HAHSLER;

PIEKENBROCK; DORAN, 2017). The weight is an optional parameter to perform

clustering based on a specific feature.

As described before, we have chosen the gradient magnitude as a feature to guide

the clustering. We follow the model for the weight parameter proposed by (HUI;

LIU, 2017). However, we use the gradient magnitude instead of intensity. We cal-

culate the gradient magnitude for every point of the dataset considering the x, y, and

z dimensions. Then, we take a specific value of gradient magnitude as a threshold.

We fixed the threshold empirically as 20 for the red and the green channel. Any
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data point with gradient magnitude less than the threshold will take the weight of 1,

while the data points with gradient magnitude greater than the threshold will have

their weights assigned to the difference

• DBSCAN applied to 3D data points using gradient information: We used the

DBSCAN R package (HAHSLER; PIEKENBROCK; DORAN, 2017) to perform

the clustering on the 3D data points. As mentioned before, we configured the eps

and minPts parameters and feed the algorithm with a list of data points containing

their x, y, and z coordinates and the weight obtained from the gradient information.

It is important to recall that background voxels are not considered in the clustering

phase.

In this way, the clustering method uses both information (gradient and spatial loca-

tion) to obtain at least the minPts data points for each cluster. The output is the list

of points labeled with the cluster identification of each point as well as basic num-

bers about the clusters detected. Then, we use the original volumetric dataset again,

and voxels belonging to the cluster of interest form a new volume that is passed to

the visualization module.

5.2.3 Results and Discussion

5.2.3.1 Microvasculature: Red Channel

Figure 5.4 shows 3D visualizations of selected regions in the dataset that contain

the microvasculature (red channel) of the bile duct. We obtained a total of 2478 clusters

from the clustering process in the red channel. Due to the large number of clusters de-

tected by DBSCAN, we summarize the results in the plot shown in Figure 5.4a, and use it

to select the clusters for 3D visualization. Figure 5.4b shows the original dataset rendered

with direct volume rendering.

We identified most of the points as belonging to clusters 0 and 1. The cluster 0 is

composed by 250,081 noise points, which can be discarded for visualization and analyses

purposes. In other words, cluster 0 contains all the points that do not satisfy the conditions

to belong to a cluster. Since clusters 1 to 2478 represent the detected objects, and cluster

1 is the largest one among them representing a connected region, it is the one that best

represents the microvasculature (Figure 5.4c). Figure 5.4a shows that the clusters 2 to

2478 contain a lower quantity of points, and so we can also consider these points as noise
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(Figure 5.4d).

Figure 5.4: 3D visualization of the microvasculature of a bile duct:(a) summarization of
clusters detected by DBSCAN (b) original volume (c) represent the most prominent ves-
sels extracted as cluster 1, and those shown in (d) are considered noise and were detected
as clusters 2 to 2478.

(a) Number of points detected per cluster.
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(b) Original Volume.

(c) Cluster 1. (d) Clusters 2 to 2478.

Source: the author

5.2.3.2 Peribiliary Glands (PBGs): Green Channel

In the case of the green channel, we obtained a total of 3,603 clusters (more clus-

ters than in the red channel). In this case DBSCAN detected 1,998,026 noise points.

Figure 5.5 shows the 3D visualization of data points belonging to clusters chosen among

the ones that were detected in the green channel dataset. As we did in the processing of
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the red channel, we summarized the DBSCAN result in a plot (Figure 5.5a) that allowed

us to analyze and select for visualization only the relevant clusters. Cluster 0 corresponds

to the noise points. For the other clusters, we find a behavior similar to the red channel:

cluster 1 is the most prominent one, representing a connected region containing the inter-

nal bile duct wall and the peribiliary glands. The other clusters, i.e., clusters 2 to 3,603,

contain a lower quantity of points, and we can also consider them as noise. While Figure

5.5b shows the original volume, cluster 1 representing the internal bile duct wall and the

PBGs are presented in Figure 5.5c. Figure 5.5d present the clusters [2−3603], considered

as noise.

5.2.3.3 Discussion

When comparing our work to others that adapt DBSCAN for their application

domain, we found different approaches. For example, Celebi et al. used the original

DBSCAN method for segmenting 2D digital images of skin lesions (CELEBI; ASLAN-

DOGAN; BERGSTRESSER, 2005), while Tran et al. presented a version of DBSCAN

to process 3D binary images, using the coordinates of the original image data and solving

a known instability issue of the original DBSCAN in classifying border points of adjacent

objects (TRAN et al., 2012). Our method is not limited to binary images and also uses the

original data points’ coordinates. Regarding the use of additional features to guide clus-

tering with DBSCAN, only two works adopt this approach. Hui and collaborators (HUI;

LIU, 2017; HUI; LIU; PARK, 2018) use the intensity value as a feature for selecting the

points during the clustering. In our work, besides the spatial position and the size of the

neighborhood, we use the gradient information to select the points during the clustering.



56

Figure 5.5: 3D visualization of the bile duct wall and PBGs: (a) summarization of clusters
detected by DBSCAN (b) original volume (c) represent mostly the PBGs identified as
cluster 1, and those shown in (d) are also considered noise and were detected as clusters
2 to 3,603.

(a) Number of points detected per cluster.
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(c) Cluster 1. (d) Clusters 2 to 3603.

Source: the author
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6 CHARACTERIZATION OF BILE DUCTS STRUCTURES

In this chapter, we report our last set of analyses aimed at the structural charac-

terization of bile ducts based on sets of confocal microscopy images. Firstly, we report

the fractal dimension analysis that we performed with the original datasets (Section 6.1).

Then, in Section 6.2, we present a similar analysis of the structures isolated by the pre-

viously described segmentation method (Section 5.2). Finally, we explore the multiscale

fractal dimension approach (section 6.3), which eventually provided us with initial evi-

dence for the fractal characterization of bile ducts structures.

6.1 Fractal Dimension Analysis of Confocal Images Datasets

From our very first discussions with hepatologists, we learned that non-normal

bile ducts presented severe changes in their relevant structures, i.e., microvasculature,

duct wall, and peribiliary glands. Then, we hypothesized that shape analysis methods

could help in the characterization of normal and non-normal bile ducts.

From the existing shape analysis methods (COSTA; CESAR, 2000) and also based

on recent literature (REICHERT et al., 2017), we chose to explore 3D fractal dimension

analysis methods to characterize bile ducts structures.

Fractal dimension can assume non-integer values related to the complexity of a

fractal object (i.e., a non-Euclidean geometry) (BACKES et al., 2010). This property

enables us to quantify objects and shapes in terms of space occupation (COSTA; CE-

SAR, 2000). Several methods are described in the literature to calculate the fractal di-

mension. However, according to the study by Backes et al. (BACKES; BRUNO, 2005),

the Bouligand-Minkowski method presents the most accurate results. The Bouligand-

Minkowski method (TRICOT, 1994; COSTA; CESAR, 2000) has shown to be very sen-

sitive to structural changes of the object (PLOTZE et al., 2005; BRUNO et al., 2008;

BACKES et al., 2010; REICHERT et al., 2017; BACKES, 2017), which is likely to hap-

pen in non-normal bile ducts.



58

6.1.1 Materials and Methods

In the first analysis we report herein, we defined the pipeline shown in Figure 6.1 to

perform fractal dimension analysis on the original confocal datasets, i.e., non-segmented

volumetric datasets. Although we say that the datasets are not segmented, we applied

a threshold for removing the background voxels that could impact the fractal dimension

computation.

The pipeline for the first fractal dimension analysis is described as follows:

Figure 6.1: Overview of the data flow pipeline for our fractal dimension study using the
original datasets.

Split Channels

Confocal Dataset

Red Channel

Thresholding

Export x,y,z coordinates

Fractal Dimension for
16 different radius r

Green Channel

Thresholding

Export x,y,z coordinates

Fractal Dimension for
16 different radius r

Source: The author.

Table 6.1: Datasets for Fractal Dimension Study
Dataset Id From size (pixels) Threshold for Red Channel Threshold for Green Channel

mouse1-day5 POA 512x512x85 30-255 30-255
mouse2-day5 POA 512x512x102 30-255 30-255
mouse3-day5 POA 512x512x116 30-255 30-255
mouse2-day7 POA 512x512x140 30-255 30-255
mouse3-day7 POA 512x512x100 30-255 30-255
mouse4-day7 POA 512x512x117 30-255 30-255

Day9CKa-tubulin USA 512x512x192 100-255 46-255
Day9CKa-tubulin0 USA 512x512x165 100-255 46-255
Day9CKa-tubulin1 USA 512x512x232 100-255 46-255
Day9CKa-tubulin2 USA 512x512x171 100-255 46-255
Day9CKa-tubulin3 USA 512x512x33 100-255 46-255
Day9CKa-tubulin4 USA 512x512x55 100-255 46-255
Day9CKa-tubulin5 USA 512x512x50 100-255 46-255
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• Datasets:

We use two datasets groups for our experiments. The first dataset group is com-

posed of six confocal datasets acquired in the Hospital de Clinicas de Porto Alegre.

This group is described in Section 5.1.1. The second dataset group is composed

of seven confocal datasets acquired in the Cincinnati Children’s Hospital, as we

described in Section 5.2.1. Although different confocal microscopes were used for

image acquisition, both datasets are composed of two fluorescence channels con-

taining bile duct structures. We summarize the datasets in Table 6.1. We refer to

POA and USA the datasets acquired in Porto Alegre and Cincinnati, respectively.

• Thresholding:

For each dataset, images are binarized on several threshold levels. Since we have

two fluorescence channels that are labeling juxtaposed microstructures, we split

each dataset in Red and Green channels. The threshold criterion was determined by

experimental procedures. We report these levels in Table 6.1.

• Export x,y,z coordinates: Resulting binarized datasets were exported as x,y,z coor-

dinates for subsequent fractal dimension computation.

• Fractal Dimension FD:

The fractal dimension was computed using the Bouligand-Minkowski method (BACKES

et al., 2010) (Equation 2.7). Section 2.5 describes the method to calculate the fractal

dimension on 3D shapes.

6.1.2 Results and Analysis

Fractal Dimension FD was computed for each channel, for each bile duct dataset,

using Equation 2.7 with 16 different radius (5-20). Thus, for each fluorescence channel,

we obtain 16 fractal dimension values for each bile duct image dataset. We will refer

to this as ’bile-duct FD descriptor’. In this first experiment, we computed the fractal

dimension of the original datasets; the only preprocessing step was the thresholding.

Tables 6.2 and 6.3 summarize the results, presenting the bile-duct FD descriptors

for all bile duct images datasets. These ’bile-duct FD descriptors’ correspond to the rows

of Tables 6.2 and 6.3. Spheres with radius larger than 20 were overlapping too much,

and the results could compromise the characterization power we need from the fractal

dimension.
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To empirically assess the fractal dimension values presented in Tables 6.2 and 6.3,

we plot all fractal dimension values (the bile-duct FD descriptors) for each bile duct as

curves. These results also were analyzed with statistical measures such as mean, standard

deviation (SD), distribution, and variance.

6.1.2.1 Creating profiles of bile ducts from Fractal Dimensions computed from the origi-

nal datasets

We investigated the fractal dimensions computed for thirteen datasets (seven datasets

from the USA and six datasets from the POA group). Figure 6.2 summarizes the results.

Fractal dimensions values computed from each bile duct dataset are depicted as the fractal

dimension FD(r) plotted against the dilation radius [r5 − r20]. Each curve corresponds

to one bile-duct FD descriptor or the ’FD profile’ for each bile duct.

Figure 6.2a represents the red channel. This plot shows similar profiles for ten

datasets. The other three datasets have a different profile considering both the range of

FD values and curve derivative. more spaced at the bottom. These three datasets are from

the USA group. Figure 6.2b represents the green channel. In this case, we obtained a

"spaghetti" plot with many lines displayed together. Such a plot is hard to read, and thus

provides little insight about the data.

Figure 6.2: Fractal Dimension per bile duct computed from the original datasets: a) Red
Channel (Table 6.2) b) Green Channel (Table 6.3)

(a) Red Fluorescence Channel
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We also calculated basic statistical measures for each bile duct FD descriptor from

Tables 6.2 and 6.3. Figure 6.3 shows the central tendency and variability of fractal dimen-

sions within each bile-duct FD descriptor. The bars represent the fractal dimension mean

for each bile duct, and the vertical error bars represent the corresponding SD.
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Figure 6.3: Fractal Dimension mean and standard deviation computed for the original
datasets: a) Red Channel (Table 6.2) b) Green Channel (Table 6.3).

(a) Red Fluorescence Channel.
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(b) Green Fluorescence Channel.
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Source: The author.

We noticed that for the red channel (Figure 6.3a), the last three bile-duct FD de-

scriptors have lower mean values, and the variance within each descriptor is larger. These

three bile ducts are the same ones that have a different profile in Figure 6.2a. We verify

that for these specific datasets, a higher magnification was used during the image acqui-

sition. Then, these datasets contain only a magnified portion of the same bile duct. This

fact is not necessarily an acquisition problem and could be a decision of the medical team

to get more details from specific bile duct regions.

Visual inspection of results for the green channel (Figure 6.3b) shows that the cen-

tral tendency within each bile-duct FD descriptor appears to be similar, but the variation

seems to be different.

A Shapiro-Wilk test for normality showed that the distributions of the fractal di-

mensions is not normal in three bile-duct FD descriptors, for the red channel, and in two

descriptors, for the green channel. Then, we performed Friedman tests for comparing all

the bile-duct FD descriptors, in each channel.

For the red channel, we found significant differences among the bile-duct FD de-

scriptors (Chi-squared=187.6, p<0.0001). Dunn’s Multiple Comparison test showed that

the six datasets from POA do not show significant differences among them, but they are

significantly different from the USA datasets. As for the USA datasets, the three datasets

that have a separate FD profile (see Figure 6.2a) show significant differences from the

other four ones.

Regarding the green channel, Friedman test also showed that there are significant

differences among the bile-duct FD descriptors (Chi-squared=164.5, p<0.0001). Dunn’s
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post hoc test showed significant differences among several datasets, as can be seen from

the FD profiles curves in Figure 6.2b. Only the three datasets that have separated FD

profiles are similar.

6.1.2.2 Finding the best radius values for computing the Fractal Dimension of bile ducts

As seen in the previous section, the bile-duct FD descriptor is actually a feature

vector composed of fractal dimensions computed from 16 radius values. As part of a more

detailed analysis, we aimed to verify which radius value could be used for computing a

single fractal dimension value for each bile duct images dataset. We created box-plots

of the fractal dimensions separating the two groups (POA-USA) to compare the central

tendency and fractal dimension distribution within each group for each radius value. That

is, for this analysis we used the ’radius-based FD datasets’, since we group the FDs com-

puted for each radius value, for each bile duct image datasets. These ’radius-based FD

datasets’ correspond to the columns of Tables 6.2 and 6.3. We plot the results for each

channel (Red, Green), for each group (POA-USA), in Figures 6.4 and 6.5, respectively.

In the red channel, the median for POA datasets is similar for all radius, and we

can see that the fractal dimension distribution is more concentrated with the increase of

the radius (Figure 6.4a). Tested for normality using Shapiro-Wilk, this group of radius-

based FD datasets shows normal distribution. An ANOVA (Analysis of variance) test

resulted that there are statistically significant differences (F(5,15)=23.38, p=0.0034). A

pos-hoc Tukey’s multiple comparison test shows that there are differences between the

FDs computed from the radius larger than 7 units.

As for the USA group, the behavior is different. The values are more sparse with

the increase of the radius. However, the median is similar for all radius values (Fig-

ure 6.4b). Similar analysis (Shapiro-Wilk followed by ANOVA) showed that there are no

significant differences between the radius-based FD datasets (F(6,15)=457.2, p<0.0001).

We verified the variance for each radius value and found that, for POA datasets,

the radius r = r19 shows the smallest variance of the fractal dimension (0.0042, Fig-

ure 6.4c). As for the USA datasets, radius-based fractal dataset for r5 has the lowest

variance (0.0308, Figure 6.4d).
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Figure 6.4: Fractal Dimension analysis for the Red channel (Table 6.2): a) FD Distribu-
tion in POA Datasets: there are statistically significant differences only between the FDs
computed from the radius larger than 7 units; b) FD Distribution in USA Datasets: there
are no significant differences among the datasets; c) FD Variance for POA Datasets: the
radius r19 shows the lowest variance of fractal dimension (0.0042). d) FD Variance for
USA Datasets: the radius r = 5 shows the lowest variance in the fractal dimension dis-
tribution (0.0308). e) FD Distribution for all Datasets: there are statistically significant
differences between the FDs computed from radius that differ for more than 6 units; f)
FD Variance for all datasets: for all the sixteen radius values, the first radius r = r5 has
the smallest variance of the fractal dimension (0.0452).

(a) FD Distribution for POA Datasets.
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(b) FD Distribution for USA Datasets.
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(c) FD Variance for POA Datasets.
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(d) FD Variance for USA Datasets.
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(e) FD Distribution for all Datasets.
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(f) FD Variance for all Datasets.

0.05

0.06

0.07

0.08

0.09

r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

Raius(r)

F
D

 V
ar

ia
nc

e

Source: The author.
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We analyzed the distributions within the radius-based FD datasets grouping all

datasets (POA and USA) for the red channel (Figure 6.4e). A Shapiro-Wilk test for nor-

mality showed that the distributions of the fractal dimensions are not normal within the

grouped datasets. A Friedman test comparing fractal dimensions obtained from all ra-

dius showed that there are significant differences among the FD computed for different

radius values (Friedman statistic, Chi-squared=140.3, p<0.0001). Dunn’s post hoc test

pointed out that there are no significant differences between fractal dimensions computed

for radius with a difference up to 6 units.

When we verify the variance of fractal dimensions computed from radius-based

FD datasets grouping all datasets (POA and USA, Figure 6.4f) for the red channel, we

find the radius r5 shows the lowest variance.

In the green channel, for POA datasets, it is not easy to see a pattern for the dis-

tribution due to the outliers (Figure 6.5a). On the other hand, the FD distribution in USA

Datasets is more sparse with the increase of the radius, and the median is similar (Fig-

ure 6.5b). Shapiro-Wilk tests for normality resulted that both groups of radius-based FD

datasets have normal distributions. ANOVA performed with POA datasets showed that

there are significant differences within the group (F(5,15)=43.08, p=0.0010). A pos-hoc

Tukey’s multiple comparison test shows that there are differences between the FDs com-

puted from the radius larger than 10 units. ANOVA for USA datasets also showed that

there are statistically significant differences within the group (F(6,15)=6.17, p=0.0445).

The pos-hoc Tukey’s multiple comparison test shows that there are differences only for

FDs computed from radius larger than 14 units.

We plot the variance for each radius in the two groups (POA-USA) and verified

that the radius r7 has the smallest variance of the fractal dimension for POA datasets

(0.0080, Figure 6.5c), and for USA datasets, r5 shows the smallest variance (0.0180,

Figure 6.5d).

We also analyzed the distributions within the radius-based FD datasets grouping

all datasets (POA and USA) for the green channel (Figure 6.5e). As occurred with the

red channel, the distributions are not normal. The Friedman test showed significant dif-

ferences (Chi-squared=129.0, p<0.0001), and Dunn’s post hoc test pointed out that there

are no significant differences between fractal dimensions computed for radius with a dif-

ference up to 10 units.

When we verify the variance of fractal dimensions computed from radius-based

FD datasets grouping all datasets (POA and USA, Figure 6.5f) for the green channel, we
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find that the radius r5 shows the lowest variance.
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Figure 6.5: Fractal Dimension analysis for the Green channel (Table 6.3): a) FD Distri-
bution for POA Datasets: there are statistically significant differences between the FDs
computed from radius values larger than 5 units. b) FD Distribution for USA Datasets:
there are statistically significant differences between the FDs computed from radius values
larger than 14 units. c) FD Variance for POA Datasets: the radius r = r7 has the lowest
variance of the fractal dimension (0.0080). d) FD Variance for USA Datasets: the radius
r = r5 has the lowest variance of the fractal dimension (0.0180). e) FD Distribution
for all Datasets: statistically significant differences appear between fractal dimensions
computed for radius with a difference larger than 10 units. f) FD Variance: for all the six-
teen radius values, the radius (r = r5) has the smallest variance of the fractal dimension
(0.0177).

(a) FD Distribution for POA Datasets.
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(b) FD Distribution for USA Datasets.
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(c) FD Variance for POA Datasets.
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(d) FD Variance for USA Datasets.
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(e) FD Distribution for all Datasets.
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(f) FD Variance for all Datasets.
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Source: The author.
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6.1.3 Final Comments

The results obtained with these analyses showed that the fractal dimension mean

(computed from the FD for each radius, r = 5 − 20) do not represent the similarity we

need for characterizing normal bile ducts. Moreover, we also found that FDs computed

from some radius values show significant differences.

We use the variance as a statistical measure to assess the dispersion of the fractal

dimension results. So, we took the radius values where the radius-based FDs show the

lowest variance.

Figures 6.4c-d and 6.5c-d show the variance of the fractal dimension for each ra-

dius value for the POA and USA datasets, for the red and green channels, respectively.

Analyses within specific groups indicated some differences in the fractal dimension dis-

tribution between the POA and USA datasets. In some cases, the first radius (r = 5) has

the lowest variance in the fractal dimension distribution. For other cases, we found other

radius values with the lowest variance (r = 7, r = 19). Then, we can not assume that

there is a single radius value with the fractal dimension distribution that best represents

the data. A possible explanation for this discrepancy is the input data and the fact that we

use the original data, and the only preprocessing step was the thresholding. That could be

a problem as a dataset may not contain a representative view of all relevant structures for

the fractal dimension computation.

As a final analysis with these datasets, we compared the two groups (POA and

USA) using the radius-based FD datasets with the lowest variance. For the red channel,

radius r19 and r5 showed the lowest variances for POA and USA datasets, respectively.

Distributions tested as not normal. Significant differences were found between the two

groups derived from an unpaired t-test with Welch’correction (t=0.02911, p < 0.05). As

for the green channel, radius r5 showed the lowest variance, and significant differences

were also found (t-test = 0.1101, p < 0.05).
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6.2 Characterization of Bile Ducts Based on Fractal Dimensions Computed from the

most Representative Clusters

In this second analysis, we modified the pipeline to include a new step to perform

clustering based on the DBSCAN method before fractal dimension computation. With

this pipeline modification, we aim to improve the input data for the fractal dimension

method. Then, we calculate the fractal dimension from the most representative cluster

for each dataset. As will be noticed, we have designed the fractal dimensions analyses

of these new datasets based on conclusions from the previous analyses, described in Sec-

tion 6.1.

Figure 6.6: Overview of the data flow pipeline for our fractal dimension study over the
most representative cluster.
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Source: The author.
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6.2.1 Material and Methods

We use the same datasets described in Table 6.1. In this way, we can compare the

new fractal dimension results with the previous ones reported in Section 6.1. Figure 6.6

shows our data flow pipeline for fractal dimension analyses using DBSCAN clustering.

The clusters were obtained as described in Section 5.2. Since DBSCAN results several

clusters, we then explore them to select the cluster that best contains the structure of

interest.

From the mathematical definition, the fractal dimension is invariant to scale. How-

ever, the Bouligand-Minkowski method is based on the idea of a volume of influence be-

ing dilated over the object. Then, two identical objects, but with different sizes, tend to

have different fractal dimensions because their initial volume is different.

In Section 6.1, we noticed that we have some datasets with different magnification.

Then, for the current analyses, we apply a normalization step to avoid that datasets with

different magnification sizes, result in inconsistent fractal dimensions.

The normalization is applied to the most representative clusters considering the

longest distance between any two points in the dataset. After the normalization step, all

fractal dimensions’ values are recalculated, resulting Tables 6.4 and 6.5.

6.2.2 Results and Analysis

For each dataset, we extract the most representative cluster. The inspection of

the several clusters produced by DBSCAN showed that, in most cases, cluster number

1 contains the segmented structure, while in other cases, we had to explore the clusters

until the cluster that contains the structure of interest was found. As in the previous

analyses, the Fractal Dimension descriptor FD was computed for the most representative

cluster using Equation 2.7 with 16 different radius, for each bile duct. Tables 6.4 and 6.5

summarize the results.



71

Ta
bl

e
6.

4:
Fr

ac
ta

lD
im

en
si

on
co

m
pu

te
d

fr
om

th
e

M
os

tR
ep

re
se

nt
at

iv
e

C
lu

st
er

-(
R

ed
C

ha
nn

el
)

D
at

as
et

Id
Fr

om
E

xt
ra

ct
ed

C
lu

st
er

Fr
ac

ta
lD

im
en

si
on

r5
r6

r7
r8

r9
r1

0
r1

1
r1

2
r1

3
r1

4
r1

5
r1

6
r1

7
r1

8
r1

9
r2

0

m
ou

se
1-

da
y5

PO
A

2
2.
68
62

2.
67
10

2.
65
80

2.
64
69

2.
63
62

2.
62
72

2.
61
87

2.
61
04

2.
60
22

2.
59
42

2.
58
65

2.
57
91

2.
57
13

2.
56
36

2.
55
60

2.
54
86

m
ou

se
2-

da
y5

PO
A

1
2.
55
54

2.
53
96

2.
52
66

2.
51
48

2.
50
25

2.
49
19

2.
48
17

2.
47
17

2.
46
20

2.
45
27

2.
44
40

2.
43
57

2.
42
74

2.
41
93

2.
41
17

2.
40
44

m
ou

se
3-

da
y5

PO
A

1
2.
54
72

2.
51
59

2.
48
91

2.
46
59

2.
44
29

2.
42
35

2.
40
59

2.
38
93

2.
37
40

2.
35
98

2.
34
71

2.
33
57

2.
32
47

2.
31
46

2.
30
54

2.
29
69

m
ou

se
2-

da
y7

PO
A

1
2.
65
32

2.
64
49

2.
63
89

2.
63
35

2.
62
78

2.
62
25

2.
61
70

2.
61
13

2.
60
53

2.
59
91

2.
59
29

2.
58
67

2.
58
02

2.
57
37

2.
56
74

2.
56
12

m
ou

se
3-

da
y7

PO
A

1
2.
60
76

2.
58
06

2.
55
67

2.
53
52

2.
51
30

2.
49
36

2.
47
52

2.
45
72

2.
43
99

2.
42
31

2.
40
73

2.
39
24

2.
37
71

2.
36
23

2.
34
84

2.
33
51

m
ou

se
4-

da
y7

PO
A

1
2.
67
93

2.
66
33

2.
64
92

2.
63
63

2.
62
31

2.
61
14

2.
60
02

2.
58
91

2.
57
83

2.
56
78

2.
55
81

2.
54
88

2.
53
94

2.
53
03

2.
52
17

2.
51
35

D
ay

9C
K

a-
tu

bu
lin

U
SA

1
2.
50
20

2.
47
48

2.
45
29

2.
43
40

2.
41
50

2.
39
89

2.
38
39

2.
36
95

2.
35
58

2.
34
28

2.
33
09

2.
31
98

2.
30
88

2.
29
83

2.
28
87

2.
27
99

D
ay

9C
K

a-
tu

bu
lin

0
U

SA
2

2.
34
53

2.
30
77

2.
27
83

2.
25
33

2.
22
89

2.
20
90

2.
19
12

2.
17
51

2.
16
07

2.
14
78

2.
13
67

2.
12
69

2.
11
77

2.
10
93

2.
10
20

2.
09
54

D
ay

9C
K

a-
tu

bu
lin

1
U

SA
1

2.
55
92

2.
53
74

2.
51
99

2.
50
45

2.
48
89

2.
47
57

2.
46
36

2.
45
21

2.
44
15

2.
43
18

2.
42
34

2.
41
60

2.
40
91

2.
40
29

2.
39
75

2.
39
25

D
ay

9C
K

a-
tu

bu
lin

2
U

SA
1

2.
51
71

2.
49
47

2.
47
70

2.
46
18

2.
44
69

2.
43
46

2.
42
34

2.
41
26

2.
40
25

2.
39
29

2.
38
39

2.
37
56

2.
36
75

2.
36
00

2.
35
33

2.
34
75

D
ay

9C
K

a-
tu

bu
lin

3
U

SA
39

2.
36
21

2.
31
79

2.
27
96

2.
24
62

2.
21
32

2.
18
51

2.
15
94

2.
13
50

2.
11
21

2.
09
06

2.
07
11

2.
05
31

2.
03
53

2.
01
85

2.
00
30

1.
98
86

D
ay

9C
K

a-
tu

bu
lin

4
U

SA
39

2.
52
57

2.
49
68

2.
46
91

2.
44
38

2.
41
81

2.
39
58

2.
37
50

2.
35
49

2.
33
57

2.
31
75

2.
30
07

2.
28
51

2.
26
95

2.
25
47

2.
24
12

2.
22
87

D
ay

9C
K

a-
tu

bu
lin

5
U

SA
1

2.
35
94

2.
32
51

2.
29
47

2.
26
90

2.
24
63

2.
22
88

2.
21
41

2.
20
18

2.
19
18

2.
18
41

2.
17
87

2.
17
50

2.
17
27

2.
17
14

2.
17
08

2.
17
06

Ta
bl

e
6.

5:
Fr

ac
ta

lD
im

en
si

on
co

m
pu

te
d

fr
om

th
e

M
os

tR
ep

re
se

nt
at

iv
e

C
lu

st
er

-(
G

re
en

C
ha

nn
el

)

D
at

as
et

Id
Fr

om
E

xt
ra

ct
ed

C
lu

st
er

Fr
ac

ta
lD

im
en

si
on

r5
r6

r7
r8

r9
r1

0
r1

1
r1

2
r1

3
r1

4
r1

5
r1

6
r1

7
r1

8
r1

9
r2

0

m
ou

se
1-

da
y5

PO
A

3
2.
67
08

2.
64
39

2.
61
93

2.
59
70

2.
57
43

2.
55
45

2.
53
60

2.
51
81

2.
50
10

2.
48
47

2.
46
96

2.
45
55

2.
44
13

2.
42
78

2.
41
51

2.
40
32

m
ou

se
2-

da
y5

PO
A

6
2.
71
19

2.
68
88

2.
66
79

2.
64
92

2.
62
99

2.
61
31

2.
59
75

2.
58
23

2.
56
79

2.
55
43

2.
54
20

2.
53
04

2.
51
88

2.
50
76

2.
49
71

2.
48
71

m
ou

se
3-

da
y5

PO
A

4
2.
68
54

2.
68
10

2.
67
42

2.
66
61

2.
65
63

2.
64
66

2.
63
65

2.
62
59

2.
61
52

2.
60
44

2.
59
39

2.
58
36

2.
57
29

2.
56
22

2.
55
18

2.
54
17

m
ou

se
2-

da
y7

PO
A

1
2.
71
70

2.
69
60

2.
67
72

2.
66
00

2.
64
22

2.
62
67

2.
61
22

2.
59
80

2.
58
45

2.
57
14

2.
55
94

2.
54
80

2.
53
65

2.
52
54

2.
51
50

2.
50
52

m
ou

se
3-

da
y7

PO
A

1
2.
72
12

2.
69
66

2.
67
38

2.
65
28

2.
63
06

2.
61
08

2.
59
20

2.
57
33

2.
55
53

2.
53
77

2.
52
13

2.
50
57

2.
48
98

2.
47
44

2.
45
98

2.
44
59

m
ou

se
4-

da
y7

PO
A

1
2.
65
35

2.
62
65

2.
60
23

2.
58
09

2.
55
93

2.
54
10

2.
52
42

2.
50
83

2.
49
33

2.
47
91

2.
46
61

2.
45
39

2.
44
16

2.
42
98

2.
41
88

2.
40
84

D
ay

9C
K

a-
tu

bu
lin

U
SA

1
2.
57
29

2.
54
18

2.
51
63

2.
49
43

2.
47
25

2.
45
43

2.
43
78

2.
42
23

2.
40
80

2.
39
46

2.
38
23

2.
37
09

2.
35
94

2.
34
82

2.
33
76

2.
32
74

D
ay

9C
K

a-
tu

bu
lin

0
U

SA
1

2.
55
70

2.
53
17

2.
50
90

2.
48
84

2.
46
71

2.
44
89

2.
43
20

2.
41
58

2.
40
06

2.
38
61

2.
37
27

2.
36
02

2.
34
75

2.
33
52

2.
32
37

2.
31
27

D
ay

9C
K

a-
tu

bu
lin

1
U

SA
1

2.
66
12

2.
63
98

2.
62
33

2.
60
98

2.
59
73

2.
58
72

2.
57
81

2.
56
96

2.
56
15

2.
55
37

2.
54
64

2.
53
92

2.
53
19

2.
52
45

2.
51
73

2.
51
02

D
ay

9C
K

a-
tu

bu
lin

2
U

SA
1

2.
57
59

2.
54
40

2.
51
83

2.
49
69

2.
47
63

2.
45
95

2.
44
43

2.
43
00

2.
41
67

2.
40
41

2.
39
24

2.
38
14

2.
37
01

2.
35
91

2.
34
86

2.
33
83

D
ay

9C
K

a-
tu

bu
lin

3
U

SA
1

2.
48
73

2.
44
38

2.
40
52

2.
37
17

2.
34
03

2.
31
57

2.
29
50

2.
27
67

2.
26
05

2.
24
57

2.
23
24

2.
22
01

2.
20
77

2.
19
58

2.
18
45

2.
17
36

D
ay

9C
K

a-
tu

bu
lin

4
U

SA
1

2.
50
28

2.
46
42

2.
43
04

2.
40
12

2.
37
27

2.
34
89

2.
32
77

2.
30
77

2.
28
93

2.
27
22

2.
25
67

2.
24
24

2.
22
82

2.
21
48

2.
20
23

2.
19
06

D
ay

9C
K

a-
tu

bu
lin

5
U

SA
1

2.
49
53

2.
46
54

2.
43
71

2.
41
09

2.
38
40

2.
36
05

2.
33
87

2.
31
76

2.
29
75

2.
27
84

2.
26
07

2.
24
42

2.
22
75

2.
21
15

2.
19
66

2.
18
25



72

To empirically assess the results presented in Tables 6.4 and 6.5, we plot all fractal

dimension values (the ’bile-duct FD descriptors’) for each bile duct, for each channel, as

curves (Figure 6.7). We also present statistical measures such as mean, SD, distribution,

and variance for these FD values.

6.2.2.1 Creating Profiles of Bile Ducts based on Fractal Dimensions computed from the

most representative clusters

Similarly to the analysis we reported in Section 6.1, we examined the fractal di-

mensions computed from thirteen datasets (six datasets from the POA and seven datasets

from the USA group). Figure 6.7 summarizes the results for all bile ducts datasets. Bile

duct profiles are depicted as curves, relating the fractal dimension FD(r) to each dilation

radius [r5−r20]. Each curve corresponds to the FD descriptor of a bile duct. Figures 6.7a

and 6.7b present the red and the green channels, respectively. Comparing with previous

results shown in Figure 6.2, we can notice that the new curves show similar profiles for

all bile ducts. This pattern is similar for the two fluorescence channels.

Figure 6.7: Fractal Dimension profiles for each bile duct computed from the most repre-
sentative cluster: a)Red Channel (Table 6.4) b)Green Channel (Table 6.5).

(a) Red Fluorescence Channel.
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We also calculated the mean FD and SD for each bile duct FD dataset (i.e., the

mean value and SD for each row in Tables 6.4 and 6.5) and plotted the results, as can be

seen in Figure 6.8.

From the analyses performed with the original datasets and reported in Section 6.1,

we learned that radius values with the lowest FD variance could be used for characterizing

similarity between bile ducts. So, we decided to proceed with the assessment of the

variances of radius-based FD datasets, for both the red and green channels, and POA and
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USA datasets.

Figure 6.8: Fractal Dimension Mean and Standard Deviation of each bile duct FD dataset
computed from the Most Representative Cluster: a)Red Channel (Table 6.4) b)Green
Channel (Table 6.5).

(a) Red Fluorescence Channel.
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Source: The author.

6.2.2.2 Finding the best radius values for computing the Fractal Dimension of bile ducts

As we did for the original datasets, we analyzed the radius-based FDs (the columns

of Tables 6.4 and 6.5), to find the radius values that would give the most representative FD

for each bile duct. Figures 6.9 and 6.10 summarize the distribution of the radius-based FD

datasets for each fluorescence channel. These plots are useful to observe the distribution

of the fractal dimension within each radius.

Comparing Figures 6.9 and 6.10 with previous results reported in Figures 6.4 and

6.5), one notices that the distributions of FDs computed from the representative clusters,

and normalized, show similar trends to the ones computed from the original datasets. The

same pattern was found when we analyze both groups together, POA and USA. These

patterns are related to the variance of the radius-based FD datasets.

We use the variance as a statistical measure to understand the dispersion of the

fractal dimension over the most representative clusters. We noticed that the first radius

value (r = 5) represents the lowest variation in the fractal dimension distribution (Figures

6.9f and 6.10f). As an interesting result, we can see that the variance has the same be-

havior in the two fluorescence channels. If we compute FDs for the specific groups (POA

and USA datasets), radius-based FDs for r = 5 also have the same pattern.

These analyses indicated that the first radius values show the lowest variance of

the fractal dimension in all datasets. Then, we can assume that the radius with the lowest
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variance is the radius with the fractal dimension distribution that best represents the data.

Then, this value (r = 5) is chosen for the subsequent statistical tests.

Figure 6.9: Fractal Dimension Analysis of the Red channel datasets (Table 6.4): a) FD
Distribution for POA Datasets. b) FD Distribution for USA Datasets c) FD Variance for
POA Datasets. d) FD Variance for USA Datasets e) FD Distribution for all Datasets. f)
FD Variance for all Datasets: radius r5 has the smallest variance among all.

(a) FD Distribution for POA Datasets.
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(b) FD Distribution for USA Datasets.

r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

2.
0

2.
1

2.
2

2.
3

2.
4

2.
5

2.
6

2.
7

Radius(r)

F
D

(r
)

(c) FD Variance for POA Datasets.
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(d) FD Variance for USA Datasets.
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(e) FD Distribution for all Datasets.
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Figure 6.10: Fractal Dimension Analysis of the Green Channel (Table 6.5): a) FD Distri-
bution for POA Datasets. b) FD Distribution for USA Datasets. c) FD Variance for POA
Datasets. d) FD Variance for USA Datasets. e) FD Distribution for all Datasets. f) FD
Variance for all Datasets: radius r5 has the smallest variance among all.

(a) FD Distribution for POA Datasets.
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(b) FD Distribution for USA Datasets.
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(c) FD Variance for POA Datasets.
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(d) FD Variance for USA Datasets.
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(e) FD Distribution for all Datasets.
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To support our decision regarding the choice between the Fractal Dimensions com-

puted from the original datasets and the ones computed from the most representative clus-

ters, we performed a comparison between both results.

We compared the radius-based FD datasets for r5 from Table 6.2 with the corre-
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sponding ones from Table 6.4, for the red channel. We did the same for the ’radius-5-

based’ FD datasets from Table 6.3 with those from Table 6.5, for the green channel.

Shapiro-Wilk test for normality showed that the distributions of the fractal dimen-

sions are normal for r = 5, in both channels and all four tables. Then, we performed two

paired t-tests.

For the red channel, t-test showed that there are no significant differences among

the radius-based FD descriptors for the original datasets and the most representative clus-

ters (Paired t-test = 0.2393, p < 0.05). Regarding the green channel, t-test also showed that

there are no significant differences among the radius-based FD descriptors of the original

datasets and the most representative clusters (Paired t-test = 0.2084, p < 0.05).

Based on these statistical criteria, we can select any of the two radius-based FD

datasets for quantification (either the original datasets or the most representative clusters).

Since the most representative clusters correspond to a better segmentation of the structures

while allowing for enhanced visualization, we decided to adopt the most representative

clusters to perform our further analyses towards a characterization measure of bile ducts.

As a final analysis considering only the most representative clusters, we compared

the two groups (POA and USA) using the radius-based FD datasets with the lowest vari-

ance, (radius r5). Significant differences were found between groups POA-USA derived

from unpaired t-test (p < 0.05): POA-USA, red channel (Two Sample t-test = 0.003006,

p < 0.05), and green channel (Two Sample t-test = 0.0002836, p < 0.05). The analyses

between these specific groups indicated that there are differences in the fractal dimension

means between the POA and USA datasets in the two fluorescence channels.

6.2.3 Final Comments

The results reported in this section with fractal dimensions computed using the

radius with the lowest FD variance from the most representative clusters showed that the

range of FDs remained between 2.55 and 2.68 for POA datasets, and 2.34 and 2.56 for

USA datasets, for the red channel. For the green channel, we found that FDs range from

2.65 to 2.72 for POA datasets and from 2.48 to 2.66 for USA datasets.

One can explain the difference between the ranges based on the fact that bile ducts

from POA datasets were obtained from samples of mice 5- and 7-days old, while bile

ducts from USA datasets were from mice 9-days old. Although normalized within the

groups, fractal dimensions computed with the methods employed herein retain the size
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feature. Also, the different development phases might explain the structural difference

that can impact shape and, thus change the fractal dimension.

In the next section we report results from further analyses aimed at clarifying the

similarities and differences between the datasets.
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6.3 Characterization of Bile Ducts Based on Multiscale Fractal Dimension Com-

puted from the most Representative Clusters

As mentioned in Chapter 2 (Sect. 2.5.2), Multiscale Fractal Dimension (MFD)

provides a richer information about the shape of complex objects than a single FD value

(FLORINDO; CASTRO; BRUNO, 2011).

Aiming at a further analysis of the bile ducts’ confocal images datasets, we per-

formed a study based on the Multiscale Fractal Dimension computed from the most rep-

resentative clusters obtained as reported in Section 6.2.

In this section, we restrain ourselves to present the results and analysis because

the only difference from the previous section is the computation of Multiscale Fractal

Dimensions for the representative cluster of each bile duct instead of the computation of

16 Fractal Dimensions (one for each radius).

6.3.1 Multiscale Fractal Dimension (MFD) Descriptors

MFDs were computed for each bile duct as described in Section 2.5.2, considering

the radius values up to 20. Only values for radius starting at 4.25 were computed because

for smaller radius values, there were not enough points in the dataset to compute the

FD. From the log-log curve, derivatives at 275 points resulted in MFD descriptors of 275

components for each bile duct. Since performing analyses with such long descriptors

would be cumbersome, we analyzed the variances of each radius-based MFD datasets.

We found out that we could analyze the most representative clusters considering

two cases:

• Radius values with the lowest variance: Preliminary analyses of the MFD results

showed that the components between r[4.25−7.36] delivered the fractal dimensions

with the lowest variance (Figures 6.11a and 6.12a). Then, for the red and green

channels, we selected the range of values r[4, 25− 7, 36] for our analyses.

• Radius values with the highest variance: Preliminary analyses of the MFD re-

sults showed that the components between r[17.82 − 18.70] delivered the fractal

dimensions with the highest variance (Figures 6.11b and 6.12b). Then, for the red

and green channels, we also selected the range of values r[17.82 − 18.70] for our

analyses.
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The resulting MFD descriptors for each bile duct are presented in Figures 6.11 and

6.12, for the red and green channel, respectively. These curves are MFD profiles of

each bile duct considering different radius ranges: radius between 4.25 and 7.36,

and radius between 17.82 to 18.70.

For the red channel, Figure 6.11a represents the MFD profiles plotted for the radius

values with the lowest variance. In this case, we can see a similar trend of the fractal

dimension values for all datasets. On the other hand, Figure 6.11b represents the MFD

profiles plotted for the radius values with the highest variance. In this case, we can not

see a pattern in the trend of values.

Figure 6.11: Multiscale Fractal Dimension computed from the Most Representative Clus-
ters for each bile duct(Red Channel): a) MFD descriptor plotted for the radius values with
the lowest variance r[4.25 − 7.36]. b) MFD descriptor plotted for the radius values with
the highest variance r[17.82− 18.70].

(a) MFD descriptor (lowest variance)
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As for the green channel, we used the same ranges of radius values and plotted

Figures 6.12a and 6.12b that represents the MFD profiles of each bile duct. Figure 6.12a

shows the bile ducts’ MFD profiles considering the range that showed the lowest variance,

while Figure 6.12b presents the same profiles but computed for the radius values with the

highest variance.

6.3.2 Using MFD Descriptors to Find Similarities and Differences between Bile Ducts

Since the Multiscale Fractal Dimension is a multivariate approach, the analyti-

cal approach should also be multivariate. In this way, we chose to perform a Principal

Component Analysis (PCA) to investigate how similar are the bile ducts, considering the
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Figure 6.12: Multiscale Fractal Dimension descriptors computed from the Most Rep-
resentative Clusters for each bile duct (Green Channel): a) MFD plotted for the radius
values with the lowest variance r[4.25− 7.36]. b) MFD plotted for the radius values with
the highest variance r[17.82− 18.70].

(a) MFD descriptor (lowest variance)
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fluorescence channels separately.

In the previous analyses, we have separated the datasets into two groups, POA and

USA datasets. However, since we hypothesize that the differences between them might

be caused by the size or age of the mice that were sample, we decided to analyze the

bile ducts’ MFD profiles based on three categories: poaDay5, poaDay7, and usaDay9,

corresponding to the ages: mice at 3, 5, and 9 days of age.

Figure 6.13 shows the PCA of the 13 MFD descriptors for the red channel. We

should recall that the red channel represents the bile duct microvasculature. Figures 6.13a

and 6.13b present the PCA considering the same radius ranges we used for depicting the

bile ducts’ MFD profiles, i.e., r[4.25 − 7.36] and r[17.82 − 18.70], intervals of radius

values that showed the lowest variance and highest variance, respectively.

We observe that in the three cases (Figures 6.13a, 6.13b and 6.13c), the group

usaDay9 is more separated from the poaDay5 and poaDay7 groups. When we observe the

bile ducts for these two groups, they form overlapping clusters. That situation confirms

the results we obtained from the statistical analyses, where we found out that these bile

ducts, for some radius values, do not show significant differences. Also, it should be

noticed that PC1 "explains" more than 99% of the differences between all the bile ducts.

In Figure 6.13c, we present the PCA for the MFD descriptors computed from

radius 4.25 to 4.92. We observe that PC1 explain 100% of the differences between all the

bile ducts, and overlapping of groups is more evident.

Figure 6.14 shows the PCA for the same descriptors, but for the green channel. We
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Figure 6.13: PCA based on Multiscale Fractal Dimension (Red Channel)): a) PCA using
MFD descriptors computed from radius 4.25-7.36. b) PCA using MFD descriptors com-
puted from radius 17.82-18.70. c) PCA considering the radius values between 4.25 and
4.92

(a) PCA of MFDs from radius 4.25-7.36
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(b) PCA of MFDs from radius 17.82-18.70.
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(c) PCA of MFDs from radius 4.25-4.92
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should recall that the Green channel represents the bile duct wall containing the peribiliary

glands.

We observe that the bile ducts belonging to the usaDay9 group form a well sepa-

rated cluster for radius values with the lowest variance [4.25− 7.36] (Figure 6.14a), while

for the highest variance, the usaDay9 cluster is closer to the other two groups. Bile ducts

from the poaDay5 and poaDay7 groups are in two overlapping clusters in both analyses,

although for radius between 4.25 and 7.36, the similarity given by proximity is more evi-

dent (Figures 6.14a and 6.14b). Also here, the results confirm what we obtained from the

statistical analyses, where we found out that the group from USA Datasets are different

from the POA datasets, and these, for some radius values, do not show significant differ-

ences. Also, it should be noticed that PC1 "explains" more than 99% of the differences
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between all the bile ducts.

The PCA analysis for the more constrained range of radius with lowest variance

[4.25-4.92] (Figure 6.14c) shows bile ducts from the usaDay9 group well separated, while

bile ducts belonging to the poaDay5 and poaDay7 groups are clustered together. This fact

also makes sense, as all bile ducts from poaDay5 and poaDay7 come from mice with a

small difference in age, and were sampled in the same experiment.

Figure 6.14: PCA based on Multiscale Fractal Dimension (Green Channel)): a) PCA us-
ing MFD descriptors computed from radius r[4.25−7.36]. b) PCA using MFD descriptors
computed from radius r[17.82 − 18.70]. c) PCA considering the radius values between
4.25 and 4.92

(a) PCA considering the radius 4.25-7.36
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(b) PCA considering the radius 17.85-18.73

1

2

3

4

5
6

7

8

9

10

11

12

13

−1

0

1

2

−1 0 1 2
standardized PC1 (99.6% explained var.)

st
an

da
rd

iz
ed

 P
C

2 
(0

.4
%

 e
xp

la
in

ed
 v

ar
.)

groups

a

a

a

poaDay5

poaDay7

usaDay9

(c) PCA considering the radius 4.25-4.92
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Source: The author.

We also performed a Principal Component Analysis (PCA) to investigate how sim-

ilar are the bile ducts considering the two fluorescence channels together (microvascula-

ture and bile duct wall together for the radius range 4.25 − 4.92). We present that result

in Figure 6.15. In this case, we can see that all three groups, poaDay5, poaDay7, and

usaDay9, form a large cluster. However, we also observe that some bile ducts belonging
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to usaDay9 are more apart from the others.

Figure 6.15: PCA based on Multiscale Fractal Dimension over MFD red + MFD green:
considering the radius values between r[4.25− 4.92].
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6.3.3 Final Comments

From the analyses performed with the most representative clusters reported in Sec-

tion 6.2, we learned that the radius-based FD datasets computed using radius value equals

to 5 could be used for characterizing similarity between bile ducts.

When we analyzed the results from multiscale fractal dimension computation, we

noticed that the smallest radius values were also those where radius-based FD datasets

showed the lowest variance of FDs. We used this information to support our decision

regarding the choice of the interval of radius values for computing the bile ducts’ MFD

descriptors, i.e., the radius values between 4.25 and 4.92.

The results reported in this section with multiescale fractal dimensions computed

using the radius with the lowest FD variance from the most representative clusters showed

that the range of MFDs remained between 2.37 and 2.62, for POA datasets, and 2.11 and

2.47 for USA datasets, for the red channel. For the green channel, we found that FDs

range from 2.49 to 2.65, in POA datasets, and from 2.24 to 2.58 for USA datasets.

The splitting of the bile ducts in groups based on the age of the mice sampled for

the study (5, 7, and 9-days old) allowed us to observe how similar or different the bile
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ducts are when analyzed through a classical technique for multivariate analysis. PCA

has made more evident that the shape of all bile ducts varies depending on age. More-

over, when we compare the proportion of overlapping of the clusters in the red and green

channels, we observe that the bile duct walls (green channel) are more similar than the mi-

crovasculature (red channel). One might suggest that this is because the development of

the microvasculature is more related to shape modification, while bile duct walls change

more in size, which is not captured by the MFDs due to normalization of the datasets.
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7 CONCLUSIONS AND FUTURE WORK

In this thesis, we have proposed methods based on the analysis of confocal mi-

croscopy images with the final goal of characterizing bile ducts. The study of bile ducts

and associated micro-anatomy has been essential in hepatology research, especially in the

detection of biliary atresia, a disease that leads to transplant or death during childhood.

We started our studies motivated and in collaboration with hepatologists from

the Hospital de Clínicas de Porto Alegre and Cincinatti Children’s Hospital, which were

studying that disease and were trying to come up with an animal model of its development.

The initial step of such study from the computational point of view is the characterization

of normal bile ducts. In this chapter we review our work and draw comments on future

work.

7.1 Summary of our work and contributions

Our approach to characterize bile ducts from confocal images datasets is actually

a three-stage process.

The first stage was motivated by the fact that the acquired confocal images are

affected by several sources of noise. To improve the quality of the acquired images, we

developed a method based on anisotropic diffusion. We applied the method in several

slices and compared their image quality using quantitative measures. Qualitative and

quantitative analysis has shown that our results so far provide a better context for the

visual study of bile ducts’ microvasculature.

The significant result in this first stage was the enhanced volumetric visualization

of the bile duct microanatomy, which allowed the visualization of details that are hardly

seen in the original data. We reported this contribution in a first publication associated

to the thesis and reproduced in Appendix A. In this way, we validate our first hypothesis

(Regarding the 3D visualization of confocal images datasets, it is possible to achieve

quality by enhancing structures using a pre-processing step with appropriate techniques

to deal with the noise).

In the second stage, we explored the application of unsupervised machine learn-

ing to extract relevant structures from confocal microscopy datasets. The input for this

stage was the dataset already pre-processed with the voxels to be clustered. We have ex-

plored the gradient magnitude as a feature that allowed us to extract relevant information
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from the density-based spatial clustering. As a result, we obtained a better visualization

of the most prominent vessels and internal structures. We reported this contribution in

the second publication associated to the thesis and reproduced in Appendix B. In this

way, we validate our second hypothesis (Regarding the 3D visualization of confocal im-

ages datasets, it is possible to improve the distinction of the relevant structures using an

unsupervised image segmentation method before rendering.).

These two contributions can be considered as an answer to our first research ques-

tion (How can we improve the visualization of multichannel confocal datasets to provide

a better distinction of the structures of interest?)

Regarding the last stage, we characterize the peribiliary glands and the more

prominent vessels (obtained in stage two) using fractal dimension analysis and extended

the characterization with multiscale fractal dimension analysis, which allowed us to start

understanding how the shape of the bile ducts structures seem to evolve. Although we

had few datasets, our analyses based on fractal dimensions and multiscale fractal anal-

yses give us some evidence that the fractal dimension is a measure that can be used for

quantification and characterization of bile ducts. Moreover, to the best of our knowledge,

our work is the first to analyze 3D confocal images datasets using a fractal dimension

analyses approach. We reported this contribution in Chapter 6. In this way, we validate

our third hypothesis (Fractal dimension analysis can be used for the quantification and

characterization of structures in confocal images datasets).

With this final stage, we have accomplished our plans towards investigating mea-

surements for the characterization of bile ducts obtained from confocal microscopy an-

swering the last research question (Which measurements can we use for quantifying and

characterizing 3D structures in confocal images datasets?).

However, as can be learned from recent literature (JONKMAN et al., 2020), quan-

titative analysis of confocal images datasets are still a challenge because the whole pro-

cess, since the acquisition, has many issues that could compromise the quality of the

acquired data. These authors concluded that "Is ‘quantitative confocal microscopy’ an

oxymoron? The more experience you have with confocal imaging, the more you realize

just how many things can go wrong. Indeed, several experts in the field have opined that

it is nearly impossible to obtain rigorous measurements of intensities in a confocal exper-

iment. Yet, no reviewer will accept qualitative comparisons between microscopy images:

you will most likely be asked to quantify them!". So, we can affirm that our work is a step

towards a quantitative characterization of structures in confocal images datasets.
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7.2 Future Work

From the application domain point of view, the envisioned future work is related

to deepening our analyses of confocal datasets from bile ducts. The first study we would

like to conduct as future work is the analyses of other confocal images datasets sampled

from mice older than those we have analyzed here. Such work would support with more

strength our conclusion regarding how the bile ducts fractal characteristic change depend-

ing on age, and what is the range of FDs for normal bile ducts. A second study related to

this is the characterization of non-normal bile ducts through the analyses of how changes

in the shape of bile duct walls and microvasculature affect the fractal descriptors. Such

study would contribute to the research on biliary atresia.

From the computational point of view, future work can tackle issues we could not

pursue during this project due to several reasons. Confocal images datasets are noisy

datasets, and the staining of samples also introduces noise, which usually makes the dis-

tinction of structures harder. Image processing techniques can be improved for this kind

of image. Moreover, research on segmentation is challenging in these images due to the

staining process, which although introducing a "natural" segmentation, can also change

parameters that could be used for a better separation of the structures of interest. We used

DBSCAN for segmentation. Straightforward future work is the study of this algorithm

to investigate other measurements that can be used for guiding the clusterization. As for

visualization, we have adopted the conventional ray casting algorithm for volumetric vi-

sualization and have not investigated multidimensional transfer functions for improving

visualization. Such techniques could also be the focus of future work. Finally, regarding

the fractal analysis of volumetric datasets and 3D objects in general, there are many sub-

jects that one could explore in future work. Instead of using PCA as we did in this work,

other multivariate analyses or dimensional reduction techniques could be investigated to

verify if they reveal other facts that PCA might be missing to represent.
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Fig. 1. Peribiliary Vascular Plexus of an extrahepatic mouse bile duct. Left: 3D visualization of the original confocal dataset. Right: Resulting volume after
relevant features enhancement.

Abstract—Confocal microscopy is an important tool for visual-
izing 3D datasets of fluorescent specimens, and has been used to
investigate the structure of biological specimens. However, such
images are affected by the noise introduced during the specimen
preparation and image acquisition processes. Anisotropic diffu-
sion is a non-linear filter that can significantly improve image
quality while removing noise without blurring edges. This study
investigates the application of anisotropic diffusion in confocal
microscopy images by exploring different models for parameters’
estimation. Our data consists of several slices of extrahepatic bile
ducts containing a network of small vessels named Peribiliary
Vascular Plexus (PVP), which are affected by several sources
of noise. Experimental results show that anisotropic diffusion
improved the volumetric visualization of the PVP. We validated
the results using MSE and PSNR quantitative approaches and

qualitative description by an expert user.

Keywords-Anisotropic diffusion; Image processing; Confocal
microscopic images; Volumetric Visualization.

I. INTRODUCTION

Bile ducts are tubular structures that carry bile from the liver
to the gallbladder and duodenum. Bile ducts are classified as
intra- and extrahepatic depending on their position in relation
to the liver. [1]. Studying the anatomy of these structures
is a hot topic in hepatology research [2]–[5]. In particular,
microscopic visualization of bile ducts can provide additional
information for detection of morphological changes arising
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from biliary diseases. Confocal microscopy enables the acqui-
sition of three dimensional image datasets. In recent years, this
technique has been used in medical studies for investigating
the micro-anatomical structure of extrahepatic bile ducts [5].

However, there are some challenges associated to confo-
cal imaging. The first challenge is about the image post-
processing. Although microscopes provide proprietary soft-
ware for exploring the datasets, there is still a lack of post-
processing techniques to show more details about specific
structures of interest. Another challenge is associated to the
kind of specimen. Confocal microscopy provides a useful tool
to study 3D structure of transparent specimens, because in this
case the light can pass through it with minimal scattering [6].
However, bile ducts are nontransparent, thus making necessary
the design of specific clearing procedures and staining methods
before the image acquisition. Consequently, the images are
affected by the noise introduced during the specimen prepa-
ration process [7]. In addition to the noise associated to the
specimen preparation, the Signal-to-Noise-Ratio (SNR) of the
slices of the stack obtained using confocal microscopes is
reduced with increasing depth [8]. Hence, the quality of the
contrast decreases with increasing depth.

Our work aims at enhancing the quality of images of
bile ducts and associated vessels, both obtained by confocal
microscopy. In this context, image processing techniques are
essential to remove noise and enhance the acquired images. In
other kinds of medical images, anisotropic diffusion offers an
elegant solution for image enhancement [9]–[12]. We propose
the use of anisotropic diffusion to enhance the confocal
images, and volumetric visualization techniques to create pro-
jections of the bile duct samples in a 3D space so the experts
can examine the microvasculature distribution and interact
with the bile ducts. Fig. 1 illustrates some results obtained with
our approach, showing the volume rendering of the original
dataset (left) and the resulting volume after the anisotropic
diffusion (right). The network of vessels surrounding the bile
duct can be clearly observed. These vessels supply blood to
the biliary structures and are called peribiliary vascular plexus
(PVP) [13]. The microscopic visualization of PVP is essential
to analyze the interrelationship between a bile duct and its
vascular plexus, in order to understand the development of
biliary diseases associated with vascular disorders.

Contributions: The main contribution of this paper is
the enhancement of the volumetric visualization of the PVP
obtained from confocal microscopy images. We explore two
models to estimate appropriate parameters for the anisotropic
diffusion equation used to improve the original volume. As
results, we enhance details that are hardly visualized in the
original data. Moreover, using interactive manipulation like
rotation and zooming operations on the resulting volumetric
visualization, the hepatologists can have different views of the
microvasculature.

The rest of this paper is organized as follows. Next section
briefly discusses the noise present in confocal microscopy
images and introduces the classical anisotropic diffusion equa-
tion. In Section III, we scrutinize the related works in the field

of confocal microscopy images and the estimation of param-
eters for the anisotropic diffusion equation. Section IV gives
details about the bile duct preparation and image acquisition.
In Section V we explore two existing models to calculate the
k parameter for the anisotropic diffusion equation. The results
of our experiments are described in Section VI, and in Section
VII we discuss our findings and draw final comments.

II. BACKGROUND

In recent years there has been an explosion in the popularity
of confocal microscopy [14], more specifically in cell biology
applications using fixed and living cells and tissues. Confocal
microscopy data have their own characteristics, which differ
from other biomedical data [15]. We describe some operating
principles of confocal microscopes to understand the advan-
tages and disadvantages of this technique, which affect directly
the data that is being processed. Since, anisotropic diffusion
was used to reduce the noise and enhance details of the bile
duct images, we also present the basic principles of anisotropic
diffusion filtering.

A. Confocal Microscopy Images

In confocal miroscopy the images are acquired point-by-
point, using lasers and the principle of fluorescence. Fluores-
cence is the property of some atoms and molecules to absorb
light at a particular wavelength and to subsequently emit light
of a longer wavelength after a brief interval [16]. The biologi-
cal samples can be labeled with several appropriate fluorescent
antibodies during the staining process, which allows to mark
different tissues or cells. The characteristics of a confocal
microscope offer several advantages over conventional optical
microscopy such as: the ability of removing out-of-focus light
[17], the capability of controlling the depth of field and the
capability of collecting several aligned images of the same
sample. However, confocal images are normally affected by
several artifacts and noise sources:
• Low signal-to-noise ratio: confocal images have a strong

decrease in the signal-to-noise ratio over the slices
depth [8].

• Diversity of density values: the physical meaning of
density values is not limited to image subjects [18].
Confocal images have an inhomogeneous density inherent
to the fluorescent staining process [7].

• Visual occluders: structures irrelevant to the analysis may
also be labeled through the fluorescent staining process,
resulting in visual occluders that obscure the structures
to be visualized [19].

• Subtle boundaries: meaningful boundaries may be only
subtly presented in the confocal data [19].

Confocal microscopes use proprietary formats. We use
datasets acquired by a Leica confocal microscope. These kind
of microscopes produce datasets in a format named LIF (Leica
Image File Format). This specific format encodes the informa-
tion about the images and the microscope configuration used
during acquisition. The information regarding the process of
image acquisition is important for further interpretation of the
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obtained data by the hepatologist. However, the downside of
proprietary formats is that they need proprietary software to
decode the stored images [17].

B. Anisotropic Diffusion Filtering

Anisotropic diffusion was introduced by Perona and Ma-
lik [20], and has been used as an effective approach in
image processing and computer vision for noise removal, edge
detection and image restoration [9] [10] The main idea behind
this approach is that smoothing should be low on relevant
edges and stronger in regions dominated by noise [21]. In the
classical formulation [20], the anisotropic diffusion equation
is given by the following PDE:

∂I

∂t
= ∇ · c(∇I)∇I (1)

where t is the time parameter, ∇I is the gradient of the
image at time t and c is the diffusivity. The diffusivity can
be expressed as a decreasing function of the image gradient
magnitude, such as:

c(x, t) = e−
∇I

k

2

, c(x, t) =
k2

k2 +∇I2
(2)

where k is the gradient magnitude threshold parameter that
controls the rate of the diffusion and serves as a soft threshold
between the image gradients that are attributed to noise and
those attributed to edges [22]. The great success of the Perona
and Malik’s model can be mainly attributed to its excellent
performance in edge preservation and noise removal [23].
However, the estimation of the parameters for the anisotropic
diffusion equation is not an easy task. In this work we explore
two models to estimate the k parameter in confocal images
(Section V).

III. RELATED WORK

A. Confocal Microscopy Imaging

Related work on confocal microscopy are mostly devoted to
biological studies with small structures such as cells. Examples
include neurobiology research using animal models such as
Drosophila and Zebrafish [15], microtubule spindles during
mitosis [24], profiling gene expression of cells [25]–[27],
screening phenotypic data and reconstructing the morphology
of neurons [28]–[30].

In our research, differently from those previous studies,
we analyze a macro structure (the bile duct). Since cells are
thinner than bile ducts, this poses a challenge associated to the
data because the noisy sources cited in Section II-A affect
the image quality in thick specimens to a greater extent than
thinner specimens such as cells.

Regarding the use of confocal microscopy to study bile
ducts, DiPaola et al. [5] identified networks of glands residing
within the bile duct walls. These structures were identified by
the visual exploration of the serial sections using the micro-
scope’s proprietary software. However, proprietary software
has limited possibilities for enhancing the images. Hammad
et al. [3] and Vartak et al. [4] used confocal microscopy to

visualize intrahepatic bile ducts that are much smaller than
the extrahepatic bile ducts we work on.

B. Image Enhancement in Confocal Images

Usually, the proprietary software that comes with confo-
cal microscopes allows simple contrast enhancement of 2D
images. However, image filtering techniques are important
when the relevant information is noisy. Median filter is a
traditional filter used for noise reduction in confocal images.
Parazza et al. [31] used a 3D median filter for noise reduction
in confocal microscopy images from cell nuclei. A median
filter was also used for noise reduction in images from rat
brain [32] In another work, Paul et al. [33] used median
filtering to estimate the global noise variance in images from
cells. Araujo et al. [34] propose the use of blurring filter,
histogram equalization and arithmetic operations to enhance
cells from animal nervous system. However, traditional filters,
such as the median filter, do not provide significant results to
enhance details in our images. That is because they are linear
filters performing in all the data, and do not discriminate the
important structures we need to improve.

C. Estimating Parameters for the Anisotropic Diffusion Equa-
tion

Previous works on anisotropic diffusion indicate that the
diffusion process can be improved with the proper choice
of parameters of the anisotropic diffusion equation [35] [22].
According to Formaggia et al. [21], the anisotropic filter must
be tuned for specific applications in terms of k and t. This
implicates that empirical evaluation of the effects of the filter
is necessary.

For the estimation of the k parameter, Perona and Malik [20]
proposed the use of a noise estimator. This consists in a
histogram of the absolute values of the gradient throughout the
image and the k is computed as the 90% of its integral. On the
other hand, Voci et al. [35] used a morphological approach to
estimate k. Several papers discuss aspects for optimizing the
anisotropic diffusion. However, none of those proposals are
applied to confocal microscopy images.

IV. IMAGE ACQUISITION

BALB/c mice of 5- and 7-postnatal days were euthanized
by overdose of isoflurane and the extrahepatic bile ducts were
isolated. The ducts were fixed with Fixer Dent’s, rehydrated
in decreasing concentrations of MeOH and washed with
PBS/BSA/Triton. The preparation methods of bile ducts and
related PVP included a technique, developed at the Cincinnati
Children’s Hospital [5], which is innovative in relation to the
mounting of the histologic sample for in situ staining in order
to preserve the anatomic structures. This image acquisition was
conducted at Hospital de Clinicas de Porto Alegre (HCPA-
Brazil). After that, the histologic specimens were labeled
with primary antibody: PECAM-1 and CK19 (1:150 Abcam.
USA) and secondary antibody Alexa Fluor 647 and 488,
respectively (1:150 Abcam. USA). An example of a mouse
bile duct after the specimen preparation is shown in Fig. 2.
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The handling, caring, and processing of the animals were
carried out according to regulations approved by local ethics
committee at HCPA (protocol number 11-0190) and complied
with the National Guidelines on Animal Care.

Fig. 2. An extrahepatic mouse bile duct after the clearing and staining
process.

Images of all samples were obtained using the confocal
microscopy Leica TCS SP5. The resulting datasets had images
of 512 x 512 pixels, and the stack was composed by a variable
number of slices. Then, the datasets have dimensions X, Y and
Z, where X and Y are the size of each slice in pixes, and Z is
the number of slices. Table I illustrates the information about
the datasets obtained for each bile duct. The number of slices
varies depending on the bile duct size and the microscope
settings.

The dataset consists of images with two fluorescence chan-
nels. The first one (red channel) represents the PVP stained
with PECAM-1, and the second one (green channel) represents
the biliary structure stained with CK19. We extracted the red
channel because this channel contains the relevant structures
that are our focus in this work.

V. ESTIMATING GRADIENT THRESHOLD IN THE
CONFOCAL IMAGES DATASET

Anisotropic diffusion only affects parts where the gradient
value is below a certain threshold. Therefore, the estimation
of this parameter plays an important role in the anisotropic
diffusion process. Methods for estimating a suitable value for
the k parameter are useful in cases in which we have no idea
about an appropriate value of the diffusion coefficient and

TABLE I
SIZE OF ACQUIRED DATASETS FROM EXTRAHEPATIC MICE BILE DUCTS.

Dataset Id Image size (pixels) # Slices
mouse1-day5 512x512 85
mouse2-day5 512x512 102
mouse3-day5 512x512 116
mouse2-day7 512x512 140
mouse3-day7 512x512 100
mouse4-day7 512x512 117

we would like to perform noise reduction with low loss of
details [35]. We compared the two approaches described in
related works (Section III-C) to explore the k estimation in
our images: the first model proposed by Perona and Malik [20]
and a second model, proposed by Voci et al. [35]. Then, we use
these k values as input parameter to calculate the anisotropic
diffusion.

A. Estimation of the k parameter using Perona and Malik’s
model.

The model for the k estimation proposed by Perona and
Malik [20] is based on a noise estimator using the histogram
of the gradient. This noise estimator consists in calculating
the histogram of the absolute values of the gradient for every
image, and the k parameter value is equal to the 90% value
of its integral [20].

Fig. 3 shows an example of a slice extracted from our
datasets, the gradient histogram calculated for this image and
the anisotropic filtering result.

B. Estimation of the k parameter using Voci et al. model.

The model for the k estimation proposed by Voci et al. [35]
is based on mathematical morphology. The idea of using a
morphological approach derives from the fact that morphology
can be used for an estimation of noise intensity in the image.
Their model is based on opening and closing operations from
mathematical morphology. The k is given by the following
equation:

k =
∑

i,j∈I

(I(i, j) ◦ st)
(r.c)

−
∑

i,j∈I

(I(i, j) • st)
(r.c)

(3)

where I(i, j) refers to the image consisting of r rows and c
columns, a structuring element st (we use a st with size 5x5),
and the symbols ◦ and • represent the opening and closing
operations, respectively.

Fig. 4 compares the anisotropic diffusion results using
the two different models presented in Section V-A and Sec-
tion V-B. As can be observed, the results show very similar
filtered images using the two models.

VI. PRELIMINARY EXPERIMENTAL RESULTS

The two models for estimating the k parameter were
implemented in Python. We used the Visualization Toolkit
(VTK) [36] to render the confocal datasets. The VTK class
(vtkLIFReader) was used to load the confocal dataset codified
in the LIF format. This class was developed by Kankaanpää et
al. [37], and it can be freely used for academic research [38].

Using the models presented in Sections V-A and V-B,
we calculated the k parameter in several slices from the
same dataset. The parameter t that represents the time in
the anisotropic diffusion was experimentally established as 10
iterations.

For quantitative analyses, we calculated the Peak Signal-to-
Noise Ratio (PSNR) and the Mean Square Error (MSE) for
comparing the enhanced images with the original images. As
for quality, the measured values of MSE should be small and
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Fig. 3. Estimation of the k parameter using Perona and Malik’s model. Left: Original slice. Center: Gradient histogram. Right: Anisotropic filtering result

Fig. 4. Comparison of the anisotropic diffusion using the two models for estimating the k parameter. Left: Original slice. Center: Anisotropic filtering result
using the Perona and Malik’s model presented in Sec. V-A. Right: Anisotropic filtering result applying the Voci et al.’s model presented in Sec. V-B.

PSNR should be large. The PSNR and the MSE are defined
by:

MSE =

∑r
i=1

∑c
j=1 | I(i, j)− Î(i, j) |2

r.c
(4)

where I(i, j) is the original image, Î(i, j) is the enhanced
image, and r.c the size of the image.

PSNR = 10 log10(
MAX2

I

MSE
) (5)

where MAXI =2n − 1 and n is the number of bits. Since
the confocal images are 8-bits depth, n is set to 255.

Table II and Table III show the k values and the respective
measures of MSE and PSNR of the enhanced images.

After applying the anisotropic diffusion with both models,
we verified that PSNR values are very similar in the resulting
images. In terms of image quality this means that the two
models are adequate for enhancing our images.

For enhancing the whole confocal dataset using the two
models presented in Section V-A and Section V-B, we calcu-
lated the average value of k considering all slices. The results
for the enhanced volume are shown in Fig. 5.

As for qualitative analyses, we invited a senior hepatologist
to describe how he found the enhanced volume in compar-
ison to the original volume. According to the hepatologist,
the resulting volumetric visualization solves some problems

TABLE II
k PARAMETER ACCORDING TO PERONA AND MALIK’S MODEL AND MSE,

PSNR OF THE ENHANCED IMAGES

mouse2-day7 k parameter MSE PSNR
Slice #1 131 25.0112 34.1494
Slice #10 139 25.7968 34.0151
Slice #20 139 25.9635 33.9871
Slice #30 138 26.9295 33.8285
Slice #43 137 29.4593 33.4385
Slice #50 155 30.9956 33.2177
Slice #60 156 32.7181 32.9829
Slice #70 145 34.3088 32.7767
Slice #80 138 34.8454 32.7093
Slice # 90 144 35.4471 32.6349
Slice #100 155 34.242 32.7852
Slice #110 137 31.7267 33.1165
Slice #120 147 27.1433 33.7941
Slice #130 141 22.3949 34.6293
Slice #140 144 18.1274 35.5474
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Fig. 5. Comparison of the anisotropic diffusion using the two models for estimating the k parameter. Left: Original reconstructed volume. Center: anisotropic
filtering results using Perona and Malik’s model. Right: anisotropic filtering results using Voci et al.’s model

TABLE III
k PARAMETER ACCORDING TO VOCI ET AL.’S MODEL AND MSE, PSNR

OF THE ENHANCED IMAGES

mouse2-day7 k parameter MSE PSNR
Slice #1 243 25.0208 34.1477
Slice #10 240 25.8104 34.0128
Slice #20 242 25.9736 33.9854
Slice #30 242 26.9542 33.8245
Slice #43 236 29.4543 33.4393
Slice #50 238 30.9819 33.2197
Slice #60 223 32.7058 32.9845
Slice #70 124 34.2854 32.7797
Slice #80 123 34.8371 32.7103
Slice # 90 123 35.4506 32.6345
Slice #100 126 34.2397 32.7854
Slice #110 139 31.7235 33.1169
Slice #120 140 27.1388 33.7948
Slice # 130 159 22.4014 34.628
Slice #140 182 18.141 35.5441

associated to the original data such as noise and superposition
of vessels. He also commented that the microvasculature
was clearly discernible, which gives a better idea of the 3D
distribution of the vessels. This observation is really important
because it represents that our method allows hepatologists to
evaluate morphological alterations in the bile ducts.

VII. FINAL COMMENTS AND FUTURE WORK

The study of bile ducts and associated vessels is an
important goal of current hepatology research. Microscopic
visualization is essential to the analyses of the interrelationship
between a bile duct and its vascular plexus. The acquired
confocal images are affected by several sources of noise. So,
the first step in the analyses of the microvasculature is to
improve the quality of the acquired images.

In this paper, we presented experimental results of applying
anisotropic diffusion to enhance noisy confocal images of bile
ducts. We applied anisotropic diffusion in several slices and
compared their image quality using quantitative measures such
as PSNR and MSE. Qualitative analysis by an expert has
shown that our results so far provide a better context for the

visual study of bile ducts’ microvasculature.
As for future work, there are several possibilities for helping

the understanding of the development of biliary diseases
associated with vascular disorders. We intend to give support
for quantitative analysis such as measuring the size of the
structures, as well as devising shape analysis methods tailored
for the microvasculature study.
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Abstract—Three-dimensional datasets from biological tissues
have increased with the evolution of confocal microscopy. Hep-
atology researchers have used confocal microscopy for investi-
gating the microanatomy of bile ducts. Bile ducts are complex
tubular tissues consisting of many juxtaposed microstructures
with distinct characteristics. Since confocal images are difficult
to segment because of the noise introduced during the specimen
preparation, traditional quantitative analyses used in medical
datasets are difficult to perform on confocal microscopy data
and require extensive user intervention. Thus, the visual explo-
ration and analysis of bile ducts pose a challenge in hepatology
research, requiring different methods. This paper investigates
the application of unsupervised machine learning to extract
relevant structures from confocal microscopy datasets repre-
senting bile ducts. Our approach consists of pre-processing,
clustering, and 3D visualization. For clustering, we explore
the density-based spatial clustering for applications with noise
(DBSCAN) algorithm, using gradient information for guiding
the clustering. We obtained a better visualization of the most
prominent vessels and internal structures.

Keywords-confocal microscopy data; image processing; DB-
SCAN clustering; volumetric visualization

I. INTRODUCTION

The confocal microscope has the ability to remove out-of-
focus light and the capability of controlling the depth of field
and collecting several aligned images of the same sample [1].
These characteristics have led to its increasing use for the
acquisition of volumetric datasets from biological samples.
In this work, we focus on the visualization of the bile ducts
structure imaged with confocal fluorescence microscopy.

Bile ducts are thin tubular structures that carry the bile,
and studying their microanatomy is a hot topic in hepatology
research [2–4]. Usually, confocal microscopy images of bile
ducts are studied by analyzing the serial slices obtained
from fluorescent samples of mice. However, despite the
effort dedicated to the samples preparation and the image
acquisition itself, it still is necessary adequate computational
support for the analysis and visualization of such confocal
microscopy datasets. Bile ducts are mainly composed of two
different groups of complex and juxtaposed microstructures
(Fig.1): Microvasculature and Peribiliary glands (PBGs).
The microvasculature refers to the network of small vessels

that surround the bile ducts [5]. PBGs are clusters of
cells that elongate to form complex epithelial networks that
course and branch within the bile duct walls [2]. The visual
inspection of these structures is decisive to understand the
development of biliary diseases associated with vascular
disorders. However, there are some challenges to understand
the characteristics of the microvasculature as well as PBGs
because of their complex morphology, induced by their
shapes and overlapping. Furthermore, confocal microscopy
images are affected by the noise introduced due to the
specimen preparation process, such as the procedure of
staining [6].

In this paper, we propose an exploratory approach to
detect, identify and visualize clusters of voxels that rep-
resent similar structures in bile ducts confocal microscopy
datasets. We adopt clustering by the Density-Based Spatial
Clustering DBSCAN algorithm, which creates clusters with
arbitrary shapes, even in the presence of noise in large spatial
databases [7]. To the best of our knowledge, there is no
reported application of this technique in the study of data
from hepatological samples. Our work aims at adapting the
DBSCAN method for extracting structures from confocal
images of bile ducts. The main challenge is to find the
appropriate similarity features between voxels that allow for
differentiating such structures. The main contributions of this
work are the use of gradient information as a feature to guide
the clustering process and the proposal of a specific pre-
processing step that can also be used in other applications
involving confocal microscopy images.

II. BACKGROUND AND RELATED WORK

Confocal microscopes produce multichannel fluorescent
datasets in which each channel is collected separately [1].
Confocal images are commonly affected by some artifacts
and noise, and irrelevant structures may also be labeled
through the fluorescent staining process, resulting in visual
occluders [8].

Regarding hepatology research, we found a few works us-
ing confocal microscopy to study the micro-anatomy of bile
ducts. DiPaola et al. [2] identified peribiliary glands (PBGs)
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(a) Red channel (b) Green channel (c) Superimposed channels

Figure 1: View of a single slice from a bile duct dataset: (a) the red channel encodes the microvasculature, while (b) the
green one encodes the peribiliary glands. The dataset has 192 slices (512 x 512 image each) ≈ 50 millions of points.

residing within the bile duct walls. However, the images
were visualized using the confocal microscopy proprietary
software, which provided limited features for image post-
processing. Hammad et al. [3] and Vartak et al. [4] used
confocal microscopy to visualize intrahepatic bile ducts that
are much smaller than the extrahepatic bile ducts we work
with.

In a previous work [9], we proposed a pipeline to enhance
and visualize the microvasculature of bile ducts. The pipeline
consists of a non-linear filtering step and direct volume
rendering. However, direct volume rendering requires the
design of transfer functions, which are difficult to create for
noisy data. In our previous work, transfer functions were
obtained by a trial and error process.

In this paper, we also adopt direct volume rendering for
displaying the clusters containing the structures of interest,
with transfer functions based on the voxel values that char-
acterize the clusters. Since the clustering method minimizes
noise points, transfer functions are easier to design.

Clustering plays an important role in the fields of knowl-
edge discovery and data mining [10]. Since our approach
is exploratory, and we do not know a priori the number
of clusters to partitioning the data, we decided to focus
on density-based algorithms. The density-based clustering
algorithm known as Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [7] discovers clusters
of arbitrary shapes and is based on two global parameters:
eps, which is the radius around a pixel for the density
calculation, i.e., the size of the eps neighborhood, and minPts
that corresponds to the minimum number of points required
to form a cluster.

DBSCAN has been successfully applied in images
datasets obtained from different sources for application
in distinct domains [11–16], including confocal images
[17, 18]. Table I summarizes the main characteristics of these
works.

Due to space constraints, we restrain ourselves to give
details about those works related to the use of density-

based clustering in images from confocal microscopy. Mu et
al. report that the density-based spatial clustering approach
is useful for image segmentation of blood thrombus [17].
Mu et al. did not use DBSCAN, but a generalized version
of the density-based clustering proposed by Chen et al.
[19]. Chan et al. also modified a different density-based
clustering method, known as DENCLUE [20], to perform
segmentation in confocal images to study gene expression
on zebrafish [18]. The original method is based on a set of
density distribution functions, which are, in fact, influence
functions that model the influence of a given data point
in its neighborhood. In Chan et al., the Density-Based
Segmentation (DBS) method the density function of each
pixel is calculated using the differences of pixel intensity
with the neighboring pixels, which is an approximation of
the gradient of each pixel like we did in our approach.

From all the surveyed papers that use the DBSCAN
method, two features are used to guide the clustering: pixel
location and intensity. In our work, in addition to the spatial
position and the size of the neighborhood of the voxel, we
also use its gradient magnitude to guide the clustering.

III. DISCOVERING STRUCTURES IN BILE DUCTS
IMAGES

In hepatology research, the a priori labels (ground truth)
on the pixels are not available. Creating labels by hand is
a hard task due to the complexity of the structures and the
high dimensionality of data. Thus, we formulate our problem
of extracting structures from these data sets as a clustering
problem.

The input datasets that we use in this work were acquired
at the Cincinnati Children’s Hospital [2]. The mice bile duct
was stained with two different fluorescent antibodies, α-
tubulin and Cytokeratin CK, to mark different tissues. The
resulting dataset consists of two channels: the first one (red
channel) represents the microvasculature or blood vessels
around the bile duct with (α-tubulin staining) (Fig.1a); the
second one (green channel) represents the bile duct wall
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Table I: Summary of papers reporting density-based clustering in image datasets.

Ref
No.

Year Image
Acquisition

Database Image Size 3D
Stack
?

Clustering Algorithm Clustering use Features for
clustering

[14] 2005 Dermascopy. 135 color skin lesions im-
ages.

256 x 256 pixels. No GDBSCAN (Generalized
DBSCAN) [21].

Segmentation. Color and
pixel location.

[18] 2007 Confocal
Microscopy.

4 images of zebrafish em-
bryos.

Not mentioned. No Density-Based Segmenta-
tion (DBS).

Segmentation. Intensity, pixel
location.

[17] 2009 Confocal
Microscopy.

15 Z-stacks of thrombi
(clots). 80 2D slices per
stack.

512 x 512 pixels. Yes Density-Based Clustering
(DBC) algorithm [19].

Segmentation. Pixel location.

[15] 2011 Dermascopy. 100 RGB color images. From 577 x 397
to 1921 x 1285
pixels.

No Boundary driven density-
based clustering (BD-
DBSCAN).

Edge
detection.

Pixel location.

[16] 2012 X-ray micro- to-
mography.

A synthetic 3D binary im-
age containing 144 rod-like
particles.

Not mentioned. Yes DBSCAN for binary 3D
images XMT-DBSCAN.

Edge
detection.

Pixel location.

[13] 2017 CT angiography. 12 datasets of coronary ar-
teries.

Not mentioned. Yes Original formulation of
DBSCAN [7].

Segmentation. Pixel location.

[11] 2017 Diffuse Scatter-
ing Spectrometer
and Tomography.

1 diffuse scattering dataset
and 1 neutron tomography
dataset.

701 x 701 x 701
and 1997 x 1997
x 1997 pixels.

Yes Original formulation of
DBSCAN [7].

Remove noise
and Segmenta-
tion.

Intensity and
pixel location.

[12] 2018 Neutron
Single Crystal
Diffraction.

1 dataset. 501 x 501 x 501
pixels.

Yes Original formulation of
DBSCAN[7].

Data
Reduction and
Segmentation.

Intensity and
pixel location.

containing the peribiliary glands with CK staining (Fig.1b).
In the remainder of this section, we explain our approach
constituted by a pre-processing phase, the clustering to
isolate structures and visualization.

A. Pre-processing

We use two operations to normalize the image stacks and
prepare the data for the clustering process.

• Normalization: We apply contrast stretching to increase
the visibility of the structures.

• Data Reduction: We remove all points with intensity 0
(background), for eliminating unnecessary points and
reducing the amount of data that will undergo the
clustering phase.

B. Density-Based Spatial Clustering

The spatial information, i.e., the coordinates (x,y,z) are
a typical candidate clustering feature. As for images, any
kind of pixel (or voxel) attribute can be used as a clustering
feature. Confocal images have an inhomogeneous intensity
inherent to the fluorescent staining process [22], and the
gradient was investigated as a more robust candidate feature.
After experimenting with the intensity and gradient values,
we found out that the gradient was a richer source of
information for distinguishing the regions of interest. Then,
we adopted the gradient magnitude to guide the clustering
process.

1) Determining the parameters for 3D clustering: In the
original DBSCAN algorithm [7], the key idea is that, for
each point of a cluster, the neighborhood defined by a given
radius (eps) around it has to contain at least a minimum
number of points (minPts), i.e., the local density in the

neighborhood has to exceed some threshold. Based on some
heuristics we determined the appropriate eps parameter, and
set minPts empirically. In the following, we give details
about the configuration of DBSCAN for clusterizing our
dataset.

The eps-neighborhood of a point dictates the maximum
distance (radius) between two points for them to reside
in the same neighborhood. A general heuristic to establish
the value for eps is by computing the k-nearest neighbor
distances. However, in a recent application of DBSCAN
[11], a simplified calculation for eps was proposed. The
author’s idea is that the coordinates of the data points in the
case of 3D image datasets are uniformly distributed voxels.
Then, it is possible to use the Cartesian coordinate system
and Euclidean distance to obtain the neighborhood. Values
of eps in the interval [1,

√
2] includes the six first nearest

neighbors, values in [
√
2,
√
3] to include the twelve second

nearest neighbors, and so on. Based on this last approach,
we fixed the eps to 1.7 ≈ (

√
7). This value means that the

local density function uses 18 nearest neighbors of a given
point data in the clustering.

minPts denotes the minimum number of points located in
an eps-neighborhood, and is data dependent. If we select a
low minPts value, we get more clusters from noise. We have
experimented minPts values from 50 to 300, and finally set
it to 200 points for the green channel and 50 points for the
red channel.

The density in a neighborhood is just the sum of the
weights of the points inside the neighborhood. By default,
each data point has weights 1, so the density estimate for
the neighborhood is just the number of data points inside the
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(a) Original Volume (b) Cluster 1 (c) Clusters 2 to 2478

Figure 2: 3D visualization of the microvasculature of a bile duct: points shown in (b) represent the most prominent vessels
extracted as cluster 1, and those shown in (c) are considered noise and were detected as clusters 2 to 2478. The color
associated to the data points maps the depth of the data points.

neighborhood. We can use the parameter weight to change
the importance of points [23]. The weight is an optional
parameter to perform clustering based on a specific feature.

As described before, we have chosen the gradient magni-
tude as a feature to guide the clustering. We follow the model
for the weight parameter proposed by [11]. However, we use
the gradient magnitude instead of intensity. We calculate the
gradient magnitude for every point of the dataset considering
the x, y, and z dimensions. Then, we take a specific value of
gradient magnitude as a threshold. We fixed the threshold
empirically as 20 for the red and the green channel. Any
data point with gradient magnitude less than the threshold
will take the weight of 1, while the data points with gradient
magnitude greater than the threshold will have their weights
assigned to the difference between their gradient magnitude
and the threshold.

2) DBSCAN applied to 3D data points using gradient
information: We used the DBSCAN R package [23] to
perform the clustering on the 3D data points. As mentioned
before, we configured the eps and minPts parameters and
feed the algorithm with a list of data points containing their
x, y, and z coordinates and the weight obtained from the gra-
dient information. It is important to recall that background
voxels are not considered in the clustering phase (refer to
Section III-A).

In this way, the clustering method uses both information
(gradient and spatial location) to obtain at least the minPts
data points for each cluster. The output is the list of points
labeled with the cluster identification of each point as well
as basic numbers about the clusters detected. Then, we use
the original volumetric dataset again, and voxels belonging
to the cluster of interest form a new volume that is passed
to the visualization module.

IV. RESULTS AND DISCUSSION

A. Microvasculature: Red Channel

Figure 2 shows 3D visualizations of selected regions in
the dataset that contain the microvasculature (red channel)
of the bile duct. We obtained a total of 2478 clusters from
the clustering process in the red channel.

Due to the large number of clusters detected by DBSCAN,
we summarize the results in the plot shown in Figure 4a,
and use it to select the clusters for 3D visualization. Figure
2a shows the original dataset rendered with direct volume
rendering. We identified most of the points as belonging to
clusters 0 and 1. The cluster 0 is composed by 250,081 noise
points, which can be discarded for visualization and analyses
purposes. In other words, cluster 0 contains all the points that
do not satisfy the conditions to belong to a cluster. Since
clusters 1 to 2478 represent the detected objects, and cluster
1 is the largest one among them representing a connected
region, it is the one that best represents the microvasculature
(Figure 2b). Figure 4a shows that the clusters 2 to 2478
contain a lower quantity of points, and so we can also
consider these points as noise (Figure 2c).

B. Peribiliary Glands (PBGs): Green Channel

In the case of the green channel, we obtained a total of
3,603 clusters (more clusters than in the red channel). In
this case DBSCAN detected 1,998,026 noise points. Figure
3 shows the 3D visualization of data points belonging to
clusters chosen among the ones that were detected in the
green channel dataset. As we did in the processing of the
red channel, we summarized the DBSCAN result in a plot
(Figure 4b) that allowed us to analyze and select for visu-
alization only the relevant clusters. Cluster 0 corresponds to
the noise points. For the other clusters, we find a behavior
similar to the red channel: cluster 1 is the most prominent
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(a) Original Volume (b) Cluster 1 (c) Clusters 2 to 3,603

Figure 3: 3D visualization of the bile duct wall and PBGs: points shown in (b) represent mostly the PBGs identified as
cluster 1, and those shown in (c) are also considered noise and were detected as clusters 2 to 3,603.

one, representing a connected region containing the internal
bile duct wall and the peribiliary glands. The other clusters,
i.e., clusters 2 to 3,603, contain a lower quantity of points,
and we can also consider them as noise. While Figure 3a
shows the original volume, cluster 1 representing the internal
bile duct wall and the PBGs are presented in Figure 3b.
Figure 3c present the clusters [2−3603], considered as noise.
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Figure 4: Number of points detected per cluster.

C. Discussion

When comparing our work to others that adapt DBSCAN
for their application domain, we found different approaches.
For example, Celebi et al. used the original DBSCAN
method for segmenting 2D digital images of skin lesions
[14], while Tran et al. presented a version of DBSCAN
to process 3D binary images, using the coordinates of the
original image data and solving a known instability issue
of the original DBSCAN in classifying border points of
adjacent objects [16]. Our method is not limited to binary
images and also uses the original data points’ coordinates.

Regarding the use of additional features to guide cluster-
ing with DBSCAN, only two works adopt this approach. Hui
and collaborators [11, 12] use the intensity value as a feature

for selecting the points during the clustering. In our work,
besides the spatial position and the size of the neighborhood,
we use the gradient information to select the points during
the clustering.

V. FINAL COMMENTS

In this paper, we have studied the density-based spa-
tial clustering method to extract relevant structures from
confocal microscopy images of bile ducts. Our confocal
microscopy images of bile ducts can be divided into two
different datasets, each one representing a separate channel
that encodes distinct, but hard to visualize structures: the
microvasculature, in the red channel, and the bile duct wall
and peribiliary glands, in the green channel.

Aiming at a better result from previous works, we em-
ployed some heuristics found in the literature to determine
the appropriate parameters for the clustering. We proposed
our methodology by adding some steps to be performed
before the clustering phase: one step for pre-processing
the volumetric dataset and another to analyzing candidate
features to guide the clustering. In this latter aspect, we
provide an interesting contribution: we have explored the
gradient magnitude as a feature that allowed to extract rel-
evant information from the density-based spatial clustering.
Besides the fact that DBSCAN allows easy detection of
noise points, an interesting result for both datasets was
that the first and largest cluster found as significant for the
visualization represents the structure of interest. In the red
channel, this cluster represents the most prominent vessels,
while in the green channel, the peribiliary glands were made
more evident.

As future work, we want to explore multidimensional
features to continue the search for better discriminating peri-
biliary glands from the internal bile duct wall. Also, since
we are interested in analyzing the peribiliary glands and the

108



more prominent vessels, we will work on quantitative and
qualitative measures for such structures.
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APPENDIX C — RESUMO EXPANDIDO

Introdução

A microscopia confocal é uma ferramenta útil para adquirir dados 3D de amostras

fluorescentes. Na hepatologia, pesquisadores vêm usando microscopia confocal para in-

vestigar a microanatomia dos dutos biliares. Como as imagens confocais são difíceis de

segmentar devido ao ruído introduzido durante a preparação das amostras, as análises

quantitativas tradicionais, em geral, são difíceis de serem executadas e requerem extensa

intervenção do usuário. Assim, a análise dos dutos biliares representa um desafio na

pesquisa em hepatologia, exigindo diferentes métodos.

Nesta tese, são propostos métodos para caracterizar estruturas em imagens confo-

cais de dutos biliares. No estudo de caso motivador, supõe-se que a caracterização dessas

estruturas ajudará os hepatologistas a distinguir amostras afetadas por atresia biliar, uma

doença que requer transplante de fígado para evitar a morte prematura. Nossos dados con-

sistem em volumes de imagens de dutos biliares de camundongos organizados em dois

subconjuntos, um para cada canal de fluorescência. O canal vermelho contém uma rede

de pequenos vasos denominados Plexo Vascular Peribiliar (PVP), e o canal verde repre-

senta o ducto biliar interno com as Glândulas Peribiliárias (PBGs). Nossa abordagem para

caracterizar as estruturas dos dutos biliares inclui um processo de três estágios: um está-

gio para melhorar a visualização 3D dos dutos biliares, um estágio para extrair estruturas

importantes e um estágio para quantificar estruturas específicas de interesse.

Principais Resultados

A primeira etapa do nosso estudo foi motivada pelo fato das imagens confocais

serem afetadas por diversas fontes de ruído. Para melhorar a qualidade das imagens

adquiridas, desenvolvemos um método baseado na filtragem por difusão anisotrópica.

Aplicamos o método no volume e comparamos a qualidade da imagem usando medidas

quantitativas. A análise qualitativa e quantitativa mostrou que nossos resultados fornecem

um contexto melhor para o estudo visual da microvasculatura dos dutos biliares. O re-

sultado significativo nesta primeira etapa foi a visualização volumétrica aprimorada da

microanatomia do ducto biliar, que permitiu a visualização de detalhes que dificilmente

são vistos nos dados originais. Relatamos essa contribuição em uma primeira publicação



111

associada à tese e reproduzida no Apêndice A. Desta forma, validamos nossa primeira

hipótese (Em relação à visualização 3D de conjuntos de dados de imagens confocais, é

possível obter uma melhor qualidade de imagem através do realce de estruturas usando

uma etapa de pré-processamento com técnicas apropriadas para lidar com o ruído).

No segundo estágio, exploramos o agrupamento espacial baseado no método con-

hecido como Density-based spatial clustering of applications with noise (DBSCAN), us-

ando, porém, informações de gradiente para orientar o agrupamento. A entrada para esta

etapa foi o conjunto de dados já pré-processado contendo os pontos a serem agrupados.

Exploramos a magnitude do gradiente como um recurso que nos permitiu extrair infor-

mações relevantes do agrupamento espacial baseado em densidade. Como resultado, de-

scobrimos um cluster representativo para cada conjunto de dados. Para o canal vermelho,

o cluster contém os vasos mais representativos, e para o canal verde, as estruturas inter-

nas. Relatamos essa contribuição na segunda publicação associada à tese e reproduzida

no Apêndice B. Desta forma, validamos nossa segunda hipótese (Em relação à visualiza-

ção 3D de conjuntos de dados de imagens confocais, é possível melhorar a distinção das

estruturas relevantes usando um método de segmentação de imagens não supervisionado

antes da renderização.).

Essas duas contribuições podem ser consideradas como uma resposta à nossa

primeira pergunta de pesquisa (Como podemos melhorar a visualização de conjuntos de

dados confocais multicanal para fornecer uma melhor distinção das estruturas de inter-

esse?)

Por fim, exploramos os conceitos de dimensão fractal e dimensão fractal multi-

escala aplicados às estruturas obtidas dos agrupamentos, que consideramos úteis para ex-

trair informações quantitativas com o objetivo de caracterizar estruturas relevantes. Nos-

sas análises nos dão algumas evidências de que a dimensão fractal é uma medida que

pode ser usada para quantificação e caracterização dos dutos biliares. Em relação à úl-

tima etapa, caracterizamos as glândulas peribiliares e os vasos mais proeminentes (obtidos

na etapa dois) por meio da análise da dimensão fractal e ampliamos a caracterização com

a análise da dimensão fractal multiescala, o que nos permitiu começar a entender como

é o formato das estruturas dos ductos biliares. Embora tivéssemos poucos conjuntos de

dados, nossas análises baseadas em dimensões fractais e análises fractais multiescala nos

dão algumas evidências de que a dimensão fractal é uma medida que pode ser usada para

quantificação e caracterização de dutos biliares. Além disso, até onde sabemos, nosso

trabalho é o primeiro a analisar conjuntos de dados de imagens confocais 3D usando uma
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abordagem de análise de dimensão fractal. Relatamos essa contribuição no Capítulo 6.

Desta forma, validamos nossa terceira hipótese (A análise da dimensão fractal pode ser

usada para a quantificação e caracterização de estruturas em conjuntos de dados de

imagens confocais).

Com esta etapa final, concluímos nossos planos de investigação de medidas para

a caracterização de dutos biliares obtidas por microscopia confocal respondendo à úl-

tima questão de pesquisa (Quais medidas podemos usar para quantificar e caracterizar

estruturas 3D em conjuntos de dados de imagens confocais?) .

Considerações Finais

Como pode ser observado na literatura recente (JONKMAN et al., 2020), a análise

quantitativa de conjuntos de dados de imagens confocais ainda é um desafio, pois todo

o processo, desde a aquisição, apresenta muitos problemas que podem comprometer a

qualidade dos dados adquiridos. Esses autores concluíram que "A ’microscopia confocal

quantitativa’ é um oxímoro? Quanto mais experiência você tem com imagens confocais,

mais você percebe quantas coisas podem dar errado. Na verdade, vários especialistas

na área opinaram que é quase impossível obter medições rigorosas de intensidades em

um experimento confocal. No entanto, nenhum revisor aceitará comparações qualita-

tivas entre imagens de microscopia: muito provavelmente será solicitado que você as

quantifique! ".

Assim, podemos afirmar que nosso trabalho é um passo na direção de uma carac-

terização quantitativa de estruturas em conjuntos de dados de imagens confocais.
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