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Abstract

This review addresses the mechanisms of methylmercury (MeHg)-
induced neurotoxicity, specifically examining the role of oxidative
stress in mediating neuronal damage. A number of critical findings
point to a central role for astrocytes in mediating MeHg-induced
neurotoxicity as evidenced by the following observations: a) MeHg
preferentially accumulates in astrocytes; b) MeHg specifically inhib-
its glutamate uptake in astrocytes; c) neuronal dysfunction is second-
ary to disturbances in astrocytes. The generation of reactive oxygen
species (ROS) by MeHg has been observed in various experimental
paradigms. For example, MeHg enhances ROS formation both in vivo
(rodent cerebellum) and in vitro (isolated rat brain synaptosomes), as
well as in neuronal and mixed reaggregating cell cultures. Antioxi-
dants, including selenocompounds, can rescue astrocytes from MeHg-
induced cytotoxicity by reducing ROS formation. We emphasize that
oxidative stress plays a significant role in mediating MeHg-induced
neurotoxic damage with active involvement of the mitochondria in
this process. Furthermore, we provide a mechanistic overview on
oxidative stress induced by MeHg that is triggered by a series of
molecular events such as activation of various kinases, stress proteins
and other immediate early genes culminating in cell damage.
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Introduction

Methylmercury (MeHg) is a major neuro-
toxicant that continues to pose appreciable risk
to human health as evidenced by the tragic
epidemics of MeHg poisoning in Japan and
Iraq (1,2). All sources of environmental mer-

cury represent a potential risk for poisoning in
humans through the methylation of inorganic
mercury to MeHg in waterways, resulting in
MeHg accumulation in the sea food chain and
representing the most prevalent source for
human consumption. Excessive MeHg inges-
tion from a diet high in fish is associated with
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aberrant central nervous system (CNS) func-
tions (3-5). Recent studies in human popula-
tions support the earlier findings that maternal
exposure to mercury during pregnancy is as-
sociated with neurological as well as neuro-
psychological deficits detectable in the child
at 6 to 7 years of age (6,7). Another recent
study has pointed to the selective detrimental
effects of MeHg on neurogenesis. However,
despite these observations, the issue remains
controversial, as exemplified by other studies
(8,9) in which no association was noted be-
tween MeHg and neurodevelopmental out-
comes in children at 66 months of age. Thus,
the ultimate effects of MeHg in the human
population remain unknown and clearly there
is an urgent need to understand the mechan-
isms and consequences of MeHg exposure for
CNS function. The current literature suggests
that no single mechanism can explain the
multitude of effects observed in MeHg-in-
duced neurotoxicity.

The role of astrocytes in brain
function

Among various cell types, astrocytes rep-
resent a major cell type occupying approxi-
mately 50% of the CNS volume and their
dysfunction following toxicant exposure has
been implicated as a main cause of the ob-
served neurotoxicity (10). The “foot” pro-
cesses of these cells are known to be closely
associated with synapses, axonal tracts, nodes
of Ranvier, and capillaries. Astrocytes per-
form important duties and some of their
functions include the maintenance of normal
extracellular ion concentrations, the uptake
of potassium (K*) and the control of extra-
cellular pH. They express a pantheon of
receptors and uptake systems for neurotrans-
mitters, properties that were formerly thought
to be exclusively neuronal. Thus, astrocytes
can respond to and prevent the build-up of
potentially dangerous levels of neurotrans-
mitters (e.g., glutamate) in the extracellular
fluid (11). Important roles of astrocytes dur-
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ing early brain development include the syn-
thesis and elaboration of cues for neuronal
migration and the production of neurotrophic
factors important for neuronal division and
differentiation. Astrocytes also induce the
high electrical resistance (tightness) of the
blood-brain barrier that limits the transport
of noxious substances entering the brain,
and modulates optimal transport of nutrients
and metabolites (12).

Mechanisms of methylmercury-
induced neurotoxicity and glutamate

Although not the only cell type to be
adversely affected by MeHg, a number of
studies have established a key role for astro-
cytes in mediating MeHg neurotoxicity: a)
astrocytes represent a preferential cellular
site for MeHg accumulation (13-16); b)
MeHg selectively inhibits astrocytic trans-
port of cystine and cysteine (Figure 1),
thereby adversely affecting their redox sta-
tus and attenuating glutathione (GSH) con-
tent (17-21); c) MeHg inhibits astrocytic
glutamate (and aspartate) uptake (Figure 1)
and stimulates its efflux, thereby increasing
glutamate concentrations in the extracellu-
lar fluid and sensitizing neurons to excito-
toxicinjury (17,18,22-24); d) MeHg-induced
neuronal dysfunction is secondary to distur-
bances in astrocytes (25), and the in vitro co-
application of non-toxic concentrations of
mercury with glutamate results in the ap-
pearance of typical neuronal lesions found
with excitotoxic stimulation (26); e) MeHg
causes the activation of cytosolic phospholi-
pase A, leading to arachidonic acid release
and further inhibition of the glutamate trans-
porter (Figure 1), setting in motion an unim-
peded cytotoxic cycle (27,28).

The role of reactive oxygen species
in methylmercury-induced

neurotoxicity

Though free radicals are known to play a
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physiological role in optimal cell function,
excessive oxidative stress has been impli-
cated in a variety of neurodegenerative dis-
eases, including Alzheimer’s disease, Park-
inson’s disease and amyotrophic lateral scle-
rosis (29-31). Oxidative stress also plays an
important role in other degenerative condi-
tions such as autoimmune and inflammatory
diseases (i.e., ischemia and rheumatoid ar-
thritis), cancer, diabetes mellitus, and ath-
erosclerosis (32-34), as well as in metal-
induced toxicity (35,36). The balance be-
tween oxidative and reductive cellular pro-
cesses is known to be adversely affected in
these various disorders (37). Oxidative stress
is associated with the accumulation of high
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levels of toxic reactive species, such as reac-
tive oxygen species (ROS), reactive nitro-
gen species, reactive nitrogen oxygen spe-
cies, as well as unbound metal ions (38).
Typical ROS include oxygen radicals such
as superoxide radical, hydroxyl radical, as
well as non-radical derivatives of oxygen
including hydrogen peroxide (H,0,). Reac-
tive nitrogen species include nitric oxide
radical, and reactive nitrogen oxygen spe-
cies include the highly reactive oxidant spe-
cies peroxynitrite, which is a product of
reaction between nitric oxide and the super-
oxide radical. These reactive species are
highly oxidizing and potently damaging to
cellular redox-sensitive proteins, enzymes
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Figure 1. A schematic model of some of the currently proposed as well as some of our previously studied
processes resulting in methylmercury (MeHg)-dependent neurotoxicity. Red lines and text indicate processes
where MeHg stimulates cellular processes, whereas green lines and text indicate targets for MeHg-induced
inhibition. For example, MeHg is known to increase the release of arachidonic acid (AA) from astrocytes and to
stimulate glutamate release, increasing its synaptic levels. At the same time MeHg also inhibits glutamate uptake,
as well as a number of the amino acids that are associated with the synthesis of astrocytic glutathione (GSH).
Combined, these effects lead to a reduction in intracellular GSH levels and increased synaptic glutamate levels,
which in turn activate NMDA receptors on adjacent neurons, leading to excitotoxicity. cPLA = cytosolic phospho-
lipase Ao; ROS = reactive oxygen species; NF-kB = nuclear factor kappa B; BSO = L-buthionine-[S,R]-sulfoximine;
NMDA = N-methyl D-aspartate; GLAST = glutamate aspartate transporter; GLT1 = glutamate transporter 1.
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and DNA, and they also cause peroxidation
of membranes.

ROS are known to mediate MeHg-induced
neurotoxicity in multiple experimental mod-
els. For example, MeHg induces ROS forma-
tion in vivo (rodent cerebellum), and in vitro
(isolated rat brain synaptosomes) (39), as well
as in cerebellar neuronal cultures, a hypotha-
lamic neuronal cell line and in mixed reaggre-
gating cell cultures (40-42). In addition, an
increase in ROS has been observed in a) mito-
chondria isolated from MeHg-injected rat
brains (36), b) mitochondria isolated in vitro
from rat brain and then exposed to MeHg (43),
and c) mitochondria from Hg- and glutamate-
exposed astrocytes and neurons (44,45).
MeHg-induced ROS production and MeHg-
induced glutamate dyshomeostasis are con-
nected phenomena affecting each other. In
fact, MeHg-induced inhibition of astrocyte
glutamate transporters leads to increased glu-
tamate concentrations in the extracellular fluid,
causing hyperactivation of N-methyl D-aspar-
tate type glutamate receptors and leading to an
increase in Na+ and Ca?* influx (46). Increased
intracellular Ca®* levels are associated with
the generation of ROS (47). On the other hand,
MeHg-induced ROS (mainly H,0,) produc-
tion appears to directly inhibit astrocyte gluta-
mate transporters, leading to increased gluta-
mate concentrations in the extracellular fluid
(17,18). This ROS formation resulting from
MeHg- and glutamate-induced oxidative stress
contributes to mitochondrial dysfunction.
Overproduction of ROS is mediated, at least in
part, by glutamate, since this toxicity can be
attenuated by N-methyl D-aspartate receptor
antagonists. The source of glutamate is likely
to be astrocytic, given the effect of MeHg on
glutamate uptake and release (Figure 1) from
astrocytes (17,18,48). Therefore, although the
toxic damage caused by MeHg might be most
prevalent in neurons, a large body of literature
suggests that neuronal damage in response to
MeHg most likely represents aberrant control
of the extracellular milieu by astrocytes.

Experimental studies have investigated
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the potential protective effects of antioxi-
dant molecules (i.e., GSH precursors and anti-
oxidant selenocompounds) against MeHg-
induced neurotoxicity (49,50). Since hydro-
gen peroxide has been shown to be an im-
portant hazardous molecule involved in
MeHg toxicity (17,18,50), such protective
effects appear to be related, at least in part, to
the ability of these compounds to mitigate
the deleterious effects of hydrogen perox-
ide. MeHg exhibits a direct inhibitory effect
on the activity of glutathione peroxidase in
mouse CNS, leading to increased lipid per-
oxidation and decreased glutamate uptake
into cerebrocortical slices (50,51). Organose-
leno compounds with thiol peroxidase activ-
ity show protective effects that appear to be
related to the maintenance of H,O, status at
low physiological levels in MeHg-exposed
systems (50,52). Although the GSH precur-
sor N-acetylcysteine can contribute to the
maintenance of GSH intracellular homeo-
stasis, which is crucial for the detoxification
of hydrogen peroxide by glutathione peroxi-
dase, part of the beneficial effects elicited by
N-acetylcysteine under in vivo conditions is
also related to its ability to accelerate urinary
MeHg excretion in poisoned animals (53).
However, even though antioxidant molecules
have been showing protective effects against
MeHg-induced neurotoxicity under experi-
mental conditions (21,50), their use as pos-
sible therapeutic agents in MeHg poisoning
is far from becoming a reality. Currently, the
only way to prevent or ameliorate toxicity in
MeHg poisoning is to accelerate its elimina-
tion from the body. Strategies for removing
MeHg include hemodialysis, exchange trans-
fusion, and chelation therapy (54,55).

Signaling pathways mediating
methylmercury-induced neurotoxicity

A number of reports indicate oxidative
stress-induced activation of some signaling
molecules (i.e., distinct kinases/transcription
factors (nuclear factor kappa B, NF-xB),
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(activator protein-1, etc.)/early response
genes (c-fos, c-jun, etc.)). This activation
leads to induction of various target genes
(i.e., inducible nitric oxide synthase, cyclo-
oxygenase I, manganese-superoxide dismu-
tase, inducible form (HSP-72), cytokines,
etc.), which contribute to cell damage (56-
58). Studies have also shown that distinct
kinases mediate the metal/toxicant-induced
toxicity both downstream and upstream of
generated ROS (43). For example, the ROS-
generating nicotinamide-adenine dinucle-
otide phosphate oxidase enzyme is stimulat-
ed by zinc in astrocytes and neurons in a
protein kinase C (PKC)-dependent manner.
Furthermore, the upstream involvement of
tyrosine kinase, PKC, and mitogen-activated
protein kinase (MAPK) pathway kinases in
MeHg-induced generation of ROS in synap-
tosomes has been demonstrated with selec-
tive inhibitors (43). The generated ROS re-
sulting from oxidative stress (induced by a
variety of agents like copper, arsenic, chro-
mium, H,O,, angiotensin II, and from de-
generative conditions) causes the down-
stream activation of a variety of kinases
(p38MAPK, ERK and JNK), as well as trans-
cription factors such as NF-xB, leading to a
cytotoxic response (59,60).

There are no detailed and systematic stud-
ies examining how MeHg-induced ROS for-
mation in astrocytes ultimately leads to cy-
totoxicity, and what, if any, is the role of
various signal transduction pathways in this
process. Figure 2 (see legend for a detailed
description) depicts various targets that may
be affected by MeHg. Future studies with
astrocytes should be designed to answer these
issues and to determine if the neurotoxic
effects of MeHg are, at least in part, due to
the generation of ROS and may activate
signaling pathways involving distinct kinases
(i.e., PKC, tyrosine protein kinase, p38MAPK,
and ERK MAPK), phospholipase A,, as well
as immediate early genes (c-fos) and trans-
cription factor NF-xB (please refer to Figure
2). Since mitochondria are known mediators
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of ROS generation, future studies on the
efficacy of mitochondrial permeability tran-
sition pore inhibitors and mitochondrial cy-
tochrome C release in attenuating MeHg-
induced cellular damage should be profit-
able. Another consequence of increased oxi-
dative stress is the induction of the mito-
chondrial permeability transition, a Ca?*-
dependent process characterized by the open-
ing of the permeability transition pore in the
inner mitochondrial membrane. This causes
increased permeability to protons, ions and
other solutes <1500 Da, in turn, leading to a
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Figure 2. A model depicting the role of oxidative stress in methylmercury (MeHg) neurotoxic-
ity: 1) by involvement of various enzymes; 2) increased reactive oxygen species (ROS) can
potentially be prevented with a) antioxidants, b) nicotinamide-adenine dinucleotide phos-
phate (NADPH) oxidase inhibitor (DPI), c) cytosolic phospholipase Az (cPLAp) inhibitor
(AACOCF3), d) protein kinase C inhibitor (bisindolylmaleimide), e) tyrosine protein kinase
inhibitor (genistein), and e) microsomal triglyceride transfer protein (MTP) inhibitor (CSA);
3,4) release of cytochrome C into cytosol from mitochondria; 5) reactive oxygen species
(ROS) formed may lead to the activation of p38 mitogen-activated protein kinase (p38MAPK)
and extracellular-signal regulated kinase (ERK) MAPK, which may be inhibited by pretreat-
ment with inhibitors SB 202190 and PD 98059; 6) stimulated kinases may mediate the
activation of c-fos and nuclear factor kappa B (NF-xB); 7,8) possible induction of target
proteins like inducible nitric oxide (iNOS) may be blocked with nitro-L-arginine (L-NNA), an
iNOS inhibitor); 9) the diffusion of ROS from astrocytes to adjacent neurons can lead to
possible mitochondrial damage in neurons; 10,11) there may be involvement of other
signaling (i.e., JNK, c-jun, and AP-1) pathways in modulating MeHg cytotoxicity. SN-50 =

inhibitory peptide derived from the p50 protein.
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collapse of the mitochondrial inner mem-
brane potential (AY,,). Loss of the AY,
results in colloid osmotic swelling of the
mitochondrial matrix, movement of metabo-
lites across the inner membrane, defective
oxidative phosphorylation, cessation of ATP
synthesis, and further generation of ROS.
The concentration-dependent deleterious ef-
fects of MeHg on mitochondrial AY,, in
cultured astrocytes suggest that AW, is a
very sensitive endpoint for MeHg toxicity,
and these effects are consistent with increased
(Ca?*); triggering ROS formation and in-
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creased oxidative stress. What has yet to be
established is the temporal sequence of events
reported here and whether changes in mem-
brane potential precede the changes in oxi-
dative stress. This would be consistent with
early reports from our laboratory showing
that MeHg increases cellular permeability to
ions such as Na* (and K*), and that an in-
crease in Na* permeability via Na*/H* ex-
change, offsetting K* loss, is the primary
mechanism in its inhibition of regulatory
volume decrease in astrocytes.
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