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“A reliable way to make people believe in falsehoods is

frequent repetition, because familiarity is not easily

distinguished from truth. [...] Our comforting conviction

that the world makes sense rests on a secure foundation:

our almost unlimited ability to ignore our ignorance.”

— DANIEL KAHNEMAN
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ABSTRACT

Power consumption, earlier a design constraint only in embedded systems, has become

the major driver for architectural optimizations in all domains, from the cloud to the edge.

Application-specific accelerators provide a low-power processing solution by efficiently

matching the hardware to the application; however, since in many domains the hard-

ware must execute efficiently a broad range of fast-evolving applications, unpredictable

at design time and each with distinct resource requirements, alternatives approaches are

required. Besides that, the same hardware must also adapt the computational power at run

time to the system status and workload sizes. To address these issues, this thesis presents

a general-purpose reconfigurable accelerator that can be coupled to a heterogeneous set

of cores and supports Dynamic Voltage and Frequency Scaling (DVFS), synergistically

combining the techniques for a better match between different applications and hard-

ware when compared to current designs. The resulting architecture, MuTARe, provides

a coarse-grained regular and reconfigurable structure which is suitable for automatic ac-

celeration of deployed code through dynamic binary translation. In extension to that, the

structure of MuTARe is further leveraged to apply two emerging computing paradigms

that can boost the power-efficiency: Near-Threshold Voltage (NTV) computing (while

still supporting transparent acceleration) and Approximate Computing (AxC). Compared

to a traditional heterogeneous system with DVFS support, the base MuTARe architecture

can automatically improve the execution time by up to 1.3×, or adapt to the same task

deadline with 1.6× smaller energy consumption, or adapt to the same low energy budget

with 2.3× better performance. In NTV mode, MuTARe can transparently save further

30% energy in memory-intensive workloads by operating the combinatorial datapath at

half the memory frequency. In AxC mode, MuTARe can further improve power savings

by up to 50% by leveraging approximate functional units for arithmetic computations.

Keywords: Computer architecture. reconfigurable architecture. adaptable architecture.

approximate computing. near-threshold voltage computing.



MuTARe: Uma Arquitetura Multi-Proposito Adaptativa e Reconfigurável

RESUMO

Consumo de potência, antigamente um limitante no projeto apenas de sistemas embarca-

dos, hoje é um dos principais objetivos de otimização em todos os domínios de dispositi-

vos, desde a computação na núvem até a computação na borda. Aceleradores de propósito

específico são capazes de fornecer uma solução para o processamento de baixa potência

ao adequar o hardware à aplicação; porém, visto que, em diversos domínios, o hardware

necessita executar uma ampla gama de aplicações, cada uma com diferentes requisitos

computacionais, abordagens alternativas se fazem necessárias. Além disso, o mesmo

hardware precisa se adequar, em tempo de execução, ao estado do sistema e tamanho da

carga de trabalho, aumentando o poder computacional ao executar uma tarefa exigente

e reduzindo-o quando inativo. De forma a resolver estes problemas, esta tese apresenta

um acelerador de proposito geral que pode ser acoplado a um conjunto heterogeneo de

cores e suporta DVFS, sinergisticamente combinando técnicas para uma melhor combi-

nação entre diferentes aplicações e hardware quando comparado aos designs existentes

hoje. A arquitetura resultante, MuTARe, provê uma estrutura regular e reconfigurável que

é adequada para aceleração automática de código já exisente através de tradução binária.

Além disso, MuTARe também provê uma estrutura adequada para aplicar dois emergentes

paradigmas de computação que podem aumentar a eficiencia de potência: computação no

nível da tensão de threshold (mantendo a capacidade de aceleração transparente) e com-

putação aproximativa. Comparado a um sistema heterogeneo tradicional com suporte a

DVFS, a arquitetura MuTARe base pode automaticamente melhorar o tempo de execução

em 1.3×, ou adaptar-se para o mesmo baixo tempo de execução com uma redução de

1.6× no consumo energético, ou adaptar-se para o mesmo baixo nível de energia com

2.3× melhor performance. No modo near-threshold, MuTARe pode melhorar o consumo

de potência de forma transparente em mais 30% em tarefas que exigem bastante memória

operando o circuito combinacional à metade da frequencia da memória. No modo com-

putação aproximativa, MuTARe consegue melhorar o consumo de potência em até mais

50% usando unidades funcionais aproximativas para as computações.

Palavras-chave: arquiteturas de computadores, arquiteturas reconfiguráveis, arquitetu-

ras adaptativas, computação aproximativa, computação no nível da tensão de threshold.
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1 INTRODUCTION

The microprocessor design landscape has changed dramatically over the last 40

years. For long after the first microprocessors were invented, improvements in CMOS

transistor manufacturing followed Moore’s and Dennard’s scaling rules, allowing for

smaller, more efficient and cheaper devices (MOORE, 1965; DENNARD et al., 1974).

By that time, performance could be improved in a way that was entirely transparent to

the programmers mainly for two reasons. First, smaller transistors presented less ca-

pacitance and could be charged faster, allowing circuits to operate at higher frequencies.

Second, hardware designers were able to leverage the additional transistors to implement

micro-architectural improvements that allowed multiple instructions to execute concur-

rently, exploiting the Instruction-Level Parallelism (ILP) that the applications presented

(OLUKOTUN; HAMMOND, 2005). Given this transparency, programmers and end-

users requiring more performance needed only wait for the next processor generation, as

the performance was increasing exponentially (Fig. 1.1a). However, while the scaling

rules promised constant power density as technology evolved, in practice device power

has increased over the years (Fig. 1.1b), mostly because the operating voltage scaled

slower than Dennard’s predictions. For this reason, the contribution of static power (ig-

nored in Dennard’s original model) to the total power has significantly increased over the

years (BOHR, 2007). However, since cooling technologies did not evolve proportionally,

hardware designers reached a power wall - a limitation in the maximum power that any

chip could sustain. Therefore, as transistors entered the nano-era, the strategy to keep

increasing operation frequencies and providing transparent performance improvements

proved to be unsustainable. Table 1.1 illustrates the power impacts of scaling, for a factor

S, before and after Dennard’s model broke down in the first years of the last decade.

Figure 1.1: Intel microprocessors evolution from 1985 to 2003.
(a) Performance. (b) Power.

Source: (OLUKOTUN; HAMMOND, 2005).
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Table 1.1: Device scaling in the Dennard and Post-Dennard eras.

Dennard Scaling Post-Dennard Scaling

Device Count S2 S2

Device Frequency S S
Device power (cap) 1

S
1
S

Device power (Vdd) 1
S2 1

Power Density 1 S2

Source: (SHAFIQUE; GARG, 2017).

The power wall has led, in the last fifteen years, to a shift in the microprocessor

design paradigm, as can be seen in Fig. 1.2. Even though the technology itself allowed

for frequency increases, these would incur power overheads that would breach the power

wall. Moreover, designers realized that processors had reached a stage in which exploit-

ing additional ILP provided only marginal performance increases due to the practical

limitation in the parallelism available from applications (WALL, 1991).

At the same time, however, new application domains emerged with the rise of

High-Performance Computing (HPC) systems and the Internet, requiring processing of

multiple independent tasks or requests simultaneously. These restrictions and demands

led to the development of the first Chip Multi-Processors (CMPs), a solution integrating

multiple processor cores with shared memory into the same die which could improve

the performance in these emerging workloads without the power overheads of frequency

increases (BORKAR et al., 2005). Besides accelerating applications with independent

concurrent tasks, multicore processors offered the possibility of scalable linear speedups

even to a single application. However, in that case, programmers were required to segment

the applications into independent tasks to expose the Thread-Level Parallelism (TLP) that

they presented - a task which is often non-trivial (BLAKE et al., 2010).

The CMPs solution just describedd provided for many years a scalable solution

to increase performance, but this approach has also been challenged in the last decade

(ESMAEILZADEH et al., 2012). Voltage scaling has significantly slowed down to avoid

exacerbating static power, an issue which becomes more critical as technology scales

(MUDGE, 2001) and has lead to even more power consumption increases across genera-

tions (SHAFIQUE; GARG, 2017). Therefore, modern designs have again reached a stage

where the power wall prevents the scalability of the current approach. Because of that,

not all cores in the chip can be turned on at the same time, an issue which was then named

dark silicon (TAYLOR, 2013) and is illustrated in Fig. 1.3a. The figure shows the effect

of turning on all cores in a contiguous region of the chip simultaneously: power density
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Figure 1.2: Microprocessor evolution in the last 30 years.
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Figure 1.3: The dark silicon problem.
(a) Power densities and temperature profile when all cores
in a contiguous region are simultaneously on.

(b) Predictions for the
dark silicon amount.

Source: (SHAFIQUE; GARG, 2017).

and temperature increase up to a point where the chip may stop functioning correctly.

Recent works estimate that the amount of dark silicon, i.e., the fraction of the chip that

needs to be underutilized to keep it operating within the target power envelope, can reach

up to 50% of the chip at the 8 nm technology node (HENKEL et al., 2015), as can be seen

in Fig. 1.3b.

1.1 Current challenges in microprocessor design

The end of multicore scaling, in which the tight power envelopes prohibit the

straightforward deployment of more cores to improve performance, has caused another

significant paradigm change in microprocessor design. Now, more than before, micro-

processors are moving away from the concept of general-purpose processing and being

designed with particular applications in mind to sustain performance improvements with
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power efficiency. To do so, without losing generality, General-Purpose Processors (GPPs)

are extended with accelerators, application-specific designs tailored for efficiently ex-

ploiting the sort of parallelism available in each application (PATEL; HWU, 2008). While

accelerators allow for the best possible efficiency by perfectly matching the application

to the hardware, their use introduces a systemic cost impact (in hardware design and

software development) which persists despite several advancements in the field (HWU;

PATEL, 2018). From the hardware design perspective, since processors become special-

ized at design time to a particular (group of) application(s), the target market for each

design is restricted, increasing the Non-Recurrent Engineering (NRE) costs. Besides, de-

signers must now have an understanding of the application domain, making them a more

valuable (and costly) resource than earlier. From the software development perspective,

because accelerators must be programmed using special instructions, the code must be

(re)structured in order to leverage the accelerator efficiently, or special (automatic) tools

must be deployed to that end. In any case, extensive development effort or programmer’s

training in the tools is required, both of which increase production costs.

1.2 Scope of this thesis

The above discussion suggests that, while the excellent match between software

and hardware makes accelerators highly-efficient execution units, capable of addressing

the performance and power challenges just described, they introduce significant costs

to the hardware and software development processes. Besides, since their design is

fixed, they cannot adapt well to workload sets that change over time. In domains where

applications are constantly evolving at a fast pace, such as in the Internet-of-Things

(IoT), application-specific designs may have a too high cost that prohibits their utiliza-

tion (ADEGBIJA et al., 2018). As a consequence, accelerators could be significantly

improved if they were more generic, had smaller programmability costs and had better

run-time adaptation capabilities.

Considering this context, reconfigurable accelerators present an alternative that

can address most of the issues associated with application-specific ones. These devices

typically consist of arrays of Processing Element (PE) with programmable interconnects,

allowing customized datapaths that match each application’s needs to be defined at run

time. While not as efficient as an application-specific accelerator, they can provide con-

siderable efficiency improvements compared to GPP while amortizing the design costs
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and increasing the range of applications the device can run. Moreover, reconfigurable

accelerators can be leveraged transparently for automatic acceleration of code that is

already deployed with techniques such as dynamic binary translation, reducing the cost

overheads in the development process. Moreover, as will be shown in this thesis, they pro-

vide a suitable structure for combining other techniques, such as approximate computing

and near-threshold voltage computing.

1.3 Contributions of this thesis

To address the challenges in designing and programming accelerators, and to

provide a wider adaptability range than current reconfigurable accelerators, this thesis

presents Multi-Target Adaptive Reconfigurable Architecture (MuTARe). MuTARe syn-

ergistically combines multiple adaptability techniques for transparent adaptation between

different applications and the hardware when compared to current reconfigurable designs.

It is multi-target in the sense that it can be targeted towards different application domains

and, besides adapting to each application, can also dynamically adapt to different target

metrics, such as meeting a performance target while saving power or meeting a power

target while maximizing performance. MuTARe goes beyond traditional reconfigurable

architectures by providing support for two emerging computing paradigms that can further

boost the power efficiency: near-threshold voltage computing and approximate comput-

ing.

Fig. 1.4 presents an overview of the MuTARe architecture. The heart of MuTARe

is a parametrisable and combinatorial Coarse-Grained Reconfigurable Array (CGRA) that

can be coupled to different forms of GPP core: in-order cores (for low-power domains,

such as IoT), Out-Of-Order (OoO) cores (for high-performance domains, such as HPC),

or even both of them in a big.LITTLE-like setup (for mobile domains requiring a wide

adaptability range). The acceleration capabilities can be combined with Dynamic Voltage

and Frequency Scaling (DVFS) to precisely adjust for the performance levels required,

lowering the Operating Frequency (f ) and Operating Voltage (Vdd) when possible to re-

duce power consumption. With these techniques, MuTARe can work transparently for

already deployed binaries by providing, as a dedicated hardware module, a dynamic bi-

nary translation algorithm that automatically maps recurring instruction sequences into

the CGRA for acceleration.

In the first step to move beyond traditional reconfigurable architectures, MuTARe
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Figure 1.4: Overview of the proposed MuTARe architecture.
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provides support for the operation in the Near-Threshold Voltage (NTV) range, where

the lowest-energy operating point is typically found (MITTAL, 2015). In this challeng-

ing operating environment, memories become more prone to failure, and the effects of

Process-Voltage-Temperature (PVT) variation are increased, requiring the use of special

techniques during design to address these issues. MuTARe avoids these difficulties by

providing a suitable structure for NTV computing: a combinatorial CGRA with a sep-

arate voltage domain from the memories, which is also a regular structure that may be

designed with overprovisioned PEs to address variability issues. This operating mode can

also be activated transparently, with no need to recompile existing code, and provides a

considerable boost to power efficiency especially in memory-bound applications.

In a second step to improve over reconfigurable architectures, MuTARe provides

support for Approximate Computing (AxC) to improve power efficiency in emerging

error-tolerant workloads. While many works have shown the power benefits of deploying

approximate functional units (SHAFIQUE et al., 2016), GPPs are typically unsuitable for

this approach since the most significant fraction of power consumption is spent in control,

rather than in processing. When moving the execution from the GPP to a combinatorial

CGRA, however, the potential benefits of approximate functional units can be leveraged

to their full extension. Support for approximate computing requires Instruction-Set Ar-

chitecture (ISA) extensions to configure the accuracy, since that is a piece of semantic

information that must be provided by the application developer, so this execution mode
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introduces to the base architecture Instruction-Set Extensions (ISEs) that may be used

towards that end.

The contributions of this thesis can be summarized as follows:

• A reconfigurable architecture based on a GPP-CGRA coupling, where the GPP may

take any form of core (including heterogeneous arrangements with complex OoO

cores), which supports DVFS to balance the acceleration capabilities and power

consumption. Compared to existing reconfigurable architectures, MuTARe can

transparently accelerate existing code, be coupled to any form of processor core

and can leverage DVFS to match the performance improvements provided by au-

tomatic CGRA acceleration with the performance target, lowering the frequency if

slack is available to save additional power.

• A reconfigurable architecture with a suitable structure for computing in the NTV

domain. Compared to previous works that use NTV to save power, this one is

the first where NTV is used in the context of single-threaded applications. The

enhanced ILP exploitation provided by MuTARe’s CGRA can partially compen-

sate the performance loss from low-frequency operation, especially in workloads

which are memory-bound, and its reconfigurable fabric enables simpler approaches

to variablility management.

• A reconfigurable architecture that can leverage the benefits of AxC and provide ad-

ditional performance improvements and power savings in emerging error-tolerant

domains. Compared to existing works oin AxC, this is the first one where a recon-

figurable accelerator is used for approximate computations, presenting the advan-

tage of maintaining general-purpose processing capabilities while leveraging the

full benefits of reduced power consumption in approximate functional units, since

the power consumption is switched from control in the GPP to computatin in the

CGRA’s PEs.

The result is an architecture that can be tuned at design time to better adapt for

low-power or high-performance, and at run-time adapt to the application being executed

and improve the efficiency.
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1.4 Structure of this thesis

The current chapter has presented an introduction to this thesis, with the problem

it addresses, the scope and an overview of the solution: the MuTARe architecture. The

remainder of this document is organized as follows.

Chapter 2 present background information for understanding this thesis. It covers

reconfigurable accelerators, DVFS and NTV computing, and approximate computing, all

of which are concepts exploited by MuTARe.

Chapter 3 presents the base architecture of MuTARe, a GPP core to which a re-

configurable accelerator with dynamic instruction mapping support is coupled and which

can leverage DVFS to adapt to a performance target.

Chapter 4 presents extensions to increase the adaptability range of MuTARe, namely

MuTARe with NTV support, and approximate MuTARe.

Chapter 5 presents the methodology and tools used to evaluate MuTARe under

very distinct comparison scenarios.

Finally, Chapter 6 presents the conclusions of this work, summarizing the vital

contributions and results, points towards future research directions and presents the pub-

lications by the author in the scope of this thesis.
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2 BACKGROUND

This chapter presents background information essential for the understanding of

this thesis. It covers reconfigurable architectures, DVFS, and NTV computing, and ap-

proximate computing. For each of these techniques, examples of systems that use them

are presented and also the key novelties of the MuTARe architecture.

2.1 Reconfigurable Architectures

Reconfigurable accelerators are hardware units with the ability to specialize to an

application at run time by modifying their structure. Systems where these accelerators

are coupled to GPP are referred to as Reconfigurable-Instruction-Set Processors (RISPs)

(BARAT; LAUWEREINS, 2000)1. Through this specialization, reconfigurable accelera-

tors are able to achieve better performance and energy consumption than the GPPs they

are coupled to; however, given the flexibility to adapt the hardware structure at run time to

different applications, they are usually not as efficient as dedicated Application-Specific

Integrated Circuits (ASICs). In summary, these circuits fill a gap between software and

hardware implementations of algorithms (COMPTON; HAUCK, 2002; BECK; CARRO,

2010).

Fig. 2.1 shows how execution works in a RISP. Instructions sequences are exe-

cuted either in the GPP (when presenting low potential for acceleration, as shown in light

gray in the figure) or in the reconfigurable accelerator (when they have high potential

for acceleration, as shown in dark gray). A hardware controller handles the configura-

tion, communication and synchronization process between the two execution units. To

determine the code sequences which should execute in the accelerator, the hot regions of

code (i.e. regions which account for a high fraction of the application’s execution time

or energy consumption) must be selected (step 1) and transformed into reconfigurable

instructions (step 2).

This section proceeds by discussing a classification scheme for RISPs, and then

presents relevant implementation examples considering the scope of this work.

1There is no standard taxonomy in the field, so this form of system has been called many names in the
past years, such as reconfigurable architecture/system, spatial architecture, and some authors even avoid
using any specific terms at all, speaking instead of “a system with configurable components”.
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Figure 2.1: Overview of a RISP.
(a) Basic principle.

(b) Steps required to map, execute, and write back program re-
gions in the reconfigurable accelerator.

Source: (BECK; CARRO, 2010).

2.1.1 Classification of Reconfigurable Architectures

This work uses a classification scheme similar to the one used by Beck and Carro,

which covers (among others) three criteria: code analysis and transformation, granular-

ity, and processor coupling (BECK; CARRO, 2010).

Fig. 2.1b presents a detailed view of each of the steps involved when executing

an application in a RISP, from application source code specification to execution results.
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The code analysis and transformation phase, depicted in steps 1 and 2, can be carried

out either statically (offline, at compile time) or dynamically (online, at run time). Static

schemes are simpler because the application source code is available, but they usually

rely on programmer intervention (to identify regions of code that will be accelerated) or

compiler modifications (to automatically select these regions). Dynamic schemes, on the

other hand, although more complex to implement, present the following advantages:

• They take as input the application binary rather than the source code; therefore,

both already-deployed as well as new applications are supported and can leverage

the reconfigurable unit for acceleration.

• They have access to dynamic information (such as the frequency of executed code

regions) and, therefore, optimization opportunities that are not available at compile

time.

The process of dynamically transforming code from one ISA for execution in an-

other one (e.g. a reconfigurable accelerator) is commonly named binary translation (ALT-

MAN; KAELI; SHEFFER, 2000). Most of these strategies use graph analysers that work

on an application’s Data-Flow Graph (DFG) to determine computations that can be trans-

formed into reconfigurable instructions. To illustrate how this process is done, consider

Fig. 2.2, which depicts the instructions in an application’s basic block (graph nodes) and

the data dependencies among them (graph edges). In this particular case, four code re-

gions with data dependencies were transformed into reconfigurable instructions (denoted

by CCA in the transformed DFG) that can execute in a single cycle, reducing the height

of the DFG from 8 to 4. The height of the DFG represents the number of cycles it would

take to execute the kernel in case an unlimited amount of functional units were available (,

each of which can execute each instruction in a single cycle). Therefore, in this example,

the potential speedup is 8
2
= 2×.

The accelerator’s granularity refers to size of the reconfigurable logic blocks.

There are two categories:

• Fine-Grained Reconfigurable Arrays, in which the reconfigurable logic blocks

implement bit-level operations;

• CGRAs, in which the reconfigurable logic blocks implement word-level operations.

To illustrate the difference, consider Fig. 2.3, which compares both granularities.

The Fine-Grained Reconfigurable Array is implemented using an FPGA, which consists

of Configurable Logic Blocks (CLBs) and switch-boxes. Each CLB contains an N-input
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Figure 2.2: Code transformation in a RISP.
(a) Original DFG. (b) Transformed DFG.

Source: (CLARK et al., 2004).

Lookup Table (LUT) and a flip-flop; they may be connected arbitrarily by configuring the

switch-boxes and therefore implement logical functions of multiple inputs and outputs.

The CGRA is a matrix of Arithmetic-Logic Units (ALUs) with crossbar connections be-

tween the rows.

While Fine-Grained Reconfigurable Arrays (FGRAs) provide the the highest flex-

ibility, there is a tradeoff: the configurations are significantly larger than in CGRAs (as

more flexibility implies more configuration bits), and therefore they require larger storage

space and also longer configuration times. For this reason, FGRAs are more effective in

cases where a circuit needs to be reconfigured only a few times during execution, such as

in filter applications (which execute a single hotspot the whole time), and CGRAs tend to

be more efficient to implement applications consisting of multiple hotspots.

Coupling refers to how the reconfigurable accelerator synchronizes execution and

communicates data with the GPP in the system. There are two forms: the accelerator can

either be located inside the processor core (having direct access to the register file and

first-level caches), in which case it is classified as tightly-coupled, or it can be located

outside, in which case it is classified as loosely-coupled. There is a tradeoff in communi-

cation time and circuit speed. Loosely-coupled accelerators can include private memories

and operate in a distinct frequency domain as the main processor, and therefore do not

affect its critical path. On the other hand, communication must be done via higher-level

caches or main memory, which can be significantly slower than in tightly-coupled accel-
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Figure 2.3: Comparison between an FPGA and a CGRA.
(a) Field-Programmable Gate Array
(FPGA). (b) CGRA.

Source: (BECK; CARRO, 2010).

erators.

A recent work has investigated the tradeoffs involved in computing using tightly-

coupled and loosely-coupled accelerators, and shows the performance advantages of loosely-

coupled ones with private memory (COTA et al., 2015). This work, however, uses a

tightly-coupled accelerator, since the goal is to provide transparent reconfigurable acceler-

ation of alraedy deployed code (without needing to rewrite code for using local memories)

and fast reconfiguration times.

2.1.2 Implementations of Reconfigurable Architectures

Reconfigurable architectures have been studied for quite some time and have been

the subject of many surveys over the years (BARAT; LAUWEREINS, 2000; COMPTON;

HAUCK, 2002; BECK et al., 2008; WIJTVLIET; WAEIJEN; CORPORAAL, 2016).

Most of these architectures use static strategies to generate instructions for the recon-

figurable fabric. Since this work uses a dynamic strategy, static architectures are only

briefly described here due to their historical significance.

Concise (KASTRUP; BINK; HOOGERBRUGGE, 1999) and Chimaera (YE et

al., 2000) use a tightly coupled Reconfigurable Unit (RU) that works as an ordinary

functional unit and limited to combinational logic only. The GARP machine (CALLA-

HAN; HAUSER; WAWRZYNEK, 2000) comprises a MIPS-compatible processor with a
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loosely-coupled and fine-grained RU. REMARC (MIYAMORI; MIYAMORI; OLUKO-

TUN, 1998) also uses a fine-grained RU and works as a loosely coupled coprocessor.

RaPiD (CRONQUIST et al., 1998) and Piperench (GOLDSTEIN et al., 2000) are exam-

ples of architectures using coarse-grained RUs. The main novelty of the Piperench archi-

tecture is the concept of pipelined reconfiguration: given kernel is broken into pieces that

can be reconfigured and executed on demand. Afterwards, in a process called virtualiza-

tion, they are multiplexed in time and space to be executed in the reconfigurable logic.

The Molen (VASSILIADIS et al., 2004) microcoded RU is fine-grained, loosely-coupled,

and works together with a PowerPC processor core. DISC (WIRTHLIN; HUTCHINGS,

1995), OneChip (WITTIG; CHOW, 1996), PRISM-II (WAZLOWSKI et al., 1993) are

other reconfigurable architectures that employ standard fine-grained FPGA resources. In

the group of coarse-grained RUs, one could also include: Pact-XPP (BAUMGARTE

et al., 2003), Morphosys (SINGH et al., 2000), Pleiades (ZHANG et al., 2000) and

ADRES (MEI et al., 2003). Furthermore, there are reconfigurable architectures that

are very similar to dataflow machines. For instance, TRIPS is based on a hybrid von-

Neumann/dataflow architecture that combines an instance of coarse-grained, polymor-

phous grid processor core with an adaptive on-chip memory system (SANKARALINGAM

et al., 2003). TRIPS uses three different execution modes, focusing on instruction-, data-

or thread-level parallelism. Wavescalar (SWANSON et al., 2003) is another example, and

its implementation is very similar to the structure found in TRIPS.

All of the systems just described require dedicated instructions implemented in the

ISA to program the RU. Next, a few systems supporting automatic code generation are

described in more detail due to their relevance to the scope of this thesis.

The Warp Processor, shown in Fig. 2.4, is one of the first systems to use a

dynamic strategy to map application code while it executes into a RU (LYSECKY; STITT;

VAHID, 2006). The Warp Processor consists of an ARM core, a profiler, a dedicated

Computer-Aided Design (CAD) processor and a simplified FPGA, and works as follows.

While the program executes normally in the ARM core, the profiler identifies the critical

kernels within the application. Then, the dedicated CAD processor executes special CAD

tools to transform the software regions into custom hardware using the FPGA’s resources.

The program binary is then updated to run critical kernels in the FPGA rather than the

ARM core. A mutually-exclusive execution model is used to switch execution from the

ARM processor to the custom hardware next time one of the critical kernels is executed.

Since the main processor and the FPGA share the same data cache, issues with cache
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coherency and consistency are avoided.

Figure 2.4: Overview of the Warp Processor.

Source: (LYSECKY; STITT; VAHID, 2006).

The Thread Warping approach, shown in 2.5, extends the Warp Processor to

multicore systems, sharing a single reconfigurable FPGA fabric across multiple cores

(STITT; VAHID, 2011). The approach uses operating system support to identify thread

functions to map to the FPGA.

Figure 2.5: Overview of the Thread Warping approach.

Source: (STITT; VAHID, 2011).

The Configurable Compute Accelerator (CCA) (CLARK et al., 2004), depicted

in Fig. 2.6, uses a configurable matrix of functional units tightly coupled to the processor



30

pipeline as an additional functional unit. It can be used to implement regions of code with

four inputs and two outputs consisting of basic logic and arithmetic operations. Static

and dynamic approaches are proposed for generating custom CCA instructions from ap-

plication kernels. In the dynamic approach, application kernels are discovered at runtime

using a graph analyser and transformed into special CCA instructions, which replace the

Central Processing-Unit (CPU) ones in the system’s trace cache. CCA instructions may

not include memory accesses, which restricts their scope, and are limited to very short

regions with small input sizes.

Figure 2.6: Overview of the CCA hardware.

Source: (CLARK et al., 2004).

The Dynamic Instruction Merging (DIM) system, shown in 2.7, uses a CGRA

that is tightly coupled to a MIPS processor (BECK; RUTZIG; CARRO, 2014). With

a simplified hardware binary translation algorithm, application kernels are dynamically

transformed into CGRA configurations and saved in a dedicated cache. Unlike the CCA,

the system accesses the dedicated cache using the program counter Program Counter (PC)

of the application kernels to check if they can execute in the array.

Custom Reconfigurable Arrays for Multiprocessor Systems (CReAMS) ex-

tends DIM by proposing an homogeneous system consisting of multiple reconfigurable

processors, thereby also allowing the exploitation of TLP (RUTZIG; BECK; CARRO,

2013). Heterogeneous Arrays for Reconfigurable and Transparent Multicore Pro-
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Figure 2.7: Overview of the DIM system.

Source: (BECK; RUTZIG; CARRO, 2014).

cessing (HARTMP) improves over CReAMS by considering a multi-core system of het-

erogeneous processors with homogeneous ISA (SOUZA et al., 2016). Fig. 2.8 illustrates

the difference between both approaches.

Figure 2.8: Overview of the CReAMS and HARTMP systems.
(a) CReAMS. (b) HARTMP.

Source: (SOUZA et al., 2016).

Dynamically Specializing Execution Resources (DySER) is a coarse-grained re-

configurable accelerator, tightly coupled to the processor’s execution unit, with the claim

to unify functionality and parallelism specialization into a single hardware (GOVIN-

DARAJU et al., 2012). This is an interesting distinction made by the authors which

deserves better clarification:

• parallelism specialization uses homogeneous hardware resources with wide and

independent interconnects. Vector processors, Single Instruction Multiple Data

(SIMD), and Graphics Processing Unit (GPU) are strategies that exploit this form
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of specialization;

• functionality specialization uses heterogeneous, task-specific resources and routing.

The works discussed in this section are examples of strategies to exploit this form

of specialization.

Figure 2.9: Overview of the DySER system.

Source: (GOVINDARAJU et al., 2012).

An overview of the DySER system is presented in Fig. 2.9. The reconfigurable

accelerator consists of a matrix of heterogeneous functional units surrounded by pro-

grammable switches that can route data to the adjacent tiles, forming a hardware data

path once configured. This accelerator is integrated to the processor’s execution stage,

which acts as a load/store engine to feed the DySER hardware.

Figure 2.10: Code transformation and execution in the DySER system.
(a) DFG. (b) CPU execution. (c) DySER trans-

formation. (d) DySER execution.

Source: (GOVINDARAJU et al., 2012).

A comparison between CPU and DySER execution is provided in Fig. 2.10. In

Fig. 2.10a, the DFG of a selected code region is presented. It is a 4-input, 1-output
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code pattern (similar to a reduction) consisting of multiplications and sums. Fig. 2.10b

shows how this sequence would execute in a 2-issue superscalar processor when invoked

twice. A total of 13 cycles are required. Fig. 2.10c shows how this DFG is adapted

for execution in DySER: the computation subregion is extracted, and the loads/stores

are left for execution in the CPU to exploit its structures that support memory parallelism.

Finally, Fig. 2.10d shows how this same execution occurs in DySER, and the opportuniity

to pipeline both invocations resulting in a total of only 8 cycles to execute the region.

DySER was originally programmed by using a special compiler that selected the regions

that will be offloaded to the RU. Later, the DORA automatic code generation system

was developed for DySER, with support for automatic code transformation (WATKINS;

NOWATZKI; CARNO, 2016).

DynaSpAM, presented in Fig. 2.11, is a reconfigurable accelerator coupled to an

OoO superscalar pipeline (LIU et al., 2015). The insight of the work is that the existing

OoO scheduling logic can be leveraged, with some adaptions, to simultaneously allocate

instructions in the pipeline and translate instruction sequences for execution in a CGRA.

Moreover, an additional Re-Order Buffer (ROB) is used to hold results of the instructions

executed in the CGRA, allowing for in-order commit as is done in the superscalar.

2.2 DVFS and NTV Computing

Considering the relationship between Vdd and power consumption, many modern

processors support DVFS, a technique that allows tuning the processor’s Vdd and fre-

quency at run time, providing a knob to trade high performance (by setting the frequency

to a high level) for improved power and energy consumption (by lowering the Vdd and the

frequency) (BURD et al., 2000).

The Alpha-Power Law model provides a good approximation for the expected

relationship between Vdd, f , and transistors’ power consumption (SAKURAI; NEWTON,

1990). The primary knob in DVFS is Vdd, since it impacts both static and dynamic power

consumption. As Vdd is reduced, however, capacitance charge time increase as a result

from smaller currents. As a consequence, the circuit must run at a lower frequency (f ).

The relationship between delay T = 1
f

and Vdd can be expressed as

T ∝ Vdd
(Vdd − Vth)α

. (2.1)
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Figure 2.11: The DynaSpAM system.
(a) Overview.

(b) Reconfigurable fabric.

Source: (LIU et al., 2015).

In the equation above, α is a technology-dependent parameter named velocity sat-

uration index, estimated at around 1.9 for current 7nm nodes (GUO et al., 2017), and

Vth is the transistor’s Threshold Voltage, estimated at about 159 mV for the 7nm FinFET

node (PINCKNEY et al., 2017)2. This relationship shows that, as Vdd is lowered from

the nominal voltage, the frequency initially descreases by only a small amount, Vth is still

much smaller than Vdd. However, as Vdd approaches Vth, Eq. 2.1 becomes more sensitive

to changes in Vdd and the impact in delay is larger. This effect can be visualized in the

lower part of Fig. 2.12.

The result of DVFS is a major, monotonical reduction in static and dynamic power

2This is only a reference value for the Threshold Voltage (Vth), since Vth can actually be tuned at design
time to balance between static power consumption and performance.
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Figure 2.12: Effects of voltage scalability in delay and energy consumption.

Source: To the left, results by Univ. Michigan (DRESLINSKI et al., 2010); to the right,
results by Intel (KAUL et al., 2012).

consumption (PS , PD), since
PD ∝ V 2

ddf

PS ∝ VddIS
(2.2)

In Eq. 2.2, IS is the current in the transistor’s source, which is also a function of

Vdd. While power consumption decreases with Vdd and f , however, the energy consump-

tion depends on the ratio between the increase in task delay and the reduction in power

consumption, since E = PT (where T = 1
f

). Plugging together the relationships in Eq.

2.1 and Eq. 2.2 yields:
ED ∝ V 2

dd

ES ∝ VddIST
(2.3)

Eq. 2.3 shows that the dynamic energy monotonically decreases as Vdd is lowered,

since the dynamic power depends on f . The static energy, however, initially decreases

as Vdd is lowered (influence of Vdd and IS , with small increase in T ) but then presents a

tipping point as the task delay increases faster when approaching Vth (large influence of

T ). Since E(Vdd) = ES(Vdd) + ED(Vdd), there’s a value of Vdd that minimizes energy

consumption by balancing the increase in static energy with the decrease in dynamic

energy, and this tipping point happens exactly where

∂ES
∂Vdd

= −∂ED
∂Vdd

(2.4)
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Different works have investigated the operating point (value of Vdd) where Eq. 2.4

is satisfied and execution can be carried out with minimum energy consumption. This

value is technology-dependent, however, and hard to estimate precisely. Nevertheless,

some preliminary works estimated it to lie in the transistor’s subthreshold region, where

Vdd ≤ Vth (DRESLINSKI et al., 2010; KARPUZCU et al., 2012). More recent studies, on

the other hand, estimate it to lie in the near-threshold region, with Vdd slightly higher than

Vth (KAUL et al., 2012; KHARE; JAIN, 2013; PINCKNEY et al., 2017). These findings,

shown in Fig. 2.12, have sparked interest in NTV computing as a means to address the

power wall limitation in modern designs (MITTAL, 2015).

Operation in the NTV region, however, raises several challenges that must be ad-

dressed with special design strategies. As a consequence, DVFS in typical processors is

restricted to the Super-Threshold Voltage (STV) region, with Vdd set between 70-100% of

the nominal voltage (DRESLINSKI et al., 2010). The design challenges of NTV opera-

tion, as well as state-of-the-art techniques used to address those challenges, are presented

in detail in the next subsections.

2.2.1 Challenges in NTV Operation

Performance degradation. The first issue with NTV computing is the significant

performance degradation from the low-frequency operation, with previous works estimat-

ing the delay to increase by about 10× when moving from STV to NTV (see Fig. 2.12).

Modern applications, however, require processing speeds compatible with todays’s stan-

dards. Therefore, alternative strategies must be used to compensate for that performance

loss, otherwise NTV operation must be restricted to the few applications without strong

performance requirements.

Scalability differences between logic and memory. As voltage is scaled down,

the delay of logic and state-holding elements present different responses. In particular,

the delay of memories start to degrate faster, and in practice cannot be lowered below a

given limit due to increased error vulnerability (BACHA; TEODORESCU, 2014). As a

consequence, memories require redesign for NTV or be strategically placed in a separate

voltage islands operating at higher levels.

Fig. 2.13 illustrates this effect with experiments carried out in a recent work

(GOPIREDDY et al., 2016). It shows how the maximum frequency a logic block and

an Static Random-Access Memory (SRAM) block in a processor can run under the ef-
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Figure 2.13: Impact in maximum frequency as Vdd is lowered (logic vs memory).

Source: (GOPIREDDY et al., 2016).

fects of voltage scaling, considering both are designed for a nominal 3500 MHz @ 0.9V

(labeled as Vnom in the plot). The SRAM voltage can only be lowered down until 0.6V

(labeled as Vmin) as levels below that start affecting the cell’s ability to reliably store

data. For this voltage level, the memory runs at about 900 MHz; the logic cell can run

at the same frequency at a lower voltage level, 0.55V, which, according to equation 2.2,

could yield a further 16% reduction in dynamic power consumption given the quadratic

relationship with Vdd.

Increases in process variability. Process variations affect the transistor parame-

ters non-uniformely across a manufactured processor. These variations result in frequency

and power consumption differences among cores in a chip, and are exacerbated when op-

erating in the NTV range. The reason for that is that small deviations in Vth (process

variation) affect the ratio Vdd
Vth

and the difference Vdd − Vth more when Vdd is closer to Vth.

Fig. 2.14 shows this effect precisely. The left plot shows the probability density

function for the frequency a core can achieve after manufacturing. The x axis shows

the normalized operating frequency and the y axis the probability density of that given

frequency. Two curves are shown: one for Vdd = 1.2V (STV) and one for Vdd = 320mV

(NTV). In the core designed for 1.2V , σ = ±18%, which means that roughly 70% of

all cores will run at a frequency between 0.82× and 1.18× the target frequency. When

the chip is designed for Vdd = 320mV, however, σ = ±2×, which means that roughly

70% of all cores will run at a frequency between 0.5× and 2×. As a consequence, the

unpredictabnility increases. As mentioned earlier, when Vdd lies closer to Vth, the impacts
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Figure 2.14: Impacts of variability in STV and NTV voltage levels.

Source: (KAUL et al., 2012).

of Vth in frequency after manufacturing are exacerbated according to Eq. 2.1.

The right plot in the same figure shows the effects that temperature may have on

the chip, since temperature also affects the Vth level. At STV, the difference will be only

5% between a chip operating at 50ºC or 0ºC. At NTV, however, this difference can also

be as high as 2×.

VARIUS-NTV is a tool developed to model the microarchitectural variability in

an NTV processor (KARPUZCU et al., 2012). It is used by most of the NTV works to

predict the delay and power variations within a multi-core die.

2.2.2 Solutions for NTV Operation

Increasing performance with dim multi-cores. As discussed in Chapter 1, the

scalability of multi-core processors is currently constrained by the power wall. NTV pro-

vides a solution to that issue, with nearly-quadritic improvements to power consumption

(see Eq. 2.2). As a consequence, an increased number of cores can be simultaneously

switched on. This is the key idea introduced by the work of Pinckney et al. (PINCK-

NEY et al., 2013): by rewriting an application for parallel execution and running it in

a voltage-scaled multi-core operating at NTV, converting dark silicon (cores turned off)

into dim silicon (all cores on, at low voltage/frequency), it is possible to reduce energy

consumption by an avergage 4× while mantaining the same performance level as in serial

execution. A similar analysis considering the impacts of emerging FinFET devices was
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carried out more recently (PINCKNEY et al., 2017). According to the study, the benefits

of NTV in energy consumption (following the same idea of maintaining the performance

levels of serial execution) have dropped significantly in the last nodes of planar transis-

tors, but as the switch to FinFET occurred the gains were boosted due to a major decrease

in Vth (372mV in the 20nm node and 165mV in the 14nm node). In 7nm, the energy gains

from the same setup (dim multicore versus serial execution) are estimated at 8.2×.

Most state-of-the-art designs employing NTV use it as a means to reduce the

power consumption of each core, enabling more cores to be switched on under the same

power envelope. While this approach enables the effective acceleration of parallel work-

loads, it is not suitable for single-threaded workloads.

Separating voltage islands inside the core. Work by Zhai et al. proposes op-

erating the pipeline and L1 caches in seperate voltage islands, considering the different

scalability of Vdd for each structure demonstrated in Fig. 2.13. Caches run at twice the

frequency as the cores, and therefore can sustain twice the memory bandwidth while still

allowing the core logic to be scaled down to optimal levels (ZHAI et al., 2007).

ScalCore extends the approach not only to pipeline and caches, but also to critical

structures inside the pipeline which are typically implemented as SRAM, such as the

register file, the instruction queues and the ROB (GOPIREDDY et al., 2016). The key

insight is to design a core that can achive voltage-scalability, being able to operate in the

NTV range and leverage the benefits without, however, incurring any overheads when

operating back in STV.

Separating voltage islands inside the chip. A few works have addressed the vari-

ability issue by defining multiple voltage and frequency domains in a chip and assigning

them values post-manufacturing according to the varability results. Work of Silvano et al.

(SILVANO et al., 2014) cites four strategies for this assignment: Single-Voltage Single-

Frequency (SVSF), Single-Voltage Multi-Frequency (SVMF), Multi-Voltage Single-Frequency

(MVSF), and Multi-Voltage Multi-Frequency (MVMF). SVSF is the simplest and most

conservative approach, which assigns the same voltage and frequency to all cores and

structures in a die. While the strategy is sufficient for an STV processor, considering

the low variability, it would result in over-pessimistic assumptions for the maximum fre-

quency considering the high variability in NTV. On the other hand, the Multi-Voltage or

Multi-Frequency approaches are more flexible, but require the use of special components

to interface between different domains, and the use of special techniques for determining

the optimal voltage and frequency assignments for each domain.
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In the same work, an MVSF strategy for sustaining performance from STV levels

while computing at NTV (with higher number of cores, while still reducing the energy

consumption) is used for this assignment: first, the lowest-required frequency for sus-

taining STV performance is computed, and then the voltage domains for achieving that

frequency are allocated. The result is a frequency-homogeneous multi-core. A MVMF

extention to this scheme, which results in a heterogeneous multi-core and can be partic-

ular efficient in applications with workload disbalance among threads is also presented

(SILVANO et al., 2014).

Kaul et al. propose a simpler approach, suitable for many-core sytems (KAUL et

al., 2012). The authors argue for a simple SVMF strategy where the nearest-possible op-

eration frqeuency is assigned to each core. Then, according to the Law of Large Numbers,

the overall throughput of the system should not be affected.

EnergySmart takes a similar, SVMF approach, arguing for the inneficiency of MV-

based schemes due to the high amount of area and low energy efficiency of on-chip volt-

age regulators (KARPUZCU et al., 2013). The proposed strategy is also coupled to a

scheduling algorithm assigns tasks to the performance-heterogeneous cores to maximize

performance per watt.

Kiamehr et al. propose a temperature-aware voltage scaling approach, showing

that ambient temperature information (which is typically very close to circuit tempera-

ture, when operating at NTV) can be leveraged to better tune the optimal Vdd level and

reduce energy consumption compared to temperature-unaware schemes (KIAMEHR et

al., 2017).

2.3 Approximate Computing

Approximate computing is a design paradigm that enables trade-offs in the quality

of an application’s results for improvements in other metrics such as performance or en-

ergy consumption. It is based on the observation that many modern application domains,

such as computer vision, gaming, machine learning, data mining, dynamic simulations

and data mining present a forgiving nature (i.e., they can tolerate controlled deviations in

the output without compromising the functionality) due to at least one of the following

characteristics (CHAKRADHAR; RAGHUNATHAN, 2010):

• Noisy inputs: Real-world data is, by nature, noisy due to measurement errors. Any
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application processing noisy data has already introduced some degree of error in

the output and, therefore, can tolerate approximation in its computations.

• Large, redundant data-sets: Some applications process large amounts of data with

significant similarity between input elements, for instance image/video processing

and machine-learning applications. In such scenarios, approximation can be used

to remove this redundancy with only small impact in the quality.

• No perfect result: Heuristics, which are a form of approximating a computation,

are often used when solving complex problems for which an exact solution is either

unavailable or computationally intractable. Other approximation techniques may

also be applied in such scenarios.

• Limited perceptual ability of users: In many cases, a good-enough application

result is sufficient because the user would not be able to notice any difference be-

tween that and the precise result. Many lossy-compression algorithms are based on

this idea ((ESR), 2011).

The observation above raises an opportunity to exploit these common character-

istics as a design paradigm to enable performance or energy improvements. Fig. 2.15

shows an overview of the Approximate Computing paradigm. Given the abstract notion

of an algorithm, which is a transformation from inputs into outputs, implemented either as

software or hardware, approximate computing consists of finding an approximate, more

efficient version of the same implementation by using approximation techniques. The ap-

proximate transformation produces an approximate output which can be compared with

the precise one, and an error measurement can be established. An important assumption in

approximate computing is that the output of the approximate transformation must contain

only small deviations from the precise one. In this sense, approximation techniques that

can cause the system to abruptly crash or change the structure of the output (i.e. change

the number of output elements, or the output encoding) are still considered unacceptable.

Considering the above discussion, this work uses a terminology similar to the one

defined in a previous work to classify when an approximation technique produces accept-

able results or not (REHMAN; SHAFIQUE; HENKEL, 2012). An application output

falls into one of the three categories:

• precise output : the output produced by the precise program.

• approximate output: an output that is incorrect, but acceptable as an approxima-

tion of the correct one. The structure of the output is preserved (e.g. if the precise
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Figure 2.15: Overview of the approximate computing paradigm.

Transformation
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Techniques Error

Source: the author.

output is an image, the approximate output must also be an image of the same size)

and an error metric can be computed.

• invalid output : this is an output that is incorrect and unacceptable as an approxi-

mation. This is the case when the application terminates abruptly, crashes, produces

an output without the correct structure or does not produce any output at all.

For understanding approximate computing, this section approaches the subject in

a top-down fashion by reviewing recent works. Section 2.3.1 discusses how to assess nu-

merically the quality of an approximate output, and acceptable thresholds are determined.

Section 2.3.2 discusses how to determine computations that are tolerant to approximation

and techniques for annotating these. Finaly Section 2.3.3 describes existing stategies to

implement approximate computations across the system stack.

2.3.1 Assessing Application Quality

As was shown in Fig. 2.15, from a high-level of abstraction, each computer pro-

gram can be described as a transformation of inputs into outputs which are encoded as

bits. In order to assess quality, however, these bits must be transformed into meaningful

information, since each position in the bitstream may have distinct impact in the appli-

cation quality. What the output represents, and, therefore, how quality must be assesed,

depends on the nature of the application under consideration and the type of output that it

produces (e.g. numbers, images, text, . . . ).

Fig. 2.16 presents an example of quality assessment for an image-processing ap-

plication. In this case, the Root-Mean-Squared Error (RMSE) of the pixel difference
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Figure 2.16: Distinct quality levels for an image when using RMSE as metric.

Source: (SAMADI et al., 2013).

between the precise and approximate outputs, normalized to the range [0, 1], is used as

a quality metric. This metric can be evaluated using Eq. 2.5, where N is the number of

pixels in the image and Xi, X̃i are the pixel values in the precise and approximate im-

ages, respectively. Considering an 8-bit greyscale image, pixels may take a value in the

range [0, 255]. Given a particularN , a minimum and maximum value value for the RMSE

exists, so it can be normalized to the range [0, 1].

QRMSE =

√√√√√√
N∑
i=0

(Xi − X̃i)
2

N
(2.5)

The figure also highlights an important observation: distinct quality levels may be

adequate under distinct circumstances (in this case, the resolution of the image). Table

2.1, extracted from a recent survey (MITTAL, 2016), shows applications and error metrics

commonly used in approximate computing works. For applications producing numerical

outputs, such FFT, Newton-Raphson and FIR filter, the average relative difference be-

tween precise and approximate outputs is typically used. For machine-learning applica-

tions, quality is assessed from the classification accuracy 3. For applications producing

images, pixel difference, Peak Signal-to-Noise Ratio (PSNR) or Structural Similarity In-

dex (SSIM) (WANG et al., 2004) may be used.

The same table also highlights an important challenge when dealing with approx-

imation. Very often, multiple error metrics with distinct sensitivities to the form of the

3It should be noted, however, that these applications present no perfect result as they are based on
heuristics. Therefore, rather than assessing quality by comparing with the perfect result, approximate results
are typically compared with the best one from an heuristic run.
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Figure 2.17: Images affected by distinct forms of error, with the same RMSE value.

Source: (WANG et al., 2004).

error may be available for the same application. Fig. 2.17 provides an example. Six

images are presented: the first one is the original one; the others have been distorted with

various filters (in order: contrast-stretch, mean-shift, lossy JPEG compression, blur, and

salt-pepper impulsive noise). All of the distorted images present the same RMSE value

with respect to the original one, yet some may be acceptable in some contexts while oth-

ers may not. For comparison with the SSIM metric, image (c) presents the highest mean

SSIM value (0.99) while (d) presents the lowest one (0.69).

Given the complexity of assessing quality, all works in approximate computing

assume that a function to measure the quality of the output has been defined by the ap-

plication developer (the one who knows how the application will be used). Moreover, the

developer must know the quality that is acceptable for the application, an issue which is

often non-trivial.

So far, few works have investigated quality thresholds for modern applications, or

how far approximation can be applied without compromising an application’s functional

requirements. AxGames represents one such attempt (PARK et al., 2016). In that work,

a methodology based on crowdsourcing was used for understanding how an application’s

output quality, as expressed by a function written by the application developer, translates

into a rate of users satisfied with that quality. This approach enables developers to sys-

tematically assess the effects of approximation from an end-user’s perspective, rather than

from an arbitrary metric, as depicted in Fig. 2.18.
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Table 2.1: Example of error metrics used for distinct applications.

Error Metrics(s) Applications

Correct and incorrect deci-
sions

Image binarization, jmeint (triangle intersection), ZXing
(visual barcode recognition), Julia set fractals.

Classification or clustering
accuracy

Ferret (compares an image for similarity against database
of images), streamcluster, K-Nearest Neighbours, K-Means
Clustering, LGVQ (Generalized Learning Vector Quantiza-
tion), Convolutional neural networks, multi-layer percep-
tron networks, Support Vector Machine (SVM).

Energy conservation across
scenes

Physics-based simulations (e.g. collision detection, con-
straint solving.

PSNR and SSIM H.264, x264, MPEG, JPEG, rayshade, image resizer, image
smoothing, OpenGL games.

Pixel difference bodytrack, eon, raytracer, particle filter, volume rendering,
Gaussian smoothing, mean filter, dynamic range compres-
sion, edge detection, raster image manipulation.

Ranking accuracy Bing search, supervised semantic indexing document
search.

Ratio of error of initial and fi-
nal guess

(Differential) Equation solvers, Image Compression.

Relative difference or error
from standard output

Fluidanimate, blackscholes, swaptions (PARSEC), Barnes,
water, Cholesky, LU (Splash2), vpr, parser (SPEC2000),
Monte Carlo, sparse matrix multiplication, Jacobi, discrete
Fourier transform, MapReduce programs (e.g., page rank,
page length, project popularity, and so forth), forward/in-
verse kinematics for 2-joint arm, Newton-Raphson method
for finding roots of a cubic polynomial, n-body simulation,
adder, FIR filter, conjugate gradient. H.264

Source: (MITTAL, 2016).

A study was conducted with 700 participants, in which seven applications were

considered: emboss, jpeg, mean, sobel (image-processing filters); audio-enc (audio en-

coder); and ocr, speech2txt (optical character recognition and text-to-speech conversion,

respectively - applications producing text as a result). Participants in the study were pre-

sented three games, named Pollice Verso, WinABatt, and QnA. In all games, players are

given an initial amount of virtual money and must make a decision each turn that may

increase or decrease their money. In the first game, players are presented each turn an

approximate application result, along with the precise counterpart, and must bet a certain

amount of money in asserting that the approximate output is good enough or unaccept-

able. In the second game, players are presented a low-quality approximate output and

must spend money to increase the quality and make the output acceptable. In both these

games, players are better rewarded when their answers are close to average of the pop-
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Figure 2.18: Correlating output quality value with users’ satisfaction.

Source: (PARK et al., 2016).

Figure 2.19: Results from the AxGames study.

Source: (PARK et al., 2016).

ulation (other players). In the third game, players are again presented a low-quality ap-

proximate output which can be improved by spending money, but must answer questions

about features found in the result (for instance, if the output is an image, a player might be

presented a multiple-choice question where one must identify whether the image contains

a sports car, a truck or other structures).

Statistical inference was then used with the responses to produce the results shown

in Fig. 2.19. Key conclusions to this study were as follows. First, distinct applications

come with distinct quality requirements, and a single target quality threshold cannot be

set for all applications considering that each application takes a distinct quality metric.

That may be true even for applications with the same type of output, as can be seen

when comparing the results of applying mean filter and emboss, jpeg and sobel. Second,

users show higher tolerance to approximation when they consider cost or context (which

may translate to energy consumption), as shown by the higher tolerance in the cost-aware

games WinABatt and QnA.
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2.3.2 Determining approximable computations

As was mentioned earlier, one key assumption of approximate computing is that

the outputs produced by the approximate version of the program will contain only small

deviations from the correct one. Situations where the program crashes or produces no

output are, in most cases, still considered unacceptable. Therefore, for most of the ap-

proximation techniques described later in this section, it is generally true that not all of

the computations will be amenable to approximate execution. So, in order to employ ap-

proximate computing, first the computations that are amenable to approximate execution

must be identified.

Figure 2.20: Implementation of 2x2 matrix multiplication at distinct abstraction levels.
(a) Mathematical level.

C = A×B

(b) High-Level language.

void mm( i n t A[ 2 ] [ 2 ] ,
i n t B [ 2 ] [ 2 ] ,
i n t C [ 2 ] [ 2 ] ) {

f o r ( i n t i = 0 ; i < 2 ; i ++) {
f o r ( i n t j = 0 ; j < 2 ; j ++) {

C[ i ] [ j ] = 0 ;
f o r ( i n t k = 0 ; k < 2 ; k ++) {

C[ i ] [ j ] += A[ i ] [ k ] * B[ k ] [ j ] ;
}

}
}

}

(c) Low-level language.

. LFB0 :
pushq %rbp
x o r l %ecx , %ecx
movq %rsp , %rbp

. L2 :
l e a q (%rdx ,% r c x ) , %r10
x o r l %eax , %eax

. L3 :
movl $0 , (%r10 ,% r a x )
movl (% r d i ,% r c x ) , %r8d
movl (% r s i ,% r a x ) , %r9d
i m u l l %r8d , %r9d
movl %r9d , (%r10 ,% r a x )
movl 4(% r d i ,% r c x ) , %r8d
i m u l l 8(% r s i ,% r a x ) , %r8d
a d d l %r9d , %r8d
movl %r8d , (%r10 ,% r a x )
addq $4 , %r a x
cmpq $16 , %r a x
j n e . L3
addq $8 , %r c x
cmpq $32 , %r c x
j n e . L2
popq %rbp
r e t

Source: the author.

Fig. 2.20 illustrates this discussion, by presenting a very simple application (ma-

trix multiplication) from distinct levels of abstraction: high level (mathematical model),

mid-level (source code in C) and low level (x86 assembly code). An approximate output
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for this computation would be a matrix C̃ such that C̃ ≈ A × B, so would be tempt-

ing to think that simply approximating the × operation would solve the issue. However,

implementing this computation as an algorithm introduces additional variables and com-

putations besides A, B, and C. At a mid-level of abstraction, in Fig. 2.20b, it’s noticeable

the introduction of variables i, j, and k to control the loop and array indexes. From a

low-level of abstraction, in Fig. 2.20b, this problem is highlighted. Out of 22 assembly

instructions, only 3 (multiplications and sums at lines 12, 15, 16) are directly related to

the application output. The remaining ones are overheads introduced to evaluate array in-

dexes, calculate memory addresses, and control loop/jump addresses. These operations,

when naively approximated, may cause the program to run forever, switch control flow

to a random region in the address space or similarly access an unauthorized memory ad-

dress, causing the program to crash. It is, therefore, critical to identify the highest number

of operations that can be safely approximated, in order to achieve significant efficiency

improvements without compromising application functionality.

Considering the above discussion, we use a definition similar to the one used by

Rehman et al. to classify operations (REHMAN; SHAFIQUE; HENKEL, 2012):

• non-crucial operations: operations that can produce an approximate program out-

put, but will never lead to an unacceptable one; these are operations whose results

flow directly to the program output.

• crucial operations : operations that may lead to a software program failure and an

unacceptable output; these are, for instance, operations involved in memory address

calculation (load, stores, branches) or loop control, since they may cause segmen-

tation fault or the program to run forever.

So far, three approaches for identifying approximate computations have been de-

veloped: data type annotation (Fig. 2.21a), code region annotation (Fig. 2.21b), and

automatic detection (by the compiler or runtime). These approaches are described over

the next sections.

Manual detection through data annotation. One way to specify what compu-

tations can be carried approximately is to inform the compiler the variables that may be

imprecise by annotating them in the code. Then, approximate optimizations can be carried

out in every computation affecting only those approximate variables.

Work by Sampson et al. propose extending programming languages with con-

structs that would allow programmers to specify approximate data types and operations
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Figure 2.21: Variable and code region annotation for approximate computing.
(a) Variable annotation.

void mm( approx i n t A[ 2 ] [ 2 ] ,
approx i n t B [ 2 ] [ 2 ] ,
approx i n t C [ 2 ] [ 2 ] ) {

f o r ( i n t i = 0 ; i < 2 ; i ++) {
f o r ( i n t j = 0 ; j < 2 ; j ++) {

C[ i ] [ j ] = 0 ;
f o r ( i n t k = 0 ; k < 2 ; k ++) {

C[ i ] [ j ] += A[ i ] [ k ] * B[ k ] [ j ] ;
}

}
}

}

(b) Code region annotation.

void mm( i n t A[ 2 ] [ 2 ] , i n t B [ 2 ] [ 2 ] , i n t C [ 2 ] [ 2 ] ) {

#pragma a p p r o x i m a t e _ b e g i n ( i n =A[ 2 ] [ 2 ] , B [ 2 ] [ 2 ] )
f o r ( i n t i = 0 ; i < SIZE ; i ++) {

f o r ( i n t j = 0 ; j < SIZE ; j ++) {
C[ i ] [ j ] = 0 ;
f o r ( i n t k = 0 ; k < SIZE ; k ++) {

C[ i ] [ j ] += A[ i ] [ k ] * B[ k ] [ j ] ;
}

}
}

#pragma a p p r o x i m a t e _ e n d ( o u t =C [ 2 ] [ 2 ] )

}

Source: the author.
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Table 2.2: Language constructs for approximation in EnerJ.

Construct Purpose

@Approx, @Precise, @Top Type annotations: qualify a type as approximate, pre-
cise, or whether it should inherit the qualifier from the
superclass.

endorse(e) Cast: transform an approximate value to precise.
@Approximable Class annotation: allows a class to have both precise

and approximate instances.
@Context Type annotation (allowed inside @Approximable

classes): the precision of the type depends on the pre-
cision of the enclosing object.

_APPROX (method suffix) Method naming convention: invoke this implementa-
tion of the method when the receiver has approximate
type.

Source: (SAMPSON et al., 2011).

(SAMPSON et al., 2011). As a case study, a set of language extensions to Java, named

EnerJ, is presented. The constructs defined in EnerJ are presented in Table 2.2 and de-

scribed next.

In EnerJ, every variable includes, along with the data type, a precision qualifier, as

defined by the @Approx and @Precise annotations. No annotation defaults to @Precise

to maintain compatibility with legacy code. Computations whose results flow into ap-

proximate variables are subject to approximate software optimizations, such as the ones

which will be presented in subsection 2.3.3. Precise and approximate variables have iso-

lation guaranteed by the type system: while precise variables may flow into approximate

ones, an approximate value assigned to a precise data type generates a semantic error.

The programmer may circumvent this restriction by using a special type of cast, named

endorsement. This design strategy certifies that the programmer is aware of how approx-

imation may be impacting precise variables. Classes may have precise and imprecise in-

stances when annotated with the @Approximable construct. In these instances, variables

qualified with the @Context annotation will have same precision qualifier as the enclosing

object. Finally, class methods can be overloaded to implement precise and approximate

versions by using the _APPROX suffix; which implementation is called depends on the

precison qualifier of the variable the result is assigned to.

Fig. 2.22 shows an usage example of the EnerJ framework. A class for stor-

ing floating point numbers is defined, with a method that computes the mean of the set.

The precision qualifier of the floats stored in the nums array depends on the precision

of the FloatSet object. Two mean methods are defined; the first one is called when the
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Figure 2.22: Example of using the EnerJ framework.

@Approximable c l a s s F l o a t S e t {

@Context f l o a t [ ] nums ;

@Prec ise f l o a t mean ( ) {
f l o a t t o t a l = 0 . 0 f ;
f o r ( i n t i = 0 ; i < nums . l e n g t h ; i ++) {

t o t a l += nums [ i ] ;
}
re turn t o t a l / nums . l e n g t h ;

}

@Approx f l o a t mean_APPROX ( ) {
f l o a t t o t a l = 0 . 0 f ;
/ / P e r f o r a t e d loop
f o r ( i n t i = 0 ; i < nums . l e n g t h ; i += 2) {

t o t a l += nums [ i ] ;
}
re turn 2 * t o t a l / nums . l e n g t h ;

}

}

Source: (SAMPSON et al., 2011).

instance of FloatSet is precise and the second one when it is approximate. The approxi-

mate implementation computes the result more efficiently by applying loop perforation, a

software-level approximation technique which will be described in subsection 2.3.3.

Data variable annotation is commonly used with techniques based on precision

scaling (changes the precision of specified variables) and approximate data storage, which

will be described in subsection 2.3.3.

Manual detection through code region annotation. Another way to specify

approximate computations is to specify regions of code that are amenable to approximate

execution. Then, every computation carried out in that region is treated as approximate, as

well as its results. This approach requires the programmer to identify pure code regions,

where the following requirements are met:

• the region has a well-defined number of inputs and outputs, and this number is

known at compile time;

• the region is deterministic; i.e. whenever it executes with the same input arguments,

the same output is produced;

• the region processes no global variables.

For the sake of illustration, consider the code region annotated in Fig. 2.21b.
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It contains eight inputs (four values in the matrix A, four values in the matrix B) and

four outputs (the matrix C). This region contains internal variables, i, j, k, but these

do not affect the program state anywhere outside of the region. Moreover, the region is

deterministic, i.e. if it is executed multiple times with the same inputs A and B, it will

produce the same result C. This is true because there are no state-holding elements in the

region (values which are preserved across invocations, such as static or global variables)

and no stochastic computations (such as a call to rand()).

This is the approach typically used by works targeting code transformation, such as

neural acceleration and approximate memoization, which will be described in subsection

2.3.3.

Automatic Detection. Considering the difficulties of manually identifying ap-

proximate code, attempts have been made at automating this procedure.

Roy et al. propose a statistical method to determine non-critical application vari-

ables (i.e. variables into which approximate computations may can safely flow) by con-

sidering their contribution to the application output (ROY et al., 2014). The method is

based on profiling all variables at run time, perturbing their values by a small amount

and monitoring the impact in application quality by using statistical tests. The approach

achieves 87% of the accuracy achieved by manual datatype annotation, such as the one

achieved by EnerJ (SAMPSON et al., 2011).

Later work by Roy et al. improves the previous strategy by assigning a non-binary

importance value to each variable, rather than classifying them into approximable or non-

approximable (ROY; WANG; WONG, 2015). This expands the range of approximation-

tolerant computation, but increases the risk of producing invalid outputs.

2.3.3 Strategies for approximation

This section presents the main techniques used for implementing approximate

computing. These techniques can be classified into three levels (MITTAL, 2016; SHAFIQUE

et al., 2016; XU; MYTKOWICZ; KIM, 2016):

• software level: techniques which transform the application source code into an ap-

proximate implementation and require no changes in existing hardware;

• architectural level: techniques which transform the source code into an approxi-

mate representation and use hardware support to accelerate the execution;
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• hardware level: techniques which modify the circuit implementation (usually ded-

icated hardware) and require no changes in the application.

Software-level Techniques. Loop perforation is an approximate software opti-

mization that modifies loops so they execute only a subset of their iterations, thereby

reducing execution time and energy consumption. For instance, a loop of the form

f o r ( i = 0 ; i < b ; i += 1) { . . . }

may be transformed into

f o r ( i = 0 ; i < b ; i += n ) { . . . }

where n is taken based on the desired perforation rate, r = 1 − 1
n

(the expected

percentage of loop iterations to skip). Since the technique targets a very specific type of

software construct (loops with a number of iterations known at compile time), it can be

easily automated, as recent works have done.

In (SIDIROGLOU-DOUSKOS et al., 2011), an offline algorithm for automati-

cally identifying the best opportunities for loop perforation in a program is presented.

The algorithm first runs a criticality testing phase where it identifies candidate loops for

perforation. These are the loops that account for a significant fraction of the executed

instructions and, when perforated using a target r, are guaranteed not to produce unac-

ceptable outputs, infinite loops or decrease the performance. After that, the algorithm

proceeds to a space-exploration phase where all combinations of loops and perforations

are evaluated and accuracy/performance tradeoffs are recorded. Evaluating this approach

with benchmarks in the PARSEC suite demonstrated speedups of up to 5x in the applica-

tions under consideration.

In (SAMADI et al., 2014), loop perforation is used to approximate reduction code

patterns running in CPU and GPU. Additionally, a variant of loop perforation named

subsetting, which consists of intentionally ignoring some inputs in a computational kernel,

is evaluated as well. These techniques can yield an average speedup of 3.5x for GPU code

and 4.3x for CPU code.

Architecture-level Techniques. Memoization is the concept of storing the results

of expensive computations so that they can be replaced by a table lookup when it should

execute with the same inputs again. The term was coined by Donald Michie in a clas-

sic paper (MICHIE, 1968) and an extensive body of work has been developed in using
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Figure 2.25: Memoization of floating-point instructions.
(a) Classic memoization. (b) Fuzzy memoization.

Source: (ALVAREZ; CORBAL; VALERO, 2005).

memoization for improving an application’s execution (SODANI; SOHI, 1997; HUANG;

LILJA, 1999; GONZÁLEZ et al., 1999; SURESH et al., 2015).

In this subsection, approximate memoization, an extension to the classic memoiza-

tion scheme in which similar computations are allowed to share a same entry in the lookup

table (CHAUDHURI et al., 2011), is discussed. This is typically achieved by dropping

the Least-Significant Bits (LSBs) in the input and using only the remaining ones to index

in the table. Therefore, the chances of a table hit are increased, boosting performance.

Alvarez et al. propose fuzzy memoization of Floating-Point (FP) operations at

an instruction granularity (see Fig. 2.25) (ALVAREZ; CORBAL; VALERO, 2005). A

hardware memo table is used to save results of FP multiplication and division instructions

(simpler FP operations are shown not worth of memoizing because of their low latency).

Implementing this scheme in an in-order 2-issue superscalar processor using a 24KB table

improves Energy-Delay Product (EDP) on average by 20% in 4 benchmarks from the

MediaBench suite.

Keramidas et al. take a similar approach by proposing a clumsy value cache for

GPUs (KERAMIDAS; KOKKALA; STAMOULIS, 2015). The cache is a memoization

table that can store the results of selected GPU instructions or sequences of instructions

(blocks). Key conclusions of the work are as follows:

• Value reuses are not equal between instructions. Distinct instructions present dis-

tinct reuse rates, and these rates change differently when approximation is applied.

• Value reuse potential in code segments does not exist. Moving from instruction-

level memoization to block-level memoization, although it increases the potential
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benefits of reusing memoized values, it greatly decreases the hit rates due to the

increased number of inputs.

• Not all instructions in fragment shaders must be equally precise. Distinct instruc-

tions present distinct quality thresholds and contribute differently to the final appli-

cation quality.

Paraprox uses approximate memoization to accelerate two processing patterns

commonly found in data-parallel applications: map and scatter/gather (SAMADI et al.,

2014). A fixed-size table, generated at compile time, is used. Considering long input

arguments, the authors exploit the fact that not all input arguments need to be equally

precise, and use an offline algorithm to detect the optimum number of bits for each of the

input arguments. An average speedup of 2.6x for CPU and 2.2x for GPU code is achieved

over four applications with less than 10% quality degradation.

Work by Sato et al. presents an approximate computing Stack based on compu-

tation reuse (SATO et al., 2015). The programmer annotates using pragma directives

the regions that are tolerant to approximation, specifying the input variables that can be

approximated and a mask (an adapted code annotation scheme, similar to how it was de-

scribed in the region annotation scheme). A compiler generates special instructions to

signal the processor the inputs that can be approximated and the approximation mask.

At runtime, a hardware mechanism updates a reuse table as the function executes and

also checks this table for reuse before the function is executed. The approach was eval-

uated using a single image-processing benchmark from the MediaBench suite against a

very simple SPARC processor, demonstrating speedup of 1.25x and increased reuse rates

compared to non-approximate reuse.

Memoization is also one of the techniques supported in the iACT (MISHRA;

BARIK; PAUL, 2014) and ACCEPT (SAMPSON et al., 2015) frameworks, which will be

described later on.

Concerning approximate data storage, San Miguel et al. propose Doppelgänger, a

cache for approximate computing (MIGUEL et al., 2015). The work uses the insight that

in many scenarios, such as when processing an image with many similar blocks, there will

be a lot of approximate redundancy in the data cache (similar blocks stored) and exploits

this fact to compress the cache. Fig. 2.26 presents an example.

A continuation of this work is the Bunker Cache, which takes into account spatial

approximation as well as value approximation (MIGUEL et al., 2016). It is based on the

insight that elements that are approximately similar in value exhibit spatial regularity in
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Figure 2.26: Data redundancy in image processing applications.
(a) Selected data blocks.

(b) Data block values.

Source: (MIGUEL et al., 2015) .

Figure 2.27: Overview of the parrot transformation.

Source: (ESMAEILZADEH et al., 2014).

memory.

Of all techniques working at an architectural level, neural acceleration is the most

promising approach. Esmaeilzadeh et al. propose the Parrot Transformation, a learning-

based approach to accelerate approximate programs (ESMAEILZADEH et al., 2014). A

framework was designed for transforming program regions that are tolerant to approxima-

tion into an Artificial Neural Network (ANN) representation which can then be either be

executed in the processor or accelerated using a dedicated hardware, thereby presenting

the ability of converting distinct code patterns into a common representation that can be

accelerated. This idea is depicted in Fig. 2.27.

The design flow is show in Fig. 2.29. The programmer is responsible for select-

ing, during application development, approximate regions that can be turned into ANNs

and using special code annotation to mark them for the framework using the technique

presented in subsection 2.3.2. At compile time, these regions are profiled for common

< input, output > mappings and a neural network that mimics that behaviour is trained.

The original code is replaced by a call to a programmable Neural Processing Unit (NPU)
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Figure 2.28: Design space for implementing an NPU.

Source: (ESMAEILZADEH et al., 2014).

Figure 2.29: The parrot transformation framework in detail.

Source: (ESMAEILZADEH et al., 2014).

that executes the trained ANN more efficiently than the original code in the CPU.

Different works have investigated implementations of NPU for executing the ANN

that results from the Parrot Transformation. Some of these design choices are depicted in

Fig. 2.28. In all of these works, the AxBench (YAZDANBAKHSH et al., 2016) suite was

used for evaluation.

The original work investigated CPU and ASIC implementations (ESMAEILZADEH

et al., 2014). CPU presents a geomean slowdown of 19.9x, while ASIC execution presents

geomean speedups of 2.3x and energy savings of 3.0x. No results on the area overheads

of the ASIC implementation are presented in the work.

Work by Yazdanbakhsh et al. presents the design of a neural accelerator named

NGPU that can be gracefully integrated into GPU cores and used to accelerate applica-

tions that otherwise would run on the GPU (YAZDANBAKHSH et al., 2015) . Compared

to the baseline GPU architecture, cycle-accurate simulation results for NGPU show a 2.4x

average speedup and a 2.8x average energy reduction within 10% quality loss margin.

These benefits are achieved by introducing less than 1% area overhead.

Work by Moreau et al. demonstrates implementation of an NPU named Sys-

tolic Neural Network Accelerator in Programmable Logic (SNNAP) for Programmable

System-On-Chips (PSoCs), which are devices integrating a hard processor core with pro-

grammable logic on the same die (MOREAU et al., 2015). SNNAP can be programmed
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Figure 2.30: Speedup achieved by SNNAP, compared to HLS.

Source: (MOREAU et al., 2015).

by using the same strategies described earlier, as well as by using dedicated low-level

primitives which are available to the advanced user. The proposal was evaluated by us-

ing a Zynq ZC702 evaluation platform, which features a mobile-grade dual-core ARM

Cortex-A9 and a Xilinx Artix-7 FPGA onto the same 28nm die, and applications from

the AxBench suite. When comparing the use of SNAPP for each benchmark’s target re-

gion against a software baseline, speedup ranges from 1.3x to 38.12x, with a geomean

of 3.78x. Similarly, a geomean energy saving of 2.77x is achieved when considering

the Zynq+DRAM and 1.82x when considering the core logic alone. Detailed results are

presented in Fig. 2.30.

Hardware-level Techniques. Voltage Over-scaling (VOS) (MOHAPATRA; KARAKON-

STANTIS; ROY, 2009; MOHAPATRA et al., 2011) scales a circuit’s input voltage beyond

(over) the level considered safe, thereby introducing possible timing problems but greatly

reducing the power consumption (refer to Section 2.2 for a detailed explanation on the ef-

fects of Vdd in power and energy consumption). It uses statistical techniques to identify at

compile time the crucial and non-crucial operations and changes the architecture at run-

time by means of VOS to tradeoff between energy and quality. The evaluation was done

based on a Motion Estimation (ME) processor implemented in 90nm CMOS. Simulation

results show average power savings of 33% and a maximum quality loss of 1 dB.

Work by Mohapatra et al. presents a design methodology that makes circuits more

scalable for VOS by applying two techniques: Dynamic Segmentation and Error Com-

pensation and Delay Budgeting (MOHAPATRA et al., 2011). The methodology was

evaluated by designing dedicated circuits for the kernels of three applications (ME, SVM

classification and K-Means Clustering) and comparing against the traditional methodol-

ogy in scenarios of iso-quality and iso-energy. At iso-quality, energy savings improve by
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17% in ME, 52% 30% for SVM and 30% for K-Means Clustering. At iso-energy, quality

improves by 2dB for ME, 52% for SVM and 6% for K-Means Clustering.

IMPrecise adders for low-power Approximate CompuTing (IMPACT) is an im-

plementation of approximate Full Adders (FAs) that are used to build complex arithmetic

units (GUPTA et al., 2011). The authors evaluated the approach in an ASIC flow with

image and video compression kernels using the approximate FAs in the LSBs of multi-bit

adders and compared with precise adders. In image compression, approximating the 7-9

LSBs (out of 20) for the Discrete Cosine Transform (DCT) and Inverse Discrete Cosine

Transform (IDCT) computations allows for 20-35% area savings and shortens the cir-

cuit’s critical path, allowing for a reduction of 12-22% in the supply voltage and 40-60%

in power. The quality, in these cases, measured as PSNR, ranges from 15 to 30 dB. In

video compression, approximating the 1-4 LSB (out of 16) in Sum of Absolute Differ-

ences (SAD) computation which is part of ME allows for up to 40% power savings with

quality above 30 dB. The approach achieves significantly better quality ratios than simply

truncating the LSBs, but less power savings.

While IMPACT requires defining at design time the desired quality degradation,

other works propose approximate adders in which the quality can be controlled at runtime

(KAHNG; KANG, 2012; YE et al., 2013; SHAFIQUE et al., 2015). While reconfigura-

bility may introduce overheads that are absent in a static design, it introduces the ability to

tune the quality to particular application phases, potentially allowing for additional power

savings. Work by Shafique et al. (SHAFIQUE et al., 2016) provides a comparison be-

tween the runtime-configurable approximate adders implementation in the authors’ own

previous work (SHAFIQUE et al., 2015) and IMPACT (GUPTA et al., 2011).

Combining strategies for approximation. Zhang et al. propose a framework

called ApproxANN for approximating neural computation in ANNs (ZHANG et al.,

2015). A methodology for identifying critical and resilient neurons is presented, and

then applied to a few selected applications to reduce the precision of neural computation

by three means: skipping specific neural computations, discarding the LSBs and utilizing

approximate Functional Units (FUs). The results show that for applications with varying

ratios of energy consumption between computation and memory the overall consumption

can be reduced by 34-51%. The claim is that not only does the computational part need

to be approximated for improving energy efficiency, but also the memory accesses.

SAGE is a framework for implementing approximate computing kernels that run

in a GPU (SAMADI et al., 2013) . The programmer writes a program in CUDA and
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specifies a target output quality (TOQ). The framework proceeds in two phases, one of-

fline and another online. In the first phase, the framework optimizes the kernels by using

approximation techniques and derives multiple implementations with varying degrees of

quality. In the online phase, the framework selects the approximate kernels that provide

the TOQ by using a greedy algorithm and periodic calibration checks for accuracy. Three

approximate optimizations are exploited to accelerate the CUDA kernels:

• selective discarding of atomic operations that cause frequent collisions and deteri-

orate performance as threads are sequentialized

• data packing, which reduces precision of input arrays in order to reduce the amount

of memory operations

• thread fusion, in which similar threads are combined to produce a single result that

is shared by both.

Samadi et al. presents a framework for optimizing computational patterns that ex-

ecute in a GPU by applying approximation (SAMADI et al., 2014). Six commonly-found

patterns in parallel programs are targeted, shown in Fig. 2.31: (a) map, (b) gather/scat-

ter, (c) reduce, (d) stencil, (e) scan and (f) partition. For each of these, pattern-specific

approximate optimizations are used. For (a) and (b), memoization is used, replacing ex-

pensive computation with memory accesses. For (c), subsetting is used - i.e. the reduction

is evaluated by considering only part of the input. For (d) and (e), subsetting and replica-

tion is used - only a small part of the input is read from memory and then replicated to the

remaining input, on the assumption that adjacent inputs are typically similar. For (f), only

a subset is used for evaluation - the result is used to predict the results for the remaining

of the input array.

Just like SAGE, the framework consists of an offline compiler, which detects the

patterns and applies multiple optimizations - thereby generating multiple versions of each

kernel - and an online monitor system that checks the accuracy of the results against the

TOQ and dynamically selects the kernel that increases or reduces quality to meet the TOQ

and improve performance.

Intel Approximate Computing Toolkit (iACT) (MISHRA; BARIK; PAUL, 2014)

is a framework for understanding the impacts of approximation in applications. The

framework consists of a modified LLVM compiler with support to #pragma directives

which indicate regions that are tolerant to approximation and a PIN-based runtime that

implements these approximations. The tool supports three sort of approximate computa-
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Figure 2.31: Data-parallel patterns targeted by the Paraprox framework.

Source: (SAMADI et al., 2014).

tion: precision reduction in software variables, noisy ALU computations and approximate

memoization.

ACCEPT (SAMPSON et al., 2015) is a framework for assisting the programmer

in introducing approximation in one’s code. It is implemented by modifying the LLVM

compiler and supports C code. It analyses the software and identifies functions which

are pure (see subsection 2.3.2), including the variables and function calls responsible for

violating the purity criteria, and also marks loops that can be safely perforated.

2.4 Contributions to the State-of-the-Art

Contributions to the field of reconfigurable architectures. In all works where

automatic code transformation is used to dynamically map instruction traces to a recon-

figurable fabric, a potentially-significant fraction of the application must first execute in a

GPP before being accelerated. Therefore, the form (in-order, OoO, heterogeneous) of the

base processor may have a significant impact in the final performance, power and energy

consumptions. Compared to previously proposed reconfigurable architectures, MuTARe

is the only one that takes this into account and uses a CGRA that can be coupled to mul-

tiple arrangements of processor cores and supports DVFS to match the performance im-

provements provided by automatic CGRA acceleration with the performance target, low-

ering the frequency if slack is available to save additional power. Furthermore, MuTARe

goes beyond traditional reconfigurable architectures by leveraging the regular structure

of the CGRA to incorporates emerging techniques that improve the adaptability range:

approximate computing, to further improve the power consumption in emerging error-

tolerant workloads, and NTV computing, to further save power and make the architecture

competitive for low-power domains.

Contributions to the field of NTV computing. The MuTARe Architecture pro-

posed in this work provides a suitable structure for applying the concept of NTV comput-

ing, as it can effectively address the design challenges mentioned in Section 2.2.1. First,
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MuTARe can exploit significantly more ILP than traditional OoO cores, which have the

ILP exploitation constrained by the dynamic scheduling algorithm they employ. That ad-

ditional ILP exploitation can partially compensate for the decreased operation frequency

and enable NTV to be used in the context of single-threaded applications. Second, Mu-

TARe’s main execution unit is a combinatorial CGRA with state-holding elements located

outside of the fabric. As such, they can be kept in a separate voltage island (STV), along

with the caches, and operate at twice the speed from logic. The increased ILP exploitation

from additional functional units in the CGRA causes memory to be the limiting resource.

By operating the memory at twice the logic speed, balance is restored to the design. Fi-

nally, MuTARe’s regular fabric allows for more easily dealing with process variability, for

instance employing over-provisioned functional units, of whose the slowest are disabled

post-manufacturing.

Contributions to the field of approximate computing. The MuTARe Architec-

ture is a reconfigurable architecture that can leverage the benefits of approximate com-

puting and provide additional performance improvements and power savings in emerging

error-tolerant domains. Compared to existing approximate computing works, this is the

first one where a reconfigurable accelerator is used for approximate computations, with

the advantage that such a system can adapt to different approximate applications (un-

like dedicated accelerators) and consumes a significant amount of power in the functional

units instead of control (unlike GPPs), having sufficient margin for benefiting from ap-

proximate optimization.
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3 MUTARE - BASE ARCHITECTURE

This chapter presents the base architectural framework of Multi-Target Adaptive

Reconfigurable Architecture (MuTARe). MuTARe’s goal is to provide a generic frame-

work for deploying a reconfigurable architecture that can execute applications more ef-

ficiently than GPPs (either faster or with lower energy consumption) and transparently

(without need of any changes in the software development process). MuTARe achieves

this goal by transfering execution to a reconfigurable unit built around a CGRA, which,

compared to GPP cores, allows for wider ILP exploitation, the acceleration of data-

dependent operations (by eliminating intermediate register writes) and saving instruction

schedules for reuse (rather than rescheduling every time the same sequence executes, as

is the case in OoO cores). The CGRA, being a regular structure, can be easily customized

according to the designs’s area and power budgets, and can, therefore, also be applied to

a wide range of domains. To achieve this acceleration goal transparently, MuTARe uses a

dynamic, hardware-implemented Binary Translation (BT) algorithm to CGRA configura-

tions that encode entire instruction traces on-the-fly. Finally, the benefits of enhanced ILP

exploitation in the CGRA may lead to over-performance in particular classes of applica-

tions, where performance beyond a certain target is unnecessary. To that end, MuTARe

leverages DVFS to balance the performance improvements from CGRA execution with

improved power benefits, adjusting the frequency to the required performance levels.

This section describes the base architecture of MuTARe. The two extensions of

MuTARe for NTV computing and approximate computing require a few changes to the

base architecture and are discussed afterward in Chapter 4.

3.1 Overview of MuTARe

An overview of the MuTARe hardware architecture is presented in Fig. 3.1. The

key component in a MuTARe system is a system tile, which consists of a set of cores

(a scalar core, or an OoO core, or an heterogeneous core arrangement such as ARM’s

big.LITTLE), a Reconfigurable Unit (RU) built around a CGRA, a configuration cache

and a BT module. These system tiles can be replicated to build MuTARe-based CMPs.

The same Fig. 3.1 also provides an overview of the execution process in a Mu-

TARe system tile. All instructions execute first in the GPP cores, as in a traditional GPP

system. While they are executed, they are forwarded to an instruction queue that interfaces
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Figure 3.1: Overview of MuTARe. ‘’
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between the GPP and the hardware-implemented BT module. The BT module translates

incoming instruction traces into configurations for execution in the RU (see Step 1, in the

figure) by allocating the operations into the CGRA fabric, and saving these configurations

in the configuration cache for posterior acceleration (see Step 2). These configurations

are indexed by the PC of the first instruction in the translated sequence, allowing the GPP

fetch unit to lookup in the configuration cache (as well as its own instruction cache) when-

ever a new instruction sequence must be fetched for execution. When a match happens

(the current PC is equal to that of a configuration), the configuration is fetched from the

cache (see Step 3) and execution is offloaded to the RU (see Step 4). After execution

in the RU completes, the results are written back to the GPP cores and commmitted in

program order (see Step 5).

MuTARe is a fully customizable design where the GPPs, the CGRA sizes can be

tuned for different domains. Since MuTARe automatically maps instruction sequences

to the CGRA on-the-fly after they execute for the first time in the GPP, a fraction of the

program instructions will inevitably execute in the base processor, so it is important to

tune the base processor as well. The exact form of this arrangement will thus depend on

the application domain: for high-performance computing, a large reconfigurable unit can

be coupled to an OoO core; for mobile computing, a medium-sized reconfigurable unit

can work with an heterogeneous arrangement such as ARM’s big.LITTLE (ARM, 2013);

for IoT devices, a simple single-issue core can be extended with a small CGRA.

Next, each of the MuTARe components are described in greater detail.
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3.2 MuTARe’s Components

3.2.1 Reconfigurable Unit

An overview of MuTARe’s RU is shown in Fig. 3.2. The main component is a

combinatorial CGRA, organized as a matrix of integer FUs (represented as squares with

+ symbol, in the figure) without state-holding elements. In this matrix, columns repre-

sent sequential execution and rows represent parallel execution. FUs are connected via

crossbars (Xbar) in a feed-forward, left-to-right fashion, i.e. FUs in a column propagate

data to the ones to their right. Unused results in the adjacent column are made available

to all subsequent columns by using context lines, wires that traverse the CGRA left-to-

right. Since FUs typically have a smaller latency than one processor cycle, it is possible

to fit more than one FU (and, subsequently, column) in sequence within a single pro-

cessor cycle. Each set of grouped columns where data propagation takes one processor

cycle corresponds to a level. The parameters that can be tuned in the design are the num-

ber of columns, the number of rows, the number of columns within one level and, as a

consequence of all these, also the maximum number of operations per configuration.

Figure 3.2: Overview of MuTARe’s RU.
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To show the detailed structure of a level, a very simple 2× 2 CGRA design (with

two columns and two rows per level, for a maximum of four operations per cycle) is shown

in Fig. 3.3 for illustration purposes. Each column has access to a set of context lines, from

which input multiplexers (I, in the figure) select the data that will feed each FU. After each
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Figure 3.3: Detailed view of MuTARe’s CGRA.
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FU, output multiplexers (O, in the figure, one for each context line) select the value that

will be propagated to the next column. This value can either be the corresponding value

from the previous context line or one of the values produced by the FUs in this column.

This particular form of interconnection, where a value written to a context line becomes

available to all subsequent columns (if all subsequent output muxes are set to 0) and

consumes the context line allows a greedy algorithm to be used for scheduling, as will be

shown in Section 3.2.1.

Besides support for integer ALU operations, the CGRA also supports memory

and other complex operations such as integer multiplication and division. Access to these

structures and functional units is also provided through input multiplexers and output mul-

tiplexers, so the same algorithm that maps ALU instructions extends to other operations

as long as they can be represented as a position in the CGRA matrix. The maximum

number of concurrent memory operations is given by the data cache design.

In the same example from Fig. 3.3, one memory operation can be allocated into

each level. To that end, two input muxes, in case of loads (one for selecting a base

register value and the other for the selecting the immediate offset, summed up to compute

an address), and three input muxes, in case of stores (two for the address and one for the

value), select the data that will be forwarded to the memory unit (which will be detailed
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in Section 3.2.4). Since a maximum of four operations can be allocated to the level, the

memory operation must replace one of the ALU operations. This is done by including a

mux that selects whether the result from the last operation (column 2, row 2) comes from

the ALU or the memory. The same logic applies for other complex operations that occupy

a slot in the CGRA’s matrix structure.

The RU’s context lines is initially fed with register values from the processor.

These are stored in the RU’s input context. The values produced inside the CGRA are

forwarded to a ROB-like structure that stores results and holds the necessary information

to enable in-order commit. This ROB receives information from one level each cycle

using a ROB selection network (also shown in Fig. 3.3) that will be detailed later on in

Section 3.2.4.

A RU configuration encodes the mapping of instructions in a trace (potentially

spanning multiple basic blocks) to FUs in the CGRA and their corresponding intercon-

nections.

3.2.2 Binary Translation Module

One of the key challenges when deploying reconfigurable architectures is how to

generate reconfigurable code. The process can be broken down into two steps:

• region selection requires choosing, in the original program, the code regions that are

suitable targets for reconfigurable acceleration. Hot candidates are regions which

are executed often, are easily predictable (few branches) and have few memory

operations.

• region mapping consists in implementing that particular region as a reconfigurable

datapath in the accelerator.

One of the key advantages of MuTARe over similar works is the ability to auto-

matically generate CGRA configurations on-the-fly, eliminating the traditional mapping

issues associated with accelerators (decribed earlier in Chapter 1). The translation process

involves scheduling the incoming instructions into the FUs available in the CGRA matrix

structure (described in Section 3.2.1), and is accomplished by the BT module, which is

implemented as a hardware module operating after instruction commmit to avoid any

potential performance hazards. Compared to OoO processors, which also dynamically

select instructions and schedule them into functional units, the approach taken by Mu-
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Figure 3.4: Tables used in the BT process.
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TARe generates these schedules only once and encodes them in a CGRA configuration,

saving for future reuse and amortizing the power costs of dynamic scheduling.

A description of the translation algorithm starts first with a simplified version for

mapping only ALU and branch operations into the CGRA’s matrix structure depicted in

Fig. 3.2. In this case, each supported instruction is identified by an operation, a destina-

tion register and two input registers. The extensions for immediate operations, memory

operations and more complex operations will be decribed afterward.

Algorithm 1 describes in detail the (simplified) translation process implemented

by the BT module as a 4-stage pipeline with the support from 8 tables (detailed in Fig

3.4). When generating a configuration, each incoming instruction is allocated to the low-

est available FU where its input operands are ready, and the allocation information (e.g.

functional unit position, multiplexers setup) is saved. This step is repeated until the con-

figuration is full or an unsupported operation is detected. The current implementation

supports the execution the whole the RISC-V base integer instruction set, with integer

computational instructions, control transfer instructions, loads and stores.
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Algorithm 1: BT Algorithm.
Data: Empty configuration tables, an instruction trace stored in inst_Q.
Result: CGRA configuration encoding the execution of the instruction trace.

1 inst_idx← 0;
2 br_idx← 0;
3 while inst← dequeue(inst_Q) do
4 (op_class, regsrc1, regsrc2, regdst, imm)← decode(inst);

// Determine smallest column index where
dependencies are available. Update input
context if needed.

5 c1 ← tbldep[regsrc1];
6 if c1 is empty then
7 c1 ← 0;
8 tblictx[ctrctx]← regsrc1;
9 tbloctx[regsrc1]← ctrctx;

10 Increment ctrctx;

11 c2 ← tbldep[regsrc2];
12 if c2 is empty then
13 c2 ← 0;
14 tblictx[ctrctx]← regsrc2;
15 tbloctx[regsrc2]← ctrctx;
16 Increment ctrctx;

17 c← max(c1, c2) + 1;

// Increase column index until a functional unit
is available

18 while tblres[c, op_class] = 0 do
19 Increment c;

// Allocate FU, get row index and configure input
mux

20 r ← (max_res)− tblres[c, op_class];
21 Decrement tblres[c, op_class];
22 tblimux[c, r]← (tblctx[regsrc1], tblctx[regsrc2]);

// Determine position in output context
23 if tbloctx[regdst] is empty then
24 tbloctx[regdst]← ctrctx;
25 octx← ctrctx;
26 Increment ctrctx;
27 else
28 octx← tbloctx[regdst];

// Update tables
29 tblomux[c, octx]← r;
30 tbldep[regdst]← c;
31 tblROB[c, r]← inst_idx;
32 if op_class is branch then
33 tblbr[ctrbr]← (inst_idx, brcond(inst), broutcome(inst));
34 Increment ctrbr;

35 Increment inst_idx;
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Figure 3.5: Overview of MuTARe’s BT unit.
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A detailed view of the BT module with the pipeline stages is provided in Fig. 3.5.

Next, a description of each of the pipeline stages follows.

Stage 1: Find Dependencies. The first stage consists in identifying the position

in the CGRA where the values of the source registers are located. To that end, the de-

pendency table (tbldep) (which holds the index of the column where each output register

has been last written to) is accessed to find the column where each of the input register

dependencies have been computed. The number represents the smallest column index

where the incoming operation can be allocated (the result is not available earlier). If ei-

ther dependency is not found in the dependency table, then it has not yet been produced,

and must be fetched from the input context (the set of registers which are read from the

core’s register file), and the input context table (tblictx) is updated accordingly.

Stage 2: Find FU. While the first stage finds the lowest possible column where

an operation could be scheduled given the dependencies, the second stage finds, from the

lowest column onwards, a column with an available FU for the operation. This process is

accomplished by accessing the resoures table (tblres, a table storing the occupancy status

of each functional unit in each column) with the column index. Typically, a single access

(with the lowest column from stage 1) will result in an available FU. If that is not the case,

this process causes a pipeline stall, as each cycle the column index is increased and the

next column is scanned until the resource is found.

The result of this stage is a (row, column) pair which identifies the position in the

matrix where the operation can be scheduled. This information must be forwarded in this

stage to the first stage in order to avoid pipeline bubbles, since it affects the dependencies

table. Since the resources table is essentially a bitmap, it presents low latency and its
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output can be forwarded with no latency overheads.

Stage 3: Allocate FU. With that information, the instruction is allocated to the

corresponding FU. The resources table is updated to reflect the allocation, and the input

muxes table (tblimux) is updated to select the proper input to the FU. The output context

table (tbloctx) is checked to determine the position in the context to allocate the destination

register value (it is overwritten if previously produced inside the CGRA, otherwise a new

entry is allocated).

Stage 4: Update Tables. In the final stage, all tables are updated. The output

context table is updated with the position of the destination register in the context. The

ROB routing table (tblROB) is updated with the index of the instruction being currently

mapped. Finally, if the instruction is a branch, the branches table (tblbranch) is also up-

dated with the index of the instruction in the sequence, the branch condition (=, <,>, . . .)

and the branch outcome (taken or not taken); these branches are converted into assertion

statements. Branches whose destination may change the next time the same sequence is

executed (i.e. branches with link register) are not supported, as that would require also

storing the destination of each branch, making the translation process expressively more

costly.

Terminating the Translation Process. The algorithm will terminate when an

unsupported operation is detected or an attemped resource allocation fails. The first con-

dition can be detected in the first pipeline stage. The second condition may be detected:

• in the first stage, when no more context lines are available (lines 9 and 15) or if

no more levels are availabe (line 17, when the dependency is produced in the last

CGRA level);

• in the second stage, if the last level is reached and no FU is found (line 18);

• in the third stage, if no more context lines are available (line 24);

• in the fourth stage, if no more branches are available (line 33).

When this process completes, a configuration for the CGRA is generated and

stored in the configuration cache, along with the PC of the first instruction transformed.

Each configuration contains the operations of the FUs, the crossbar setup and the logical

destination registers of each instruction in the sequence so that the register file may be

updated later on.

Next, a few important extensions to this basic scheduling algorithm described

above (which ony handles operations of the form regdst ← regsrc1 op regsrc2) are dis-



72

cussed.

Handling Immediate Values. A dedicated table is used to store immediate values.

These values are detected during the translation phase and at run time loaded to the input

context to be available through the context lines from the first level.

Handling Memory Accesses. Memory accesses are allocated as ordinary ALUs,

with a few exceptions. Two input muxes, in case of loads (base register and immediate

value are summed to compute an address), and three, in case of stores (two for address and

one for the value), are encoded in tblimux. A load operation replaces an ALU operation

to preserve the maximum number of instructions in each level (see Fig. 3.3). To prevent

stores from being reordered w.r.t. previous loads, a counter is used during the translation

phase to store the last level where a store was allocated.

Exploiting speculative execution. The algorithm allows multiple branches, and,

subsequently, basic blocks, to be allocated within the same configuration. Since the trasla-

tion process generates a configuration based on a single outcome of the branch (the one

program path that executed in the first place), configurations containing multiple branches

are natually speculative. A run-time mechanism must later on re-execute the branches to

confirm if the expected program behaviour is the same as the one encoded in the configu-

ration.

3.2.3 Configuration Cache

The configuration cache stores configurations for the CGRA. It is organized as a

PC tag array (to index instruction traces already translated) and a data array (to store the

configuration data), and must support enough bandwidth to configure at least one CGRA

level each cycle in order to avoid stalls due to reconfiguration. Table 3.1 details this

arrangement.

Since each configuration is indexed by a single PC, and encoded an instruction

trace spanning multiple basic blocks, multiple traces starting from the same PC cannot

coexist in the cache. This strategy prevents two traces starting at the same PC from occu-

pying the cache at the same time, but also simplifies the lookup process. The lifetime of

these configurations in the cache is handled using a 2-bit counter, which is incremented

whenever the execution of the corresponding configuration is interrupted due to misspecu-

lation (read ahead for how speculative execution in handled in the RU). When the counter

saturates, the configuration is erased from the cache.
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Table 3.1: Detailed structure of the Configuration Cache.
PC (Idx) PC (Tag) Cfg. Data
0
1
...
n

Source: the author.

The size of each configuration varies according to the size of the CGRA, so that

should be taken into account during design to balance the configuration load times with

the bandwidth offered by the cache. For instance, in sigle-issue, small pipeline processor

the configuration load time is critical to achieve high performance. In superscalar cores,

however, with larger instruction windows, it is typically less critical to load configurations

fast as a higher number of instructions will execute.

3.2.4 Interface with GPP

Executing a CGRA configuration requires four steps:

• Check if a valid configuration exists for the next instruction sequence;

• Load the configuration for the next instruction sequence;

• Execute the configuration;

• Commit the configuration;

The first step requires checking in the configuration cache if a configuration exists.

Whenever the GPP attempts to fetche a new instruction block from its own instruction

cache, a lookup with the same PC also takes place in the configuration cache. Since the

configuration cache has a detached tag array to identify if a configuration exists for that

PC or not, the power overheads of these additional checks if only marginal. As described

in the previous section, each configuration stored in the cache encodes an instruction trace

and is indexed by the PC of the first instruction in the translated sequence. When a match

is found for a given PC, that means a previous trace starting at that same PC has already

been previously translated. Then, the next block needs not be fetched from the instruction

cache; instead, execution is offloaded to the CGRA.

The configuration load process starts by identifying, in the first configuration bits,

the register values that must be transferred to the CGRA. This information is handled by

the GPP, which must transfer the register values to the CGRA. This process may take a
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few cycles until the results are available, and its speed is constrained by the number of

read ports in the register file. The register values transferred to the RU are stored in the

corresopnding position in the input context. While register values are loaded, the con-

figuration process continues. Next, for each level, the input multiplexers, FU operations,

output multiplexers and ROB routing are configured. Loading the configuration one level

at a time allows the execution to start once the first level is loaded, without waiting for the

whole load process to complete.

Figure 3.6: MuTARe’s RU structures for handling OoO execution and speculation.
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Executing with In-Order Commit. As discussed in section 3.2.1, a ROB-like

structure is used to commit instructions in program order. The left side of Fig. 3.6 shows

the ROB selection logic, which routes data produced into each level into one of the ROB

write ports. The structure of the ROB is shown in Table 3.2. Besides the value produced

by each FU, the destination register of each operation (encoded in the configuration) is

also written into the address encoded with that operation. Instruction commit can start

as soon as the first (in-order) operation is completed in the CGRA. Moreover, using the

ROB structure allows for maintaining precise exception behavior and eases the specu-

lation process, allowing many operations to be committed even when a configuration

misspeculation occurs.

Table 3.2: Structure of the simplified ROB used for storing operation’s results.
V Br RegDest RegValue

0
1
...

63
Source: the author.

Handling memory accesses. Two tables are used to that end:

• the stores table is a 16-entry table holding store addresses and data. It is filled with

a new address and data whenever a store executes in the array. When committing
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a store from the ROB, this table is checked for the corresponding store, which is

committed to the data cache.

• the cache bufffer is a 16-entry direct-mapped cache storing speculative cache ac-

cesses. This is required since stores are not sent to the cache until reaching the head

of the ROB, but a succeeding load may try to fetch from the same address.

These structures are shown in the middle of Fig. 3.6

Handling branches. As discussed in Section 3.2.2, branches are converted into

assertion statements during the configuration generation stage. When a configuration

runs, these branches are verified using a special branches table, depicted on the right side

of Fig. 3.6. The subtraction required for computing the branch outcome is performed by

an ALU and the result written to the ROB. When reaching the head of the ROB, the branch

unit is consulted with the result of the branch computation. The branches table contains

information on the branch condition (=,≤,≥, . . .) and the branch outcome, so a lookup

must check if the outcome encoded in the configuration matches the run-time outcome of

the branch. If so, then the branch is successful and the execution continues. Otherwise,

the last valid CGRA instruction has just executed and CGRA execution is aborted. The

recovery process is activated, which works the same way as in traditional OoO processors

with the advantage that no register renaming has been carried out.
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4 MUTARE - EXTENDED ARCHITECTURE

This chapter describes two extensions to MuTARe. These two extensions push

MuTARe into directions previously unexplored by reconfigurable architectures. These

two extensions, MuTARe with support for NTV and Approximate computing, leverage

the structure of MuTARe’s reconfigurable fabric.

4.1 Approx-MuTARe

Approximate computing, the paradigm discussed earlier in section 2.3, consists in

improving a system’s performance, area, power or energy consumption by introducing

controlled computation errors that do not compromise the functional requirements. One

of the proposed hardware-level approaches consists in replacing the traditional precise

FUs in the designs by approximate implementations that produce an error that can be

predicted as a function of the input. Such a strategy can be applied, for instance, to adder

designs (GUPTA et al., 2011; GUPTA et al., 2013; ALMURIB; KUMAR; LOMBARDI,

2016), multiplier designs (KULKARNI; GUPTA; ERCEGOVAC, 2011; REHMAN et al.,

2016), and divider designs (HASHEMI; BAHAR; REDA, 2016), and can improve delay,

area, and power by up to 70% (SHAFIQUE et al., 2016).

In the context of application-specific accelerators, hardware-based approximation

(approximate FUs) can be easily deployed, considering that the nature of the workload is

known. However, the concept remains challenging to apply in GPPs, since most of the

power consumption is spent with control overheads (such as dynamic instruction schedul-

ing) rather than computations. MuTARe, however, provides a suitable structure for ap-

plying this strategy in a general-purpose context since it can generate custom datapaths at

run-time for different forms of applications and replace control overheads with computa-

tion. Therefore, as execution is switched from a GPP (large control overheads in power

consumption) to a combinatorial CGRA (large amount of FU), the optimization margin

for applying approximate FU is increased.

This section describes Approx-MuTARe, an extension to the base MuTARe archi-

tecture described in chapter 3, that can, using a single execution unit, provide transparent

acceleration capabilities for precise, already-deployed applications (same benefits as the

base MuTARe architecture), and also extract the benefits from approximate computations

in emerging-error tolerant workloads. The proposed approach represents an improvement
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over previous work in hardware-level approximation, which was restricted to application-

specific designs, and also an improvement over traditional reconfigurable architectures,

which are restricted to precise execution units. The emphasis in this work was given on

the design of the approximate RU; however, the discussion below includes other aspects

from the system implementation, from the architectural design to the compiler changes

required to map approximate instruction sequences to the RU.

4.1.1 Architectural Changes

Approx-MuTARe is based on the base MuTARe architecture described in Chapter

3. Two changes are required in the architecture to provide support for approximate com-

puting: approximate FUs and an approach to map applications into the approximate FUs

with controllable quality guarantees.

Deploying approximate FUs. The first step required for supporting approximate

execution in the CGRA is to make approximate FUs available for use. Different appli-

cations present different degrees of error-tolerance, and, even within a single application,

different regions or operations may present different error-tolerance. Therefore, an ap-

proximate accelerator must provide FUs with different error behaviors.

Considering this requirement, approximate FUs proposed earlier can be classified

into two groups: those with a configurable accuracy (can be set only once, at design

time) and those with reconfigurable accuracy (can change at run time). While the latter

presents more flexibility and can better adapt to different applications, Approx-MuTARe

uses accuracy-configurable FUs. The reason for that is that, under the dark silicon condi-

tion, where power presents a significantly higher cost than area, it is more reasonable to

optimize for power than area.

To extend the base MuTARe architecture with approximate FU, the matrix ar-

rangement in MuTARe’s CGRA, shown earlier in Fig. 3.2, is organized into accuracy

tiles. Each accuracy tile is a set of contiguous rows and columns implementing the same

accuracy mode, i.e., containing accuracy-configurable FUs with the same accuracy level,

and can be individually power-gated to avoid dissipating leakage power.

Fig. 4.1 provides an example. In this arrangement, three accuracy modes are

provided: a precise one (for applications or code regions requiring precise execution), a

slightly approximate one (small errors) and a high approximate one (large errors). Each

accuracy tile covers four columns, with two rows in each. Since one of the modes is the
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Figure 4.1: Approx-MuTARe’s CGRA organized into accuracy tiles.
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precise one, this arrangement can also be used to execute applications already deployed,

just like the base MuTARe architecture.

Extending the Instruction Set. As mentioned earlier, since approximate execu-

tion requires semantic information in order to assess the application quality, ISEs that

allow manually programming the reconfigurable fabric. The configurations are generated

offline and stored in the heap region of the program binary, and loaded at run time.

• LD_MuTAReCfg Reg(Imm). Loads the configuration stored into address Reg +

Imm into the CGRA for execution.

• Disable_MuTAReBT. Disables the MuTARe transparent binary translation system,

turning the configuration cache into a software-managed memory. Moreover, dis-

ables the automatic code fetch engine that compared the PC of the next fetch block

with a possibly-existing configuration.

• Enable_MuTAReBT. (Re-)Enables the MuTARe transparent binary translation sys-

tem.

The next section covers the required changes in the design flow (to select the

approximation modes that should be implemented), the compilation flow (to select the

approximation modes that should be used, given the Approx-MuTARe fabric) and the

execution flow (how Approx-MuTARe behaves at run time).
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4.1.2 Design, Compilation and Execution Flow Changes

A hybrid approach to generate configurations either statically or dynamically is

presented next. The goal is to provide both the benefits of transparent acceleration

(via dynamic code transformation, such as in (BECK; RUTZIG; CARRO, 2014; LIU

et al., 2015)) for already deployed non-approximate workloads and also improved

power-efficiency (via approximate configurations generated at compile time, such as in

(VENKATARAMANI et al., 2013)) for emerging approximate applications. To do so,

the transparent binary translation mechanism proposed in (BECK; RUTZIG; CARRO,

2014) is hardware-implemented and ISEs to configure and execute approximate applica-

tion kernels in the CGRA are provided.

Figure 4.2: Design flow for Approx-MuTARe.
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Generating Configurations for Approximate Execution at Compile Time. One

approach to this process is as follows: The compiler is provided with models of approx-

imate computations (i.e. the effects of approximating particular operations) and their

corresponding power savings. These are the approximate modes supported in the CGRA.

It starts from an accurate CGRA configuration and changes blocks of operations in the

application’s DFG into their approximate counterparts which are mapped to the approx-

imate CGRA tiles. This approximate implementation is compiled, simulated, and the

quality achieved is compared against the constraint specified by the programmer; if the

constraint is met, then this configuration is considered feasible; otherwise, it is discarded

and a new one is generated. By the end of the process, the configuration yielding the

lowest power consumption in the set of feasible configurations is selected.

For annotating approximate computations, three approaches are possible. The pro-

grammer may specify the beginning and end of pure regions of code, and all computations

in that region are replaced by their approximate counterparts (this is the approach taken

in (ESMAEILZADEH et al., 2014)). Alternatively, the programmer may annotated vari-

ables in the code which are subject to approximation (as in (SAMPSON et al., 2011)).

Finally, as compiler techniques become more robust, some steps in this process can al-

ready be automated. For instance, the method in (MISAILOVIC et al., 2014) requires

only accuracy and reliability constraints to find a suitable mapping of operations into

approximation modes automatically.

In this work, an emphasis was given to the design of the approximate RU, so a

manual annotation method of replacing operations flowing into approximate datatypes by

their approximate implementations was used.

Generating Configurations for Precise Execution At Run Time The system

works by default in the dynamic code transformation mode, in which the approximate

tiles are disabled by power-gating. In this mode, the configuration memory starts empty

and is filled as the program executes by the code transformation unit, which implements

the algorithm described in (BECK; RUTZIG; CARRO, 2014).

Loading and Executing Configurations Each configuration is indexed in the

memory by its instruction cache address (i.e., the PC of the first instruction). For new

binaries, special ISEs are provided to load custom static configurations into the memory

and disable the dynamic code transformation, if desired. Each time an instruction fetch

occurs, both the instruction cache and configuration memory are simultaneously looked

up. In case a matching configuration is found, it is loaded into the CGRA: the necessary
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tiles are awakened from power-gated state, the FUs and crossbars are set up, and the in-

put context is filled with values from the register file. Each execution may take multiple

cycles, depending on the depth of the configuration. The results are written to the output

context and, when the entire configuration has executed, these values are committed to

the register file.

4.2 NTV-Aware MuTARe

MuTARe is capable of accelerating an application by offering a combinatorial

reconfigurable fabric with a significant amount of FUs that can execute a large number of

operations concurrently, exploiting the application’s ILP. This strategy is capable to save

significant power compared to OoO superscalar cores, since instruction schedules need

to be generated only once and can exploit a greedy algorithm, and additionally, there is

no need to store intermediate values for computation (only final results). On the other

hand, the significant amount of FU operating concurrently (and potentially dissipating

significant static power) may present a significant overhead when MuTARe is coupled to

very simple processor cores, and tries to present itself as an alternative in these scenarios.

NTV computing was earlier presented in section 2.2 as a strategy to lower the

power consumption to levels that are not achievable with traditional designs, exploiting

the quadratic relationship between Vdd and power consumption. However, as discussed, a

circuit’s Vdd cannot be simply lowered to NTV levels without redesign, because structures

will scale differently inside the core, limiting the range where DVFS can be safely applied

without compromising the functional requirements (GOPIREDDY et al., 2016), and also

outside the core, making chips run at different frequencies for the same Vdd level due

to process variation (KAUL et al., 2012). Moreover, the frequency will drastically drop

when moving from STV to NTV computing, incurring a significant performance loss

in serial execution and requiring the use of multi-core to mitigate that performance loss

(PINCKNEY et al., 2013).

This section will show how MuTARe provides a structure that is more suitable for

NTV computing than traditional designs. As shown for the case of approximate com-

puting in Section 4.1, since MuTARe’s RU will be responsible for the majority of power

consumption, significant optimizations can be carried out in it alone, which will trans-

late to system-wide improvements. Traditional pipelined designs are not regular, with

each stage containing different amounts of logic and state-holding elements. Redesign
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for NTV can be significantly challenging in those cases. When designing MuTARe’s

CGRA for NTV, however, since it is a regular design, only one part of the array needs to

be redesigned and can then be replicated.

To wrap-up, MuTARe-NTV exploits three key insights:

• performance losses can be potentially compensated by the extra ILP exploited in

the CGRA;

• the combinatorial CGRA structure can be voltage-scaled down to NTV since it

presents no state-holding circuits;

• the remaining structures are kept in separate (STV) voltage-island that can run at

twice the frequency from the CGRA, thus providing data to feed the CGRA at twice

the speed;

4.2.1 Architectural Changes

To make MuTARe support NTV, two architectural modifications must be intro-

duced. The first one involves bringing NTV to MuTARe; the second one involves dealing

with one of the challenges of NTV computing.

Figure 4.3: NTV-MuTARe’s voltage islands organization.
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NTV voltage rail. The premise of MuTARe is to provide a regular structure where

the design changes required for supporting NTV operation are simplified compared to

those in a complex processor pipeline. To that end, MuTARe’s design is extended with

one additional voltage rail which will operate at NTV level and feed the regular structures
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(such as the CGRA), while the others will run in the lowest-possible STV level. While

this may seem suboptimal at first, it should be noted that in MuTARe the RU will be

responsible for a significant fraction of the run-time power consumption, as the switch-

ing activity and thus dynamic power consumption in the GPP is reduced due to CGRA

acceleration.

One important decision is to select, then, the structures in the design that the NTV

rail will feed and the ones that will run in STV. Different tradeoffs exist in that matter.

The BT unit will operate in the same voltage domain (STV) as the base processor since

it behaves like an additional pipeline stage and could cause stalls if operated at a lower

frequency. The configuration cache can operate either in STV or in NTV; STV operation

allows for larger configurations (as the load times can be improved by running the memory

at twice the logic frequency), while NTV allows for lower power consumption. The same

is true for the structure of the input context, the ROB and the additional structures for

speculation described in section 3.2.4. Finally, the CGRA will operate in NTV level, as

its structure will be responsible for a significant fraction of the total power consumption.

Figure 4.4: Accelerated chains of memory operations in NTV-MuTARe.

1 : sw a4, 8(s11)
2 : bge a4, zero, -56
3 : ld a5, 0(s11)
4 : addi a3, a5, 1
5 : sd a3, 0(s11)
6 : lbu a5, 0(a5)
7 : xor a5, s10, a5
8 : andi a5, a5, 255
9 : slli a5, a5, 3
10: add a5, a5, s0
11: ld a5, 0(a5)
12: srli s10, s10, 8
13: addi s9, s9, 1
14: xor s10, a5, s10
15: addiw a4, a4, -1
16: sw a4, 8(s11)
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This work has begun the investigation of these design decisions with the arrange-

ment shown is shown in Fig. 4.3, where only the CGRA is operated at NTV and the
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remaining structures are kept at STV. The Vdd of the CGRA is selected such that the de-

lay of logic elements is half that of the caches, an idea similar to the one exploited in

previous works (ZHAI et al., 2007; GOPIREDDY et al., 2016). This setup was selected

because, since the base CGRA has the ability to accelerate chains of data-dependent ALU

operations, the memory ones are usually the bottleneck, and therefore improvements are

higher. Moreover, accelerating memory instructions allow the effective instruction win-

dow in the CGRA to increase.

This is exemplified in Fig. 4.4. This figure shows a RISC-V instruction trace from

a real application (CRC32), the DFG for this trace and how it would be scheduled in a

CGRA with the structure shown on the right, where each cycle 4 ALU, 1 load, and one

store operation can be scheduled. When memory operations take two processor cycles, the

instruction window is restricted to ten operations (as scheduling the 11th would require

one additional cycle, unavailable in the structure under consideration), resulting in an ILP

of 1.66 (ten operations in six cycles). If memory operations take a single cycle, however

(which is the effect achieved by exploiting the frequency difference between the CGRA

NTV and non-NTV domain of the caches), all 16 operations can be scheduled in the

CGRA, resulting in an ILP of 2.66 (an increase of 1.6×).

Support for overprovisioning. As mentioned in section 2.2, one of the key chal-

lenges of NTV is variability, which affects the power consumption and latency of the

manufactured devices.

One of the advantages in using a regular design for dealing with variability is

the ability to easily deploy an extended design with over-provisioned resources among

which the best (faster, more power efficient) are selected after manufacturing while the

remaining ones are disabled.

The challenge is to do so in a non-intrusive way, without compromising the BT

algorithm.

The critical resource to be protected, in this case, are the functional units, since the

multiplexers represent just a small part of the total latency. The circuit delay is affected

by units chained together across a set of columns, so more units should be deployed in

each column in order to select the fastest.

Fig. 4.5 shows the general strategy used to mitigate the effects of variability in

NTV-MuTARe. It considers a MuTARe design where each CGRA column should contain

3 FUs. To avoid the effects of variability, however, increasing the chance that 3 FUs

will meet the target latency constraint, the CGRA can be designed with twice (can be
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Figure 4.5: Variability management strategy employed by NTV-MuTARe.
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determined based on the desired variability) the amount of FUs. Post-manufacturing, the

three fastest blocks in each column can be identified and the remaining ones virtually

disabled (by saving this information for later use). At run time, a multiplexer network

can map the configuration bits to the appropriate resources, using to that end the static

information obtained from post-manufacturing testing.
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5 EVALUATION

This section describes how the base and extended MuTARe architectures were

implemented and evaluated in different setups. First, a general overview of the evaluation

methodology is presented, with all of the tools implemented or employed at some stage in

this work. Then, separate sections will present different evaluation scenarios and results.

5.1 Methodology overview, metrics and tools

Different tools and methodologies have been used in each stage of this work. The

first experiments used cycle-accurate performance simulators and architectural-level area

and energy estimators, while the later ones used performance simulators combined with

area and power estimations for hardware synthesis of real processor designs. This section

presents a general overview of the tools that were used throughout the work, leaving setup

and configurations details for each of the evaluation scenarios presented later in Section

5.2.

5.1.1 Methodology

MuTARe consists of a coupling between one or more GPP cores and a CGRA. In

a way, MuTARe can be thought of as extending a GPP core with a reconfigurable acceler-

ator, while maintaining the general-purpose processing capabilities and trying to achieve

a better tradeoff between performance and power consumption. Therefore, execution in

MuTARe is compared in all scenarios against execution in the GPP core it extends, which

will be named baseline processor in the experiments that will follow.

Since the goal is to improve efficiency, this work evaluates the designs in four

metrics: performance, area, power consumption, and energy consumption. In the case of

the extended Approx-MuTARe architecture, one additional metric is taken into account:

the accuracy loss from approximate computations.

Most of the benchmarks used in the evaluations come from two different sets.

MiBench is a large benchmark set consisting of kernels that are representative of appli-

cations commonly found in the embedded systems domain (GUTHAUS et al., 2001).

AxBench is a small benchmark set consisting of kernels that are typically found in appli-
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cations supporting approximate computations (YAZDANBAKHSH et al., 2016). AxBench

also includes, along with each benchmark, a standardized error metric to allow compari-

son across different works.

5.1.2 Tools: The gem5 Simulator

Different simulation platforms had been initially investigated to provide a base on

top of which MuTARe could be implemented. In particular, the Multi2Sim (UBAL et

al., 2012), ZSim (SANCHEZ; KOZYRAKIS, 2013) and gem5 (BINKERT et al., 2011)

simulator infrastructures have been considered. In the end, gem5 was chosen due to

its detailed microarchitectural model of superscalar cores and widespread adoption in

the architectural community, with developers from ARM, AMD and Google currently

maintaining the code.

gem5 is a modular platform for computer systems simulation, encompassing both

system-level architecture as well as processor microarchitecture simulation models. It

supports two operating modes: system call emulation (SE) and full system (FS). In the

first mode, calls to the operating system are emulated using a simplified library. The latter

mode allows an entire operating system and applications to run on top of gem5.

The microarchitectural simulator uses a decoupled front-end, and back-end sim-

ulation engine, where the semantics of ISA instructions (functional model) are imple-

mented in the front-end and processor microarchitecture (timing model) is implemented

in the back-end. gem5 supports four CPU (backend) models:

• AtomicSimple is an instruction-level model, without any microarchitectural timing;

• TimingSimple is an instruction-level model extended with memory timing informa-

tion; the processor can execute one instruction each cycle unless a stall caused by a

memory access occurs;

• MinorCPU models the microarchitecture of an in-order, multiple-issue superscalar

core; it supports branch prediction and uses the scoreboard technique for handling

superscalar execution;

• O3CPU models the microarchitecture of a multiple-issue, out-of-order superscalar

core; it supports branch prediction, register renaming and load/store reordering with

memory dependence speculation.

MuTARe was implemented as an extension to the O3CPU model (and later adapted
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Figure 5.1: gem5 simulation flow.
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to work with the TimingSimple model as well) and tested and evaluated under the SE

mode. An additional BT pipeline stage implementing a high-level version of Algorithm 1

was introduced after instruction commit to generate the CGRA configurations. This infor-

mation is saved for posterior use in a high-level configuration cache. The simulator stores,

for each translated sequence, the execution time in the CGRA in case of no misspecula-

tion and no cache misses. The timing information of those instruction traces is evaluated

when the application runs in the O3CPU, and then replaced by the timing from CGRA

execution, corrected in case of cache misses or misspeculation. The implementation of

MuTARe required 3500 lines of code, compared to the 26000 lines of code required to

implement O3CPU microarchitectural model.

Fig. 5.1 provides an overview of the simulation flow in gem5, with the inputs and

outputs to/from the simulator. The figure also shows typical configuration parameters and

reported results.

5.1.3 Tools: CACTI

CACTI is an integrated cache and memory access/cycle time, area, leakage/dy-

namic power model (BALASUBRAMONIAN et al., 2017). Fig. 5.2 shows an overview

of the tool. The user provides a high-level specification of the cache/memory design,

including an optimization target (e.g., latency or area or power) and the tool finds an im-

plementation for that target and outputs timing, area and power information. Since these

designs are regular, results provided by CACTI tend to be highly accurate. CACTI is thus

used in this work to estimate the area and power consumption of all cache implementa-
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Figure 5.2: CACTI flow.
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tions.

While CACTI has undergone several revisions throughout the years, being cur-

rently in the 7th version, the results it produces are based on 90nm, 65nm, 45nm, and

32nm technology nodes. Therefore, the models do not capture the recent change from

planar to FinFET transistors (NOWAK et al., 2004). FinCACTI is an extension to CACTI

which also models FinFET devices in more recent technology nodes, and was also used

in some analyzes in this work (SHAFAEI et al., 2014).

5.1.4 Tools: McPAT

McPAT is a Multi-Core Power, Area and Timing analyzer (LI et al., 2013). It is

built around CACTI, including timing, area and power models for the entire CPU cores.

To estimate the core power consumption, however, it requires additional information,

since the dynamic power consumption has a dependency on structural utilization.

Fig. 5.3 shows the processing flow in McPAT. Two inputs are required by the tool:

a processor configuration and performance simulation results. The configuration includes

all the information required by CACTI to find a suitable cache implementation and also

information on the core design, such as the target frequency, number of pipeline stages

and buffer sizes. The performance simulation results can be provided by a simulator (such

as gem5) and include the number of idle and busy cycles and how often each structure

was utilized. This information is used to estimate dynamic power consumption.

The tool also reports if it is possible to find a processor configuration that meets

the target frequency, considering the delay of the caches as reported by CACTI.
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Figure 5.3: McPAT flow.
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Figure 5.4: The Rocket core.

Source: (ASANOVIĆ et al., 2016).

5.1.5 Tools: Rocketchip Generator

Some results from this thesis are based on implementations of real processor cores.

In this case, the RISC-V ecosystem was adopted due to the vast number of tools already

designed and implemented and free to use. Two cores designed in the University of

California Berkeley have been used in this work: the Rocket Core and the BOOM Core

(ASANOVIĆ et al., 2016; CELIO; PATTERSON; ASANOVIĆ, 2015).

The Rocket core implements a 5-stage scalar pipeline with branch prediction. It is

a very simple processor core, as can be seen in Fig. 5.4. The BOOM core implements a

parameterizable OoO superscalar pipeline with branch prediction and advanced structures

for handling memory dependencies. An overview of this core is presented in Fig. 5.5.

We evaluate MuTARe in performance, area, power, and energy consumption run-

ning a benchmark set representing current IoT workloads. We compare with two GPP

cores: a single-issue core, representative of current IoT processors, and a multiple-issue

OoO core (2-wide), representing future IoT processors required to match the performance

demands of future workloads. As this configuration closely resembles that of ARM’s

big.LITTLE systems (ARM, 2013), we will refer to the single-issue core as LITTLE and

the OoO core as big.
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Figure 5.5: The BOOM core.

Source: (CELIO; PATTERSON; ASANOVIĆ, 2015).

5.1.6 Tools: for Logic Synthesis

Logic synthesis involves transforming a circuit description in Register-Transfer

Level (RTL) into a netlist of gates, which may be selected from a technology-specific

library and include area and power characterization.

The synthesis was carried out using the Cadence (Encounter / Genus) and Synopsis

(Design Compiler) toolsets, depending on the license available at each time. Two cell

libraries were used: an industry-grade, 65nm cell library from ST Microelectronics, and

15nm predictive FinFET library designed by Silvaco (MARTINS et al., 2015).

5.1.7 Tools: DVFS model

Initial results to characterize the designs for different DVFS operating levels were

based on cell libraries which themselves had been characterized for distinct voltage levels

(XIE et al., 2015). However, due to the lack of additional documentation and reliable area

estimations for these cells, the approach was abandoned.

Instead, the voltage-frequency relationship was estimated using an EKV-based

model proposed in previous work by Markovic et. al (MARKOVIC et al., 2010), which

is implemented in the VARIUS-NTV tool (KARPUZCU et al., 2012). This model takes

into account the effects of Drain-Induced Barrier Lowering (an effect by which the tran-

sistor’s effective Vth decreases when Vdd increases) and temperature (which also affects

Vth) and can effectively model the voltage-frequency relationship in super-threshold, near-
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threshold, and sub-threshold regions. The model was calibrated with results from a recent

IRDS report for 15 nm ((IRDS); SYSTEMS, 2017).

5.1.8 Tools: Approximate FU models

The experiments with Approx-MuTARe required models for implementations of

approximate FUs and the errors they introduce.

Multi-bit approximate adder designs were constructed by replacing the LSB FA

circuits by their approximate counterparts. These designs were taken from previous works

(GUPTA et al., 2011; GUPTA et al., 2013; ALMURIB; KUMAR; LOMBARDI, 2016).

Most of the C/HDL models for these units are available in the open-source library lpA-

CLib (SHAFIQUE et al., 2016); the remaining ones have been manually implemented.

Five different multiplier implementations were also taken from lpACLib, which

designs from two different works (SHAFIQUE et al., 2016; KULKARNI; GUPTA; ERCE-

GOVAC, 2011); all these designs are built from approximate 2-bit multipliers and accurate

adders, which can be combined for larger word lengths.

An accurate divider design was taken from OpenCores (HERVEILLE, 2011) and

extended to implement the approximation described in a previous work (HASHEMI; BA-

HAR; REDA, 2016), for which the accuracy can be tuned by changing the number of

approximate bits.

5.2 Results

The results of MuTARe are organized according to baseline system it is compared

against. Each result is presented along with a motivation for the applicability of MuTARe

in such a scenario. The first two scenarios evaluate the base MuTARe architecture against

a wide-issue OoO superscalar core (typically employed in applications requiring high per-

formance) and against a big.LITTLE-like system (typically employed in applications with

hybrid requirements, such as in mobile systems). The last two scenarios involve the com-

parison of NTV-MuTARe and Approx-MuTARe against the base MuTARe architecture.
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5.2.1 Scenario 1: High-Performance Computing for General-Purpose Domains

Motivation. The domain of the x86 ISA over the GPP computing market demon-

strates the importance of maintaining binary compatibility to allow the execution of soft-

ware already deployed in new processors. However, implementing a complex (CISC) ISA

such as x86 is challenging because it contains over a thousand instructions with variable

lengths and addressing modes. To cope with this, x86 processors have long been designed

with a decoder that decomposes each x86 instruction into simpler RISC-like operations

named µops (INTEL, 1997; HINTON et al., 2001). This step allows executing x86 in a

pipelined organization, enabling dynamic scheduling and superscalar execution of ops to

exploit high amounts of ILP. However, this whole process is costly: the decoding of each

x86 instruction to multiple ops and their dynamically scheduling for concurrent execution

require complex structures and logic. Previous works report that decode can account for

up to 10% of the total package power (HIRKI et al., 2016), and scheduling for 10-20%

(ISCI; MARTONOSI, 2003; FOLEGNANI; GONZALEZ, 2001). Experiments in the

scope of this thesis, carried out using McPAT (the tool described earlier in section 5.1.4),

have found similar results (Fig. 5.6).

Figure 5.6: Power breakdown in an OoO x86 core.
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Source: the author.

To reduce the energy costs, recent Intel processors already store decoded µops in

a special L0 cache inside the pipeline (DIXON et al., 2010) (GWENNAP, 2010), so that

repeating instruction sequences need not be decoded multiple times. As can be seen

in Fig. 5.7 (a and b), this mechanism has been moving deeper into the pipeline over

the years, improving the amount of processing that is saved for reuse. While previous

works have proposed efficient implementations of the scheduling logic (FOLEGNANI;

GONZALEZ, 2001; PALACHARLA; JOUPPI; SMITH, 1997), however, no work has yet

proposed to move one step further (Fig. 5.7c) to store the already scheduled µops inside

the pipeline. By doing so, repeating instruction sequences could be automatically decoded

and scheduled in a single step, skipping the complex pipeline stages that are involved, and
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improving energy consumption and performance.

Figure 5.7: Using MuTARe’s CGRA to cache instruction schedules in OoO cores.
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Source: the author.

In this comparison, MuTARe was investigated as an alternative design strategy to

reduce the utilization of the complex hardware structures responsible for decoding and

scheduling of repeating instruction sequences in OoO x86 cores and thereby improve

energy consumption. This improvement is achieved by encoding these processes into

CGRA configurations, levering the structure of a CGRA to enable the recovery of µops

already allocated in time and space. Since a CGRA is also capable of efficiently exploiting

ILP, performance also improves.

Evaluation setup. In this evaluation, gem5 was used for performance simulation.

The O3CPU model was used with the parameters shown in Table 5.1 to try to match an

Intel Haswell design (HAMMARLUND et al., 2014). The CGRA was configured accord-

ingly with the parameters shown in Table 5.2: the same number of multiplications, load

and store operations each cycle, but with the ability to execute four chains of three data-

dependent ALU operations in the latency of a single cycle. McPAT was afterward used for

estimating the area and energy of the baseline core. These results were combined with the

CGRA synthesis results from Cadence RTL Compiler, with the configuration cache being

estimated using CACTI. Area and power/energy results are normalized to a 22 nm process

technology. Multiple CGRA designs were experimented with by varying the number of

levels (15, 30 and 60) and the trace length (from one to 10 BBs per configuration 1).

MuTARe in this scenario was evaluated using a subset of 9 benchmarks from the

Mibench suite, all compiled using gcc 5.3.0 with the -O3 optimization flag. A character-
1Larger traces were tested but provided high rates of branch misprediction.
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Table 5.1: Baseline processor parameters.

Pipeline: 8-wide out-of-order, with 4 ALU ports, 2 mult. ports, 2 load ports and
1 store port. Instr. queue: 60 µops. Load buffer: 72 µops. Store buffer: 42 µops.
ROB entries: 192 µops. Memory dependence prediction via store sets.
L1 D+I caches: 32kB each. 8-way set associative, 2 cycles hit latency.
L2 cache: 256kB, 8-way associative, 8 cycles hit latency.
L3 cache: 2MB, 16-way associative, 18 cycles hit latency.

Source: the author.

Table 5.2: CGRA parameters.

ALUs 12 per level, with a latency of 1
3

of a cycle and orga-
nized as three columnns with four ALU rows each.

Multipliers 2 rows per level, with a latency of three cycles.
Load Units 2 rows per level, with a latency of two cycles.
Store Units 1 row per level, with a latency of one cycle.

Source: the author.

ization of these benchmarks, showing that they cover a broad range of applications with

distinct dynamic behaviors, is presented in Fig. 5.8. Each application’s Basic Blocks

(BBs) are ordered increasingly by their contribution to the execution time (coverage); the

figure shows how many BBs are required to achieve a particular coverage rate and also

their average size. Some applications, such as susans, have an avg. BB size of 22 µops

and a single very distinct kernel that covers 89% of the application, requiring four more

BBs to achieve 98% coverage. Other applications, such as bitcount, have many distinct

kernels (with a smaller avg. size of 8.4 µops), with the most significant one covering 33%

and requiring 16 additional ones to cover 98%. Applications with smaller BBs are typi-

cally more difficult to accelerate, because they need better control prediction mechanism,

as is the case with applications with too many kernels. MuTARe, however, just like the

superscalar processor, can accelerate any application.

Performance results. Fig. 5.9 presents the geomean application speedup against

the superscalar processor for each combination of trace length and number of levels. As

can be seen, the speedup increases with both parameters, because more speculation al-

lows better exploiting ILP across multiple basic blocks, and more levels allow it to sup-

port larger instruction sequences that amortize the reconfiguration costs. A highest mean

speedup of 32.6% is achieved in the best case, with the design using 60 levels. The

only slowdown occurs when not using speculation because, in this case, only the baseline

processor can execute ops from multiple BBs simultaneously. The results show that the

design with 30 levels achieves the best trade-off, given that it enables enough µops to be
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Figure 5.8: Number of unique basic blocks required to cover an application.
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Figure 5.9: Geomean speedup for distinct CGRA sizes.
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allocated considering the degree of speculation exploited.

Considering benchmark-specific execution in the 30-level design, Fig. 5.10 presents

the speedup and Table 5.3 additional results. There are significant improvements in nearly

all applications, because of the CGRA’s ability to speed up chains of data-dependent op-

erations, thereby exploiting more ILP than the superscalar. bitcount is accelerated the

most by 120.9%, because of the high rate of ALU operations (83.7%) and the low rate of

µPC (µops per cycle) in the baseline processor (2.4), which indicates many dependencies

among these operations.

The only exceptions are crc32 and susans. In these applications, there are many

memory dependencies, and the critical path in a configuration lies in chains of load opera-

tions. However, the baseline processor can accelerate these chains by using the load/store
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Figure 5.10: Speedup achieved by each benchmark with the 30-level design.

11.3%

120.9%

0.1%

43.6%

26.1% 26.6%

103.1%

71.8%

0.8%
0%

25%

50%

75%

100%

125%

bitcount crc32 dijkstra FFT jpegc patricia qsort sha susans
Benchmark & CGRA Levels

S
pe

ed
up

Source: the author.

Table 5.3: Detailed results for the execution with 30 levels.

Benchmark Base µPC
Avg. Configuration

Speedup Coverage
µops BBs Cycles

FFT 3.3 61.7 7.6 12.8 1.11 44.0%
bitcount 2.4 66.1 7.8 11.2 2.21 94.9%
crc32 5.1 74.9 9.0 14.0 1.00 11.3%
dijkstra 3.3 69.9 8.7 13.8 1.44 81.4%
jpegc 2.2 60.5 4.6 17.7 1.26 65.4%
patricia 2.2 53.6 6.4 11.7 1.27 51.4%
qsort 1.7 93.6 7.4 18.2 2.03 69.5%
sha 2.3 71.0 2.5 11.7 1.72 70.3%
susans 2.6 69.9 3.0 27.0 1.01 19.3%

Source: the author.

queue; the code transformation module automatically detects that this is the case and

does not save the configuration. Therefore, the coverage (rate of µops that execute in

the CGRA) for these applications is small, and there are no performance losses. Addi-

tionally, crc32 achieves the highest µPC in the baseline processor (5.1) and the average

configurations in susans have the longest execution time (27 cycles) of all applications.

Energy consumption results. Fig. 5.6, presented earlier, shows a power break-

down of the superscalar processor. The costs of decode and scheduling can be amortized

in MuTARe, as was previously stated, and also the ones associated with the load/store

queue and integer execution, because memory operations are allocated only once when

the configuration is generated and execution is more efficient in the CGRA.

Fig. 5.11 shows the energy consumed by each benchmark in the baseline pro-

cessor and in the MuTARe system, separating the consumption of the superscalar core,

the CGRA, and the configuration cache. The results are positive in almost all cases, and
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Figure 5.11: Energy consumption by each benchmark with the 30-level design.
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a geomean reduction of 31.4% from the baseline is achieved. Two factors enable these

gains. First, as already explained, the complex pipeline stages involved with instruction

decoding and µop scheduling are bypassed, therefore reducing the energy that the su-

perscalar consumes (Superscalar bars in the figure). Instead, this information is fetched

from the configuration cache (CfgCache bars), and the code sequence is executed in the

CGRA (CGRA bars). Second, the application execution time is reduced and, therefore,

applications with substantial speedups (such as bitcount and qsort) also achieve the most

significant energy reductions. There are only two cases with marginal increases, which

are crc32 and susans. As was previously stated, coverage for these benchmarks is small,

so there is no speedup. However, looking up configurations in the configuration cache

add a low energy overhead to these benchmarks.

Area requirements. The CGRA and the configuration cache have areas of 4.18mm2

and 1.34mm2, respectively. The superscalar core occupies 13.94 mm2. Because of this

small size, modern processors contain multiple cores and complex graphics processing

units (GPUs) in the same die. Compared to Haswell 4770K, which occupies 177mm2 and

has four cores (SHIMPI, 2013), our design introduces only 12.5% area overhead when

each of the cores gets replaced by a MuTARe tile.
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Figure 5.12: Energy-delay tradeoffs and power in a heterogeneous system.
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5.2.2 Scenario 2: Heterogeneous Computing for Mobile Domains

Motivation. Adaptability is a key to modern mobile systems since a wide range of

tasks must be executed with changing and sometimes unpredictable run-time performance

and energy requirements. This scenario has driven the design of heterogeneous systems

built from multiple GPP cores, each optimized for a different target. However, typically

only two core choices are available in such an arrangement: (1) one GPP optimized for

low energy, and (2) another one for high performance. An industrial example of such

an architecture is ARM’s big.LITTLE (ARM, 2013). Therefore, the range of architec-

tural solutions is often limited and performance-energy tradeoffs suboptimal, even when

DVFS is available. An example from the experiments conducted in this thesis is shown

in Fig. 5.12: an application may execute in a LITTLE core, for low energy and slow

performance, or migrate to a big core, with 3.3× better performance and 2.8× higher

energy consumption at nominal voltage. However, besides the wide gap between the two

operating ranges, both operating points provide nearly the same EDP. Reconfigurable ar-

chitectures, on the other hand, can create customized datapaths at run time, thus providing

a nearly-continuous range of architectural solutions. As reconfigurable accelerators are

typically coupled to GPPs, they can be used to extend traditional heterogeneous designs

and improve their adaptability, potentially achieving better performance-energy tradeoffs.

In this comparison, MuTARe was investigated as a more efficient alternative to

heterogeneous single-ISA systems which can improve the range of architectural solutions

and achieve better Pareto-optimal performance-energy tradeoffs without the need to re-

compile the program.

Evaluation setup. For performance evaluation and fast design-space exploration,
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Table 5.4: Benchmark groups.

Application Group Benchmarks

Sensing bitcount, stringsearch
Communication dijkstra, FFT

Image Processing susan (edges, corners, smoothing)
Data Compression jpeg encode

Security aes encrypt, sha
Fault Tolerance CRC32

Source: the author.

Figure 5.13: Benchmark operation class mix.
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the gem5 cycle-accurate simulator was used with the TimingSimple CPU to model the

LITTLE core and the O3 CPU to model the big core. The O3 CPU was configured with

the parameters shown in Table 5.8, and the CGRA with the parameters shown in Table

5.5. This design is significantly smaller than the one used in the previous analysis (Table

5.2). The reason for that is that the baseline processor is also significantly simpler (the

big core is 2-issue wide, compared to the 8-issue wide core used in the previous analysis),

making a smaller CGRA enough for performance improvements, and also in order to limit

the power overheads.

11 benchmarks from mibench, representative of the IoT domain, compiled for

RISC-V with -O3 and running the small input set were used in the evaluation. Table

5.4 classifies these benchmarks into the IoT application groups referred in a previous

work (ADEGBIJA et al., 2018), and Fig. 5.13 shows the operation breakdown for each

benchmark.

For area and power evaluation, logic synthesis of real processor designs (Rocket,

representing the LITTLE core, and BOOM, representing the big core) was carried out,
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Table 5.5: CGRA parameters.

ALUs 4 per level, with a latency of 1
2

of a cycle and orga-
nized as two columnns with two ALU rows each.

Load Units 1 row per level, with a latency of two cycles.
Store Units 1 row per level, with a latency of one cycle.

Total length: 12 levels (24 columns).

Source: the author.

using Cadence’s RTL Compiler and Silvaco’s 15nm standard cell library. FinCACTI was

used to model the caches. Results for the CGRA were estimated based on BOOM’s

FUs and take into account the FUs, interconnects, BT module and configuration cache.

BOOM was configured with the same parameters used for the gem5 simulator, depicted

in Table 5.8. The Rocket core was targeted to 1.6 GHz and the BOOM core to 2.1 GHz,

since similar frequency differences also appear in real big.LITTLE implementations such

as in Samsung’s Exynos 7420 and Qualcomm’s Snapdragon 810 (EXYNOS. . . , 2015;

SNAPDRAGON. . . , 2015).

Raw synthesis results for the processor cores and caches are presented in Tables

5.6 and 5.7, respectively. The 2-issue BOOM core occupies 10.5× larger area and con-

sumes 11.1× more power than Rocket. As for the 4-issue BOOM, it increases area by

1.9× and power by 1.62× w.r.t. the 2-issue BOOM. The Rocket ALU, used to estimate

the CGRA’s area and power costs, occupies 3.8% of the Rocket area and is responsible

for 3.7% of its power consumption.

Table 5.6: Rocket and BOOM synthesis results.

Processor
Target Freq
[MHz]

Num
Cells

Area
[µm2]

Power
[mW]

Rocket 1,600 27,623 11,982 28.10
(ALU only) 1,600 1,458 455 1.03
BOOM-2W 2,100 287,793 125,178 311.42
BOOM-4W 2,100 593,717 233,109 506.16

Source: the author.

To account for the effects of DVFS, the model by Markovic et. al was used, ad-

justed to 15 nm, with nominal voltage set to 0.8V, and, based on the evaluation performed

in a previous work (GOPIREDDY et al., 2016), considered it can be safely scaled down

to 0.6V.

Execution in a Single Operating Point. The first analysis shows the performance-

energy tradeoffs when an application executes entirely in a single Operating Point (OP),
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Table 5.7: Cache parameters and results from FinCACTI.

Parameter LI-I LI-D

Line Size [B] 32 64
Associativity 2 4
Total Size [kB] 32 32

Cycle time [ns] 0.50 0.48
Leak. Power [mW] 1.92 1.92
Avg. Energy / Access [pJ] 8.5 12.9
Area [um2] 11,352 11,409

Source: the author.

Table 5.8: Modeling parameters for the big core.

Parameter

Inst-Q, Ld-Q, St-Q, ROB 24, 8, 8, 96
Issue Width 2-Wide
Issue Ports 2 ALUs, 1 Mult, 1 Ld, 1 St

Source: the author.

which consists of an execution unit and a DVFS level. In the baseline system, two execu-

tion units are available (LITTLE or big), and in MuTARe other two (LITTLE or big with

automatic CGRA acceleration). Each of these four processing units may operate in five

distinct DVFS levels, the same ones shown in Fig. 5.12.

Fig. 5.14 presents this analysis. In the figure, execution time (x-axis) and energy

consumption (y-axis) are normalized w.r.t. execution in OP (LITTLE,E): LITTLE core

running at 0.9 GHz. Each point represents an OP; each curve groups together OPs with the

same processing unit. Two dashed horizontal and vertical lines show the lowest energy

and the best performance achievable in the baseline system (in OPs (LITTLE, E) and

(big, A), respectively).

As can be seen in the figure, in the baseline system a huge 5.8× performance

gap (horizontal distance) exists between execution in OP (LITTLE,E) and (big, A).

MuTARe closes that gap: when using the proposed CGRA for on-demand acceleration,

the LITTLE OPs (circles) are moved towards the left (squares). For nearly the same

(< 2% overhead) lowest energy achieved in OP (LITTLE,E), performance is improved

by 2.3× in OP (LITTLE+CGRA,E). If DVFS is adjusted to the highest level, moving

to OP (LITTLE+CGRA,A), performance improvements increase to 4.0×with no need

to use the big core at all.

Despite the CGRA’s ability to exploit significantly more ILP than LITTLE, by of-

fering more FU operating concurrently in each cycle and also accelerating data-dependent
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Figure 5.14: Energy-Delay curves for different execution units and DVFS levels.

ISO−EDP

Lowest Baseline Energy

Highest

Baseline Performance

●
●

● ● ●

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

0.00x 0.25x 0.50x 0.75x 1.00x 1.25x 1.50x 1.75x

Execution Time (Delay)

E
ne

rg
y

● LITTLE

LITTLE + CGRA

big

big + CGRA

Source: the author.

operations, the highest baseline performance (vertical dashed line) is still not reached

when MuTARe operates in LITTLE+CGRA mode. This result suggests that a CGRA cou-

pled only to the LITTLE core is not enough to cover all the operating range provided by

an heterogeneous design. To further investigate this statement, detailed microarchitec-

tural performance results are provided in Table 5.9. The coverage column (fraction of

total instructions executed in the CGRA) shows that often a non-neglectable amount of

application code will still execute in the base GPP. This is the case for (100− 54.1)% of

jpeg-d’s instructions, which will execute with an ILP of 0.42 at 1.6 GHz (when coupled

to LITTLE) or 1.26 at 2.1 GHz (when coupled to big). Therefore, in this application,

LITTLE+CGRA is unable to match big’s performance. Meanwhile, in other applications

where the CGRA achieves high coverage and ILP, as in bitcount, LITTLE+CGRA can out-

perform big’s performance by 1.31×. In summary, LITTLE+CGRA can typically reach

big’s performance if the coverage is high and the ILP difference from LITTLE to big is

low.

Compared to execution in OP (big, A), which yields the highest baseline perfor-

mance, leveraging the CGRA (curve with triangles) enables significant energy savings

and the potential to reduce execution time. In the same high-frequency OPs, big’s perfor-

mance can be improved by 1.32× (leftmost triangle) while reducing energy consumption

to 63% of its original value. Alternatively, by moving to OP (big +CGRA,C), the same

baseline high performance can be achieved and energy savings are further improved to

48% of the original value.
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Table 5.9: Detailed performance results.

Benchmark
CGRA Perf. GPP Perf.

Cov. Avg. / Cfg.
IPC

IPC

[%] Ops Blks LITTLE big bigger

bitcount 91.7 25.3 5.57 3.09 0.82 1.43 1.97
blowfish-e 87.1 18.2 2.13 1.67 0.44 1.31 1.52
dijkstra 84.9 15.0 4.03 1.34 0.41 1.03 1.27
jpeg-d 54.1 16.9 2.28 1.51 0.42 1.26 1.75
jpeg-e 67.9 13.3 1.97 1.28 0.41 1.07 1.40
qsort 68.9 13.4 3.03 1.52 0.32 0.73 0.86
sha 93.6 29.9 1.67 2.83 0.60 1.36 1.55
stringsearch 83.2 14.3 4.52 1.63 0.36 0.76 0.93
susan-c 80.9 12.2 0.76 1.19 0.34 0.94 1.20
susan-e 71.4 12.2 0.63 1.10 0.33 1.04 1.33
susan-s 84.0 10.5 1.01 0.92 0.51 1.21 1.66

Source: the author.

This initial analysis suggests that reconfigurable acceleration can improve a base-

line big.LITTLE-like design in three distinct ways: 1) by improving performance in

lowest-energy OP (LITTLE,E), subject to the same energy budget; 2) by improving

energy consumption compared to the highest-performance OP (big, A), still meeting the

same execution time; 3) by improving performance in high-performance mode.

Table 5.10: Evaluation scenarios.

Scenario System Mode Proc. Unit DVFS Constraint

I Baseline Low-Energ. LITTLE Lowest f
II Baseline High-Perf. big Highest f
III MuTARe Low-Energ. LITTLE+CGRA Dynamic Max. e
IV MuTARe High-Perf. big+CGRA Dynamic Max. t
V MuTARe Highest-Perf. big+CGRA Highest f

Source: the author.

From the aforementioned discussion, the scenarios depicted in Table 5.10 are set

for comparison. The baseline processor can operate in a low-energy mode (LITTE,E),

which yields an energy constraint e, or in high-performance mode (big, A), which yields

a timing constraint t. The MuTARe system can also operate in these two-modes and

an additional one: highest-performance. In low-energy, the LITTLE core is coupled to

the CGRA and DVFS can be tuned to minimize execution time subject to the energy

budget e. In high-performance, the big core is coupled to the CGRA and DVFS can be

tuned to minimize energy consumption under the timing constraint t. Finally, in highest-
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performance mode, the big core is coupled to the CGRA and operates in the highest

frequency to improve and meet performance targets of emerging application unachievable

with the big core. Results for these three scenarios are discussed next.

Figure 5.15: Results from t-constrained execution.
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Improving energy consumption in high-performance mode (Scenario IV). Fig. 5.15

show MuTARe’s execution time and energy consumption when executing in the performance-

constrained scenario just described. The execution time and energy consumption are nor-

malized w.r.t. big operating in the highest frequency, i.e., w.r.t. Scenario II. In all but

susan-s benchmark, MuTARe was able to meet the performance and save a significant

amount of energy by exploiting ILP in a cost-effective way, i.e. generating instruction

schedules only once and storing them into configuration for future use. susan-s presents

a significant amount of multiplication operations (16%, as shown in Fig. 5.13), reduc-

ing the effective instruction window and ILP (only 10.5 operations per configuration, as

shown in Table 5.9). Introducing a multiplier inside the reconfigurable unit may improve

the performance in this benchmark, but will also introduce additional area and power

overheads.

Improving performance in low-energy mode (Scenario III). Similarly to the pre-

vious analysis, Fig. 5.16 shows MuTARe’s results in the energy constrained-scenario.

The execution time and energy consumption are normalized w.r.t. LITTLE operating in

the lowest frequency, i.e., w.r.t. Scenario I. Six of the applications are able to meet the

energy budget, while five are not, introducing an energy overhead of less than 25%. Since

power overheads introduced by the CGRA are proportionally larger for the LITTLE core

than for the big one, maintaining the small energy budget is challenging in some appli-
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Figure 5.16: Results from e-constrained execution.
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cations, especially in the ones where the CGRA is significantly used. If energy is a tight

constraint, however, the CGRA can be switched off automatically by determining when

the ILP improvements provided by the CGRA are smaller than the power overheads in-

troduced. In all execution cases, the performance-energy tradeoffs (EDP) improve, on

average by 2.2×.

Figure 5.17: High-performance execution.

0.00x

0.20x

0.40x

0.60x

0.80x

1.00x

bitcount

blowfish−e

dijkstra

jpeg−d

jpeg−e

qsort
sha

stringsearch

susan−c

susan−e

Benchmark

Metric Exec. Time Ener. Cons.

Source: the author.

Improving performance in high-performance mode (Scenario V). Finally, the re-

sults when executing MuTARe in high-performance mode are shown, again normalized

to execution in big in the highest frequency (Scenario II). This is depicted in Fig. 5.17.

Performance can be improved in all applications but susan-s. The best cases are highly-

regular applications such as bitcount (1.92×) and sha (1.9×). In all cases, energy is
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Figure 5.18: Performance and energy consumption under the effects of task migration.

Source: the author.

significantly reduced, and the EDP improves on average by 2.2×.

Results considering Task Migration. In heterogeneous systems, typically a

scheduler migrates tasks between processing units according to the run-time require-

ments. In the previous analysis, we considered that the entire application runs in a single

processing unit. Now, the performance-energy tradeoffs considering the effects of task

migration is analyzed.

To show the role of ILP in an application’s EDP, we rank all benchmarks based

on the ILP improvement when switching from LITTLE to big, according to Table 5.9, and

restrain the analysis to the worst case (bitcount), the median (dijkstra) and the best case

(susan-e).

Fig. 5.18 shows performance and energy consumption in the Baseline (big.LITTLE)

and MuTARe architectures depending on the fraction of the application that is scheduled

for execution in LITTLE or big. Considering the baseline big.LITTLE system, results

show that when the ILP improvements from big are small, as in the case of bitcount, en-

ergy consumption grows faster than speedup as execution is switched from the LITTLE to

the big core. This phenomenon occurs when the application’s data-dependencies prevent

further ILP exploitation by the big core, which still introduces considerable power over-

heads. As a consequence, such an application will present better EDP when executing in

the LITTLE core (1.39×w.r.t. big). On the other hand, susan-e presents the exact opposite

behavior, with speedup increasing faster than energy consumption due to the availability

of operations that can be executed concurrently. Therefore, EDP when executing in big is

improved (1.91× w.r.t. LITTLE).
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Considering now the MuTARe system, for all three benchmarks the speedup curves

are above the baseline, and the energy consumption scales at a smaller rate as execution

is switched from LITTLE to big. The reasons for that are the acceleration capabilities of

the CGRA and the better power-efficiency compared to the big core, which overall en-

ables better EDP than the baseline system in all operating points. In particular, the best

EDP spot in MuTARe for bitcount, dijkstra and susan-e is found when the application

executes entirely in the big core, providing an improvement of 3.14×, 1.86× and 1.35×

(respectively) compared to the best case in the baseline system. This observation suggests

that MuTARe can efficiently exploit an application’s ILP without the overheads typically

found in OoO cores.

Area costs. big.LITTLE-like systems often come in different arrangements, not

only with different microarchitectures but also with a distinct number of cores (of each

type) in the same System-on-Chip (SoC). For comparison, we use a typical scenario of

four LITTLE cores and four big cores, as in Samsung’s Exynos 7420 and Qualcomm’s

Snapdragon 810. Extending this system to MuTARe would require four additional Mu-

TARe processing units, for a total area overhead of 32%. This overhead is smaller than

50%, which would be the cost of replacing the four big cores by (faster) bigger cores,

and the choice for MuTARe presents better energy benefits with modest performance in-

creases.

5.2.3 Scenario 3: Ultra Low-Power Computing for Emerging IoT Domains

Motivation. Battery-powered edge devices for IoT must present ultra-low energy

consumption, competitive with application-specific designs, but at the same time be flexi-

ble enough to address the fast-evolving pace of IoT applications (BLAAUW et al., 2014).

As these devices are now embracing the concept of fog computing, with a significant

amount of processing being carried out locally rather than in the cloud (BONOMI et al.,

2012; TAN et al., 2017), IoT processors now require a high range of adaptability: from

ultra-low energy (when collecting) to high-performance (when processing data).

To balance between these requirements, current processors employ DVFS, adapt-

ing the Vdd f in the range between 100-70% of the nominal voltage to trade off between

performance and energy/power. However, for future IoT workloads requiring extra perfor-

mance under the same tight energy budgets, this range may not be wide enough. Because

of this need, previous works have already shown that the optimum point for energy sav-
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ings occurs for Vdd below the range traditionally achieved with DVFS, in the NTV range

(KAUL et al., 2012; PINCKNEY et al., 2013).

An example from the experiments conducted in this thesis helps illustrate the idea.

Consider an image processing pipeline (applying a filter, compressing the resulting image

and finally encrypting it for secure transmission) which must execute in a very simple

processor core with DVFS support, with a task deadline of 2 seconds. Table 5.11 supports

the following discussion. When the system must process a small image (480p, nowadays’

scenario), it can run at the lowest frequency and still meet the target deadline. However,

in the near future, as image sizes are expected to increase (720p, future scenario), the task

deadline is not met, even if the processor executes at the maximum operating frequency.

Even if it did, the energy overhead would be 6.3×. While the provided example covers a

single application domain (image processing), where input sizes are expected to increase

as IoT becomes more widely adopted, the rationale applies to other domains as well. For

example, routing algorithms (as the number of nodes in a sensor network increases), voice

and object recognition (more patterns to identify) and many others.

Table 5.11: Execution times for an image processing pipeline in two scenarios.

Application
Exec. Time

480p (Low f ) 720p (High f )

Smooth. Filter 1.765 s 2.432 s
Compression 187 ms 243 ms
Encryption 12 ms 12 ms

Sum 1.964 s 3 2.687 s 7

Source: the author.

An ideal solution to the variable performance demand problem should (1) provide

energy-efficient acceleration capabilities and (2) do this for a broad range of applications.

Superscalar OoO cores can exploit ILP, addressing the latter requirement, but consume

significant power in doing so, which may be unacceptable in battery-powered devices.

Dedicated accelerators meet the first requirement, but are not generic and are unsuitable

for the fast-evolving pace of the IoT applications. Reconfigurable accelerators present an

interesting alternative: they can create customized datapaths at run time, approaching the

performance of a dedicated solution, and encode these for later reuse, saving significant

power compared to OoO cores.

In this evaluation scenario, MuTARe is configured with a single-issue processor

core extended with an energy-efficient CGRA for improving performance in emerging

IoT workloads. The comparison is carried out with two adaptive processors: one energy-
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efficient single-issue core, using DVFS for adaptability, and a 2-issue OoO core, also with

DVFS. It will be shown that MuTARe in this setup is capable of achieving the same task

deadline as IoT processors, but adapting to a lower energy budget and power.

Finally, this evaluation scenario also shows the benefits of NTV-MuTARe com-

pared to the base MuTARe architecture. In NTV-MuTARe, all system components are

scaled down to the lowest safe DVFS level (0.6V @ 0.90 GHz), and the CGRA is further

scaled down to NTV levels (0.43V @ 0.45 GHz).

Evaluation setup. The evaluation methodology here is the same mentioned ear-

lier in Section 5.2.2, with the following differences: while earlier MuTARe was config-

ured with a set of heterogeneous cores and compared best performance and best energy

consumption against this baseline, in here, the proposed system used the same CGRA

but coupled to a LITTLE-like processor core for ultra-low-power domains. Still, a com-

parison shows what would be the benefits of using a big-like processor core instead of

MuTARe. Table

The benchmarks used here are similar, with three changes: AES encryption was

included in the benchmark set for its relevance in nowadays’ applications, as well as

CRC32 and FFT (which includes floating point operations). Table 5.12 classifies these

benchmarks into the IoT application groups referred in (ADEGBIJA et al., 2018), and

Fig. 5.19 shows the operation breakdown for each benchmark.

First, the proposed and baseline system’s behaviour across different DVFS OPs

(i.e. voltage/frequency conditions) is investigated. Then the benchmarks’ performance

and energy consumption in each of the corner OPs (highest and lowest) are analyzed to

show the limits of adaptability in each architecture. Additionally, a scenario with a set task

deadline (defined as the performance achievable for each benchmark in the baseline core)

is shown to compare how the performance improvements in the CGRA can be transformed

into energy benefits when lowering the voltage. Finally, marginal improvements in the

design metrics when further lowering the CGRA’s OP to NTV levels are also shown.

Table 5.12: Benchmark groups.

Application Group Benchmarks

Sensing bitcount, stringsearch
Communication dijkstra, FFT

Image Processing susan (edges, corners, smoothing)
Data Compression jpeg encode

Security aes encrypt, sha
Fault Tolerance CRC32
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Figure 5.19: Benchmarks operation class mix.
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Average Results (all benchmarks) in a single Operating Point. The compari-

son starts with the average performance-energy tradeoffs across all benchmarks in three

systems: the baseline (LITTLE), the proposed one (LITTLE core extended with CGRA

acceleration), and a future IoT processor (big). Fig. 5.20 presents the average results con-

sidering all applications, for the different systems and OPs, in the form of an EDP plot. In

this plot, execution time is plotted against the x axis and energy consumption against the

y axis, both normalized w.r.t. execution in the baseline system (LITTLE), in OP (0.6V,

0.90 GHz). Each curve shows a different system, with each point representing a different

OP.

This plot allows comparison in performance (horizontal axis), energy (vertical

axis), power (diagonal lines through the origin, where the energy/performance ratio is

the same), and EDP (hyperbolas centered at the origin). The horizontal and vertical

dashed lines show, respectively, the lowest energy consumption and the highest perfor-

mance achievable when executing in the baseline system, and the diagonal line shows

the power consumed when executing with the highest baseline performance. The shared

(green) region in the plot denotes an interesting region, where all three metrics (perfor-

mance, power and energy consumption) are improved w.r.t. the baseline core operating in

the highest frequency (OP a).

The same plot shows that, when running in the same high frequency as the base-

line, the proposed system can improve performance by 2.15×, while maintaining similar

energy levels (7% reduction). In summary, the EDP curve is shifted to the left. Under this
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Figure 5.20: Energy-Delay tradeoffs and optimal operating region.
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condition, power is increased by 2×. However, the slack (performance improvements

beyond the target task deadline) allows DVFS to be used to reduce the power and energy

consumption while still meeting the deadline. Moving from OP (a) in the proposed sys-

tem curve to OP (e) allows the target system to meet the task deadline still (with 1.20×

performance improvement, i.e., slack) and consuming 48% less energy, reducing overall

power consumption by 37%.

Figure 5.21: Power breakdown with and without reconfigurable acceleration.
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Fig. 5.21 shows the average power consumed in the baseline and proposed systems
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when running in the same OP (a), with a breakdown into the GPP core, the caches, the

CGRA and the BT unit (the latter two costs are absent in the baseline system). The text

labels show the percentual contribution of each component in the total system power.

When switching from the baseline to MuTARe, the GPP power consumption is

reduced by nearly 30% because execution has been switched to the CGRA. This reduction

is limited due to three factors:

• the coverage is limited (not all instructions execute in the CGRA - first execution

and unsupported ops);

• even when executing in the CGRA, not all of the GPP components can be disabled

- e.g., the register file;

• instructions executed in the CGRA are accelerated, which means the CGRA will

spend less time executing those instructions than they would in the baseline core.

As a consequence, the CGRA is active for less time than the baseline;

While the CGRA provides neat acceleration capabilities and reduces power in the GPP

core, it also introduces a large overhead from the reconfigurable fabric and a small over-

head from the binary translation unit, which runs only on traces executed in the GPP,

leading to the power increased of 2.0× previously mentioned. Since the size of each con-

figuration is kept proportional to the size of the instructions allocated, the cache power

stays roughly the same.

Figure 5.22: Speedup and energy consumption in a LITTLE core and in MuTARe.

1.79x

5.71x

3.20x

1.00x

1.79x

3.38x1.89x1.00x

1.79x

5.21x

2.92x

1.00x

1.79x

3.54x

1.98x1.00x

1.79x

3.18x1.78x

1.00x

1.79x

4.41x

2.47x1.00x

1.79x

5.67x

3.18x

1.00x

1.79x

4.59x

2.57x

1.00x

1.79x

3.26x1.83x

1.00x

1.79x

3.25x1.82x

1.00x

1.79x

2.39x1.34x

1.00x

1x

2x

3x

4x

5x

6x

1x

2x

3x

4x

5x

6x

S
pe

ed
up

S
peedup

1.78x

1.56x

0.88x

1.00x

1.78x

1.71x0.96x

1.00x

1.78x

1.59x

0.89x

1.00x

1.78x

1.66x

0.93x

1.00x

1.78x

1.75x0.99x

1.00x

1.78x

1.63x

0.92x

1.00x

1.78x

1.67x

0.94x

1.00x

1.78x

1.40x

0.79x

1.00x

1.78x

1.64x

0.92x

1.00x

1.78x

1.69x

0.95x

1.00x

1.78x

1.91x1.07x

1.00x

0x

1x

2x

3x

4x

0x

1x

2x

3x

4x

CRC32

FFT
bitcount

dijkstra

jpeg−e

rijndael−e

sha
stringsearch

susan−c

susan−e

susan−s

Benchmark

E
ne

rg
y 

C
on

su
m

pt
io

n E
nergy C

onsum
ption

LITTLE (Low Vdd) LITTLE + CGRA (Low Vdd) LITTLE + CGRA (High Vdd) LITTLE (High Vdd)

Source: the author.

Per-Benchmark Results in a Single Operating Point. Fig. 5.22 shows the per-

formance and energy consumption when running in the lowest and highest OP in each

system. Again, results are normalized with respect to the execution in the baseline in

the lowest OP. In all scenarios, performance is substantially increased compared to the

LITTLE core in the same frequency condition.
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To support this analysis, Table 5.13 provides detailed microarchitectural perfor-

mance results (i.e., the ILP that each system can achieve, the coverage and the average

configurations sizes).

The coverage column (fraction of total instructions executed in the CGRA) shows

that the BT mechanism proposed in the work can match a high amount of instructions

for CGRA execution, from 64.0% (in FFT) to 93.6 (in sha). The ILP exploited is also

substantially higher than that achieved in the LITTLE core, and also better than the one

in a big core, especially in highly-regular applications and those with data dependencies

(e.g., bitcount and sha).

Table 5.13: Microarchitectural performance for each benchmark.

Benchmark
Cov Avg / Cfg IPC

[%] [Ops] [Blks] CGRA LITTLE big

aes-e 87.4 21.0 0.89 2.01 0.65 1.43
bitcount 91.7 25.3 5.57 3.09 0.82 1.43
CRC32 92.5 27.5 1.99 2.32 0.60 1.07
dijkstra 84.9 15.0 4.03 1.34 0.41 1.03

FFT 64.0 17.3 3.53 2.49 0.65 1.43
jpeg-e 67.9 13.3 1.97 1.28 0.41 1.07

sha 93.6 29.9 1.67 2.83 0.60 1.36
stringsearch 83.2 14.3 4.52 1.63 0.36 0.76

susan-c 80.9 12.2 0.76 1.19 0.34 0.94
susan-e 71.4 12.2 0.63 1.10 0.33 1.04
susan-s 84.0 10.5 1.01 0.92 0.51 1.21

Source: the author.

Performance-Constrained Execution. Fig. 5.23 shows the performance and

energy consumption of the proposed system, normalized to baseline in OP a, when a task

deadline is present. The analysis assumes here that the task deadline is the execution time

of the task in the baseline system at the highest frequency (i.e., the baseline system can

meet the deadline just enough).

For many tasks, the CGRA accelerator provides such speedup that even lowering

the operating voltage still provides a margin for improved performance. This is the case,

for instance, in the CRC32 and sha applications, where operating in the lowest voltage

setting still allows for nearly 2× performance improvements - a consequence of the higher

ILP exploitation as shown in Table 5.13. The energy consumption, in all these cases, can

also be significantly reduced.

Area costs. We estimate the reconfigurable unit, with caches and the BT unit

to occupy 45,000micro m2, an overhead of 3.75× compared to the baseline single-issue
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Figure 5.23: MuTARe’s behavior in performance-constrained execution.
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core. However, this cost is still cheaper than switching to a more powerful core, such as

the big core considered in this work, which would incur an overhead of more than 10×,

as our synthesis results show.

NTV-MuTARe Results. In this condition, the power overheads introduced by the

CGRA are reduced, following Eq. (1), since the frequency of the CGRA is lowered to half

that of the remaining processor components. As a consequence, cache accesses can be

executed in a single (CGRA) cycle, increasing the CGRA’s ILP (at the cost of increased

cycle latency). The goal is to try to recover the performance loss from the lower frequency

with increased ILP.

Figure 5.24: Improvements in CGRA ILP when operating in NTV.
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Fig. 5.24 shows the results of this effect, which were illustrated earlier in Fig.

4.4. On the y-axis, for each benchmark, the average number of instructions that can be
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executed in each (CGRA) cycle in the STV and NTV scenarios. The labels above the

NTV axis show the ILP improvements. With a frequency reduction of 2.0×, the ILP im-

provements should be higher than 2.0× in order to avoid performance losses. Although

this level cannot be achieved, for all applications there is a significant improvement, av-

eraging 1.61× across all of them, suggesting that part of the performance loss from lower

frequency can be recovered with higher ILP exploitation.

Figure 5.25: Execution time and energy consumption in NTV execution.
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Finally, Fig. 5.25 compares the execution time and energy consumption in NTV-

MuTARe against a baseline setup of MuTARe operating in the lowest DVFS level. In

most cases, a performance overhead is still found, but smaller than the 2× frequency

penalty imposed by NTV operation. Since the CGRA is the only structure operating in

NTV, the larger its utilization, the more significant the power and energy benefits. For

instance, in CRC32 and sha, which are two benchmarks with more than 90% coverage,

NTV-MuTARe leads to 27% and 20% energy reduction, respectively. On the other hand,

the energy benefits also depend on the ILP improvement. bitcount also presents over 90%

coverage but, due to the increased execution time, presents less than 1% energy reduction.

5.2.4 Scenario 4: Approximate Computing for Error-Tolerant Domains

Motivation. As transistor scalability approaches the deep nano-era, power density

issues have become of major concern. In the dark silicon era, the number of transistors
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(i.e., area) is only a minor design constraint since a significant fraction of them must be

switched off to avoid exacerbating power density and increasing chip temperature (ES-

MAEILZADEH et al., 2012; SHAFIQUE; GARG, 2017). Therefore, novel accelerator

designs can be leveraged to exchange area for power, mitigating the inefficiencies of GPPs

(HAMEED et al., 2011).

Figure 5.26: Breakdown of operations and ALU energy consumption into op classes.
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CGRAs can improve the execution time and energy consumption of a wide range

of applications by configuring customized datapaths at runtime using a single hardware.

While this approach has been extensively investigated in the past (WIJTVLIET; WAEI-

JEN; CORPORAAL, 2016), recent research in approximate computing (SHAFIQUE et

al., 2016), a paradigm enabling additional performance-area-energy improvements at an

expense in quality, allows for new directions in power/energy-efficient design of CGRAs.

Works on approximate functional units have demonstrated the potential of the imprecise

adder, subtractor, multiplier and divider designs to improve performance, area, and power

(GUPTA et al., 2011; KULKARNI; GUPTA; ERCEGOVAC, 2011; KAHNG; KANG,

2012; GUPTA et al., 2013; ALMURIB; KUMAR; LOMBARDI, 2016; HASHEMI; BA-

HAR; REDA, 2016). As shown in Fig. 5.26, although applications typically contain only

about 25% of these operations, they are responsible, on average, for nearly 90% of the

total ALU energy consumption, since the remaining operations (such as logic and shifts)

are extremely low-power (we present the methodology for these experiments in a later

section). However, only a few works (RAHA; JAYAKUMAR; RAGHUNATHAN, 2014;

EL-HAROUNI et al., 2017; VENKATARAMANI et al., 2013; AKBARI et al., 2018)

have targeted combining these individual designs to build accelerators, and none has yet

combined them into a generic architectural solution such as a CGRA.

This comparison shows how Approx-MuTARe allows designers to trade area for

improved power-efficiency in approximate applications. First, an extensive Design-Space
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Exploration (DSE) of state-of-the-art approximate adders/subtractors, multipliers, and di-

viders is reported, with their area/power/error tradeoffs. Then, the design flow proposed

earlier in Section 4.1.2 for selecting approximation modes to be implemented, compil-

ing applications and managing reconfiguration under precise and approximate modes is

evaluated.

Evaluation setup. Results are presented for the entire flow shown earlier in Fig.

4.2. All FUs have been synthesized to a 450 MHz clock frequency using Synopsys Design

Compiler targeting UMC’s 65 nm standard cell library.

1-bit FA implementations used to build designs 1-3 are taken from the 2011 IM-

PACT paper (GUPTA et al., 2011), for designs 4-7 from the 2013 IMPACT paper (GUPTA

et al., 2013) and designs 8-10 from the work by Almurib et. al (ALMURIB; KUMAR;

LOMBARDI, 2016). Multiplier designs 1-4 listed here are taken from the 2016 work by

Shafique et al. (SHAFIQUE et al., 2016) and the design named Lit from the work by

Kulkarni et al. (KULKARNI; GUPTA; ERCEGOVAC, 2011). The accurate divider de-

sign was configured for multiple accuracy modes following the approximation technique

for division described in previous work (HASHEMI; BAHAR; REDA, 2016).

For quality estimation, both synthetic benchmarks that test all input combinations

to each FU and also the benchmarks from AxBench (YAZDANBAKHSH et al., 2016)

were used. The AxBench benchmarks were further modified for fixed-point execution. In

the latter case, the analysis was restricted to replacing all non-critical instructions (i.e., all

that flow directly into the application output and are not used for memory address or loop

index computation) by a single approximation mode. For categorizing these critical and

non-critical instructions, an approach similar to the one proposed by Rehman et al. was

used (REHMAN et al., 2011).

Finally, the performance of Approx-MuTARe in this setup was simulated using

gem5 and McPAT (LI et al., 2013) with the configuration shown in Table 5.14.

Table 5.14: Baseline processor parameters.

Pipeline: 8-wide OoO, with 4 ALU ports, 2 mult. ports, 2 load ports and 1 store port.
Instr. queue: 60 micro ops. Load buffer: 72 micro ops. Store buffer: 42 micro ops.
ROB entries: 192 micro ops. Memory dependence prediction via store sets.
L1 D+I caches: 32kB each, 8-way set associative, 2 cycles hit latency.
L2 cache: 256kB, 8-way associative, 8 cycles hit latency.
L3 cache: 2MB, 16-way associative, 18 cycles hit latency.

Source: the author.

Design-Time Results. When designing approximate CGRA blocks, the designer
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is presented with a library of approximate FUs described both in software (C++/Matlab)

as well as hardware level (HDL). Each of these components provides distinct tradeoffs

between delay, area, power, and quality; the goal of this stage is to select Pareto-optimal

design points.

To get delay, area and power measurements, the designer must synthesize to the

target technology available. For quality, two options are available:

• evaluate the output quality of each FU by testing all input combinations or using

statistical models (such as (MAZAHIR et al., 2017b; MAZAHIR et al., 2017a));

• evaluate an application’s output quality when replacing all accurate operations by

their approximate counterparts.

Figure 5.27: Output quality distribution of approximate FUs.

−10%

−5%

0%

5%

10%

Des.  1

Des.  2

Des.  3

Des.  4

Des.  5

Des.  6

Des.  7

Des.  8

Des.  9

Des. 10

Design

R
e

la
ti
v
e

 E
rr

o
r 

D
is

tr
.

(a) Approximate 8-bit adders, with 4 LSBs computed approximately.

−20%

0%

20%

40%

60%

Version "Lit" Version 1 Version 2 Version 3 Version 4

Design

R
e

la
ti
v
e

 E
rr

o
r 

D
is

tr
.

(b) 8x8 multipliers.

−10%

0%

10%

20%

0 2 4 6 8 10 12 14

# Approx. bits

R
e

la
ti
v
e

 E
rr

o
r 

D
is

tr
.

(c) 32x16 dividers.

Source: the author.



120

While the first option enables designers to do a faster design space exploration, it

ignores application characteristics and how errors may propagate, accumulate or cancel

each other out during execution. Fig. 5.27 shows the error distribution of each approxi-

mate FU design when tested under all possible input combinations. It shows that approx-

imate FUs may have an error distribution biased towards positive or negative values, and

this may impact applications differently. Therefore, these designs must be evaluated in

the context of applications.

Figure 5.28: Design space of approximate multi-bit adders and multipliers.
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Fig. 5.28, instead, shows the power-quality tradeoffs of approximate adders,

multipliers, and dividers, now considering the average application output quality of all

AxBench benchmarks and each FU’s power. For each adder implementation in the figure,

distinct levels of approximation (tuned by setting the number of approximation bits) are
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tested.

To select the designs with lowest power consumption in the Pareto-Frontier that

will be implemented in hardware, distinct quality loss constraints (e.g., < 5%, < 10%,

. . .) for each operation were set. Since adders are smaller than multipliers and dividers,

four approximation modes for them and two for the remaining operations were selected.

Table 5.15c shows the power/energy advantages of the approximate designs selected and

Fig. 5.16 shows the logic function they implement.

Table 5.15: Approximate FUs modes selected in the DSE step.
(a) Approximate adder modes.

Design Error LSBs Area (µm2) Power (mW)

Accurate 0% - 1437 0.143
Design 2 < 5% 8 1053 (−26.7%) 0.107 (−25.2%)
Design 3 < 10% 9 992 (−31.0%) 0.100 (−30.0%)
Design 3 < 15% 10 944 (−34.3%) 0.096 (−32.9%)

(b) Approximate multiplier modes.

Design Error Area (µm2) Power (mW)

Accurate 0% 13797 1.57
Version "Lit" < 5% 6552 (−52.5%) 1.02 (−35.0%)

(c) Approximate divider modes.

# Approx. bits Error Area (µm2) Power (mW)

0 (Accurate) 0% 18376 0.68
16 < 10% 4036 (−78.0%) 0.17 (−75.0%)

Source: the author.

Compile-Time Results. In this stage, the application designer has a set of approx-

imation modes available for which each operation may be replaced, along with power

savings of using that mode and a final application accuracy constraint. The goal is to

find the combination of approximation modes that yields the highest power savings while

still meeting quality constraints. As mentioned in section 5.1, we restrict our analysis to

replacing all operations by a single approximation mode. However, the CGRA can also

support sequences of operations with alternating approximation modes.

Table 5.17 shows the approximation modes selected for each benchmark and the

error they introduce. A quality constraint of maximum 10% error was enforced. The

results show that most applications support approximate additions without any significant

loss in quality. We found that fft and inversek2j present low tolerance to approximate
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Table 5.16: Logic function implemented by the approximate FUs selected.

(a) Approximate Adders.

Accurate Design 2 Design 3
A B Cin Sum Cout Sum Cout Sum Cout

0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0
0 1 1 0 1 1 0 1 0
1 0 0 1 0 0 1 0 1
1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1 1

(b) Approximate Multiplier.

A B = Out ≈ Out

00 00 0000 0000
00 01 0000 0000
00 10 0000 0000
00 11 0000 0000
01 00 0000 0000
01 01 0001 0001
01 10 0010 0010
01 11 0011 0011
10 00 0000 0000
10 01 0010 0010
10 10 0100 0100
10 11 0110 0110
11 00 0000 0000
11 01 0011 0011
11 10 0110 0110
11 11 1001 0101

Source: the author.

Table 5.17: Selected approximation modes and corresponding error.

Benchmark Add Cfg. Mul Cfg. Div Cfg. Error (%)

blackscholes Design 3 (10) Accurate Accurate 8.01
fft Design 3 (10) Accurate Accurate 7.75

inversek2j Design 3 (10) Accurate Accurate 8.26
jmeint Design 2 (8) Version "Lit" Accurate 6.47
jpeg Design 2 (8) Version "Lit" Accurate 5.01

kmeans Design 3 (10) Version "Lit" Approx (16) 4.56
sobel Design 3 (10) Version "Lit" Accurate 3.13

Source: the author.

division since the results of these operations are used to evaluate inverse trigonometric

functions, which turned out to be very sensitive.

Run-Time Results. Fig. 5.30 shows the reductions in average ALU power when

using the approximation modes selected, considering the operation distribution for each

benchmark (presented in Fig 5.26) and the power savings of each approximation from

Table 5.17. In two cases, this reduction can reach more than 50%. In some cases, the

reduction achieved was below 10%; this is due to simplification in our analysis, which

replaces all operations by a single approximation mode. In some cases, that replacement

causes the entire application to exceed the quality constraint, preventing it from taking any

benefit from approximate execution. Expanding the analysis to distinct approximation

modes within the same application could provide valuable insight into the power savings

potentials in these cases.
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Figure 5.29: Application speedup when executing in the CGRA.
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Figure 5.30: ALU power in precise and approximate implementations.

Source: the author.

We have also coupled the CGRA to an 8-issue OoO superscalar processor using

the approach presented in (LIU et al., 2015) to investigate the potential for speedup and

energy improvements. Fig. 5.31 shows the processor power distribution. Notice that,

since it is a dynamically scheduled processor, a large amount of power is spent in control

logic. Switching execution to the CGRA avoids most of these costs since each configu-

ration already contains scheduled instructions; moreover, it increases the contribution of

ALUs to the total processor energy, since the CGRA is essentially a matrix of FUs. Fi-

nally, execution in the CGRAs allows for significant energy improvements by reductions

in the execution time, as shown in Fig. 5.29.

Figure 5.31: Power distribution in a superscalar processor.

Source: the author.
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6 CONCLUSIONS

This work has presented MuTARe, the Multi-Target Adaptive Reconfigurable Ar-

chitecture.

MuTARe was born as an extension to the DIM system, which consisted of a scalar

MIPS core to which a combinatorial CGRA capable of accelerating data-dependent oper-

ations was coupled (BECK; RUTZIG; CARRO, 2014). The CGRA was designed with a

simple 1-D interconnection structure that enabled greedily mapping instruction sequences

executing in the scalar core to the Functional Units on-the-fly. By leveraging a dedicated

hardware module to perform this mapping at run time, the overheads of dynamic Binary

Translation were amortized and the hardware was able to maintain binary compatibility,

enabling transparent acceleration of software already deployed.

The first step was to make the system competitive with high-end OoO processor

cores, which revealed the first challenges: beating the performance levels of such cores

and, most importantly, maintaining the precise exception behavior despite OoO execution.

Since instruction sequences always execute for the first time in the GPP, before being

mapped to the CGRA, it was vital that the first execution was fast to maintain a high-

performance level. To that end, the system was extended to enable coupling to an OoO

core. In this process, the mechanism described in Section 3.2.4 to communicate with the

OoO core using a ROB-like structure was designed.

After that, attention in this work turned to heterogeneous systems, such as ARM’s

big.LITTLE, for mobile domains. In these systems, two processors optimized for different

targets (low power vs high performance) are used to provide a better adaptation between

application requirements, optimization target, and hardware. A reconfigurable architec-

ture supporting the transparent acceleration of legacy code and capable of operating with

a scalar or superscalar core was, in this context, a natural competitor. The proposed sys-

tem was then extended for supporting coupling to a set of heterogeneous cores, and the

performance, area, power, and energy tradeoffs were then investigated. Still, in this same

context, the system was further extended to support DVFS, allowing a nearly-continuous

adaptation knob to balance between the optimization targets (in contrast with the choice

of heterogeneous core, which provided only a discrete knob). This extension enabled the

proposed system to adapt to the same performance or energy levels as the baseline system

(heterogeneous arrangement of GPP cores) while improving the other metric.

While this work was carried out, the emerging paradigm of approximate comput-



125

ing was flourishing. One question that emerged was then how to extend the proposed

system with support to approximate computing. The natural solution was to used ap-

proximate functional units to that end, replacing the precise ones. To that end, however,

modifications in the compiler toolchain had to be devised, considering that the accuracy

of an application had to be specified by the programmer (and, therefore, transparent sup-

port for approximation in legacy code was unavailable). This led to the development

of Approx-MuTARe, which has all of the advantages of MuTARe but can also provide

additional power improvements in emerging error-tolerant workloads.

Finally, the last step in extending MuTARe was thought after contact with the NTV

computing paradigm. MuTARe presented several features that made it a suitable struc-

ture for NTV computing, capable of addressing most of the challenges: the ability to

extract significant amounts of ILP, the use of a combinatorial datapath (with larger volt-

age margins compared to sequential elements) and regularity (which simplifies variability

management).

6.1 Future Work

This thesis has opened many opportunities for future work. In the scope of the

base MuTARe architecture described in Chapter 3, coupling a RU to a set of heteroge-

neous cores raises interesting challenges. For instance, a strategy to find the optimal de-

sign of such an arrangement, given a set of applications, is still to be found. Considering

the motivation for this design being that a significant fraction of applications still execute

in the base GPP, an interesting research question concerns the optimal set of GPP cores,

and the optimal design of the CGRA to enable the widest adaptability range (migrat-

ing from a high-performance, high-energy level to a low-performance, low-energy level)

and/or most efficient adaptability range (high performance and low energy). The same

motivational point also raises the issue of better selecting instruction sequences to map to

the CGRA, considering that performance improvements depend on the balance between

ILP improvements provided by the CGRA and the distribution of instructions streams ex-

ecuted in the GPP and the CGRA. Finally, considering that MuTARe is Multi-Target and

can currently optimize for performance or energy consumption by coupling a Reconfig-

urable Unit to a performance-efficient or energy-efficient GPP core, another interesting

research question is whether CGRA configurations can be optimized for performance or

energy-efficiency. For instance, one may wonder whether it would be possible to tune
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the BT algorithm at run time to generate configurations that are optimized either for low

power or high performance.

In the context of Approx-MuTARe, the idea of using a reconfigurable hardware

for approximate computations also raises interesting questions. The analysis in this work

has restricted itself to approximate Functional Units with a single approximation mode.

This greatly simplifies the process of mapping instruction sequences to the CGRA, since

the hardware is set; on the other hand, it limits the choice of approximation strategies.

In constrast, several works have proposed approximate Functional Units whose accuracy

can be tuned at run time. While these units present an overhead in precise execution

compared to non-approximate ones, one may wonder if these units wouldn’t increase the

efficiency of the mapping as it makes it more flexible and increases the range of options.

The downside of this approach is also that more complex mapping techniques would need

to be devised, as now not only the program is flexible (the accuracy of each operation can

be selected) but also the hardware is flexible. Moreover, another issue that wasn’t covered

with approximate functional units in this thesis work was the latency advantages of this

form of approximation.

In the context of NTV computing, several works can also be carried out. First of

all, devising novel strategies for mitigating variability in regular combinatorial structures

such as CGRAs. Then one may try to find optimal strategies to maximize the power

consumption switch from the main processor to the CGRA, in order to increase the range

that is optimized when computing in NTV. Finally, one may also try to find ways to

improve the ILP exploitation to compensate for the frequency losses in NTV.

6.2 Publications and Presentations

6.2.1 Publications in the Scope of this Thesis

The following works have been published in peer-reviewed venues:

• M. Brandalero, M. Shafique, L. Carro, A. C. S. Beck. “TransRec: Improving

Adaptability in Single-ISA Heterogeneous Systems with Transparent and Reconfig-

urable Acceleration”. Design, Automation & Test in Europe. Florence, 2019.

• M. Brandalero, L. Carro, A. C. S. Beck, M. Shafique. “Approximate On-the-Fly

Coarse-Grained Reconfigurable Acceleration for General-Purpose Applications”.
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Design Automation Conference. San Francisco, 2018.

• M. Brandalero, A. C. S. Beck. “A Mechanism for Energy-efficient Reuse of De-

coding and Scheduling of x86 Instruction Streams”. Design, Automation & Test in

Europe. Dresden, 2017.

The following works have been published in peer-reviewed journals:

• M. Brandalero, A. C. S. Beck. “Potential analysis of a superscalar core employ-

ing a reconfigurable array for improving instruction-level parallelism”. Design

Automation For Embedded Systems, v. 20, p. 155-169, 2016. Springer US.

6.2.2 Publications as a Result from Collaborations

Besides the above mentioned publications, directly related to this thesis work, the

following works were also published during the author’s time as a Ph.D. student/candi-

date. These are the result of collaboration between other students in the group.

In peer-reviewed venues:

• M. Brandalero, G. M. Malfatti, G. F. Oliveira, L. R. Gonçalves, L. A. Silveira,

B. C. da Silva, L. Carro and A. C. S. Beck. “Efficient Local Memory Support for

Approximate Computing”. Brazilian Symposium on Computing Systems Engineer-

ing. Salvador, 2018.

• G. F. Oliveira, L. R. Gonçalves, M. Brandalero, A. C. S. Beck and L. Carro. “Em-

ploying Classification-based Algorithms for General-Purpose Approximate Com-

puting”. Design Automation Conference. San Francisco, 2018.

• L. A. da Silveira, M. Brandalero, J. D. de Souza and A. C. S. Beck. “The Poten-

tial of Accelerating Image-Processing Applications by Using Approximate Function

Reuse”. Brazilian Symposium on Computing Systems Engineering. Joao Pessoa,

2016.

And in peer-reviewed journals:

• M. Brandalero, L. A. da Silveira, J. D. Souza, A. C. S. Beck. “Accelerating error-

tolerant applications with approximate function reuse”. Science of Computer Pro-

gramming, v. 160, p. 54-67, 2017. Elsevier.
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6.2.3 Presentations

The author has also presented this thesis work in two forums:

• M. Brandalero. MuTARe: A Multi-Target Adaptive Reconfigurable Architecture.

Presented in the 2019 Design, Automation and Test & Europe’s Ph.D. Forum. Flo-

rence, 2019.

• M. Brandalero. Approximate On-The-Fly Coarse-Grained Reconfigurable Accel-

eration for General-Purpose Applications. Presented in the 2019 Design Automa-

tion Conference Ph.D. Forum. San Francisco, 2018.
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Machine (BOOM): An Industry-Competitive, Synthesizable, Parameterized
RISC-V Processor. [S.l.], 2015. 1–5 p. Disponível em: <http://www2.eecs.berkeley.
edu/Pubs/TechRpts/2015/EECS-2015-167.html>.

http://www.springer.com/engineering/circuits+{&}+systems/book/978-90-481-391
http://www.springer.com/engineering/circuits+{&}+systems/book/978-90-481-391
http://www.sciencedirect.com/science/article/pii/S0141933114000313 http://dl.acm.org/citation.cfm?id=2644902.2644967
http://www.sciencedirect.com/science/article/pii/S0141933114000313 http://dl.acm.org/citation.cfm?id=2644902.2644967
http://dl.acm.org/citation.cfm?id=1403375.1403669
http://dl.acm.org/citation.cfm?id=1403375.1403669
http://dl.acm.org/citation.cfm?id=2024716.2024718
http://ieeexplore.ieee.org/document/6894411/
http://ieeexplore.ieee.org/document/6894411/
http://dl.acm.org/citation.cfm?id=1816038.1816000
http://ieeexplore.ieee.org/document/4785534/
http://dl.acm.org/citation.cfm?doid=2342509.2342513
http://ieeexplore.ieee.org/document/881202/
http://ieeexplore.ieee.org/document/839323/
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html


131

CHAKRADHAR, S.; RAGHUNATHAN, A. Best-effort Computing: Re-thinking
Parallel Software and Hardware. In: Design Automation Conference (DAC), 2010 47th
ACM/IEEE. [S.l.: s.n.], 2010. p. 865–870. ISSN 0738-100X.

CHAUDHURI, S. et al. Proving Programs Robust. In: Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering - SIGSOFT/FSE ’11. New York, New
York, USA: ACM Press, 2011. p. 102. ISBN 9781450304436. Disponível em:
<http://dl.acm.org/citation.cfm?id=2025113.2025131>.

CLARK, N. et al. Application-Specific Processing on a General-Purpose Core via
Transparent Instruction Set Customization. In: 37th International Symposium on
Microarchitecture (MICRO-37’04). IEEE, 2004. p. 30–40. ISBN 0-7695-2126-6.
ISSN 1072-4451. Disponível em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1550980>.

COMPTON, K.; HAUCK, S. Reconfigurable computing: a survey of systems and
software. ACM Computing Surveys, ACM, v. 34, n. 2, p. 171–210, jun 2002. ISSN
03600300. Disponível em: <http://dl.acm.org/citation.cfm?id=508352.508353>.

COTA, E. G. et al. An Analysis of Accelerator Coupling in Heterogeneous
Architectures. In: Proceedings of the 52nd Annual Design Automation Conference
on - DAC ’15. ACM, 2015. p. 202. ISBN 978-1-4503-3520-1. Disponível em:
<http://dl.acm.org/citation.cfm?id=2744769.2744794>.

CRONQUIST, D. et al. Specifying and compiling applications for RaPiD. In:
Proceedings. IEEE Symposium on FPGAs for Custom Computing Machines
(Cat. No.98TB100251). IEEE Comput. Soc, 1998. p. 116–125. ISBN 0-8186-8900-5.
Disponível em: <http://ieeexplore.ieee.org/document/707889/>.

DANOWITZ, A. et al. CPU DB: Recording Microprocessor History. Communications
of the ACM, ACM, v. 55, n. 4, p. 55, apr 2012. ISSN 00010782. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2133806.2133822>.

DENNARD, R. et al. Design of ion-implanted MOSFET’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, v. 9, n. 5, p. 256–268, oct 1974.
ISSN 0018-9200. Disponível em: <http://ieeexplore.ieee.org/document/1050511/>.

DIXON, M. et al. The Next Generation Intel® Core™ Microarchitecture. Intel
Technology Journal, v. 14, n. 3, p. 8–28, 2010.

DRESLINSKI, R. G. et al. Near-Threshold Computing: Reclaiming Moore’s
Law Through Energy Efficient Integrated Circuits. Proceedings of the IEEE,
v. 98, n. 2, p. 253–266, feb 2010. ISSN 0018-9219. Disponível em: <http:
//ieeexplore.ieee.org/document/5395763/>.

EL-HAROUNI, W. et al. Embracing approximate computing for energy-efficient
motion estimation in high efficiency video coding. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017. IEEE, 2017. p. 1384–1389. ISBN
978-3-9815370-8-6. Disponível em: <http://ieeexplore.ieee.org/document/7927209/>.

http://dl.acm.org/citation.cfm?id=2025113.2025131
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1550980
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1550980
http://dl.acm.org/citation.cfm?id=508352.508353
http://dl.acm.org/citation.cfm?id=2744769.2744794
http://ieeexplore.ieee.org/document/707889/
http://dl.acm.org/citation.cfm?doid=2133806.2133822
http://ieeexplore.ieee.org/document/1050511/
http://ieeexplore.ieee.org/document/5395763/
http://ieeexplore.ieee.org/document/5395763/
http://ieeexplore.ieee.org/document/7927209/


132

ESMAEILZADEH, H. et al. Dark Silicon and the End of Multicore Scaling. IEEE
Micro, v. 32, n. 3, p. 122–134, may 2012. ISSN 0272-1732. Disponível em:
<http://ieeexplore.ieee.org/document/6175879/>.

ESMAEILZADEH, H. et al. Neural Acceleration for General-Purpose Approximate
Programs. Communications of the ACM, ACM, v. 58, n. 1, p. 105–115, dec 2014. ISSN
00010782. Disponível em: <http://dl.acm.org/ft{\_}gateway.cfm?id=2589750{&}type=
htmlhttp://ieeexplore.ieee.org/document/64>.

(ESR), E. S. o. R. Usability of irreversible image compression in radiological imaging.
A position paper by the European Society of Radiology (ESR). Insights into Imaging,
Springer Berlin Heidelberg, v. 2, n. 2, p. 103–115, apr 2011. ISSN 1869-4101. Disponível
em: <http://link.springer.com/10.1007/s13244-011-0071-x>.

EXYNOS 7420 Product Specification. 2015. Disponível em: <https://www.samsung.
com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/>.

FOLEGNANI, D.; GONZALEZ, A. Energy-effective issue logic. In: International
Symposium on Computer Architecture (ISCA). IEEE Comput. Soc, 2001.
p. 230–239. ISBN 0-7695-1162-7. ISSN 1063-6897. Disponível em: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=937452>.

GOLDSTEIN, S. et al. PipeRench: a reconfigurable architecture and compiler.
Computer, v. 33, n. 4, p. 70–77, apr 2000. ISSN 00189162. Disponível em:
<http://ieeexplore.ieee.org/document/839324/http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=839324>.

GONZÁLEZ, A. et al. Trace-level reuse. In: Proceedings of the 1999 International
Conference on Parallel Processing. IEEE Comput. Soc, 1999. p. 30–37. ISBN
0-7695-0350-0. ISSN 0190-3918. Disponível em: <http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=797385>.

GOPIREDDY, B. et al. ScalCore: Designing a core for voltage scalability. In: 2016
IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2016. p. 681–693. ISBN 978-1-4673-9211-2. Disponível em:
<http://ieeexplore.ieee.org/document/7446104/>.

GOVINDARAJU, V. et al. DySER: Unifying Functionality and Parallelism Specialization
for Energy-Efficient Computing. IEEE Micro, IEEE Computer Society, v. 32, n. 5, p.
38–51, sep 2012. ISSN 0272-1732. Disponível em: <http://ieeexplore.ieee.org/document/
6235947/http://www.computer.org/csdl/mags/mi/2012/05/mmi2012050038.html>.

GUO, X. et al. Back to the Future: Digital Circuit Design in the FinFET Era. Journal of
Low Power Electronics, v. 13, n. 3, p. 338–355, sep 2017. ISSN 1546-1998. Disponível
em: <http://www.ingentaconnect.com/content/10.1166/jolpe.2017.1489>.

GUPTA, V. et al. Low-Power Digital Signal Processing Using Approximate Adders.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, v. 32, n. 1, p. 124–137, jan 2013. ISSN 0278-0070. Disponível em:
<http://ieeexplore.ieee.org/document/6387646/>.

http://ieeexplore.ieee.org/document/6175879/
http://dl.acm.org/ft{\_}gateway.cfm?id=2589750{&}type=html http://ieeexplore.ieee.org/document/64
http://dl.acm.org/ft{\_}gateway.cfm?id=2589750{&}type=html http://ieeexplore.ieee.org/document/64
http://link.springer.com/10.1007/s13244-011-0071-x
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-7-octa-7420/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=937452
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=937452
http://ieeexplore.ieee.org/document/839324/ http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=839324
http://ieeexplore.ieee.org/document/839324/ http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=839324
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=797385
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=797385
http://ieeexplore.ieee.org/document/7446104/
http://ieeexplore.ieee.org/document/6235947/ http://www.computer.org/csdl/mags/mi/2012/05/mmi2012050038.html
http://ieeexplore.ieee.org/document/6235947/ http://www.computer.org/csdl/mags/mi/2012/05/mmi2012050038.html
http://www.ingentaconnect.com/content/10.1166/jolpe.2017.1489
http://ieeexplore.ieee.org/document/6387646/


133

GUPTA, V. et al. IMPACT: IMPrecise adders for low-power approximate computing.
In: IEEE/ACM International Symposium on Low Power Electronics and
Design. IEEE, 2011. p. 409–414. ISBN 978-1-61284-658-3. Disponível em:
<http://ieeexplore.ieee.org/document/5993675/>.

GUTHAUS, M. et al. MiBench: A free, commercially representative embedded
benchmark suite. In: Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. IEEE, 2001. p. 3–14. ISBN 0-7803-7315-4.
Disponível em: <http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=
990739>.

GWENNAP, L. Sandy Bridge Spans Generations. Microprocessor Report, n. 328, p. 8,
2010.

HAMEED, R. et al. Understanding sources of ineffciency in general-purpose chips.
Communications of the ACM, ACM, v. 54, n. 10, p. 85, oct 2011. ISSN 00010782.
Disponível em: <http://dl.acm.org/ft{\_}gateway.cfm?id=2001291{&}typ>.

HAMMARLUND, P. et al. Haswell: The Fourth-Generation Intel Core Processor. IEEE
Micro, IEEE Computer Society, v. 34, n. 2, p. 6–20, mar 2014. ISSN 0272-1732.
Disponível em: <http://www.computer.org/csdl/mags/mi/2014/02/mmi2014020006.
html>.

HASHEMI, S.; BAHAR, R. I.; REDA, S. A low-power dynamic divider for approximate
applications. In: Proceedings of the 53rd Annual Design Automation Conference on -
DAC ’16. New York, New York, USA: ACM Press, 2016. p. 1–6. ISBN 9781450342360.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2897937.2897965>.

HENKEL, J. et al. New trends in dark silicon. In: Proceedings of the 52nd
Annual Design Automation Conference on - DAC ’15. New York, New
York, USA: ACM Press, 2015. p. 1–6. ISBN 9781450335201. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2744769.2747938>.

HERVEILLE, R. Hardware Division Unit. 2011. Disponível em: <https:
//opencores.org/project,divider>.

HINTON, G. et al. The Microarchitecture of the Pentium 4 Processor. Intel Technology
Journal, v. 1, n. 1, p. 1–13, 2001. Disponível em: <http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.14.2991>.

HIRKI, M. et al. Empirical Study of the Power Consumption of the x86-64 Instruction
Decoder. In: USENIX Workshop on Cool Topics on Sustainable Data Centers
(CoolDC 16). [s.n.], 2016. Disponível em: <https://www.usenix.org/conference/
cooldc16/workshop-program/presentation/hirki>.

HUANG, J.; LILJA, D. D. J. Exploiting basic block value locality with block reuse. In:
High-Performance Computer Architecture, 1999. Proceedings. Fifth International
Symposium On. IEEE, 1999. p. 106–114. ISBN 0-7695-0004-8. Disponível em:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=744342>.

HWU, W.-m.; PATEL, S. Accelerator Architectures —A Ten-Year Retrospective.
IEEE Micro, v. 38, n. 6, p. 56–62, nov 2018. ISSN 0272-1732. Disponível em:
<https://ieeexplore.ieee.org/document/8585394/>.

http://ieeexplore.ieee.org/document/5993675/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=990739
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=990739
http://dl.acm.org/ft{\_}gateway.cfm?id=2001291{&}typ
http://www.computer.org/csdl/mags/mi/2014/02/mmi2014020006.html
http://www.computer.org/csdl/mags/mi/2014/02/mmi2014020006.html
http://dl.acm.org/citation.cfm?doid=2897937.2897965
http://dl.acm.org/citation.cfm?doid=2744769.2747938
https://opencores.org/project,divider
https://opencores.org/project,divider
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.2991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.2991
https://www.usenix.org/conference/cooldc16/workshop-program/presentation/hirki
https://www.usenix.org/conference/cooldc16/workshop-program/presentation/hirki
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=744342
https://ieeexplore.ieee.org/document/8585394/


134

INTEL. Intel Architecture Optimization Manual. 1997. Disponível em: <http:
//www.intel.com/design/pentium/MANUALS/24281603.pdf>.

(IRDS), I. R. f. D.; SYSTEMS. IRDS 2017: More Moore. [S.l.], 2017. Disponível em:
<https://irds.ieee.org/roadmap-2017>.

ISCI, C.; MARTONOSI, M. Runtime Power Monitoring in High-End Processors:
Methodology and Empirical Data. In: Proceedings of the 36th International
Symposium on Microarchitecture (MICRO-36’03). IEEE Computer Society, 2003.
p. 93. ISBN 0-7695-2043-X. Disponível em: <http://dl.acm.org/citation.cfm?id=956417.
956567>.

KAHNG, A. B.; KANG, S. Accuracy-configurable adder for approximate arithmetic
designs. In: Proceedings of the 49th Annual Design Automation Conference on -
DAC ’12. New York, New York, USA: ACM Press, 2012. p. 820. ISBN 9781450311991.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2228360.2228509>.

KARPUZCU, U. R. et al. VARIUS-NTV: A microarchitectural model to capture the
increased sensitivity of manycores to process variations at near-threshold voltages.
In: IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN 2012). IEEE, 2012. p. 1–11. ISBN 978-1-4673-1625-5. Disponível em:
<http://ieeexplore.ieee.org/document/6263951/>.

KARPUZCU, U. R. et al. EnergySmart: Toward energy-efficient manycores for
Near-Threshold Computing. In: 2013 IEEE 19th International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2013. p. 542–553. ISBN
978-1-4673-5587-2. Disponível em: <http://ieeexplore.ieee.org/document/6522348/>.

KASTRUP, B.; BINK, A.; HOOGERBRUGGE, J. ConCISe: a compiler-driven
CPLD-based instruction set accelerator. In: Seventh Annual IEEE Symposium
on Field-Programmable Custom Computing Machines (Cat. No.PR00375).
IEEE Comput. Soc, 1999. p. 92–101. ISBN 0-7695-0375-6. Disponível em:
<http://ieeexplore.ieee.org/document/803671/>.

KAUL, H. et al. Near-threshold voltage (NTV) design - Opportunities and Challenges.
In: Proceedings of the 49th Annual Design Automation Conference on - DAC
’12. New York, New York, USA: ACM Press, 2012. p. 1153. ISBN 9781450311991.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2228360.2228572>.

KERAMIDAS, G.; KOKKALA, C.; STAMOULIS, I. Clumsy Value Cache: An
Approximate Memoization Technique for Mobile GPU Fragment Shaders. In: 1st
Workshop On Approximate Computing (WAPCO 2015). Amsterdam: [s.n.], 2015.
p. 6. Disponível em: <http://wapco.inf.uth.gr/2015/program.html>.

KHARE, S.; JAIN, S. Prospects of Near-Threshold Voltage Design for Green
Computing. In: 2013 26th International Conference on VLSI Design and 2013 12th
International Conference on Embedded Systems. IEEE, 2013. p. 120–124. ISBN
978-1-4673-4639-9. Disponível em: <http://ieeexplore.ieee.org/document/6472625/>.

KIAMEHR, S. et al. Temperature-Aware Dynamic Voltage Scaling to Improve Energy
Efficiency of Near-Threshold Computing. IEEE Transactions on Very Large Scale

http://www.intel.com/design/pentium/MANUALS/24281603.pdf
http://www.intel.com/design/pentium/MANUALS/24281603.pdf
https://irds.ieee.org/roadmap-2017
http://dl.acm.org/citation.cfm?id=956417.956567
http://dl.acm.org/citation.cfm?id=956417.956567
http://dl.acm.org/citation.cfm?doid=2228360.2228509
http://ieeexplore.ieee.org/document/6263951/
http://ieeexplore.ieee.org/document/6522348/
http://ieeexplore.ieee.org/document/803671/
http://dl.acm.org/citation.cfm?doid=2228360.2228572
http://wapco.inf.uth.gr/2015/program.html
http://ieeexplore.ieee.org/document/6472625/


135

Integration (VLSI) Systems, v. 25, n. 7, p. 2017–2026, jul 2017. ISSN 1063-8210.
Disponível em: <http://ieeexplore.ieee.org/document/7875441/>.

KULKARNI, P.; GUPTA, P.; ERCEGOVAC, M. Trading Accuracy for Power with an
Underdesigned Multiplier Architecture. In: 2011 24th Internatioal Conference on
VLSI Design. IEEE, 2011. p. 346–351. ISBN 978-1-61284-327-8. Disponível em:
<http://ieeexplore.ieee.org/document/5718826/>.

LI, S. et al. The McPAT Framework for Multicore and Manycore Architectures. ACM
Transactions on Architecture and Code Optimization, ACM, v. 10, n. 1, p. 1–29,
apr 2013. ISSN 15443566. Disponível em: <http://dl.acm.org/citation.cfm?id=2445572.
2445577>.

LIU, F. et al. DynaSpAM : Dynamic Spatial Architecture Mapping using Out of Order
Instruction Schedules. In: Proceedings of the ACM/IEEE International Symposium
on Computer Architecture. [S.l.: s.n.], 2015. p. 541–553. ISBN 9781450334020.

LYSECKY, R.; STITT, G.; VAHID, F. Warp Processors. ACM Transactions on Design
Automation of Electronic Systems, ACM, v. 11, n. 3, p. 659–681, jul 2006. ISSN
10844309. Disponível em: <http://dl.acm.org/citation.cfm?id=1142980.1142986>.

MARKOVIC, D. et al. Ultralow-Power Design in Near-Threshold Region. Proceedings
of the IEEE, v. 98, n. 2, p. 237–252, feb 2010. ISSN 0018-9219. Disponível em:
<http://ieeexplore.ieee.org/document/5395771/>.

MARTINS, M. et al. Open Cell Library in 15nm FreePDK Technology. In: Proceedings
of the 2015 Symposium on International Symposium on Physical Design - ISPD
’15. New York, New York, USA: ACM Press, 2015. p. 171–178. ISBN 9781450333993.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2717764.2717783>.

MAZAHIR, S. et al. Probabilistic Error Analysis of Approximate Recursive Multipliers.
IEEE Transactions on Computers, p. 1–1, 2017. ISSN 0018-9340. Disponível em:
<http://ieeexplore.ieee.org/document/7935435/>.

MAZAHIR, S. et al. Probabilistic Error Modeling for Approximate Adders. IEEE
Transactions on Computers, v. 66, n. 3, p. 515–530, mar 2017. ISSN 0018-9340.
Disponível em: <http://ieeexplore.ieee.org/document/7558229/>.

MEI, B. et al. ADRES: An architecture with tightly coupled VLIW processor
and coarse-grained reconfigurable matrix. In: 13th International Conference on
Field-Programmable Logic and Applications. [S.l.]: Springer International Publishing,
2003. p. 61–70.

MICHIE, D. Memo Functions and Machine Learning. Nature, v. 218, n. 5136, p. 19–22,
1968.

MIGUEL, J. S. et al. The Bunker Cache for Spatio-Value Approximation. In: 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[S.l.: s.n.], 2016. p. 1–12.

MIGUEL, J. S. et al. Doppelgänger : A Cache for Approximate Computing. In:
Proceedings of the 48th Annual IEEE/ACM International Symposium on

http://ieeexplore.ieee.org/document/7875441/
http://ieeexplore.ieee.org/document/5718826/
http://dl.acm.org/citation.cfm?id=2445572.2445577
http://dl.acm.org/citation.cfm?id=2445572.2445577
http://dl.acm.org/citation.cfm?id=1142980.1142986
http://ieeexplore.ieee.org/document/5395771/
http://dl.acm.org/citation.cfm?doid=2717764.2717783
http://ieeexplore.ieee.org/document/7935435/
http://ieeexplore.ieee.org/document/7558229/


136

Microarchitecture (MICRO-48). [S.l.: s.n.], 2015. ISBN 9781450340342. ISSN
10724451.

MISAILOVIC, S. et al. Chisel: Reliability- and Accuracy-Aware Optimization
of Approximate Computational Kernels. In: Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems Languages
& Applications - OOPSLA ’14. New York, New York, USA: ACM Press, 2014.
v. 49, n. 10, p. 309–328. ISBN 9781450325851. ISSN 0362-1340. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2660193.2660231>.

MISHRA, A. K.; BARIK, R.; PAUL, S. iACT: A software-hardware framework for
understanding the scope of approximate computing. In: Workshop on Approximate
Computing Across the System Stack (WACAS). [S.l.: s.n.], 2014.

MITTAL, S. A Survey of Architectural Techniques for Near-Threshold Computing.
ACM Journal on Emerging Technologies in Computing Systems, ACM, v. 12, n. 4, p.
1–26, dec 2015. ISSN 15504832. Disponível em: <http://dl.acm.org/citation.cfm?doid=
2856147.2821510>.

MITTAL, S. A Survey of Techniques for Approximate Computing. ACM Computing
Surveys, ACM, v. 48, n. 4, p. 1–33, mar 2016. ISSN 03600300. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2891449.2893356>.

MIYAMORI, T.; MIYAMORI, T.; OLUKOTUN, K. REMARC: Reconfigurable
Multimedia Array Coprocessor. IEICE TRANSACTIONS ON INFORMATION
AND SYSTEMS E82-D, v. 82, p. 389—-397, 1998. Disponível em: <http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.607>.

MOHAPATRA, D. et al. Design of voltage-scalable meta-functions for approximate
computing. In: 2011 Design, Automation & Test in Europe. IEEE, 2011. p. 1–6. ISBN
978-3-9810801-8-6. Disponível em: <http://ieeexplore.ieee.org/document/5763154/>.

MOHAPATRA, D.; KARAKONSTANTIS, G.; ROY, K. Significance driven
computation: A Voltage-Scalable, Variation-Aware, Quality-Tuning Motion
Estimator. In: Proceedings of the 14th ACM/IEEE international symposium
on Low power electronics and design - ISLPED ’09. New York, New York,
USA: ACM Press, 2009. p. 195. ISBN 9781605586847. Disponível em: <http:
//portal.acm.org/citation.cfm?doid=1594233.1594282>.

MOORE, G. E. Cramming More Components Onto Integrated Circuits. Electronics, p.
114–117, jan 1965. ISSN 0018-9219. Disponível em: <http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=658762>.

MOREAU, T. et al. SNNAP: Approximate Computing on Programmable SoCs via Neural
Acceleration. In: 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2015. p. 603–614. ISBN 978-1-4799-8930-0.
Disponível em: <http://ieeexplore.ieee.org/document/7056066/>.

MUDGE, T. Power: a first-class architectural design constraint. Computer, v. 34, n. 4, p.
52–58, apr 2001. ISSN 00189162. Disponível em: <http://ieeexplore.ieee.org/document/
917539/>.

http://dl.acm.org/citation.cfm?doid=2660193.2660231
http://dl.acm.org/citation.cfm?doid=2856147.2821510
http://dl.acm.org/citation.cfm?doid=2856147.2821510
http://dl.acm.org/citation.cfm?doid=2891449.2893356
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.607
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.607
http://ieeexplore.ieee.org/document/5763154/
http://portal.acm.org/citation.cfm?doid=1594233.1594282
http://portal.acm.org/citation.cfm?doid=1594233.1594282
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=658762
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=658762
http://ieeexplore.ieee.org/document/7056066/
http://ieeexplore.ieee.org/document/917539/
http://ieeexplore.ieee.org/document/917539/


137

NOWAK, E. et al. Turning silicon on its edge. IEEE Circuits and Devices
Magazine, v. 20, n. 1, p. 20–31, jan 2004. ISSN 8755-3996. Disponível em:
<http://ieeexplore.ieee.org/document/1263404/>.

OLUKOTUN, K.; HAMMOND, L. The Future of Microprocessors. Queue,
ACM, v. 3, n. 7, p. 26, sep 2005. ISSN 15427730. Disponível em: <http:
//dl.acm.org/citation.cfm?id=1095418>.

PALACHARLA, S.; JOUPPI, N. P.; SMITH, J. E. Complexity-effective superscalar
processors. In: Proceedings of the 24th annual international symposium on
Computer architecture. ACM, 1997. p. 206–218. ISBN 0-89791-901-7. Disponível em:
<http://doi.acm.org/10.1145/264107.264201>.

PARK, J. et al. AxGames: Towards Crowdsourcing Quality Target Determination
in Approximate Computing. In: Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and
Operating Systems - ASPLOS ’16. New York, New York, USA: ACM Press, 2016.
v. 51, n. 4, p. 623–636. ISBN 9781450340915. ISSN 0362-1340. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2872362.2872376>.

PATEL, S.; HWU, W.-m. W. Accelerator Architectures. IEEE Micro, v. 28, n. 4, p.
4–12, jul 2008. ISSN 0272-1732. Disponível em: <http://ieeexplore.ieee.org/document/
4626814/>.

PINCKNEY, N. et al. Limits of Parallelism and Boosting in Dim Silicon. IEEE
Micro, v. 33, n. 5, p. 30–37, sep 2013. ISSN 0272-1732. Disponível em:
<http://ieeexplore.ieee.org/document/6560066/>.

PINCKNEY, N. et al. Impact of FinFET on Near-Threshold Voltage Scalability. IEEE
Design & Test, v. 34, n. 2, p. 31–38, apr 2017. ISSN 2168-2356. Disponível em:
<http://ieeexplore.ieee.org/document/7747444/>.

RAHA, A.; JAYAKUMAR, H.; RAGHUNATHAN, V. A Power Efficient Video Encoder
Using Reconfigurable Approximate Arithmetic Units. In: 2014 27th International
Conference on VLSI Design and 2014 13th International Conference on Embedded
Systems. IEEE, 2014. p. 324–329. ISBN 978-1-4799-2513-1. Disponível em:
<http://ieeexplore.ieee.org/document/6733151/>.

REHMAN, S. et al. Architectural-space exploration of approximate multipliers. In:
Proceedings of the 35th International Conference on Computer-Aided Design
- ICCAD ’16. New York, New York, USA: ACM Press, 2016. p. 1–8. ISBN
9781450344661. Disponível em: <http://dl.acm.org/citation.cfm?doid=2966986.
2967005>.

REHMAN, S. et al. Reliable software for unreliable hardware. In: Proceedings of
the seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis - CODES+ISSS ’11. New York, New York,
USA: ACM Press, 2011. p. 237–246. ISBN 9781450307154. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2039370.2039408>.

http://ieeexplore.ieee.org/document/1263404/
http://dl.acm.org/citation.cfm?id=1095418
http://dl.acm.org/citation.cfm?id=1095418
http://doi.acm.org/10.1145/264107.264201
http://dl.acm.org/citation.cfm?doid=2872362.2872376
http://ieeexplore.ieee.org/document/4626814/
http://ieeexplore.ieee.org/document/4626814/
http://ieeexplore.ieee.org/document/6560066/
http://ieeexplore.ieee.org/document/7747444/
http://ieeexplore.ieee.org/document/6733151/
http://dl.acm.org/citation.cfm?doid=2966986.2967005
http://dl.acm.org/citation.cfm?doid=2966986.2967005
http://dl.acm.org/citation.cfm?doid=2039370.2039408


138

REHMAN, S.; SHAFIQUE, M.; HENKEL, J. J. Instruction scheduling for reliability-
aware compilation. In: Proceedings of the 49th Annual Design Automation
Conference on - DAC ’12. New York, New York, USA: ACM Press, 2012. p. 1292.
ISBN 9781450311991. Disponível em: <http://dl.acm.org/citation.cfm?doid=2228360.
2228601>.

ROY, P. et al. ASAC: Automatic Sensitivity Analysis for Approximate Computing. In:
Proceedings of the 2014 SIGPLAN/SIGBED conference on Languages, compilers
and tools for embedded systems - LCTES ’14. New York, New York, USA: ACM
Press, 2014. v. 49, n. 5, p. 95–104. ISBN 9781450328777. ISSN 0362-1340. Disponível
em: <http://dl.acm.org/citation.cfm?doid=2597809.2597812>.

ROY, P.; WANG, J.; WONG, W. F. PAC: program analysis for approximation-aware
compilation. IEEE Press, 2015. 69–78 p. ISBN 9781467383202. Disponível em:
<http://dl.acm.org/citation.cfm?id=2830700>.

RUTZIG, M. B.; BECK, A. C. S.; CARRO, L. A transparent and energy aware
reconfigurable multiprocessor platform for simultaneous ILP and TLP exploitation.
In: Proceedings of the Conference on Design, Automation and Test in Europe.
EDA Consortium, 2013. p. 1559–1564. ISBN 978-1-4503-2153-2. Disponível em:
<http://dl.acm.org/citation.cfm?id=2485288.2485659>.

SAKURAI, T.; NEWTON, A. Alpha-power law MOSFET model and its applications
to CMOS inverter delay and other formulas. IEEE Journal of Solid-State
Circuits, v. 25, n. 2, p. 584–594, apr 1990. ISSN 00189200. Disponível em:
<http://ieeexplore.ieee.org/document/52187/>.

SAMADI, M. et al. Paraprox: pattern-based approximation for data parallel applications.
In: Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2014. p. 35–50. Disponível
em: <http://dl.acm.org/citation.cfm?id=2541948{&}CFID=955970568{&}CFTOKEN=
67>.

SAMADI, M. et al. SAGE: Self-Tuning Approximation for Graphics Engines.
In: Proceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture - MICRO-46. New York, New York, USA: ACM Press, 2013. p.
13–24. ISBN 9781450326384. Disponível em: <http://dl.acm.org/citation.cfm?doid=
2540708.2540711>.

SAMPSON, A. et al. ACCEPT: A programmer-guided compiler framework for
practical approximate computing. [S.l.], 2015. 12 p.

SAMPSON, A. et al. EnerJ: Approximate Data Types for Safe and General Low-
Power Computation. In: Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation - PLDI ’11. New York, New York,
USA: ACM Press, 2011. v. 46, n. 6, p. 164. ISBN 9781450306638. ISSN 0362-1340.
Disponível em: <http://portal.acm.org/citation.cfm?doid=1993498.1993518>.

SANCHEZ, D.; KOZYRAKIS, C. ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-Core Systems. ACM SIGARCH Computer Architecture
News, ACM, v. 41, n. 3, p. 475–486, jul 2013. ISSN 01635964. Disponível em:
<http://dl.acm.org/citation.cfm?id=2508148.2485963>.

http://dl.acm.org/citation.cfm?doid=2228360.2228601
http://dl.acm.org/citation.cfm?doid=2228360.2228601
http://dl.acm.org/citation.cfm?doid=2597809.2597812
http://dl.acm.org/citation.cfm?id=2830700
http://dl.acm.org/citation.cfm?id=2485288.2485659
http://ieeexplore.ieee.org/document/52187/
http://dl.acm.org/citation.cfm?id=2541948{&}CFID=955970568{&}CFTOKEN=67
http://dl.acm.org/citation.cfm?id=2541948{&}CFID=955970568{&}CFTOKEN=67
http://dl.acm.org/citation.cfm?doid=2540708.2540711
http://dl.acm.org/citation.cfm?doid=2540708.2540711
http://portal.acm.org/citation.cfm?doid=1993498.1993518
http://dl.acm.org/citation.cfm?id=2508148.2485963


139

SANKARALINGAM, K. et al. Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture. In: 30th Annual International Symposium on Computer
Architecture, 2003. Proceedings. IEEE Comput. Soc, 2003. p. 422–433. ISBN
0-7695-1945-8. ISSN 1063-6897. Disponível em: <http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=1207019>.

SATO, Y. et al. An Approximate Computing Stack Based on Computation Reuse.
In: 2015 Third International Symposium on Computing and Networking
(CANDAR). IEEE, 2015. p. 378–384. ISBN 978-1-4673-9797-1. Disponível em:
<http://ieeexplore.ieee.org/document/7424742/>.

SHAFAEI, A. et al. FinCACTI: Architectural Analysis and Modeling of Caches
with Deeply-Scaled FinFET Devices. In: 2014 IEEE Computer Society Annual
Symposium on VLSI. IEEE, 2014. p. 290–295. ISBN 978-1-4799-3765-3. Disponível
em: <http://ieeexplore.ieee.org/document/6903378/>.

SHAFIQUE, M. et al. A low latency generic accuracy configurable adder. In:
Proceedings of the 52nd Annual Design Automation Conference on - DAC ’15. New
York, New York, USA: ACM Press, 2015. p. 1–6. ISBN 9781450335201. Disponível
em: <http://dl.acm.org/citation.cfm?doid=2744769.2744778>.

SHAFIQUE, M.; GARG, S. Computing in the Dark Silicon Era: Current Trends and
Research Challenges. IEEE Design & Test, v. 34, n. 2, p. 8–23, apr 2017. ISSN
2168-2356. Disponível em: <http://ieeexplore.ieee.org/document/7762141/>.

SHAFIQUE, M. et al. Cross-Layer Approximate Computing: From Logic to
Architectures. In: 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC). [S.l.: s.n.], 2016. p. 1–6.

SHIMPI, A. L. The Haswell Review: Intel Core i7-4770K & i7-4670K
Tested. 2013. Disponível em: <http://www.anandtech.com/show/7003/
the-haswell-review-intel-core-i74770k-i54560k-tested/5>.

SIDIROGLOU-DOUSKOS, S. et al. Managing Performance vs. Accuracy Trade-offs
with Loop Perforation. In: Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering -
SIGSOFT/FSE ’11. New York, New York, USA: ACM Press, 2011. p. 124–134.
ISBN 9781450304436. Disponível em: <http://dl.acm.org/citation.cfm?doid=2025113.
2025133>.

SILVANO, C. et al. Voltage island management in near threshold manycore architectures
to mitigate dark silicon. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2014. New Jersey: IEEE Conference Publications, 2014. p. 1–6.
ISBN 9783981537024. Disponível em: <http://ieeexplore.ieee.org/xpl/articleDetails.jsp?
arnumber=6800415>.

SINGH, H. et al. MorphoSys: an integrated reconfigurable system for data-parallel
and computation-intensive applications. IEEE Transactions on Computers,
v. 49, n. 5, p. 465–481, may 2000. ISSN 00189340. Disponível em: <http:
//ieeexplore.ieee.org/document/859540/>.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1207019
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1207019
http://ieeexplore.ieee.org/document/7424742/
http://ieeexplore.ieee.org/document/6903378/
http://dl.acm.org/citation.cfm?doid=2744769.2744778
http://ieeexplore.ieee.org/document/7762141/
http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5
http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested/5
http://dl.acm.org/citation.cfm?doid=2025113.2025133
http://dl.acm.org/citation.cfm?doid=2025113.2025133
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6800415
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6800415
http://ieeexplore.ieee.org/document/859540/
http://ieeexplore.ieee.org/document/859540/


140

SNAPDRAGON 810 Product Specification. 2015. Disponível em: <https://www.
qualcomm.com/products/snapdragon/processors/810>.

SODANI, A.; SOHI, G. S. Dynamic instruction reuse. ACM SIGARCH Computer
Architecture News, ACM, v. 25, n. 2, p. 194–205, may 1997. ISSN 01635964.
Disponível em: <http://dl.acm.org/citation.cfm?id=384286.264200>.

SOUZA, J. D. et al. A reconfigurable heterogeneous multicore with a homogeneous
ISA. In: Proceedings of the 2016 Conference on Design, Automation & Test in
Europe. EDA Consortium, 2016. p. 1598–1603. ISBN 9783981537062. Disponível em:
<http://dl.acm.org/citation.cfm?id=2972181>.

STITT, G.; VAHID, F. Thread Warping: Dynamic and Transparent Synthesis of
Thread Accelerators. ACM Transactions on Design Automation of Electronic
Systems, ACM, v. 16, n. 3, p. 1–21, jun 2011. ISSN 10844309. Disponível em:
<http://portal.acm.org/citation.cfm?doid=1970353.1970365>.

SURESH, A. et al. Intercepting Functions for Memoization. ACM Transactions on
Architecture and Code Optimization, ACM, v. 12, n. 2, p. 18:1–18:23, jun 2015. ISSN
15443566. Disponível em: <http://dl.acm.org/citation.cfm?id=2775085.2751559>.

SWANSON, S. et al. WaveScalar. In: Proceedings of the 36th annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society, 2003.
p. 291. ISBN 076952043X. Disponível em: <http://dl.acm.org/citation.cfm?id=956546>.

TAN, C. et al. LOCUS: Low-Power Customizable Many-Core Architecture for
Wearables. ACM Transactions on Embedded Computing Systems, ACM, v. 17, n. 1,
p. 1–26, nov 2017. ISSN 15399087. Disponível em: <http://dl.acm.org/citation.cfm?
doid=3136518.3122786>.

TAYLOR, M. B. A Landscape of the New Dark Silicon Design Regime. IEEE
Micro, v. 33, n. 5, p. 8–19, sep 2013. ISSN 0272-1732. Disponível em: <http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6583151>.

UBAL, R. et al. Multi2Sim: a simulation framework for CPU-GPU computing. In:
Proceedings of the 21st international conference on Parallel architectures and
compilation techniques - PACT ’12. New York, New York, USA: ACM Press, 2012.
p. 335. ISBN 9781450311823. Disponível em: <http://dl.acm.org/citation.cfm?id=
2370816.2370865>.

VASSILIADIS, S. et al. The MOLEN Polymorphic Processor. IEEE Transactions on
Computers, v. 53, n. 11, p. 1363–1375, nov 2004. ISSN 0018-9340. Disponível em:
<http://ieeexplore.ieee.org/document/1336759/>.

VENKATARAMANI, S. et al. Quality programmable vector processors for
approximate computing. In: Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture - MICRO-46. New York, New
York, USA: ACM Press, 2013. p. 1–12. ISBN 9781450326384. Disponível em:
<http://dl.acm.org/citation.cfm?doid=2540708.2540710>.

WALL, D. W. Limits of instruction-level parallelism. ACM SIGPLAN Notices,
ACM, v. 26, n. 4, p. 176–188, apr 1991. ISSN 03621340. Disponível em:
<http://dl.acm.org/citation.cfm?id=106973.106991>.

https://www.qualcomm.com/products/snapdragon/processors/810
https://www.qualcomm.com/products/snapdragon/processors/810
http://dl.acm.org/citation.cfm?id=384286.264200
http://dl.acm.org/citation.cfm?id=2972181
http://portal.acm.org/citation.cfm?doid=1970353.1970365
http://dl.acm.org/citation.cfm?id=2775085.2751559
http://dl.acm.org/citation.cfm?id=956546
http://dl.acm.org/citation.cfm?doid=3136518.3122786
http://dl.acm.org/citation.cfm?doid=3136518.3122786
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6583151
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6583151
http://dl.acm.org/citation.cfm?id=2370816.2370865
http://dl.acm.org/citation.cfm?id=2370816.2370865
http://ieeexplore.ieee.org/document/1336759/
http://dl.acm.org/citation.cfm?doid=2540708.2540710
http://dl.acm.org/citation.cfm?id=106973.106991


141

WANG, Z. et al. Image Quality Assessment: From Error Visibility to Structural
Similarity. IEEE Transactions on Image Processing, v. 13, n. 4, p. 600–612, apr 2004.
ISSN 1057-7149. Disponível em: <http://ieeexplore.ieee.org/document/1284395/>.

WATKINS, M. A.; NOWATZKI, T.; CARNO, A. Software transparent dynamic
binary translation for coarse-grain reconfigurable architectures. In: 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2016. p. 138–150. ISBN 978-1-4673-9211-2. Disponível em:
<http://ieeexplore.ieee.org/document/7446060/>.

WAZLOWSKI, M. et al. PRISM-II compiler and architecture. In: Proceedings IEEE
Workshop on FPGAs for Custom Computing Machines. IEEE Comput. Soc. Press,
1993. p. 9–16. ISBN 0-8186-3890-7. Disponível em: <http://ieeexplore.ieee.org/
document/279484/>.

WIJTVLIET, M.; WAEIJEN, L.; CORPORAAL, H. Coarse Grained Reconfigurable
Architectures in the Past 25 Years: Overview and Classification. In: 2016 International
Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS). IEEE, 2016. p. 235–244. ISBN 978-1-5090-3076-7. Disponível
em: <http://ieeexplore.ieee.org/document/7818353/>.

WIRTHLIN, M.; HUTCHINGS, B. A dynamic instruction set computer. In:
Proceedings IEEE Symposium on FPGAs for Custom Computing Machines.
IEEE Comput. Soc. Press, 1995. p. 99–107. ISBN 0-8186-7086-X. Disponível em:
<http://ieeexplore.ieee.org/document/477415/>.

WITTIG; CHOW. OneChip: an FPGA processor with reconfigurable logic. In:
Proceedings IEEE Symposium on FPGAs for Custom Computing Machines
FPGA-96. IEEE, 1996. p. 126–135. ISBN 0-8186-7548-9. Disponível em:
<http://ieeexplore.ieee.org/document/564773/>.

XIE, Q. et al. Performance Comparisons Between 7-nm FinFET and Conventional Bulk
CMOS Standard Cell Libraries. IEEE Transactions on Circuits and Systems II:
Express Briefs, v. 62, n. 8, p. 761–765, aug 2015. ISSN 1549-7747. Disponível em:
<http://ieeexplore.ieee.org/document/7012086/>.

XU, Q.; MYTKOWICZ, T.; KIM, N. S. Approximate Computing: A Survey. IEEE
Design & Test, IEEE, v. 33, n. 1, p. 8–22, feb 2016. ISSN 2168-2356. Disponível em:
<http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7348659>.

YAZDANBAKHSH, A. et al. AxBench: A Benchmark Suite for Approximate
Computing. IEEE Design and Test, n. special issue on Computing in the Dark Silicon
Era 2016, 2016. Disponível em: <http://hdl.handle.net/1853/54485>.

YAZDANBAKHSH, A. et al. Neural Acceleration for GPU Throughput Processors. In:
Proceedings of the 48th International Symposium on Microarchitecture - MICRO-
48. New York, New York, USA: ACM Press, 2015. p. 482–493. ISBN 9781450340342.
Disponível em: <http://dl.acm.org/citation.cfm?doid=2830772.2830810>.

YE, R. et al. On Reconfiguration-Oriented Approximate Adder Design and Its
Application. In: Proceedings of the International Conference on Computer-Aided

http://ieeexplore.ieee.org/document/1284395/
http://ieeexplore.ieee.org/document/7446060/
http://ieeexplore.ieee.org/document/279484/
http://ieeexplore.ieee.org/document/279484/
http://ieeexplore.ieee.org/document/7818353/
http://ieeexplore.ieee.org/document/477415/
http://ieeexplore.ieee.org/document/564773/
http://ieeexplore.ieee.org/document/7012086/
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7348659
http://hdl.handle.net/1853/54485
http://dl.acm.org/citation.cfm?doid=2830772.2830810


142

Design. IEEE Press, 2013. p. 48–54. ISBN 9781479910694. Disponível em: <https:
//dl.acm.org/citation.cfm?id=2561838http://ieeexplore.ieee.org/document/6691096/>.

YE, Z. A. et al. CHIMAERA: A High-Performance Architecture with a Tightly-Coupled
Reconfigurable Functional Unit. In: Proceedings of the 27th annual international
symposium on Computer architecture - ISCA ’00. New York, New York, USA:
ACM, 2000. v. 28, n. 2, p. 225–235. ISBN 1-58113-232-8. ISSN 01635964.
Disponível em: <http://portal.acm.org/citation.cfm?doid=339647.339687http:
//dl.acm.org/citation.cfm?id=342001.339687>.

ZHAI, B. et al. Energy efficient near-threshold chip multi-processing. In: Proceedings of
the 2007 international symposium on Low power electronics and design - ISLPED
’07. New York, New York, USA: ACM Press, 2007. p. 32–37. ISBN 9781595937094.
Disponível em: <http://portal.acm.org/citation.cfm?doid=1283780.1283789>.

ZHANG, H. et al. A 1-V heterogeneous reconfigurable DSP IC for wireless
baseband digital signal processing. IEEE Journal of Solid-State Circuits,
v. 35, n. 11, p. 1697–1704, nov 2000. ISSN 0018-9200. Disponível em: <http:
//ieeexplore.ieee.org/document/881217/>.

ZHANG, Q. et al. ApproxANN: An Approximate Computing Framework for Artificial
Neural Network. In: Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition. [S.l.]: EDAA, 2015. p. 701–706. ISBN 9783981537048.

https://dl.acm.org/citation.cfm?id=2561838 http://ieeexplore.ieee.org/document/6691096/
https://dl.acm.org/citation.cfm?id=2561838 http://ieeexplore.ieee.org/document/6691096/
http://portal.acm.org/citation.cfm?doid=339647.339687 http://dl.acm.org/citation.cfm?id=342001.339687
http://portal.acm.org/citation.cfm?doid=339647.339687 http://dl.acm.org/citation.cfm?id=342001.339687
http://portal.acm.org/citation.cfm?doid=1283780.1283789
http://ieeexplore.ieee.org/document/881217/
http://ieeexplore.ieee.org/document/881217/

	Agradecimentos
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Current challenges in microprocessor design
	1.2 Scope of this thesis
	1.3 Contributions of this thesis
	1.4 Structure of this thesis

	2 Background
	2.1 Reconfigurable Architectures
	2.1.1 Classification of Reconfigurable Architectures
	2.1.2 Implementations of Reconfigurable Architectures

	2.2 DVFS and NTV Computing
	2.2.1 Challenges in NTV Operation
	2.2.2 Solutions for NTV Operation

	2.3 Approximate Computing
	2.3.1 Assessing Application Quality
	2.3.2 Determining approximable computations
	2.3.3 Strategies for approximation

	2.4 Contributions to the State-of-the-Art

	3 MuTARe - Base Architecture
	3.1 Overview of MuTARe
	3.2 MuTARe's Components
	3.2.1 Reconfigurable Unit
	3.2.2 Binary Translation Module
	3.2.3 Configuration Cache
	3.2.4 Interface with GPP


	4 MuTARe - Extended Architecture
	4.1 Approx-MuTARe
	4.1.1 Architectural Changes
	4.1.2 Design, Compilation and Execution Flow Changes

	4.2 NTV-Aware MuTARe
	4.2.1 Architectural Changes


	5 Evaluation
	5.1 Methodology overview, metrics and tools
	5.1.1 Methodology
	5.1.2 Tools: The gem5 Simulator
	5.1.3 Tools: CACTI
	5.1.4 Tools: McPAT
	5.1.5 Tools: Rocketchip Generator
	5.1.6 Tools: for Logic Synthesis
	5.1.7 Tools: DVFS model
	5.1.8 Tools: Approximate FU models

	5.2 Results
	5.2.1 Scenario 1: High-Performance Computing for General-Purpose Domains
	5.2.2 Scenario 2: Heterogeneous Computing for Mobile Domains
	5.2.3 Scenario 3: Ultra Low-Power Computing for Emerging IoT Domains
	5.2.4 Scenario 4: Approximate Computing for Error-Tolerant Domains


	6 Conclusions
	6.1 Future Work
	6.2 Publications and Presentations
	6.2.1 Publications in the Scope of this Thesis
	6.2.2 Publications as a Result from Collaborations
	6.2.3 Presentations


	References

