
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

CALEBE MICAEL DE OLIVEIRA CONCEIÇÃO

Minimizing Transistor Count in Transistor
Networks

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Advisor: Prof. Dr. Ricardo Augusto da Luz Reis

Porto Alegre
Outubro 2019



CIP — CATALOGING-IN-PUBLICATION

Conceição, Calebe Micael de Oliveira

Minimizing Transistor Count in Transistor Networks / Calebe
Micael de Oliveira Conceição. – Porto Alegre: PPGC da UFRGS,
2019.

98 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Ricardo Augusto da Luz Reis.

1. EDA. 2. Logic Synthesis. 3. Library free. 4. Cell clustering.
5. Transistor network. 6. Transistor count. 7. Microelectronics.
I. Reis, Ricardo Augusto da Luz. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenadora do PPGC: Profa. Luciana Salete Buriol
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Não to mandei eu? Esforça-te, e tem bom ânimo;

não temas, nem te espantes; porque o Senhor teu Deus

é contigo, por onde quer que andares.” — (JOSUÉ 1:9)



ACKNOWLEDGEMENTS

(Only in Portuguese. Thanks for your comprehension.) Eu estava prestes a con-

cluir a graduação em Ciência da Computação na Universidade Federal de Sergipe e,

apesar da segurança com que realizei as atividades acadêmicas visando seguir carreira

acadêmica, naquele momento eu estava com medo. Orei pedindo uma resposta clara

e inequívoca sobre qual caminho seguir dali pra frente. A resposta veio em forma de

aprovação, e pude escolher entre alguns dos melhores programas de pós-graduação do

Brasil. Agradeço a Deus por ter guiado minhas decisões até aqui, e principalmente por

ter me sustentado em cada necessidade.

“No trabalho, busque as pessoas boas, Calebe. Depois filtra por currículo”. Esse

foi um dos valiosos conselhos que recebi do meu querido orientador na graduação, o

professor Luiz Brunelli. Sábias palavras. E Deus foi tão bom comigo que trouxe a mim o

professor Ricardo Reis, que tem um coração ainda maior que seu extenso currículo. Reis,

muito obrigado pelas oportunidades, e especialmente por não me deixar desistir. “Calebe,

não está morto que peleia!”. Dessa lição eu não vou esquecer.

Na UFRGS convivi com colegas brilhantes, por quem nutro carinho e admiração.

Companheiros de laboratório, de viagens, de futebol, de saídas nos finais de semana, e

sempre parceiros nas angústias que a pós-graduação é doutora em causar. Amigos que

foram essenciais à minha adaptação na nova terra. Obrigado, meus amados. Queria muito

que todos estivessem aqui para ler isso.

Agradeço a cada professor que cruzou meu caminho nessa longa jornada, seja em

sala de aula, nos congressos, bancas, palestras, encontros, seminários... O conhecimento

que vocês compartilharam pavimentaram meu caminho, e algumas intervenções foram

luz em momentos de muita dúvida sobre a condução do trabalho. Agradeço ainda aos

servidores técnico-administrativos da UFRGS, gentis, cuidadosos e solidários em cada

necessidade que tive.

Aos estudantes do IFRS Restinga, onde comecei, aos estudantes do IFSUL Char-

queadas, onde permaneço, muito obrigado! Talvez vocês não saibam, mas a empolgação,

o respeito, o incentivo, o carinho, e o feedback sincero e imediato de vocês repunham a

auto-confiança profissional que as agruras da pós-graduação sugavam de mim.

Essa tese não teria sido feita sem a importante contribuição de amigos. Em espe-

cial, agradeço a Graci pelas discussões e parceria no início desse trabalho, e pelo constante

incentivo. Sou teu fã, e talvez não tenhas a real dimensão de como suas palavras foram



essenciais em alguns momentos. Agradeço à Gisell pela parceria no momento em que

a tese precisava tomar corpo. Eu não teria conseguido fazer muitos dos experimentos

sem tua ajuda. Agradeço aos amigos de trabalho no IFSUL que, ao compartilharem suas

experiências nos bastidores da pós-graduação, me ajudaram a não me sentir o pior dos

seres, e entender que o caminho não é fácil pra ninguém. Em especial, agradeço a Carol

por escutar meus desabafos, pelos conselhos, por ter se disposto a revisar os meus textos

mesmo não sendo especificamente a sua área, e por toda torcida.

Não posso deixar de agradecer aos antigos gestores do instituto onde trabalho.

Com o fim desse ciclo, mais um doutor entra para o quadro funcional da instituição.

Agradeço a carga horária média de 20 horas-aula semanais, das mais elevadas dentre todos

os campi; agradeço as regras limitantes de afastamento para docentes em probatório, que

elevaram à condição de mero devaneio o meu anseio por me afastar para concluir essa

etapa com tranquilidade. Essas situações apimentaram meu desafio, e tornam essa vitória

ainda mais saborosa. Investi todas as férias e finais de semana que pude. Concluo o

doutorado com a satisfação de ter conseguido chegar até aqui sem negligenciar nenhum

aluno que precisou de mim. Nem um sequer. Agradeço ainda aos profissionais de saúde

mental que me atenderam, e me ajudaram a transpor essa barreira.

O caminho não foi fácil. Paguei o preço por ter escolhido não adiar os planos

de construir uma família, e não me arrependo. Agradeço à minha amada esposa Marilia

por sua parceria, carinho, e amor. Ao meu filho Miguel, por iluminar até os dias mais

sombrios com sua inocência e energia. Agora posso dispor sem culpa de mais tempo para

brincar contigo, meu gurizinho! Aos meus sogros Genice e Paulo, e à minha cunhada

Milene, agradeço pelo apoio de todas as horas. Agradeço aos meus irmãos Iuri e Jonathas,

minha torcida mais fiel. Ao meu pai, de quem herdei o hábito de estudo. E, como não

poderia deixar de ser, registro aqui um agradecimento todo especial à minha mãe, Ivete.

Você foi a primeira a acreditar em mim, viveu o sonho junto comigo, e se sacrificou por

ele. Nunca me faltou. Sei o quanto tens orado por mim. O Senhor ouviu as tuas preces.

Eu te amo, minha baixinha!



ABSTRACT

The evolution of the Integrated Circuits Technology demands optimization of IC design.

Nowadays, many circuits use much more transistors than necessary as a broad set of

ASICs use a library of pre-designed cells. The small number of logic functions that a

traditional cell library provides represents an inherent limitation in the optimization of the

number of transistors in the circuit. This limitation directly influences the circuit perfor-

mance. A library free design approach is necessary to obtain optimized circuits, using

tools to allow the layout synthesis of any transistor network. The goal of this thesis is to

develop a method to optimize the logical netlist of a circuit willing to reduce the number

of transistors, connections, and vias. The optimized netlist serves as input to the layout

synthesis tool. We post-process the original netlist generated in the traditional standard

cell design flow systematically, replacing sets of cells by one new gate of equivalent logic

generated on demand to reduce the number of transistors. We merge groups of connected

combinational cells of unitary fanout into a new complex gate that is, in general, not

available in the traditional cell library. The new gate has a custom transistor network that

can be appropriately arranged and sized to fit the specific requirements of its location in

the circuit. The experiments performed so far show that our method allows about 13%

of reduction of the number of transistors in the entire circuit in comparison to netlists

generated using other logic minimization tools. We also reduce the number of instances,

contacts, and connections in the experiments we performed in 14%, 11%, and 10% on

average, respectively, when compared to the netlist generated with a leading academic

logic synthesis tool. We also investigate the impact of the proposed optimization in area

and wirelength, achieving an estimated average reduction of 5% in the area and up to

14% reduction in total wirelength. These results evidence the optimization opportunities

neglected in the standard cell design approach and show the advantages of library free

synthesis.

Keywords: EDA. Logic Synthesis. Library free. Cell clustering. Transistor network.

Transistor count. Microelectronics.



Minimizando o Número de Transistores em Redes de Transistores

RESUMO

A evolução da Tecnologia de Circuitos Integrados exige otimização do projeto do cir-

cuito. Atualmente, vários circuitos usam muito mais transistores do que o necessário,

pois um amplo conjunto de circuitos ASICs utiliza biblioteca de células pré-projetadas.

O número reduzido de funções lógicas que uma biblioteca de células tradicional fornece

representa uma limitação inerente na otimização do número de transistores no circuito,

influenciando diretamente as métricas usuais de desempenho do circuito, como área, dis-

sipação de energia e atraso. Uma abordagem de projeto livre de bibliotecas é necessária

para obter circuitos otimizados, usando ferramentas para permitir a síntese de layout de

qualquer rede de transistores. O objetivo desta tese é desenvolver um método para otimi-

zar a netlist lógica de um circuito de modo a reduzir o número de transistores, número

de conexões e número de vias. A netlist otimizada serve como entrada para a ferramenta

de síntese de layout. Nós pós-processamos a netlist original gerada no fluxo de design de

célula padrão tradicional e sistematicamente substituímos conjuntos de células por uma

nova porta com lógica equivalente, gerada sob demanda para reduzir o número de tran-

sistores. Consideramos a mesclagem de grupos de células conectadas de fanout unitário

em uma nova porta complexa que normalmente não está disponível na biblioteca de cé-

lulas tradicional. A nova porta possui uma rede de transistores personalizada que pode

ser adequadamente organizada e dimensionada para atender aos requisitos específicos de

onde ela está localizada no circuito. Os experimentos realizados até o momento mostram

que a abordagem proposta é capaz de reduzir o número de transistores em todo o circuito

em até 13 % em comparação com netlists geradas usando outras ferramentas de minimi-

zação, independentemente do tamanho da biblioteca de células padrão usada inicialmente

para sintetizar a netlist original. Também reduzimos o número de instâncias, contatos

e conexões nos experimentos realizados em 14 %, 11 % e 10 % em média, respectiva-

mente, quando comparados com a netlist gerada com uma ferramenta acadêmica líder em

síntese lógica. Investigamos também o impacto da otimização proposta na área e compri-

mento de fio, alcançando uma redução média estimada de 5 % na área e de até 14 % no

comprimento total de fio. Esses resultados evidenciam as oportunidades de otimização

negligenciadas na abordagem de projeto com células padrão, e reforçam as vantagens do

projeto livre de biblioteca.



Palavras-chave: EDA, síntese lógica, projeto livre de bibliotecas, agrupamentos de célu-

las, redes de transistores, contagem de transistores, microeletrônica.
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1 INTRODUCTION

In the last five decades, the world has experienced an increasing use of Integrated

Circuits (ICs) in many and diverse consumer applications, notable by the considerable

changes it has promoted in the way people interact with each other and with the objects.

However, far beyond the details seen from a customer’s point of view, the microelec-

tronics industry has evolved, especially the design process, as a way to maintain such an

increasing market. As presented in (RABAEY; CHANDRAKASAN; NIKOLIC, 2002),

many implementation strategies for digital ICs have been adopted, whose choice is mainly

driven by economic considerations. A taxonomy of these methodologies is presented in

Figure 1.1, divided into two main classes: custom and semi-custom methodologies.

Figure 1.1: Overview of Implementation Approaches for Digital Integrated Circuits.

Source: (MICHELI, 1994) apud (RABAEY; CHANDRAKASAN; NIKOLIC, 2002)

The custom design methodology was the most traditional and the only option in

the early days of IC design. Its main characteristics are a high design cost, a long time

to market due to the time spent drawing mainly manually each layout mask, and, on

the other hand, with a high degree of freedom to implement a layout. Due to its labor-

intensive nature, the market share of custom design reduces from year to year as the design

automation advances. Only the most performance-critical modules justify to have their

components designed manually; otherwise, a library cell-based design is mainly used.

(RABAEY; CHANDRAKASAN; NIKOLIC, 2002).
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The so-called semi-custom methodologies are alternatives centered on the reuse

of portions of previous designs, which are divided into the cell-based and array-based

design. The array-based designs reuse several mask layers of regular fabric to consider-

ably reduce costs, requiring only a limited set of extra processing steps or yet completely

eliminating the processing, saving design costs, and production time with a trade-off in

performance. Examples of them are the Gate Arrays and FPGAs, but this kind of digital

design approach is beyond the scope of this thesis. In effect, this thesis discusses some of

the main characteristics of cell-based design approaches and focuses on overcoming their

limitations by optimizing their transistor network.

1.1 A historical perspective

The physical design of integrated circuits was done only by hand, as a full cus-

tom design, till the end of the 1970s. By that time, the computer was used for drawing

circuits, performing design and verification of such circuits, but there was no tool to auto-

mate the physical design (NEWTON, 1982). It was only in 1979 that Motorola 68000 was

released, the first representative microprocessor to use regular blocks like ROMs (Read

Only Memories) and Programmable Logic Arrays (PLAs), which were the first techno-

logical endeavors to automatize the physical design (REIS, 2008).

By the year of 1982, the standard cell design had already emerged as a prominent

design methodology in which a library of custom-designed cells is used to implement

a logic function. It standardizes the design entry level at the logic gate, and has the

complexity of simple logic gates or flip-flops, besides being restricted to constant height

in order to aid packing and ease of power distribution. Unlike the array-based approaches,

standard cell layout involves the customization of all mask layers (NEWTON, 1982).

An extensive set of chip designs, mainly ASIC ones, uses a traditional standard

cell design approach. It is a well-established flow based on the use of a cell library to

implement the desired circuit, covering steps from translating a high-level description

of the circuit into a netlist of logic gates available in the cell library. Many exciting

challenges appear in the whole flow, like finding the best cell’s placement to minimize the

total wire length, ensuring that every connection of a circuit is routed through the available

metal layers without s short circuit, generating a clock tree to feed the whole circuit with

minimal skew. There are several mature EDA (Electronic Design Automation) tools that

handle these problems. However, the focus of this thesis is in the late steps of the logic
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synthesis, working on deciding which cells will be part of the final logic gate netlist.

In a traditional standard cell design flow (like the one provided by major EDA

vendors), a circuit description must fit the targeting cell library. A standard cell library

has no more than 100 different logic functions, while, for example, there are 3057 possible

logic functions with up to 4 (four) serial transistors (DETJENS et al., 1987). Therefore,

it is clear that the technology mapping phase can be a source of worsening since the

identified logic function in the early stages of logic synthesis must fit the provided limited

set of functions. As shown in Fig. 1.2, the lack of specific logic functions in a cell library

can lead to designs that use more transistors than it is needed.

Figure 1.2: Equivalent logic functions implemented with a set of basic logic gates and
using an SCCG.

Source: own authorship

In modern technologies, mainly below 65nm, the power consumption due to leak-

age current became so important as the dynamic power consumption. This characteristic

has inspired the industry to develop the FinFET and FDSOI technologies, (first introduced

to 28nm and below), in order to keep attending the increasing demand for low power and

energy-efficient devices (WEBER, 2017). However, for many applications, it is enough

to use older and cheaper technology nodes (BAMPI; REIS, 2011), where reducing power

consumption is also desired. Therefore, if we want to optimize power leakage for those

applications, it is necessary to develop new methods capable of reducing the number of

transistors needed to implement a specific function (REIS, 2011b). By allowing the use of

other logic functions rather than the ones usually available in the cell library, it is also pos-

sible to reduce the number of wires (and vias) in a circuit, which is more than welcome,

as routing is a critical step in a modern IC design.
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The simple addition of new cells to the cell library in a traditional design flow

would increase the complexity of the technology mapping algorithms; require the devel-

opment of new ones – which not necessarily would find the best solutions –; and signif-

icantly increase the Non-Recurring Expense (NRE) for the library vendor, among other

issues(MURGAI, 2015). As an alternative to the standard cell design methodology, the

library free technology mapping uses a big virtual library instead of using a physical cell

library (REIS et al., 1997)(BERKELAAR; JESS, 1988)(REIS, 1999). The logic synthesis

optimization runs using a more limited representation of the cell characteristic, and it is

assumed that any optimized logic netlist can be mapped into silicon using any network of

transistors instead of a network of gates.

In Figure 1.1, the customized networks of transistors, also referred to in the re-

lated literature as Static CMOS Complex Gate (SCCG), appears as part of the Compiled

Cells. This methodology is possible if we have access to tools that can generate the lay-

out of any network of transistors, due to the complexity of handmade layout design. That

is one of the first efforts of our research group that started in late 80’s with TRANCA

methodology. Several tools were developed in this scope, among which is ASTRAN, a

layout automation tool capable of generating a cell layout from a netlist of transistors

written in SPICE, with a quality comparable to handcrafted ones (POSSER et al., 2010)

(ZIESEMER; REIS, 2014).

Figure 1.3: Implementation Approaches for Digital Integrated Circuits, including Com-
piled Cell approach.

Adapted from:(MICHELI, 1994) apud (RABAEY; CHANDRAKASAN; NIKOLIC, 2002)
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From the taxonomic point-of-view previously shown in Figure 1.1, we can also

add the Compiled Cell approach, as the modification shown in Figure 1.3. This approach

can be seen as a mixture of Semi-custom and Custom designs methodologies, working as

an automatized full custom approach. Looking at the transistors as the building block of

a circuit enables to do continuous sizing of transistors instead of discrete sizing limited

to the few available sizes, and allows to use different logic styles and different transistor

network topologies (REIMANN; SZE; REIS, 2016; FLACH et al., 2014; POSSER et al.,

2012). These options can address each contextualized demand of the inferred transistor

arrangements of a logic function, either generated on-demand or by reuse. On the other

hand, it is still possible to use tools and techniques from the traditional physical design

steps of cell-based methodologies. Focusing on building transistor network instead of

using pre-characterized logic gates has demonstrated advantages, like a reduction of leak-

age power and delay shown in (SCARTEZZINI; REIS, 2011) mainly due to the reduction

in transistors count, as well as the possibility to explore different transistor network ar-

rangements willing to optimize leakage power as shown in (TONFAT; FLACH; REIS,

2016).

As partially shown in our previous works (CONCEIÇÃO; POSSER; REIS, 2016;

CONCEIÇÃO et al., 2017) (CONCEIÇÃO; REIS, 2019), this thesis presents in more de-

tail our cell replacement methodology willing to improve transistor networks. The netlist

resulting from a standard cell design methodology is refined through the replacement of

a set of connected combinational gates of unitary fanout by a single Static CMOS Com-

plex Gate (SCCG) of equivalent logic, focusing on the reduction of the transistor count

of the whole circuit. The reference (ROY; BHATTACHARYA; BOPPANA, 2005) is also

a related work, but the novelty of our technique relies on the reduction of transistor count

as the performance parameter.

1.2 Justification

Cell libraries usually cover a reduced number of logic functions compared to all

possible functions, which can be a primary source of de-optimization (REIS, 2011a). The

way to solve this problem is somehow to provide new functions. Ways trying to overcome

this situation can be found in literature, usually assuming that every needed gate would

be generated on demand.

Previous works attempt to circumvent this limitation by providing new cells for a
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given circuit, either by generating a custom cell library – with cells generated on demand

– for each circuit and then performing the traditional technology mapping, as proposed in

(PILATO; FERRANDI; PANDINI, 2011); or by synthesizing the circuit targeting a size-

able virtual library and then generating the gates as needed, as proposed in (REIS et al.,

1997). This latter approach has been investigated and improved over the years, but it still

faces the computational hardness for actually optimizing the whole circuit at once using

such an extensive library. Indeed, these alternatives to the traditional standard cell design

flow can lead to solutions with better parameters of design quality. As discussed in (REIS,

2011a), adding more and flexible cells allows more degrees of freedom to design the cir-

cuit, such as continuous gate sizing and different transistor arrangements. Nevertheless,

it seems practical to take advantage of the maturity of the software tools for standard cell

logic synthesis to generate an initial netlist, and only after to provide on-demand transistor

networks to optimize small portions instead of handling the whole circuit.

1.3 Goal

The main goal of this thesis is to evaluate the effectiveness of the systematic re-

placement of groups of combinational cells in a synthesized netlist by a logically equiv-

alent transistor network as a way to decrease the total number of transistors, wires, and

vias.

As underlying goals, this thesis also aims to:

• measuring how academic and commercial logic synthesis tools perform regarding

transistor count optimization parameter;

• developing an EDA tool that incorporates the proposed optimization;

• evaluating the technique regarding the number of connections and number of vias;

• estimating the impact of the proposed procedure over the length of the interconnec-

tions, circuit congestion, and the estimated area.

In more concrete terms, this thesis aims to answer the following questions regarding the

proposed method:

• How many cells of unitary fanout a netlist of a circuit usually has?

• How are cells of unitary fanout placed in a circuit? Does it depend on the place-

ment algorithm? How should be the placement algorithm to favor the proposed
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technique?

• How the choice of the first cell library influences the netlist regarding the number

of instances, wires, and transistors?

• How effective is the technique to reduce the number of transistors in a circuit?

• How much of the circuit is affected by the proposed cell merging technique?

• How it impacts the area initially occupied by the first cells? What is the impact of

the entire circuit area?

• How the technique influences the connections of the circuit?

1.4 Hypothesis

By focusing on optimizing the overall number of transistors, improvements in the

traditional quality parameters (area-power-delay) of the circuit can be achieved. We guess

that a smaller number of transistors means less area and, by consequence, less energy

spent to power the circuit. The proposed method intends to find in the circuit connected

cells of unitary fanout and replace them by a transistor network. By replacing such a

group of cells, the wires that interconnect them also vanishes, as well as their vias, thus

improving routability and reliability.

There are works suggesting designers to avoid using large standard cells for new

technologies, claiming that results in long wires, which are more susceptible to electro-

migration and antenna effects. That is debatable since we expect an overall reduction in

the area when using fewer transistors, which would approximate sink and result in shorter

wires. Also, using such cells is still a practical optimization solution for many technology

nodes still operational, and it can be applied to newer technology nodes as soon as the

researches overcome the inherent limitations in the fabrication process.

1.5 Contributions of the thesis

The main contributions of this thesis are

• A study about transistor count as quality parameter of both academic and commer-

cial tools;

• A novel approach to achieve a library free design methodology of digital design;
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• A systematic and validated procedure to reduce transistor count in a circuit; and

• A new tool for optimization of logic netlists to compose the TRANCA methodology

of our research group, to work as an input to ASTRAN layout automation tool.

We organized this thesis as follows. The second chapter discusses some basic

concepts and presents the previous related works. The third chapter focuses on to discuss

the adopted modeling and the algorithms designed in the scope of this thesis. The fourth

chapter presents a full and detailed example of the clustering and substitution procedure

that we are proposing an optimization method. The experiments we have developed in

the scope of this thesis to find answers to the hypothesis are presented in chapter five. We

conclude our discussion about transistor count as a parameter to be optimized in chapter

six.
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2 MAIN CONCEPTS AND PREVIOUS WORKS

This chapter presents the main concepts and definitions in the scope of this thesis.

It also aims to review the previous works that make the way to state of the art and helps

to characterize the innovation of this thesis.

2.1 Traditional Standard Cell Design Flow

In order to put the subjects related to this thesis proposal in a context, it is nec-

essary to start by presenting and explaining the essential steps of the VLSI circuit de-

sign flow. It is shown on Figure 2.1 an organization of the general steps as presented

in (KAHNG et al., 2011). It brings an overview of the significant steps of VLSI design

and omits verification activities that usually run in parallel with the general flow, some-

times represented as return arcs between subsequent phases and eventually has overlaps

between phases. However, the goal is to give an overview of the entire design flow, and

not to exhaust the subject in all of its details.
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Figure 2.1: The major steps in the VLSI circuit design flow.

Source: (KAHNG et al., 2011)

IIt all starts with the System Specification phase when circuit designers define the

overall goal and high-level requirements of the system. The Architectural Design phase

concerns to determine the basic architecture to meet the system specifications. The next

Functional and Logic Design phase embraces the high-level behavior and connectivity of

each module. It captures the specification of these characteristics in register-transfer level

(RTL) using a hardware description language (HDL), of which Verilog and VHDL are

the most representative examples. Logic synthesis tools are then applied to map the HDL

description of the functionality into a netlist, composed of a list of signals and specific

circuit elements such as standard cells from a given technology library, which is usually

described in liberty format.

The next phase is the Circuit Design, in which some critical low-level elements

must be designed at the transistor level, such as RAM blocks, I/O, high-speed functions

(multipliers), whose correctness of circuit-level design is predominantly verified by cir-

cuit simulation tools such as SPICE. This makes room for the Physical Design phase that

intends to instantiate the geometric representations of fixed shapes of all design compo-
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nents (cells, macros, gates, transistors, etc.) in spatial locations distributed in a flat area,

connected with appropriate routing connections done in the available metal layers.

In order to ensure correct electrical and logical functionality of the previous step,

Physical Verification is performed. As a result, layout modifications may be demanded,

which has to be minimal and careful to bring no new problems. Once all the Signoff

tasks are performed, the circuit design is ready to be sent to a foundry where it will be

manufactured, packaged, tested, and sent back as a chip. Further discussions about these

last phases are beyond the scope of this thesis.

Indeed, the design flow of the digital VLSI circuit is quite complicated. Design

decisions have to be made and will impact some of the conflicting quality parameters

of the resulting IC, such as performance, area, reliability, power dissipation, and yield

(KAHNG et al., 2011). Also, as traditional circuit design is like a cascade methodology

(therefore the cost of changes increases in late stages), it is vital to make the right decision

in early stages in order to prevent problems in the last stages, when a fix is more costly

and difficult. In other words, when optimization is done in an early stage of the design

flow, it tends to give more significant results.

2.1.1 Logic Design Phase

The main goal of this thesis is in the logic synthesis phase of the digital integrated

circuit design flow, specifically focused on the usage of compiled cells (see Figure 1.1).

Going into details of Logic Design phase, since the writing of the desired functionality

of the system into an HDL description is mostly a manual task, it matters to present the

tasks performed by the Logic Synthesis tools, which are divided into two main steps:

Technology Independent Mapping and Technology Dependent Mapping, as presented in

Figure 2.2.

Technology-independent Optimization aims to derive an optimized netlist consist-

ing of generic gates, using a general cost for design area and/or delay. This netlist serves

as input to Technology-Dependent Optimization, which uses technology information such

as the area and the delay from cells of a cell library and the design rules to derive a netlist

composed of library gates satisfying the required area and delay objectives.

Exact technology mapping is an intractable problem under most practical scenar-

ios, and a set of heuristic tasks called Postmaping Optimization is usually performed

over the mapped netlist in some subsequent phase of the circuit design flow. Postmap-
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Figure 2.2: Details of the Logic Synthesis flow.

Source: (MURGAI, 2015)

ing transformations can improve the circuit characteristics (such as delay, area, power,

routing congestion, signal integrity) before, during, or after the layout. Some examples

are Gate Resizing, Fanout Optimization/Buffering, Gate Replication, Simple Gate De-

composition/Collapsing, Resynthesis and Remapping, and Pin Permutation (MURGAI,

2015).

Gate Resizing is an in-place optimization technique that consists in selecting the

size of each gate such that some objective function is minimized without violating any

constraint, which has minimal impact on placement and route of cells that can be applied

during/after placement or post-routing when more accurate wire load and delay estimates

become available.

Fanout optimization/Buffering seeks to optimally distribute a signal from the driver

gate (source) to the fanout gates (sinks) using buffers, without violating the drive capacity
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of the source or those inserted buffers.

Like Buffering optimization, Gate Replication is a way to speeding up a design by

redistributing the fanout load. It consists of replicating a gate g into k copies, and then

partition the fanout gates of g among the k copies. It has the potential of reducing the

delay through the circuit with an area penalty and an increase in fanout of fanin gates of

g.

Simple Gate Decomposition/Collapsing refers to replace a multiple-input (at least

three inputs) gate by two or more simpler gates present in the gate library. This technique

keeps the design mapped after the transform, and works by identifying delay critical mul-

tiple input simple gates in the design and consider them for decomposition into two simple

gates (like AND, OR, NAND, NOR, XOR or XNOR gates).Reversely, there are situations

where simple gate collapsing can be done if the circuit timing or routing congestion im-

prove.

In Resynthesis and Remapping technique, the idea is to identify regions of the

design that are critical and resynthesize them using techniques such as tree height re-

duction, critical path resynthesis, logic minimization, among others. The combined cost

(such as delay and area) of the new remapped region is compared to the first region, and

a replacement is done if it has improved.

Pin permutation technique works by permuting the pins of a gate where input wires

are assigned in order to find a permutation that minimizes delay. It makes sense because

the arrival times of a pin may vary according to cell placement and wire routing for that

signal, which cannot be known a priori during logic synthesis. Pin permutation does not

disturb gate placement and affects routing minimally (only the connections to pins of the

same gate have to be permuted).

Gate resizing, Gate Collapsing, and Resynthesis/Remapping techniques relies on

a limitation: the new gate that will be used has to be available in the cell library. Those

techniques might be improved if a gate specifically designed to that demand is available.

In fact, probably the whole synthesis can benefit of an on demand cell generation, as we

intend to discuss in this thesis.

2.2 Library free technology mapping

A traditional standard cell library provides about 150 different logic functions,

with three or four different sizings each, and usually presents optimized versions for low
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power and high-performance designs (REIS, 2011a). This number is far below the num-

ber of possible functions that could be realized. It is shown in (DETJENS et al., 1987) a

discussion about the possible number of logic functions that can build up using a number

of transistors in series considering only the complementary topology of CMOS (Com-

plementary Metal Oxide Semiconductors) transistors, which is presented in table 2.1. As

it is further discussed in (SCHNEIDER, 2007), the usual number of logic cells in a cell

library can look even smaller when other transistor network arrangements are taken into

consideration.

Table 2.1: Number of possible different functions using a limited number of stacked P
and stacked N transistors.

Number of stacked PMOS transistors
Number
of
stacked
NMOS
transis-
tors

1 2 3 4 5
1 1 2 3 4 5
2 2 7 18 42 90
3 3 18 87 396 1677
4 4 42 396 3503 28435
5 5 90 1677 28435 125803

Source: (DETJENS et al., 1987)

As shown below, there are many works available in the literature that aims to relax

the limitation in the number of cells in the traditional standard cell design flow by targeting

compiled cells. The map presented in Figure 2.3 is proposed to organize such initiatives.

All of these initiatives assumes that the needed cells will be generated on demand by a

layout generator tool.

Figure 2.3: General activities of logic synthesis alternative to traditional standard cell flow

Source: own authorship
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The automatic Layout Generation itself is an essential step of the library inde-

pendent initiatives and the main focus of some related works. The ASTRAN tool is an

example, which allows automatic layout generation for technologies down to 45 nm from

its description in SPICE format, supporting the generation of any kind of transistor net-

works and continuous gate sizing (ZIESEMER; REIS, 2014). ASTRAN 1 is open-source

and the most recent layout generator tool developed in UFRGS, in an effort that started

in 1981 with TRANCA methodology, as it is well discussed in (ZIESEMER JR., 2014).

This is a quite mature open source tool that generates layout comparable to handmade

ones, and it has being applied in several works from different labs related to digital de-

sign, covering studies about gate sizing on digital designs (POSSER et al., 2010) up to

generation of asynchronous cells (ZIESEMER et al., 2014). There are also other tools,

like the commercial tool Library Creator2 from Nangate Inc.

Virtual Library Mapping refers to the initiatives that map the design to a set of

logic gates that will implement the circuit. It is very similar to traditional library mapping

but targeting a virtual library specified in fewer details than the Liberty format, usually

in a format called genlib 3 where only the logic function, the area of the cell, and each

pin load and delays are specified. The circuit is initially described in an abstract data

structure – also used as intermediary representation in traditional logic synthesis – such

as Binary Decision Diagrams (BDDs) and their variants, And-Inverter Gates (AIGs), And-

Or-Inverter Gates (AOIGs), Majority Gates, among others as it is discussed in (SILVA,

2017), and then a structural Verilog is output from the mapping phase. The works in this

approach usually targets the whole synthesis to a virtual library. This kind of approach

represents the first initiatives towards a physical design of transistor networks instead of

cells (REIS et al., 1997) (MORAES et al., 2000) (GAVRILOV et al., 1997) (JIANG;

SAPATNEKAR, 1999) (ONODERA; HASHIMOTO; HASHIMOTO, 2001) (XUE; AL-

KHALILI; ROZON, 2004) (MARQUES et al., 2007). Maybe the most representative

tools that support this kind of logic synthesis flow is the open source ABC tool, from

University of California at Berkeley4.

The Logic Network Generation is the focus of a considerable portion of the re-

lated works. Once a logic function is decided to be part of a circuit implementation, it is

necessary to implement it in a physical way. This is the goal of the works we classify in

1Available in: https://github.com/aziesemer/astran/
2More in: http://www.nangate.com
3Specification available in: https://www.ece.cmu.edu/ ee760/760docs/genlib.pdf
4Available in: https://bitbucket.org/alanmi/abc
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this category: given a logic function as input, derive a suitable transistor logic network

among the possible topologies, sizings, and logic styles. Some authors use functional

composition for factoring boolean functions regarding multi-objective goals, from which

series-parallel transistor network can be directly obtained (MARTINS et al., 2010). Oth-

ers minimize the number of transistor needed to implement a circuit by exploring non

series-parallel transistor networks and non-planar network structures (POSSANI et al.,

2016). Also, there are other works specifically tailored to generate transistor networks

for multi-output logic functions with a minimal number of transistors (KAGARIS, 2016).

There are also more recent works towards a layout aware transistor network generation,

like in (SMANIOTTO et al., 2017) and (Cardoso et al., 2018), where the network gener-

ated using the technique presented in (POSSANI et al., 2016) is improved to avoid breaks

in the diffusion wells.

In all the previous approaches for library free synthesis, no library of cells charac-

terized a priori is used. In the Netlist Rewriting approaches, an already mapped circuit is

taken as input by an additional task to the traditional design flow. The input netlist can be

generated either by a synthesis based on a traditional standard cell library or by a synthe-

sis based on a virtual library. Individual gates and/or portions in the resulting netlist are

replaced by new cells explicitly generated to the identified context. For both fronts, it is

still necessary to generate a suitable logic network for the new gates.

This idea can be found in some recent works developed in our research group. In

(GUIMARãES; PUGET; REIS, 2015), individual gates are evaluated to be replaced by

new automatically generated ones, using neural networks to decide when to perform the

replacement. The approach of replacing groups of cells can be found in other works of our

group (CONCEIÇÃO; POSSER; REIS, 2016) (CONCEIÇÃO et al., 2017) (SILVA, 2017)

(CONCEIÇÃO; REIS, 2019), where groups of interconnected cells of unitary fanout are

identified and replaced by a single and logically equivalent complex cell, as we will fur-

ther discuss in more details.

Specifically, in (SILVA, 2017), a tool called LOMGAM (Logic Minimization By

Gate Merging) was developed to investigate different parameters to decide when to stop

grouping connected gates of unitary fanout in order to replace them. Three parameters

are considered, one related to the number of stacked transistors (called QMTS), other

related to a maximal number of inverters included by the De Morgan transformations,

and a last one related to the number of cells in a logical cone (called GMI). A greedy

algorithm is implemented to apply one parameter at a time, achieving a reduction of up to
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11% in transistor count for ITC99 circuits benchmark, and showing that the best results

are achieved when QMTS parameter is used to perform clustering. It lacks the use of the

total number of transistors as a direct quality metric.

It also belongs to the Netlist Rewriting approach the work (ROY; BHATTACHARYA;

BOPPANA, 2005), in which a clustering process identifies the best candidate regions in

the design for local optimization, in a static timing analysis driven search, and then re-

place the clusters cells by new cells, which they call flex cells, created for each respective

timing contexts. The provided result is about the number of time-violating paths and the

number of instances achieved with the application of their technique. It differs from our

work by the adopted criteria to perform clustering and by the objective as our goal is to

reduce the number of transistors.

The idea of merging cells and replacing them with a new complex gate is also

applied in (GHANE; ZARANDI, 2016) to mitigate NBTI effect (Negative-bias Temper-

ature Instability) in digital circuits. It identifies NBTI susceptible nodes in critical and

non-critical paths, and then NBTI-sensitive gates – and only them – are combined to their

driver gates and replaced by a new complex gate with the same logic. The proposed

method of generating the new complex gate removes most of the PMOS transistors that

were under severe NBTI stress.

Regarding the goal of reducing the number of transistors, the work of (MATOS et

al., 2014) presents a tool to reduce the number of transistors when performing technology

mapping to a library composed only by simple cells (nand, nor, inverters, and xors cells).

Also, in (AMARÚ; GAILLARDON; MICHELI, 2013) it is presented a tool capable of

producing area-efficient results for mixed XOR-AND/OR dominated logic functions with

a two steps synthesis process, one responsible for finding in the circuit portions with

potential to optimization and the second step is the remap itself. They report a respective

reduction in the number of transistors and the number of devices of 18% and 9.2% on

average compared to the state-of-the-art academic and commercial synthesis tool.

As we discuss further in the next chapters of this thesis, we present a netlist rewrit-

ing technique based on a cell grouping and replacement method to seek optimization of

the transistor count.
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3 MODELING AND ANALYSIS OF THE ALGORITHMS

In this chapter, we provide formal modeling of the problem, and we show the

main algorithms used in this thesis, other auxiliary algorithms, as well as their analysis

of complexity. We start by presenting the basic definitions and data structures, then we

present and discuss the algorithms we developed to realize the proposed investigation of

this thesis. We finish by discussing some underlying analysis of complexity.

3.1 Definitions

Let A a generic set and |A| its size. We define D(V,E) as a directed graph (di-

graph) where V is a set of vertices and E is a set of directed edges, as declared in Defini-

tion 3.1 and Definition 3.2.

Definition 3.1. V is a nonempty set of vertices v1, v2, . . . , vn so that:

V = {vi | i ∈ [ 1, |V | ] }, V 6= ∅.

Definition 3.2. E is a set of directed edges (arcs) identified by an ordered pair of vertices

(vi, vj), so that:

E = {(vi, vj) | vi, vj ∈ V, (vi, vj) 6= (vj, vi)}

In a digraph, each ordered pair (vi, vj) ∈ E has only one direction from vi to vj ,

and we say that the arc (vi, vj) is divergent from vi and convergent to vj . We also say that

vi is the initial vertex of the arc (vi, vj), while vj is its final vertex. The input degree of

a vertex vi is the number of edges convergent to vi, while the output degree of vi is the

number of edges divergent from vi. A vertex with a null input degree is called a source,

and a vertex with a null output degree is called a sink. Consider the degree of the digraph

as the highest input/output degree of its vertices.

A tree is a particular type of graph that is connected and has no cycles. An oriented

tree, also called a root tree is a directed graph tree with a specified root vertex, such that

each non-root vertex is the initial vertex of exactly one arc, and the root is the initial vertex

of no arc (KNUTH, 1997). Therefore, for this definition, the root is a sink. The definition

of root tree is necessary to the problem we are modeling because, generally speaking, this

is the kind of structure we are interested to find in a circuit as we are modeling.
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3.2 Adopted Modeling

We represent the netlist of a circuit as a digraph. Starting from a plain netlist (a

netlist without internal modules), we can build an equivalent digraph with the procedure

shown in Algorithm 1.

Algorithm 1 Building Digraph Algorithm
1: function BUILDDIGRAPH(Netlist n)
2: let D(V,E) an empty digraph
3: V.add(new Vertex(input)) . A source vertex
4: V.add(new Vertex(output)) . A sink vertex
5: for all Gate g: n.getGates() do
6: V.add(new Vertex(g))
7: end for
8: for all Wire w: n.getNets() do
9: DRIVER← V.get(w.getDriver())

10: for all Gate g: w.getSinks() do
11: SINK← V.get(g)
12: E.add(new Edge(DRIVER,SINK))
13: end for
14: end for
15: return D(V,E)
16: end function

Notice that in the resulting digraph from Algorithm 1, all inputs in netlist are

represented by a single source vertex, while all outputs in netlist are represented as a

single sink vertex. It starts by adding a vertex for each gate from the netlist. Finally, it

adds an arc for each wire linking the two corresponding vertices of each driver and sink

gates. The direction of the edge is the same as the signal propagation in the circuit.

We are particularly interested in rooted trees that may appear in this digraph as

sub-graphs. We call it a group, which corresponds to a set of connected gates of unitary

fanout. Regarding its graph representation, a group is further defined as in Definition 3.3.

Definition 3.3. A group is a subgraphD′(V ′, E ′) ofD(V,E), where V ′ ⊂ V andE ′ ⊂ E,

for which both the connectivity and uniqueness properties are valid. We stand connectiv-

ity and uniqueness as follows:

Connectivity) For each vertex vi from V ′, exists an edge of E ′ divergent from vi

that links vi to a different vertex vj ∈ V ′. Formally:

∀vi ∈ V ′,∃(vi, vj) ∈ E ′, vj ∈ V ′, vi 6= vj

Uniqueness) The output degree of each vertex vi of V ′ is 1. That is, exists only one
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divergent edge from vi. It is also valid for output vertex, whose divergent edge connects

it to a vertex in the digraph netlist, but outside the group. Formally, it is valid that:

∀vi ∈ V ′,∃|(vi, vj) ∈ E ′

We call an input of the group an arc that is convergent to a vertex in the group, but

is divergent from a vertex outside the group. And we call the output arc the one that is

divergent from a vertex in the group but convergent to a vertex outside the group.

The root vertex of an identified group corresponds to the output vertex of a group.

It follows that a group always has only one output, which can be easily demonstrated

by contradiction. Assume that a group has more than one output gate (i.e., two root

vertices). Both root vertices are not directly connected to each other; otherwise, they

would violate the uniqueness principle. Also, no other vertex could be connected to both

outputs for the same reason. Therefore, this group, with two output vertices, would violate

the connectivity principle, as illustrated in Figure 3.1. The full edges are the internal edges

of the group, and the dotted edges connect the vertices in the group with other vertices

from the digraph netlist.

Also, a group does not contain any cycle. It also can be demonstrated by contra-

diction. Assume that a group contains a cycle. To have that cycle, a vertex vi should have

an output arc connected to another vertex that drives vi (directly or not), called a feedback

arc. In consequence, since vi has output degree 1 by definition, unless vi is an output

vertex, the group is unconnected, thus violating its definition. However, if vi is an output

edge, the feedback edge is in the last vertex of the cluster chain, so such group has either

no output, thus violating the claim that any group has always one output vertex, or vi has

two divergent edges, which violates the uniqueness principle. Figure 3.2 illustrates this

claim.

Another data structure also based on the concept of rooted trees appears in works

related to FPGA mapping minimization (CONG; DING, 1994), known as Fanout Free

Cones (FFC). This structure differs from the one we are using because the FFC structure

allows a cell with fanout bigger than one since its sink cells are inside the FFC structure.

Also, the authors adopt the notion of bounded FFC that is related to the maximum number

of inputs of a boolean function of a node, which is needed in order to fit the number of

inputs allowed by the FPGA Look Up Tables (LUTs). For the ASIC application we are

proposing, the number of stacked transistors demanded to implement the logic function

of an identified group is a more valuable parameter.
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Figure 3.1: A group has no cycle.

Source: own authorship

Algorithm 2 Extracting the function of the group
1: function BUILDFUNCTION(Group g)
2: INPUTS = g.getInputs()
3: while g.getvertices().size()>1 do
4: for all Input i: INPUTS do
5: for all Vertex v: i.getSinks() do
6: FUNCTION = v.getFunction()
7: for all Literal lit: FUNCTION.getLiterals() do
8: FUNCTION.replaceLiteral(lit, v.getInputConnectedTo(var))
9: end for

10: v.setOutput(FUNCTION)
11: end for
12: g.removeAllVertices(i.getSinks())
13: end for
14: INPUTS = g.getInputs()
15: end while
16: return FUNCTION
17: end function
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Figure 3.2: Graphic demonstration that a group has no cycles.

Source: own authorship
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Since each gate of a group corresponds to a specific boolean function, we can

compose them to find a single boolean function that represents the whole group. We

assign a literal to every input arc of the group. The function can be constructed following

the procedure shown in Algorithm 2. It works by incrementally replacing each literal

in the boolean function of the gate by the aggregate function of the gate that drives the

literal’s corresponding input, until it reaches the wires that are inputs and output for the

group.

3.3 Proposed Methodology

We wrote three main algorithms to identify groups in a digraph representation of

a netlist. We call them UNBOUNDED, BOUNDED, and OPTIMIZED procedures. The

first procedure is presented in Algorithm 3. The Unbounded algorithm is, in essence, a

breadth first search algorithm that starts with a seed, which is a gate of unitary fanout, and

generates a maximal group that is bounded by cells with fanout bigger than one. In other

words, this algorithm generates a group as large as possible. However, the new complex

gate that should be generated to replace the group of cells may not be feasible due to a

recommended limitation in the number of stacked transistors (SCHNEIDER, 2007). On

the other hand, this algorithm is quite useful in helping to set an upper bound for the

amount of optimization our technique is able to achieve.

Algorithm 3 Maximal group finding Algorithm
1: function UNBOUNDEDGROUPING(Gate seed)
2: gateQueue.add(seed)
3: while !gateQueue.allVisited() do
4: first = gateQueue.getFirst()
5: first.setVisited()
6: group.add(first)
7: for all Gate g : first.getConnectedGates() do
8: if g.getFanout() == 1 then
9: if !g.isVisited() then

10: gateQueue.add(g)
11: end if
12: end if
13: end for
14: end while
15: return group
16: end function
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Restrictions can be added to the UNBOUNDED algorithm in order to impose

limitations during the grouping procedure, resulting in the greedy BOUNDED procedure

presented in Algorithm 4. In this version, we set restrictions in the number of serial

transistors (S_LIMIT) and in the total number of transistors (T_LIMIT) the new SCCG

can have. So, for a cell of unitary fanout given as seed, the algorithm outputs a group of

cells connected to the seed whose the new complex gate that will replace them is always

feasible.

Algorithm 4 Restricted grouping Algorithm
1: function BOUNDEDGROUPING(Gate seed)
2: gateQueue.add(seed)
3: while !gateQueue.allVisited() do
4: first = gateQueue.getFirst()
5: first.setVisited()
6: temp = group
7: temp.add(first)
8: function = buildFunction(temp)
9: if function.getNumOfSerialT() > S_LIMIT then

10: continue
11: end if
12: if function.getNumOfT() > T_LIMIT then
13: continue
14: end if
15: group.add(first)
16: for all Gate g : first.getConnectedGates() do
17: if g.getFanout()!= 1 then
18: continue
19: end if
20: if g.isVisited() then
21: continue
22: end if
23: gateQueue.add(g)
24: end for
25: end while
26: return group
27: end function

On the other hand, the greedy approach adopted in Algorithm 4 presents final

solutions that are not necessarily optimized regarding the number of transistors, although

leading to SCCGs that are feasible to be implemented, as it is shown in (CONCEIÇÃO et

al., 2017). That is because different groups of connected cells can be selected to compose

a group to be replaced by a new SCCG, depending on the seed.

To illustrate the optimization demanded, Figure 3.3 shows the state space of a

problem instance with five gates, with all possible group combinations. Each group com-
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Figure 3.3: State space of a problem instance.

Source:
own authorship

bination we call a cover. The group of connected cells of unitary fanout is presented in

the center of the figure, while all the possible covers are presented in the borders. The

challenge is to select the cover that will lead to the smallest number of transistors. Each

smaller group of cells in a cover is a candidate to be replaced by a single SCCG with an

equivalent function. An ideal algorithm should consider all the state space to select the

best cover.

We designed the Algorithm 5 as part of the OPTIMIZED procedure to select

groups of cells. It presents an exhaustive routine to find all possible covers of a given

group of cells. The auxiliary procedures unite, combine, uniteCover, and combineCover

are presented in Algorithm 6. It works bottom-up recursively, applying the procedures

unite and combine to combine the set cover of each child gate with the parent gate, and

then applying the procedures uniteCovers and combineCovers on these resulting set of

covers of all children vertices to find the combinations of the subgroup rooted in the par-

ent vertex.

For a better understanding of the procedure to find all possible covers, Figure

3.4 illustrate its general behavior. The labels marked in the figure indicate the result of

the corresponding procedure. The algorithm receives as input a rooted tree (i.e., group)
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Algorithm 5 Algorithm for exhaustive generation of all covers
1: function FINDALLCOVERS(Gate root)
2: if root.isLeaf() then
3: group.add(root); . create a unitary group with root
4: cover.add(group); . the trivial cover
5: allCovers.add(cover); . only one possible cover
6: return allCovers;
7: else
8: for all Gate child : root.getChildren() do
9: childAllCovers = findAllCovers(child); . combining root with possible

covers of child
10: for all Set< Set<Gate> > childCover: childAllCovers do
11: united.add(unite(childCover, root));
12: combined.add(combine(childCover, root));
13: end for
14: if allCovers.isEmpty() then . happens for the first child
15: allCovers.addAll(united);
16: allCovers.addAll(combined);
17: end if
18: for all Set< Set<Gate> > temp: allCovers do . now combining with

combination of previous child
19: for all Set< Set<Gate> > u: united do
20: mixed.add(uniteCovers(temp, u));
21: end for
22: for all Set< Set<Gate> > c: combined do
23: mixed.add(combineCovers(temp, c, root));
24: end for
25: end for
26: allCovers = mixed;
27: end for
28: return allCovers;
29: end if
30: end function
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Algorithm 6 Auxiliary algorithms for exhaustive generation of all covers
1: function UNITE(Set< Set<Gate> > cover, Gate root)
2: group.add(root) . create a unitary group with root
3: cover.add(group) . add root’s group in the cover
4: end function
5: function COMBINE(Set< Set<Gate> > cover, Gate root)
6: for all Set<Gate> group : cover do . search in all groups in cover...
7: for all Gate g : group do . which one contains a root’s child.
8: if root.hasChild(g) then
9: group.add(root) . then add root to that group

10: return cover
11: end if
12: end for
13: end for
14: end function
15: function UNITECOVERS(Set< Set<Gate> > rootCover, Set< Set<Gate> > child-

Cover)
16: rootCover.addAll(childCover); . just unite both covers
17: return rootCover;
18: end function
19: function COMBINECOVERS(Set< Set<Gate> > rootCover, Set< Set<Gate> > child-

Cover, Gate root)
20: for all Set<Gate> groupRoot : rootCover do
21: if groupRoot.contains(root) then
22: for all Set<Gate> groupChild : childCover do
23: if groupChild.contains(root) then
24: groupRoot.addAll(groupChild)
25: combinedCover.add(groupRoot)
26: else
27: combinedCover.add(groupChild
28: end if
29: end for
30: else
31: combinedCover.add(groupRoot)
32: end if
33: end for
34: return combinedCover
35: end function
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of size 7 with output in vertex in 0 (i.e. rooted in 0). In the first loop, the algorithm

associates the trivial cover to the leave vertices 2, 3, 5 and 6. In the second loop, the

algorithm merges the covers of leave vertices with their respective parents using unite

and combine operations. So, for vertex 2 and parent 1, the possible covers are vertex 1

and 2 separated (as a result of union operation, we write 1,2), and vertex 1 and 2 as a

group (as a result of combine operation, we write 12). As the set of covers in 1 is empty,

these two covers become the partial cover of vertex 1. In the same way, the algorithm

applies the unite operation over the unitary set of covers of vertex 3 and the parent vertex

1 (resulting in cover 1,3), and then apply the combine operation over them (resulting in

cover 13). Now each partial cover must be combined with each other partial cover of 1

using uniteCover and combineCover operations, as a Cartesian product of the two sets.

We obviously eliminate repeated vertices, thus resulting in the covers 1,2,3, 13,2, 12,3

and 123. The same procedure can be extended to find all possible covers for sub-tree

rooted in node 4.

Looking at the box with the first steps of LOOP 3 in Figure 3.4, the partial covers

in orange and red show the result of unite operation over vertex 0 and the covers of sub-

trees rooted in vertex 1 and vertex 4, respectively. Then the combine operation is applied

over vertex 0 and covers of sub-trees rooted in vertex 1 and in vertex 4 to generate partial

covers in yellow and pink, respectively. The final step is to combine these covers as

expressed in the box labeled LOOP 3, to generate all possible covers for the groups, as

the algorithm achieves the root vertex 0. There are 64 possible covers for this example,

among which the best is the one that leads to the smallest total number of transistors when

their groups of cells are replaced by one new cell.

When selecting the best cover, it is also necessary to consider the number of in-

verted signals demanded by a given cover. The number of inverted signals in the new

SCCG can influence the number of transistors, since some inverting gates may have to

be inserted to guarantee the logical integrity of the replacement. We can avoid this in-

sertion by looking in the circuit for the inverted signals demanded by the new gate, or by

inverting the logic of the signal driving cells up to reach a temporal barrier. Algorithm 7

considers these issues when it takes the result of Algorithm 5 as input to identify which

cover leads to the smallest number of transistors. As we further discuss in the next sec-

tion, the number of possible covers increases exponentially with the number of vertices

in the group. Nevertheless, we demonstrate in this thesis that it still can be useful to find

optimal solutions when the number of vertices is small.
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Figure 3.4: Steps of the procedure to find all possible covers of a groups of seven con-
nected cells.

Source: own authorship

Algorithm 7 Algorithm to find best cover
1: function FINDBESTCOVER(Set< Set< Set<Gate> > > allCovers)
2: smallest =∞
3: for all Set <Set<Gate> > cover : allCovers do
4: numOfT = 0
5: for all Set<Gate> group : cover do
6: function = buildFunction(group)
7: numOfT = numOfT + function.getNumOfT()
8: for all Signal s : function.getInvertedInputs do
9: if !global.circuit.contains(s) then

10: numOfT += 2*function.getNumOfInvertedInputs()
11: end if
12: end for
13: end for
14: if numOfT < smallest then
15: smallest = numOfT
16: best = cover;
17: end if
18: end for
19: return best
20: end function
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We combine the tree UNBOUNDED, BOUNDED, and FindAllCovers procedures

into a new algorithm to group cells, which is shown in Algorithm 8. The OPTIMIZED

algorithm works by first finding the maximal group of connected gates of unitary fanout

for a given seed, and either applying the BOUNDED algorithm when the number of cells

is bigger then MAX_NODES parameter, or performing the EXHAUSTIVE algorithm

otherwise. The value of this parameter will depend on a trade-off between execution

speed and achieving better results.

Algorithm 8 Optimized algorithm for grouping cells
1: function OPTIMIZEDGROUPING
2: all = findAllUnitaryFanoutGates() . returns the set of gates of unitary fanout
3: while !all.empty() do
4: seed = all.getFirst()
5: group = unboundedGrouping(seed)
6: if group.size() <= MAX_NODES then
7: root = group.getRoot();
8: best = findBestCover(getAllCovers(root))
9: for all Set <Set<Gate> > cover : best do

10: allGroups.addAll(cover)
11: for all Set<Gate> group : cover do
12: all.removeAll(group)
13: end for
14: end for
15: else
16: group = boundedGrouping(seed)
17: allGroups.add(group)
18: all.removeAll(group)
19: end if
20: end while
21: return allGroups
22: end function

Finding the best combination can lead to a circuit that uses fewer transistors than

the set of gates it replaces in the circuit, as well as fewer wires and, consequently, fewer

vias when doing the physical design.

3.4 Analysis of Complexity

The number of combinations of a group of gates of size N with maximum input

degree equals to d is O(dN−1). That can be proved by structural induction. To start

this analysis, consider a group whose maximum input degree is two (remember that all

vertices have output degree one, by definition). Also, without loss of generality, consider
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the digraph of the cluster without the direction of its edges. That the cluster will look like

a trivial tree of size N .

Figure 3.5 shows all possible combinations in a group with up to four vertices. The

possibilities include not to group any vertex, group all vertices together, or group some

portions of them. We can notice that the number of combinations for these cases is equal

to 2N−1, where N is the number of vertices in the tree. Take this as the base step of the

demonstration.

Figure 3.5: All possible combinations of clusters with up to 4 vertices.

Source:
own authorship

As an inductive hypothesis, assume that the equation 2N−1 is also valid as a su-

perior asymptotic limit (O(2N−1)) to the number of possible combinations of vertices in

all groups up to size N . Now, consider the group of size N + 1. This additional vertex

will combine with each combination in two possible ways: either by grouping with its

adjacent cell (or group of cells) or by sticking together as a single cell without a group. In

other words, the addition of a new cell in the group will double the possible combinations.

By the inductive hypothesis, the number of combinations in a group of size N is 2N−1, so

the number of combinations in a group of size N + 1 is 2× 2N−1 = 2N

Finally, it is essential to relax the assumptions made at the beginning of the analy-

sis to include groups of input degree bigger than two. Notice that a vertex with degree d in

the group is possible to combine with as many cells as its degree. It explains the d as the

basis of the equation in the asymptotic function. Notice yet that it is a quite pessimistic
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estimation since hardly all the vertices in a cluster will have the same high degree. Despite

of this fact, the state space can be huge as the number of cells in a cluster increases.
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4 A FULL EXAMPLE OF THE PROPOSED METHOD

In this chapter, we show in detail an example of the proposed optimization per-

formed over the B02 circuit from the ITC99 benchmark, as well as some elementary

discussions about the proposed cell merging methodology.

Figure 4.1 shows the plot of the original netlist generated by a commercial synthe-

sis tool targeting a 180 nm vendor library, while its equivalent digraph view of the circuit

is in Figure 4.2. The gates in the circuit are labeled and highlighted with the same colors

as in the digraph, where light blue nodes are gates with unitary fanout, and the gray ver-

texes represent gates with fanout bigger than one or represent flip-flops. The red nodes

represent inputs and outputs of the circuit.

Figure 4.1: Plot of a netlist of B02 circuit from ITC99 benchmark

Source: own authorship

There are, in essence, four groups of connected combinational gates of unitary

fanout in this circuit: an unitary group formed by gate 17; one formed by gates 6, 9, 14,

18 and 27; a third formed by gates 7, 13 and 16; and the biggest one formed by gates 4,

8, 11, 12, 19, 20, 23, 25. Except for the unitary group, these portions of the circuit are

shown in Figure 4.3.
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Figure 4.2: Digraph of the B02 circuit netlist from ITC99 benchmark

Source: own authorship

Figure 4.3: Identified portions of connected unitary fanout gates from B02

Source: own authorship

For a given group, the corresponding equation is extracted and then minimized us-

ing boolean factoring, targeting to reduce the number of literals (MARTINS et al., 2010).
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We consider both on-set and off-set equations during minimization in order to get the ex-

pression with the smallest number of literals, as it will lead to a smaller transistor network

– the aim of this thesis. Next, we build a transistor network for this expression. Sizing

this transistor network is an important issue, but, for simplification, we keep all transistors

with the smallest size allowed by the adopted vendor technology.

The identified groups and their respective expressions derived from on-set and

off-set equations are shown in Figure 4.3 while resulting in transistor networks and their

respective SCCG representation are shown in Figure 4.4. In this example, we consider

the on-set equations for every group.

Figure 4.4: Transistor networks and their respective SCCG for the groups in B02

Source: own authorship

Notice that some of the inputs of the new gates are inverted from its first polarity.

So, in order to guarantee the logical equivalence of the resulting circuit with the original,

some options are possible to handle this situation:

• if such an inverted signal is available in the circuit, which is possible if it drives (or
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it is driven by) an inv gate, then the signal can come from there;

• if it is driven by a flipflop, so the signal can come from its inverted Q output;

• If none of the previous possibilities are true, then a new inv gate is inserted.

Another possibility would be to perform De Morgan transformations in the logic

cone that drives that signal until reaching the primary inputs or temporal barriers. How-

ever, it can be a hard computational task since the gates that drive the inputs of the group

necessarily have fanout bigger than one, and it could interfere in the polarity of other

inputs of this group and other groups in the circuit, in a cascade effect. So, we do not

perform this option.

When the new gates presented in Figure 4.4 replace the circuit portions shown in

Figure 4.3, it results in the circuit shown in Figure 4.5, where gates marked in yellow

are the new SCCGs, and the pink ones are extra inverters added to guarantee the logic

equivalence. The signal linea drives SCCG number three with both polarities so that an

inverter is inserted. The same situation occurs to the output of gate twenty-nine, but in

this case, no inverter is necessary since its input is used. Similar situations occur when

replacing the other SCCGs, and new inverters are added only when it is strictly necessary.

Figure 4.5: Circuit after proposed transformations

Source: own authorship

It is also necessary to notice that inverters are demanded to negate some signals

in the original circuit. In Figure 4.6 it is shown the digraphs of the circuit before and
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after the optimization procedures described, where yellow vertexes are SCCGs, and pink

vertexes are extra inverters that were added.

Figure 4.6: A digraph of a circuit before (left) and after (right) the merging procedure
being applied

Source: own authorship

The group substitutions made for this final circuit not necessarily are the best

choices to lead them to a minimal amount of transistors. It was not the case in this simple

example, but replacing the whole group of cells by a single gate may lead to a network

with an undesirable structure, for instance, with more than four stacked transistors. Also,

it is possible that merging and replacing subsets of the maximal group instead of merging

and replacing the whole group can lead to a solution with fewer transistors, since the

number of demanded inverters due to inverted inputs influences the total transistor count.

Nevertheless, by doing the substitutions shown, the transistor count in the whole

circuit is reduced by 21%, and the number of wires segments is reduced by 32%. Notice

that all the remaining wires and cells in the circuit remain untouched. The proposed

optimization procedure enables the exploration of distinct transistor arrangements and

different layouts, as exemplified in Figure 4.7. The optimization opportunity is dependent

on an efficient layout generator tool to make the exploration feasible during design time.

These explorations are beyond the scope of this thesis, however.
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Figure 4.7: Example of layouts automatically generated from distinct transistor arrange-
ments for the same function.

Source: own authorship
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5 EXPERIMENTS AND RESULTS

We organize the set of experiments and results done by us into six sections. The

first aims to describe the setup of the experiments we perform in order to make the as-

sumptions clear and help those who want to reproduce them. The second group corre-

sponds to a preliminary analysis, focusing on studying the potential impact of the ap-

plication of our technique. The third one focuses on evaluating the proposed technique

regarding the parameters we want to optimize, in the broader scope of the feasibility of

the proposal. In the fourth one, we compare the algorithms we proposed, collecting and

presenting results about the parameters we optimize. The fifth section aims to evaluate

the gains in physical synthesis, showing estimations of the impact of our technique over

area and connectivity. In the sixth section, we compare our technique with other similar

works regarding the performance parameters we have adopted.

The experiments presented here were performed using our EDA tool developed

to support this thesis. The tool was developed in C++ and used external libraries like

the API (Application Program Interface) from ABC to perform some minor logic trans-

formations; the Open Source Liberty parser from E-Tools; and an open-source Verilog

parser1 developed with flex and YACC; besides other reading, converting and writing

tools we wrote for genlib, eqn and SPICE file formats. Figure 5.1 summarized the whole

automatic procedure as it is implemented in this thesis proposal.

5.1 Setup of the experiments

The experiments presented in this chapter used cell libraries in genlib format2,

whose contents we describe as follows. These libraries appear in the related literature, and

they are also available in the ABC download package. We sort the libraries by the number

of logic functions, and we can roughly say that each library contains all the functions of

its predecessor.

• minimal.genlib: logic0, logic1, inv1, nand2, nor2 (5 logic functions);

• nand-nor.genlib: logic0, logic1, inv1, nand2, nand3, nand4, nor2, nor3, nor4 (9

logic functions);

• 22.genlib: logic0, logic1, inv1, nand2, nor2, aoi21, oai21, oai22, aoi22 (9 logic

1Available in https://github.com/ben-marshall/verilog-parser
2Specification available in https://www.ece.cmu.edu/ ee760/760docs/genlib.pdf
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Figure 5.1: General steps, intermediary files, data structures, and outputs of the proposed
method

Source: own authorship

functions);

• 33.genlib: logic0, logic1, and all possible functions using up to 3 (three) stacked

transistors (89 logic functions);

• 44.genlib: logic0, logic1, and all possible functions using up to 4 (four) stacked

transistors (3505 logic functions);

Besides those libraries, we use cadence.genlib library, which contains the set of

gates from Cadence Design Systems generic library. We wrote a Liberty counterpart for

all libraries previously mentioned based on the Nangate Open Cell Library 45 nm (we

refer as NOCL45nm) functional liberty file, by keeping in the new liberty file the cell

declaration of the minimum size for each logic function in the related .genlib, together

with one declaration of a D type flip-flop. Also, an additional .genlib file was written

for the library NOCL45nm, containing only its combinational cells (90 cells, 33 logic

functions) except for the arithmetic ones, since .genlib format does not support cells with

two outputs.

The circuits B01 to B12 from ITC99 benchmark3 were selected to perform the

proposed experiments. We choose this benchmark due to the small sizes of the circuits,

3Available in <https://github.com/squillero/itc99-poli>

https://github.com/squillero/itc99-poli
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to favor a more detailed analysis. The description of each circuit is in Table 5.1. Unless

it is explicitly mentioned, every input netlist is generated using ABC logic synthesis tool

using the following steps:

• read the target library file in genlib format using the command read_library;

• read the circuit description in bench format as provided in the benchmark repository

using the command read;

• synthesize the circuit using the command resyn;

• map to the cell library using the command map -s;

• perform the command fraig_sweep to identify functionally equivalent nodes and

reduce the AIG representation;

• repeat the last two steps 10 times in order to incrementally have better results from

ABC tool;

• export the result to structural Verilog format using the command write.

The Verilog file serves as input to our tool, together with the library in .lib format.

It is necessary to highlight that ABC tool reports a structural netlist with a behavioral

block always sensible to the rising edge of the clock signal, and therefore our structural

Verilog parser replaces each signal assignment on it by an instance of a D type flip-flop.

Table 5.1: Description of ITC99 circuits

Name ORIGINAL FUNCTIONALITY
B01 FSM that compares serial flows
B02 FSM that recognizes BCD numbers
B03 Resource arbiter
B04 Compute min and max
B05 Elaborate the contents of a memory
B06 Interrupt handler
B07 Count points on a straight line
B08 Find inclusions in sequences of numbers
B09 Serial to serial converter
B10 Voting system
B11 Scramble string with variable cipher
B12 1-player game (guess a sequence)

Source: Benchmark git repository4.
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5.2 Preliminary analysis

The set of experiments presented in this section aim to evaluate the general char-

acteristics of the circuits and tools as they are submitted to the general design flow. We

analyze the usual number of unitary fanout gates in a circuit, and how this number behaves

as the size of the circuit increases.

5.2.1 Regarding cells of unitary fanout in a standard cell circuit

We want to answer some questions about the characteristics of circuits generated

using traditional standard cell design flow, regarding the cells of unitary fanout. More

specifically, we want to answer: how many cells of unitary fanout are in a circuit? How

are they placed in a circuit? Does it depends on the cell placement tools?

How many cells of unitary fanout?

We analyze the profile of all circuits available in IWLS 2005 Benchmark (AL-

BRECHT, 2005) to count the number of cells with unitary fanout. We show in Figure 5.2

the characteristics of each circuit organized by the number of cells.

The average number of cells with unitary fanout in the circuits is over 58%. As

we can see, the trend line shown in red indicates that this number tends to increase when

bigger circuits are considered, showing that our approach has the potential to affect most

cells of the circuit.

How cells of unitary fanout are placed?

In this experiment, we compare the relative distance of two kinds of intercon-

nections: the distance between pairs of cells both with unitary fanout, and the distance

between pairs of cells whose fanout of one of them is bigger than one. We use the place-

ment results of three different types of placement tools as defined in (MARKOV; HU;

KIM, 2015). We take the (x,y) position of each cell as reported in .pl file from book-

shelf format generated by the tools and calculate their euclidean distance. We use Dragon

(a simulated annealing based placement tool), Capo (a min-cut placement tool), and a

NTUPlace3 (an analytic placement tool based on non-linear optimization).

The plots of the distribution of wirelengths of nets linking two cells of unitary
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Figure 5.2: Unitary fanout cells count in circuits from ITC99, Opencores and Gaisler
benchmarks

Source: own authorship

Table 5.2: Average distance between cells from B01 to B12 circuit according to placement
done with Dragon, Capo and NTUPlace, divided into average distances between two cells
of unitary fanout (D1) and average distances between two other cells (DN)

Ckt Dragon 3.01 Capo 10.5 NTUplace3-LE
D1

(µm)
DN

(µm) % D1
(µm)

DN
(µm)) % D1

(µm)
DN

(µm) %

b01 2,18 3,41 56,5 1,48 2,99 101,8 2,60 3,73 43,3
b02 1,75 2,69 53,7 2,27 2,96 30,2 3,27 3,85 17,8
b03 2,06 4,65 125,9 1,79 3,76 110,0 2,39 4,55 90,7
b04 2,74 5,71 108,6 2,52 5,62 122,8 2,31 6,76 191,8
b05 2,06 4,24 105,6 2,10 4,44 111,7 2,18 4,68 114,5
b06 2,66 3,51 32,2 1,87 2,50 33,4 3,09 3,59 16,4
b07 2,78 5,62 102,2 2,30 4,80 109,1 2,01 5,73 184,7
b08 2,36 4,13 74,8 2,28 3,63 59,3 2,22 4,52 103,7
b09 2,03 4,77 134,5 1,93 4,13 113,4 2,39 4,72 97,1
b10 2,60 4,24 63,5 2,33 4,31 84,6 2,71 4,68 72,3
b11 2,84 5,60 97,4 2,60 5,28 103,5 2,42 6,13 153,4
b12 2,94 6,08 107,0 2,69 5,90 119,2 3,13 6,36 103,3

Average 2,42 4,55 88,5 2,18 4,19 91,6 2,56 4,94 99,1
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fanout (D1) and the wirelengths of the other nets (DN) according to placement done with

three different types of placer tools are presented in Figure 5.3, Figure 5.4 and Figure 5.5,

respectively. We can see that the wires linking cells of unitary fanout (qty_1) are shorter

than the other cells in the circuit (qty_n), meaning that these cells are likely to be neat

each other no matter which of the three kinds of the selected placement tool is used.

In Table 5.2.1, we show that the average distance between two cells of unitary

fanout is almost half the average distance between two other cells. It means that our

proposed approach tends to merge cells that would be placed together, thus smoothing the

influence of our method over the total wirelength.

5.2.2 About the choice of initial cell library

Here we are interested in knowing how the choice of the first cell library influences

the netlists regarding the quality parameters we adopted as goals in this thesis.

How it influences the number of instances, wires, and transistors?

We synthesized the circuits from the ITC99 benchmark using the logic synthesis

tool ABC from Berkeley, targeting the cell libraries specified at the beginning of this chap-

ter. We aim to evaluate the characteristics of the generated netlists regarding instances,

wires, and transistors.

In Figure 5.6, it is shown a plot of the average number of transistors, wires, and

instances of the ITC99 benchmark circuits as a function of the mentioned cell libraries

ordered by the number of logic functions available. As the genlib format only has the

logic function of the gates, we considered the number of transistors as twice the number

of inputs in the function.

We can see that the ABC tool tries to minimize the number of instances in the final

netlist, which indeed decreases considerably as the number of available logic functions

increases. The number of wire segments and the number of transistors also decreases, but

at a lower rate.
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Figure 5.3: Plot of the distribution of net length estimation divided into nets linking two
unitary fanout cells and other nets from circuit B01 to B12, according to Dragon placer.

Source: own authorship
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Figure 5.4: Plot of the distribution of net length estimation divided into nets linking two
unitary fanout cells and other nets from circuit B01 to B12, according to Capo placer.

Source: own authorship



61

Figure 5.5: Plot of the distribution of net length estimation divided into nets linking two
unitary fanout cells and other nets from circuit B01 to B12, according to NTU placer.

Source: own authorship
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Figure 5.6: Plot of the number of instances, wires segments, and transistors found in aver-
age on circuits from ITC99 benchmark synthesized to cell libraries of increasing number
of cells, normalized by the counting in netlists generated targeting minimal.genlib.

Source: own authorship
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5.3 Evaluating the proposed algorithms

This section is about the analysis of the proposed technique, covering its potential

of improvement of a circuit netlist in terms of transistors, wires, and instances count, and

at which circumstances it performs better. We apply the algorithms presented in Chapter

3 in different scenarios using the ITC99 benchmark of small circuits in order to construct

a deeper understanding of how our technique works.

5.3.1 UNBOUNDED algorithm

Despite being naive from a practical point-of-view, as mentioned in Chapter 3 of

this thesis, the UNBOUNDED algorithm (Algorithm 3) can be valuable to establish an

upper bound for the optimization that our technique can provide. Here we evaluate how

our technique behaves for different input netlists generated to target different cell libraries

using ABC tool.

How many optimizations the cell merging technique can provide?

In our post-processing method, the new cell will replace a group of connected

cells only if it needs fewer transistors than the original group of cells so that the whole

circuit remains with the same number of transistors in the worst scenario after applying

our technique. The first result set is shown in Figure 5.7, where the data is normalized by

the average number of transistors in the synthesis of the ITC99 benchmark circuits to the

smallest library.

As can be seen, the results in transistor count are almost the same independently of

the initial library. So, we can say that our technique can reduce the number of transistors

regardless of the size of the initial library used as a target for the input netlist, which can

save computational effort spent when considering bigger libraries.

The previous analysis indicates that our proposed technique may be a better way to

provide more logic functions in a library free effort, then when performing logic synthesis

with ABC targeting a big virtual library. To confirm this claim, we counted the number

of instances obtained before and after the application of the optimization procedure we

propose. We show a plot of these results in Figure 5.8. As we can notice, the average

number of instances after the application of the technique remains almost constant even
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Figure 5.7: Plot of the average number of transistors before and after the application of
the proposed merging technique over ITC99 benchmark circuits synthesized to different
libraries, normalized by minimal.genlib average before values.

Source: own authorship
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though the size of the initial targeting library differs. Therefore, we can say that our

proposed optimization technique is library free so that it could take as input a technology

independent netlist.

Figure 5.8: Plot of the average number of instances before and after the application of
the proposed merging technique over ITC99 benchmark circuits synthesized to different
libraries, normalized by minimal.genlib average before values.

Source: own authorship

It is important to remember, however, that those results were obtained by applying

the UNBOUNDED algorithm, a greedy version of our merging technique that has many

practical problems, as it was already discussed. Nevertheless, it gives a good indication

that our technique may generate results as good as a leading academic logic synthesis tool

in terms of the number of instances, but with a smaller number of transistors.

What are the limitations of adopting the UNBOUNDED algorithm?

From the experiments presented so far, we can say that our approach has the po-

tential to generate a circuit with fewer transistors than a synthesis targeting an extensive

library, but keeping an equivalent number of instances. However, the results of the UN-

BOUNDED merging algorithm cannot be considered in practice. The chart in Figure 5.9
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presents a plot with the size of the biggest and the smallest group of cells replaced, the

maximum number of serial transistors and the maximum transistor count in a new cell for

input circuits initially synthesized to cadence.genlib using ABC. We can see that it leads

to new gates with unfeasible parameters, like 32 serial transistors for the B12 circuit.

Figure 5.9: Plot of biggest and smallest group of cells, maximum transistor count and
transistors in series, and circuit size of each circuit after using UNBOUNDED algorithm

Source: own authorship

5.3.2 BOUNDED algorithm

The UNBOUNDED algorithm has greedy behavior that merges all cells in every

maximal group to generate a single complex cell to replace them. By neglecting the

recommended number of stacked transistors and avoiding to insert new inverters to assure

logic equivalence, it assumes the best scenario in every gate replacement promoted by our

technique. Therefore, we use the results of this algorithm to present the optimization limit

we can provide.

The goal of these experiments is to evaluate the proposed merging methodology

using a feasible way to generate new cells, aiming to avoid the undesired cells resulting
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from the unbounded algorithm. In this way, the BOUNDED procedure is applied, which

was presented in Algorithm 4.

This BOUNDED algorithm adds limitations in the total number of transistors

and in the number of serial transistors of the resulting new cell as a condition to keep

merging cells of the original netlist. Therefore, two constraints to the previous merging

method are implemented as conditional statements: the limiting number of serial tran-

sistors (S_LIMIT parameter) – in both pull up and pull down –, and the total number of

transistors (T_LIMIT parameter).

Such modifications in the initial algorithm still lead to a greedy solution, as it

starts from a seed and explores the neighborhood looking for connected cells of unitary

fanout, making a local decision of merging the neighbor cell, and it does not backtrack. It

still does not delivers optimal cell grouping in terms of transistor count, but it is fast and

sufficient to bring realistic new cells as a result of the proposed merging process.

The general procedure must guarantee logical equivalence between the transfor-

mations. In this sense, when an input of the new cell is inverted, the procedure must

search the circuit looking for that inverted signal. If it is not present, additional inverters

have to be inserted, and its transistors are taken into account when deciding whether to

replace the original group of cells by the new one.

In the results presented herein, the merging technique was applied with the new

cells limited to 4 serial transistors and 12 transistors in total. The ITC99 circuits were

synthesized with the ABC logic synthesis tool. The libraries nocl45nm.genlib and ca-

dence.genlib were chosen as a target due to having a more practical set of functions among

the libraries adopted in this thesis. Both library files were updated with the parameters

the genlib format supports extracted from the NOCL liberty file.

Figure 5.10 shows a plot with the compared values of transistor count in two

netlists. Notice that we always reduce the number of transistors, 3.3% for nocl45nm

library, and 1.9% for cadence library. As expected, we observe a smaller reduction in the

number of transistors when compared to the BOUNDED algorithm due to the imposed

restrictions. Also, in the chart shown in Figure 5.11, we can see an average reduction of

15% for the netlist synthesized to nocl45nm library and 9% for the netlist generated to

cadence library. We reduce the number of instances in both netlists, even considering the

insertion of inverters to assure logic equivalence.

In Figure 5.12 and in Figure 5.13, we show a comparison between the count of

wire segment and contacts before and after the application of BOUNDED algorithm for
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Figure 5.10: Plot of the number of transistors before and after the application of the
BOUNDED algorithm over ITC99 benchmark circuits synthesized to nocl45nm.genlib
and cadence.genlib libraries, detailed by circuit, normalized by nocl45nm.genlib before
values

Source: own authorship

Figure 5.11: Plot of the number of instances before and after the application of the
BOUNDED algorithm over ITC99 benchmark circuits synthesized to nocl45nm.genlib
and cadence.genlib libraries, detailed by circuit, normalized by nocl45nm.genlib before
values

Source: own authorship
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gate merging, respectively. We can observe an average reduction in the number of wires

and in the number of contacts of about 17% in both netlists, with a respective peak of 31%

and 23% in the case of circuit b09. These decreases can impact routability and area, since

fewer contacts mean fewer vias, whose area represents a portion of the total circuit area.

Figure 5.12: Plot of the number of wire segments before and after the application of the
BOUNDED algorithm over ITC99 benchmark circuits synthesized to nocl45nm.genlib
and cadence.genlib libraries, detailed by circuit, normalized by nocl45nm.genlib before
values.

Source: own authorship

Another relevant parameter to observe is the number of inverted inputs the new

cells have and the number of inverters that were inserted due to lack of the demanded

signal in the circuit. We show in Figure 5.14 the proportion between these two data. We

apply the heuristics presented in the previous chapter to find those signals in the circuit,

so that we can avoid inserting a new inverter in 90% of the cases for nocl45nm netlists

and 88% for cadence netlists, in average.

5.4 Comparing the BOUNDED and OPTIMIZED Algorithm

As discussed in Chapter 3, the BOUNDED algorithm is not optimal in terms of

the number of transistors. Then it presents the OPTIMIZED algorithm that combines the
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Figure 5.13: Plot of the number of contacts before and after the application of the
BOUNDED algorithm over ITC99 benchmark circuits synthesized to nocl45nm.genlib
and cadence.genlib libraries, detailed by circuit, normalized by nocl45nm.genlib before
values.

Source: own authorship

Figure 5.14: Plots of the ratio between inverted signals found in the circuit and inverter
insertion demanded by the SCCGs in the ITC99 benchmark circuits initially synthesized
to NOCL45nm.genlib (left) and to cadence.genlib (right)

Source: own authorship
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UNBOUNDED algorithm to find the whole group of connected cells, and then it explores

all possible grouping to find the one that demands the smallest number of transistors.

As the number of possible grouping increases exponentially, we set a limit for the size

of the group of connected cells (MAX_NODES) in which the algorithm will explore

all possibilities. For groups of connected cells bigger than this limit, the OPTIMIZED

algorithm uses the BOUNDED algorithm in order to save execution time.

In this experiment, we apply algorithms BOUNDED and OPTIMIZED over the

netlist B01 to B12 initially synthesized using ABC targeting the nocl45nm.genlib library.

The goal is to compare the algorithms, and show that the OPTIMIZED algorithm achieves

results more near to the limit we achieved by applying the UNBOUNDED algorithm over

the same set of the netlist.

We compare the algorithms taking as reference values the results from UNBOUNDED

algorithm. We set the OPTIMAL algorithm to take ten as the maximum number of cells

in the identified group of connected cells to perform the exhaustive searching for all possi-

ble groups. The number was arbitrarily chosen to ensure an efficient execution time in the

computer hardware available to run the experiments. We vary for both algorithms from 8,

10, 12, 14, and 16 as the limiting number of transistors the new cells could have, and we

set 4 as the maximum number of serial transistors allowed in the pull-up and pull-down

of the new cells. We discard any possible new gate whose parameters are beyond these

values.

5.4.1 Transistor count

Table 5.3 shows details about transistor count improvements achieved with both

algorithms for these parameters. We can see that the OPTIMIZED algorithm always leads

to smaller transistor count than the BOUNDED algorithm, in some cases achieving values

very close or equal to the reference values. For all scenarios, the resulting number of

transistors is equal or smaller than the original count since we only replace cells when the

new one demands a smaller number of transistors, including the inverters it may demand.

As we can observe better in Figure 5.15, both algorithms achieve a more signif-

icant decrease in the total number of transistors when bigger cells are allowed. Also,

we can see that the reduction in transistor count obtained with OPTIMIZED algorithm is

necessarily incremental as we increase the maximum number of transistors allowed for

the new cells. The same observation is valid for BOUNDED algorithm in most cases, but
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its non-optimal grouping becomes evident in circuits b01, b04, and b08 where, for some

values, allowing bigger cells lead to more soft reductions in transistor count.

Figure 5.15: Variation in transistor count in each circuit with bounded method (left) and
optimal method (right), compared to the reference value (middle).

Source: own authorship

Table 5.3: Transistor count Variation (%), comparing BOUNDED and OPTIMIZED al-
gorithms.

Original
Count

BOUNDED Algorithm OPTIMIZED Algorithm
CKT 8T 10T 12T 14T 16T 8T 10T 12T 14T 16T
b01 292 0 -0,7 0 -2,1 -2,1 0,0 -1,4 -1,4 -3,4 -3,4
b02 192 0 0 -2,1 -4,2 -4,2 0,0 -1,0 -3,1 -4,2 -4,2
b03 1.414 -1,3 -1,3 -1,8 -2,5 -3,1 -1,3 -2,0 -3,5 -3,8 -4,1
b04 3.916 -0,7 -1 -1,1 -1,6 -1,4 -0,9 -1,6 -2,2 -2,4 -2,7
b05 3.078 -0,9 -1,1 -1,2 -1,9 -2 -1,4 -2,3 -2,7 -3,3 -3,4
b06 428 0 0 0 -0,9 -0,9 -0,5 -0,9 -0,9 -1,9 -1,9
b07 2.766 -0,1 -0,1 -0,1 -0,2 -0,2 -0,6 -0,8 -1,5 -1,6 -1,6
b08 1.212 -0,5 -1,5 -1,3 -2,1 -2,5 -1,5 -2,3 -2,8 -3,5 -3,8
b09 1.336 -1,6 -1,8 -1,8 -1,8 -1,8 -1,6 -1,8 -2,4 -2,8 -3,0
b10 1.174 -1,7 -1,9 -2 -2,7 -3,7 -1,9 -2,4 -3,4 -5,1 -5,8
b11 2.780 -0,5 -1 -1,1 -1,7 -2,1 -0,9 -1,7 -2,3 -2,9 -3,3
b12 7.302 -0,9 -1,1 -1,2 -1,5 -1,9 -1,0 -1,3 -1,9 -2,4 -3,1

AVG. 2.158 -0,7 -1,0 -1,1 -1,9 -2,2 -1,0 -1,6 -2,4 -3,1 -3,4
Source: own authorship
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5.4.2 Instance count

We are also interested to see how the algorithms behave regarding the number of

instances. Table 5.4 shows the original number of instances in the input netlists generated

by ABC targeting the nocl45nm library. It shows an average reduction of 14.3% from

the transistor count of the initial netlist with the OPTIMIZED algorithm with new cells

up 16 transistors, which is quite close to the reference value of 16%. The data is also

represented graphically in Figure 5.16. Although we achieve the reference reduction with

both algorithms for B02 circuit, the results achieved with OPTIMIZED algorithm are

closer the reference value for most circuits.

Figure 5.16: Variation in instance count in each circuit with bounded method (left) and
optimal method (right), compared to the reference value (middle).

Source: own authorship

Another interesting data we want to evaluate is how our technique behaves re-

garding transistor count when compared to netlist generated using ABC synthesized to

its largest virtual cell library, the 44.genlib. The Table 5.5 presents this counting, ap-

plying our OPTIMIZED algorithm set to 16 transistors as a maximum in the new cell

to two initial netlists generated with ABC, one targeting 44.genlib and the other target-

ing nocl45nm.genlib. As it can be noticed, our technique minimizes transistor count in

both cases and achieves the best results when the input netlist is generated targeting the
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Table 5.4: Instance count variation (%), comparing BOUNDED and OPTIMIZED algo-
rithms.

Original
Count

BOUNDED Algorithm OPTIMIZED Algorithm
CKT 8T 10T 12T 14T 16T 8T 10T 12T 14T 16T
b01 29 0,0 0,0 0,0 -10,3 -10,3 0,0 -6,9 -6,9 -17,2 -17,2
b02 17 0,0 0,0 -5,9 -17,6 -17,6 0,0 -5,9 -11,8 -17,6 -17,6
b03 116 -6,9 -6,9 -7,8 -11,2 -14,7 -6,9 -11,2 -17,2 -19,0 -20,7
b04 359 -3,3 -4,7 -5,0 -8,1 -6,4 -4,7 -7,8 -11,4 -12,3 -13,4
b05 417 -1,9 -1,9 -2,4 -3,8 -4,3 -3,6 -6,0 -7,2 -8,4 -8,9
b06 40 0,0 0,0 0,0 -5,0 -5,0 -2,5 -5,0 -5,0 -10,0 -10,0
b07 272 -0,7 -0,7 -0,7 -1,1 -1,1 -2,9 -4,0 -7,7 -8,1 -8,1
b08 114 -2,6 -6,1 -6,1 -9,6 -11,4 -7,0 -10,5 -14,0 -16,7 -18,4
b09 112 -9,8 -10,7 -10,7 -10,7 -10,7 -9,8 -10,7 -14,3 -17,0 -17,9
b10 130 -7,7 -8,5 -8,5 -9,2 -13,8 -8,5 -10,8 -12,3 -15,4 -18,5
b11 341 -2,1 -3,2 -3,2 -5,0 -5,6 -3,8 -5,9 -7,9 -9,7 -10,0
b12 778 -4,0 -4,4 -4,5 -5,4 -6,7 -4,2 -5,4 -8,1 -8,9 -11,3

AVG. 227 -3,3 -3,9 -4,6 -8,1 -9,0 -4,5 -7,5 -10,3 -13,3 -14,3
Source: own authorship

smallest netlist.

Table 5.5: Transistor count achieved with OPTMIZED algorithm limiting new gates to 16
transistors, compared to netlists generated by ABC

Ckt
44.genlib nocl45nm.genlib

ABC OPT (16T) % runtime ABC OPT
(16T) % runtime

B01 158 152 -3,80 00:00:05 144 134 -6,94 00:00:06
B02 78 72 -7,69 00:00:02 76 72 -5,26 00:00:01
B04 2048 1944 -5,08 00:02:50 1868 1.766 -5,46 00:01:21
B05 2066 1972 -4,55 00:00:35 2004 1.924 -3,99 00:03:36
B06 180 170 -5,56 00:00:03 176 168 -4,55 00:00:02
B07 1488 1400 -5,91 00:00:25 1326 1.282 -3,32 00:00:17
B08 584 542 -7,19 00:02:45 576 530 -7,99 00:00:23
B09 548 484 -11,68 00:00:18 504 466 -7,54 00:00:11
B10 668 634 -5,09 00:00:22 605 600 -0,83 00:00:48
B11 1908 1812 -5,03 00:12:23 1748 1.672 -4,35 00:13:13
B12 3846 3628 -5,67 00:09:25 3762 3.596 -4,41 00:06:14
AVG 1233,8 1164,5 -6,1 00:02:55 1337,6 1279,8 -5,0 00:02:37

In the results of both libraries shown in Table 5.5, the average runtime was about

2 minutes in a notebook Intel i7 with 8GB of RAM, running Ubuntu 18.04 for x86_64 ar-

chitecture. Although a short time, we can see it tends to increase when considering bigger
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circuits. We identify as necessary future work to reduce the runtime of the algorithm.

5.4.3 Net and Contact count

Although using transistor count as a performance parameter, the solution we pro-

pose can achieve desirable results, verifiable by comparing the netlists before and after

its application. So, in the following charts and tables, we present a comparison of the

net count, contact count, and wire segment count achieved with both algorithms. Reduc-

ing these parameters is an apparent secondary gain of reducing transistor count. As we

can see, in all parameters, the best results are achieved using the OPTIMIZED algorithm,

which is incrementally better when we increase the maximum number of transistors al-

lowed in the new cells.

By looking at Figure 5.17 and Table 5.6, we see that we achieve an average re-

duction of 15% in the number of contacts in the circuit, with a maximum of 28% and

a minimal of 6%. These values are 75% of the reduction limit established by the UN-

BOUNDED algorithm. Reducing the number of contacts also means fewer vias in the

final layout, whose area in the final layout is not negligible.

Figure 5.17: Variation in contact count in each circuit with bounded method (left) and
optimal method (right), compared to the reference value (middle).

Source: own authorship
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Table 5.6: Contact count variation (%), comparing BOUNDED and OPTIMIZED algo-
rithms.

Count BOUNDED Algorithm OPTIMIZED Algorithm
CKT 8T 10T 12T 14T 16T 8T 10T 12T 14T 16T
b01 87 -1,1 -1,1 -1,1 -10,3 -10,3 -2,3 -5,7 -8,0 -16,1 -16,1
b02 47 0 0 -4,3 -12,8 -12,8 0,0 -4,3 -8,5 -12,8 -12,8
b03 350 -4,9 -6,3 -6,9 -8,9 -11,1 -4,9 -7,7 -12,0 -13,1 -13,7
b04 1.108 -2,4 -3,4 -4 -6,1 -5,2 -3,2 -5,2 -7,9 -8,8 -9,5
b05 1.307 -1,5 -2 -2,4 -3,9 -4,3 -3,1 -5,1 -6,2 -7,3 -7,9
b06 112 -0,9 -0,9 -0,9 -4,5 -4,5 -2,7 -5,4 -5,4 -8,0 -8,0
b07 866 -0,7 -0,7 -0,7 -1,2 -1,2 -2,4 -3,3 -5,8 -6,2 -6,2
b08 357 -1,7 -3,9 -4,8 -8,1 -9,5 -4,8 -7,8 -12,3 -14,3 -15,1
b09 335 -6,6 -7,2 -7,5 -7,5 -7,5 -6,6 -7,2 -9,6 -12,2 -12,8
b10 401 -5,7 -6,7 -6,5 -8 -12,2 -6,2 -8,5 -9,5 -13,0 -15,7
b11 1.139 -1,3 -2,1 -2,1 -4 -5,1 -2,7 -4,1 -6,0 -7,6 -8,7
b12 2.488 -2,6 -3 -3,2 -3,9 -4,9 -2,8 -3,7 -5,8 -6,3 -8,0

AVG. 716 -2,5 -3,1 -3,7 -6,6 -7,4 -3,5 -5,7 -8,1 -10,5 -11,2
Source: own authorship

By applying the proposed merging technique, we can also have an average reduc-

tion in the number of nets and wire segments, respectively, in 21% and 12%. Figure 5.19

and Figure 5.18 exhibit graphically the data about net and wire segment count, while de-

tails are shown in Table 5.8 and Table 5.7, respectively. The number of nets decreases

more significantly because the right focus of our technique is in the nets with only one

segment. Again, the OPTIMIZED algorithm achieves the results most approximated to

the limits observed by the UNBOUNDED algorithm. It is acceptable to expect that the

average wire length in the circuit will increase after applying our technique, as we reduce

the number of short wire segments.

For all considered parameters, the best results are achieved with OPTIMIZED al-

gorithm adjusted to limit in 16 the number of transistors in the new cells and set to perform

the exhaustive search described in Algorithm 5 when the group of connected cells of uni-

tary fanout is at most 10. As a reference for comparison, a D-type flip-flop of unitary di-

mension in Nangate Open Cell Library has 28 transistors. A cell with 16 transistors would

not be the biggest in the resulting circuit. By using these parameters, we could achieve at

least 67% (net count) and, at most 89% (instances) of the optimization estimated with the

UNBOUNDED algorithm, on average. Regarding transistor count, we achieved with this

algorithm and parameters 71% of the measured upper limit of improvement. However, the

BOUNDED algorithm runs ten times faster than the OPTIMIZED procedure. Therefore,

the challenge with the OPTIMIZED algorithm is to improve its runtime, whose bottleneck
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Figure 5.18: Variation in wire segments count in each circuit with bounded method (left)
and optimal method (right), compared to the reference value (middle).

Source: own authorship

Table 5.7: Wire segments count variation (%), comparing BOUNDED and OPTIMIZED
algorithms.

Count BOUNDED Algorithm OPTIMIZED Algorithm
CKT 8T 10T 12T 14T 16T 8T 10T 12T 14T 16T
b01 57 -1,7 -1,7 -1,7 -10,3 -10,3 -3,4 -5,2 -8,6 -15,5 -15,5
b02 30 0,0 0,0 -3,3 -10,0 -10,0 0,0 -3,3 -6,7 -10,0 -10,0
b03 225 -3,8 -6,0 -6,4 -7,7 -9,4 -3,8 -6,0 -9,4 -10,3 -10,3
b04 734 -2,0 -2,8 -3,5 -5,2 -4,7 -2,4 -4,0 -6,1 -7,1 -7,6
b05 915 -1,2 -1,9 -2,3 -3,8 -4,1 -2,7 -4,5 -5,5 -6,6 -7,1
b06 71 -1,4 -1,4 -1,4 -4,2 -4,2 -2,8 -5,6 -5,6 -6,9 -6,9
b07 590 -0,7 -0,7 -0,7 -1,2 -1,2 -2,2 -3,0 -4,9 -5,4 -5,4
b08 240 -1,2 -2,9 -4,1 -7,4 -8,6 -3,7 -6,6 -11,5 -13,2 -13,6
b09 212 -4,9 -5,4 -5,8 -5,8 -5,8 -4,9 -5,4 -7,2 -9,9 -10,3
b10 258 -4,8 -5,9 -5,5 -7,4 -11,4 -5,2 -7,4 -8,1 -11,8 -14,4
b11 790 -1,0 -1,6 -1,6 -3,6 -4,9 -2,3 -3,4 -5,1 -6,8 -8,1
b12 1.676 -2,0 -2,3 -2,6 -3,3 -4,1 -2,1 -3,0 -4,7 -5,1 -6,5

AVG. 483 -2,1 -2,7 -3,3 -5,8 -6,6 -3,0 -4,8 -7,0 -9,0 -9,7
Source: own authorship
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Figure 5.19: Variation in net count in each circuit with bounded method (left) and optimal
method (right), compared to the reference value (middle).

Source: own authorship

Table 5.8: Net count variation (%), comparing BOUNDED and OPTIMIZED algorithms.

Count BOUNDED Algorithm OPTIMIZED Algorithm
CKT 8T 10T 12T 14T 16T 8T 10T 12T 14T 16T
b01 29 0,0 0,0 0,0 -10,3 -10,3 0,0 -6,9 -6,9 -17,2 -17,2
b02 17 0,0 0,0 -5,9 -17,6 -17,6 0,0 -5,9 -11,8 -17,6 -17,6
b03 116 -6,9 -6,9 -7,8 -11,2 -14,7 -6,9 -11,2 -17,2 -19,0 -20,7
b04 359 -3,3 -4,7 -5,0 -8,1 -6,4 -4,7 -7,8 -11,4 -12,3 -13,4
b05 381 -2,1 -2,1 -2,6 -4,2 -4,7 -3,9 -6,6 -7,9 -9,2 -9,7
b06 40 0,0 0,0 0,0 -5,0 -5,0 -2,5 -5,0 -5,0 -10,0 -10,0
b07 272 -0,7 -0,7 -0,7 -1,1 -1,1 -2,9 -4,0 -7,7 -8,1 -8,1
b08 114 -2,6 -6,1 -6,1 -9,6 -11,4 -7,0 -10,5 -14,0 -16,7 -18,4
b09 112 -9,8 -10,7 -10,7 -10,7 -10,7 -9,8 -10,7 -14,3 -17,0 -17,9
b10 130 -7,7 -8,5 -8,5 -9,2 -13,8 -8,5 -10,8 -12,3 -15,4 -18,5
b11 341 -2,1 -3,2 -3,2 -5,0 -5,6 -3,8 -5,9 -7,9 -9,7 -10,0
b12 778 -4,0 -4,4 -4,5 -5,4 -6,7 -4,2 -5,4 -8,1 -8,9 -11,3

AVG. 224 -3,3 -3,9 -4,6 -8,1 -9,0 -4,5 -7,6 -10,4 -13,4 -14,4
Source: own authorship
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is in the exhaustive search it performs. A possible way to deal with this situation in future

works is to use a lookup table to avoid processing twice the same arrangement of gates

in a group. It is also possible to implement this part to support parallel execution, as the

procedure to find the number of transistors of a new cell candidate to replace groups of

cells in the original netlist is entirely independent.

5.5 Estimated impact in physical synthesis

Before we start to present the experiments realized in the scope of this evaluation,

it is necessary to make clear that a serious analysis of the impact of our technique toward

physical design should take into account much more details on physical aspects of the new

cells we include in the circuit, such as gate sizing, extraction, and characterization, as we

discuss in (CONCEIÇÃO; REIS, 2019). However, there are many related works already

presented in the previous chapters of this thesis, some of them developed in our research

group, showing the advantages of adopting SCCGs also when facing the challenges from

the physical domain. So, the results presented in this section are only estimations.

We only use the OPTIMAL algorithm set to perform exhaustive search in up to 10

cells in the experiments presented from now on. Although not being the main focus of the

thesis, we want to estimate the impacts of our technique over the circuit area. To do this,

we use the Astran tool mostly with its default parameters (without tuning) to re-generate

the layout of all combinational cells with a single output present in 45nm Nangate Open

Cell Lilbrary (NOCL) in order to make a fair comparison.

The original .bench description of the circuits from the ITC99 benchmark is syn-

thesized to the nocl45nm.genlib we described in the introduction of this chapter. The

new cells that modify the original netlist by our technique are also generated with Astran,

mostly using its default parameters, always with minimal dimensions. We assume that

sizing is a future step, out-of-scope of the transistor count optimization procedure we are

proposing in this thesis. Notice that we neglect possible area savings due to decreasing

via count, although it could reduce the total area in the circuit even more. Therefore, the

reported area of the circuits is given by the cell area.
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5.5.1 Area analysis

We analyze 60 different netlists generated by setting the parameter of the OPT-

MIZED algorithm to allow new SCCGs with up to 8, 10, 12, 14, and 16 transistors, for

12 different circuits. It demanded to use ASTRAN to generate a layout for the 1230 new

cells, which would be a challenging task to do without a layout design automation tool.

We report the dimension of the new SCCGs to get the data we show in this section.

Affected Area

We report on Table 5.9 the affected area of the original netlist as the sum of the

area of each cell replaced by our merging technique. As we can see, the technique affects

an increasing portion of the circuit as we allow bigger SCCGs, achieving up to 29% when

limiting the new cells to 16 transistors.

Table 5.9: Affected circuit area when using OPTIMAL algorithm, varying the maximum
number of transistors in the new cells.

Ckt 8 tr. 10 tr. 12 tr. 14 tr. 16 tr.
b01 5,6% 12,5% 13,5% 23,4% 23,4%
b02 0,0% 0,0% 17,0% 20,6% 20,6%
b03 7,3% 10,5% 20,7% 21,8% 22,2%
b04 5,3% 9,2% 13,4% 14,0% 15,7%
b05 6,7% 12,0% 14,5% 16,8% 17,3%
b06 4,9% 10,5% 10,5% 13,0% 13,0%
b07 3,5% 4,9% 11,2% 11,9% 11,9%
b08 8,0% 13,1% 18,8% 20,4% 21,2%
b09 9,8% 9,8% 13,9% 17,7% 19,1%
b10 9,5% 15,5% 19,8% 27,9% 29,6%
b11 5,8% 9,4% 15,5% 19,8% 22,1%
b12 5,7% 8,0% 12,6% 15,0% 18,9%

MAX. 9,8% 15,5% 20,7% 27,9% 29,6%

Area savings

If we compare the cell area of the new cell (together with the inverters it demands)

with the total area of the replaced group of cells, we can see that our SCCGs occupy an

area 25% smaller on average, as shown in Table 5.10. This reduction in the small portions

of the circuit affected by our technique results in an overall reduction in the area of the
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whole circuit.

Table 5.10: Compared cell area (in µm2) of the new SCCGs and the group of cells they
replace.

8 transistors 10 transistors 12 transistors 14 transistors 16 transistors

Ckt
group
area (%)

group
area (%)

group
area (%)

group
area (%)

group
area (%)

b01 3,3 0,0 7,3 -20,4 7,9 -11,3 13,8 -25,0 13,8 -25,0
b02 0,0 0,0 0,0 0,0 6,3 -31,0 7,6 -37,3 7,6 -37,3
b03 19,6 -26,0 28,1 -33,0 55,5 -28,6 58,5 -28,0 59,6 -30,4
b04 41,1 -30,3 71,2 -28,9 104,0 -27,5 108,9 -27,8 122,1 -27,1
b05 44,6 -26,5 79,8 -25,1 96,7 -25,9 111,8 -27,0 114,8 -27,4
b06 4,0 -18,5 8,7 -17,2 8,7 -20,7 10,8 -26,4 10,8 -25,0
b07 19,0 -31,8 27,1 -28,7 61,8 -21,5 65,4 -21,3 65,4 -22,7
b08 19,2 -32,8 31,1 -26,9 44,7 -22,1 48,5 -21,6 50,6 -26,0
b09 25,4 -32,4 25,4 -35,5 36,1 -30,7 45,9 -28,8 49,5 -26,3
b10 22,7 -30,3 37,3 -24,9 47,4 -25,2 66,7 -26,4 70,9 -26,9
b11 34,3 -24,5 56,0 -26,7 92,2 -20,3 117,9 -21,1 131,4 -21,6
b12 83,8 -31,6 117,8 -28,1 185,7 -24,0 221,2 -27,0 278,6 -26,2

AVG. 26,4 -29,1 40,8 -27,8 62,2 -24,6 73,1 -25,8 81,3 -25,9

When we measure the cell area of the whole circuit before and after applying our

merging technique, we can see in Table 5.11 that we can achieve up to 7,9% reduction, and

about 5.3% in average when we performed OPTIMIZED algorithm adjusted to generate

new cells with up to 16 transistors. This reduction can be even more significant when we

consider the area saved due to fewer pins, as it reduces the number of vias.

Table 5.11: Compared cell area (in µm2) of the netlists before and after applying our gate
merging technique

Ckt before 8 transistors 10 transistors 12 transistors 14 transistors 16 transistors
Measure % Measure % Measure % Measure % Measure %

b01 58,8 58,8 0,0 57,3 -2,5 57,9 -1,5 55,3 -5,9 55,3 -5,9
b02 37,0 37,0 0,0 36,2 -2,0 35,0 -5,3 34,1 -7,7 34,1 -7,7
b03 268,2 263,1 -1,9 259,0 -3,5 252,4 -5,9 251,9 -6,1 250,1 -6,8
b04 775,6 763,1 -1,6 755,1 -2,7 747,0 -3,7 745,3 -3,9 742,5 -4,3
b05 665,2 653,4 -1,8 645,2 -3,0 640,2 -3,8 635,0 -4,5 633,8 -4,7
b06 82,7 82,0 -0,9 81,2 -1,8 80,9 -2,2 79,9 -3,4 80,0 -3,3
b07 549,6 543,5 -1,1 541,8 -1,4 536,3 -2,4 535,7 -2,5 534,8 -2,7
b08 238,2 231,9 -2,6 229,8 -3,5 228,3 -4,1 227,7 -4,4 225,0 -5,5
b09 259,7 251,4 -3,2 250,6 -3,5 248,6 -4,3 246,4 -5,1 246,7 -5,0
b10 239,6 232,7 -2,9 230,3 -3,9 227,6 -5,0 222,0 -7,4 220,6 -7,9
b11 595,5 587,2 -1,4 580,6 -2,5 576,8 -3,1 570,7 -4,2 567,1 -4,8
b12 1.473,8 1.447,3 -1,8 1.440,7 -2,2 1.429,2 -3,0 1.414,1 -4,1 1.400,9 -4,9

AVG. 437,0 429,3 -1,6 425,7 -2,7 421,7 -3,7 418,2 -4,9 415,9 -5,3
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5.5.2 Connection analysis

We also want to analyze how our technique influences circuit wiring. More than

count how many nets or how many wire segments, as we have already reported, we want

to estimate how it works for total wirelength in the circuit. To measure it, we generated

bookshelf descriptions for every netlist used in this analysis. Then we place the cells in

the circuit using placement tools like Dragon and Capo. Both tools use Half Perimeter

Wire Length (HPWL) as a model to estimate wirelength.

Total wirelength analysis

We report in Table 5.12 the measurements made in the original input netlists and

in the netlists obtained by applying our technique for different sizes allowed for the new

SCCG gates, as we did in the previous area analysis. Different from our expectations,

we can see that the total wirelength reported by the tools has increased for some circuits

and parameter configurations. The total wirelength measures vary from -18% in b02 to

+14% in b04 for Dragon placer, and from -21% in b01 circuit up to +47% in b12 for Capo

placement tool.

Table 5.12: Compared total wirelength (in µm) of the circuits before and after applying
our technique

Ckt DRAGON CAPO
before 8T 10T 12T 14T 16T measure 8T 10T 12T 14T 16T

b01 120,2 -7,1 1,4 -1,6 -7,8 -8,1 108,0 2,4 -6,8 -3,9 -21,3 -21,3
b02 67,5 5,9 -6,1 -13,4 -18,4 -14,9 59,9 2,7 0,6 6,5 2,2 2,2
b03 613,8 -7,0 -4,1 -3,8 -5,3 -8,9 464,5 4,8 16,9 4,1 21,6 17,1
b04 2058,0 13,3 10,8 14,3 15,1 11,5 1944,8 2,8 9,3 26,4 40,3 11,4
b05 1973,4 0,6 3,4 -2,5 0,9 -0,3 1990,3 1,2 3,0 -1,5 17,2 -2,2
b06 168,9 -2,2 1,7 1,4 -10,8 -7,1 134,4 10,9 14,2 3,8 -1,8 11,7
b07 1833,5 -0,6 -1,6 -1,5 0,2 -1,7 1457,1 4,7 4,8 17,3 22,2 29,1
b08 612,2 -3,0 -3,7 2,2 0,5 -0,3 535,6 6,1 10,0 12,6 -0,7 0,0
b09 594,4 1,3 3,3 -0,3 2,0 3,4 510,8 1,8 4,8 20,6 7,2 3,3
b10 690,2 0,3 -0,4 -0,3 -0,1 1,1 595,1 0,5 15,5 12,2 10,7 2,8
b11 2376,3 -1,1 -0,1 -3,4 0,4 0,6 2104,5 1,1 -0,7 5,9 -0,7 7,2
b12 4878,5 1,3 0,7 9,6 5,0 4,9 4439,9 3,6 6,0 26,3 47,5 10,6

AVG. 1332,2 0,1 0,4 0,1 -1,5 -1,7 1195,4 3,6 6,5 10,9 12,0 6,0

A possible explanation for this increase in total wirelength is the fact that we avoid

to include new inverters by looking in the circuit for the inverted inputs the new gate

demands. It may be getting a signal from a gate with fanout bigger than one, which is
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more likely to be kept by the placer far apart from the new gate when the circuit is placed

again – thus demanding a longer wire. This longer wire shall be bigger than the sum of the

length of the wires dropped during the merging process. Another clever strategy would

be to consider the position of cells and merge then only if they are closer each other. This

is another way to improve the proposed technique when applying it in physical synthesis.

Congestion estimation

We go a bit further to analyze wire congestion estimation in the circuit. We use the

program CongestionMaps-Lnx645 to report congestion data. Congestion analysis works

by dividing the circuit into smaller areas called bins, and defining a number of routing

tracks each area supports. A given bin is considered congested when its available number

of tracks is smaller than the estimated number of tracks that routing requires. In Figure

5.20, we show a chart with the distribution of bins congestion of each circuit before and

after we apply our merging technique. By looking at Figure 5.21, which exhibit median,

mean, and peak congestion values of each circuit, we can see that the congestion increases

for the most circuits.

Figure 5.20: Wire congestion distribution in circuits before and after applying OPTI-
MIZED algorithm set to generate new cells with up to 16T.

Source: own authorship

Wirelength distribution

On the other hand, although increasing congestion, our technique tends to elimi-

nate shorter connections, as we can see in Figure 5.22. However, by observing the varia-

5Available: http://vlsicad.eecs.umich.edu/BK/PlaceUtils/
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Figure 5.21: Variations of median, average and peak on congestion map of the circuits
after applying the merging technique.

Source: own authorship

tion on median, average, and peak values of estimated wirelength in each circuit presented

in Figure 5.23, we can notice that the longest wire reduces in most circuits. Median and

average wire length increases, as a direct effect of eliminating shorter wires, which was

predicted in (SEO et al., 2008).

However, we also observe an increase in congestion as a side effect result mostly

due to area reduction we achieve with our merging technique, which implies that cells are

now closer to each other. The increasing on the demanded buffer insertion, the main ar-

gument sustained in (SEO et al., 2008) against using large cells, may be an overestimated

problem. Anyway, it has to be measured in future works when performing this technique

until physical synthesis.

Figure 5.22: Distribution of HPWL wirelength as quotas of the longest wire

Source: own authorship
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Figure 5.23: Variations of median, average and peak on connections in the circuit after
applying the merging technique.

Source: own authorship

5.6 Comparing to a commercial tool

We also performed tests to evaluate our technique when applied to a netlist gener-

ated with a commercial tool, targeting the Nangate Open Cell Library 45nm (NOCL45nm).

After the netlist is generated, we replace every oversized cell by its unitary size version,

in order to do a fair transistor count. Also, all cells in the original library were resynthe-

sized using Astran in order to make a fair comparison in area and wirelength. We use this

resulting netlist as input to the OPTIMIZED algorithm set to do the exhaustive search for

groups with up to 10 connected unitary fanout gates, and allowing new SCCGs with up to

16T.

The results regarding transistor, instance, pin, nets, and wire segments count, as

well as cell area and total wirelength estimations, are reported in Table 5.13. We can see

that our technique can considerably reduce all the parameters, with a drawback in total

wirelength estimation for some circuits. It demonstrates that there are significant opti-

mization opportunities in the traditional digital design flow, and approaches not limited to

the set of cells available in a cell library can do the job.
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Table 5.13: Compared transistor, instance, pin, net, and wire segment count, and esti-
mated cell area (in µm2) and total wirelength (in µm) of netlists generated with a com-
mercial tool (#) and the variation after applying our merging technique with OPTIMIZED
algorithm, set to generate cells with up to 16 transistors

Ckt transistor instances pins wire segments cell area
Total

Wirelength
# % # % # % # % # % # %

b01 344 0,87 42 0,69 137 0,79 86 0,81 72,6 0,84 177,5 0,87
b02 246 0,87 30 0,67 97 0,76 60 0,78 50,6 0,85 119,7 0,80
b03 1.460 0,95 106 0,63 422 0,81 280 0,85 283,3 0,84 577,3 0,84
b04 3.920 0,96 307 0,84 1.185 0,90 799 0,92 798,4 0,86 1.880,2 0,95
b05 3.088 0,92 416 0,78 1.386 0,84 933 0,86 677,4 0,86 2.025,1 1,04
b06 404 0,96 36 0,89 123 0,91 75 0,91 80,9 0,94 166,5 1,02
b07 2.916 0,93 276 0,79 986 0,86 666 0,88 624,9 0,84 1.667,8 0,94
b08 1.138 0,93 90 0,73 352 0,85 230 0,87 223,4 0,85 524,5 1,03
b09 1.448 0,91 149 0,60 511 0,75 331 0,80 287,9 0,85 775,6 0,83
b10 1.256 0,89 145 0,71 509 0,79 334 0,81 262,0 0,83 827,4 0,91
b11 2.716 0,92 364 0,80 1.207 0,85 804 0,86 603,0 0,86 1.953,6 1,06
b12 7.482 0,94 726 0,79 2.652 0,86 1.800 0,89 1.537,5 0,86 4.547,0 1,05

AVG. 2.202 0,92 224 0,74 797 0,83 533 0,85 458,5 0,86 1.270,2 0,94
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6 CONCLUSIONS AND FUTURE WORKS

We have developed a systematic approach to minimize the transistor count, wires,

and contacts of a circuit based on merging interconnected cells of unitary fanout present

in the input netlist. Also, by adopting the proposed alternative flow towards a library free

design of digital circuits, we can keep using some of the sophisticated tools designed to

handle the standard cell-based design. The proposed method is library independent and

can be adopted as part of a full-custom automated design methodology.

The experiments show the effectiveness of the proposed methodology as it is ca-

pable of reducing the transistor count by up to 13%, 8% on average when compared to

original netlist generated with a traditional commercial logic synthesis tool. The tech-

nique also showed to be active on reducing the number of instances(up to 39%), wire

segments (up to 21%), and contact count (up to 24%) in all test cases, even when com-

pared to netlists generated with ABC targeting big virtual libraries. Fewer contacts means

fewer vias, which also impacts on the overall area of the circuits.

The evaluation showed that the proposed merging technique is useful to reduce

the number of transistors in a transistor network of a circuit no matter the cells used in

the input netlist. Our OPTIMIZED algorithm showed the best results, always leading to

incrementally better results when a higher degree of freedom is allowed. However, it still

needs improvements regarding performance, as the algorithm is based on the exploration

of all possible coverings of a group of connected cells and can take time to process all of

them.

We also estimate the area impact of the technique by generating cells using AS-

TRAN and comparing the cell area of the netlists before and after our proposed transistor

count optimization method. We observed an area reduction of 5.3% on average when

compared to ABC results, and an average reduction of 14% when compared to a leading

commercial logic synthesis tool. Such reductions tend to be even more significant, since

we are reporting only the total cell area, without considering the area occupied by vias,

also reduced with our technique. These results can be significant in recent technologies

nodes where the delay of interconnections and vias has become dominant.

On the other hand, estimations made in the physical design domain reveals that our

proposed technique may increase the wirelength as a payoff for some circuits. We impute

this result to the decision of avoiding to insert new inverters by reusing signals existing in

the circuit. Even though we reduce a considerable number of connections, in some cases,
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the sum of their lengths is smaller then the length of the new interconnections added to

the new gate. The routing tool will probably need to insert buffers in the circuit to break

the long wires in smaller ones, but this extra area shall not be larger than the area budget

we get by applying our technique. Besides that, an increase in wirelength not necessarily

makes unfeasible the circuit routing, as there is a reduction in the number of connections.

To summarize, the main contributions of this thesis are:

• A study about transistor count as a quality parameter of both academic and com-

mercial tools;

• A novel method to achieve a library free design methodology of a digital circuits,

that still can use the traditional standard cell framework of tools and formats;

• A set of applied algorithms to find all possible covers in a root-tree-like structure in

a circuit;

• Three different algorithms to minimize transistor count in a netlist using the pro-

posed merging technique;

• A systematic procedure to reduce transistor count in a circuit, also capable of reduc-

ing wires and vias, and potentially useful to reduce area and power consumption;

and

• A new tool to compose the TRANCA methodology of our research group, to work

with the layout automation tool ASTRAN or any new one.

6.1 Future Works

The developed tool needs minor improvements on the user interface. It also has to

be improved seeking performance, especially in the implementation of the OPTIMIZED

algorithm to avoid process again repeated groups of cells. A possible way to achieve

this goal is to use data structures like lookup tables to store intermediary results. It is

also possible to re-implement the exhaustive algorithm to compute data of each cover in

parallel, as each cover is independent.

It is still necessary to improve the method to take into consideration the placement

information of the cells on deciding to insert new inverting cells. Further, one can improve

the proposed technique on physical domain by adding the relative position of cells in the

criteria to merge cells, merging only cells that are closer to each other. Also, the reasons

for the unwanted results regarding total wirelength in some circuits and the actual impact
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of it in circuit routability must be investigated in future works.

A possible unfolding of this thesis is to integrate a continuous sizing tool to attend

specified timing goals. It is also in our plans to perform a more in-depth validation of the

proposed method in the physical domain, especially considering more recent technology

nodes.

Another possible investigation derived from this thesis is to study how the pro-

posed library free design flow can help to improve the security of circuits, as the unlimited

number of cell layout favors camouflage of the circuit, thus making reverse engineering

difficult.



90

REFERENCES

ALBRECHT, C. Iwls 2005 benchmarks. In: Proc. Int. Work-
shop Logic Synthesis (IWLS 2005). [S.l.: s.n.], 2005. Available in:
iwls.org/iwls2005/benchmark_presentation.pdf.

AMARÚ, L.; GAILLARDON, P. E.; MICHELI, G. D. Mixsyn: An efficient logic
synthesis methodology for mixed xor-and/or dominated circuits. In: 2013 18th Asia
and South Pacific Design Automation Conference (ASP-DAC). [S.l.: s.n.], 2013. p.
133–138. ISSN 2153-6961. DOI:10.1109/ASPDAC.2013.6509585.

BAMPI, S.; REIS, R. Challenges and emerging technologies for system integration
beyond the end of the roadmap of nano-cmos. VLSI-SoC: Technologies for Systems
Integration, Springer, p. 21–33, 2011. DOI:10.1007/978-3-642-23120-9_2.

BERKELAAR, M.; JESS, J. Technology mapping for standard-cell generators. In: IEEE
International Conference on Computer-Aided Design (ICCAD). [S.l.: s.n.], 1988. p.
470–473. DOI:10.1109/ICCAD.1988.122551.

Cardoso, M. S. et al. Libra: An automatic design methodology for cmos complex gates.
IEEE Transactions on Circuits and Systems II: Express Briefs, v. 65, n. 10, p.
1345–1349, Oct 2018. ISSN 1549-7747. DOI: 10.1109/TCSII.2018.2866231.

CONCEIÇÃO, C. et al. A cell clustering technique to reduce transistor count. In: IEEE
International Conference on Electronics, Circuits and Systems (ICECS). [S.l.: s.n.],
2017. p. 186–189. DOI:10.1109/ICECS.2017.8291996.

CONCEIÇÃO, C.; POSSER, G.; REIS, R. Reducing the number of transistors with gate
clustering. In: IEEE Latin American Symposium on Circuits Systems (LASCAS).
[S.l.: s.n.], 2016. p. 163–166. DOI:10.1109/LASCAS.2016.7451035.

CONCEIÇÃO, C. M. O.; REIS, R. A. L. Transistor count reduction by gate merging.
IEEE Transactions on Circuits and Systems I: Regular Papers, v. 66, n. 6, p.
2175–2187, June 2019. ISSN 1549-8328. DOI: 10.1109/TCSI.2019.2907722.

CONG, J.; DING, Y. On area/depth trade-off in lut-based fpga technology mapping.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 2, n. 2, p.
137–148, June 1994. ISSN 1063-8210. DOI:10.1109/92.285741.

DETJENS, E. et al. Technology Mapping in MIS. In: IEEE. Proc. of the Int. Conf. on
Computer Aided Design. [S.l.], 1987. p. 116–119.

FLACH, G. et al. Effective method for simultaneous gate sizing andvth assignment
using lagrangian relaxation. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 33, n. 4, p. 546–557, April 2014. ISSN 0278-0070.
DOI:10.1109/TCAD.2014.2305847.

GAVRILOV, S. et al. Library-less synthesis for static cmos combinational logic circuits.
In: IEEE/ACM International Conference on Computer-aided Design. Washington,
DC, USA: IEEE Computer Society, 1997. (ICCAD ’97), p. 658–662. ISBN 0-8186-
8200-0. Available from Internet: <https://dl.acm.org/citation.cfm?id=266388.266570>.

http://iwls.org/iwls2005/benchmark_presentation.pdf
http://doi.org/10.1109/ICCAD.1988.122551
http://doi.org/10.1109/ICECS.2017.8291996
http://doi.org/10.1109/LASCAS.2016.7451035
http://doi.org/10.1109/92.285741
http://doi.org/10.1109/TCAD.2014.2305847
https://dl.acm.org/citation.cfm?id=266388.266570


91

GHANE, M.; ZARANDI, H. R. Gate merging: An nbti mitigation method to eliminate
critical internal nodes in digital circuits. In: Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing (PDP). [S.l.: s.n.], 2016. p.
786–791. ISSN 2377-5750. DOI:10.1109/PDP.2016.90.

GUIMARãES, D. S.; PUGET, J.; REIS, R. A. L. A mixed cells physical design approach.
In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS). [S.l.:
s.n.], 2015. p. 1446–1449. ISSN 0271-4302. DOI:10.1109/ISCAS.2015.7168916.

JIANG, Y.; SAPATNEKAR, S. S. An integrated algorithm for combined placement
and libraryless technology mapping. In: IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). [S.l.: s.n.], 1999. p. 102–105. ISSN 1092-3152.
DOI: 10.1109/ICCAD.1999.810630.

KAGARIS, D. Moto-x: A multiple-output transistor-level synthesis cad tool. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 35,
n. 1, p. 114–127, Jan 2016. ISSN 0278-0070. DOI:10.1109/TCAD.2015.2448675.

KAHNG, A. B. et al. Timing closure. In: . VLSI Physical Design: From Graph
Partitioning to Timing Closure. Dordrecht: Springer Netherlands, 2011. p. 219–264.
ISBN 978-90-481-9591-6. DOI:10.1007/978-90-481-9591-6_8.

KNUTH, D. E. The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Redwood City, CA, USA: Addison Wesley Longman
Publishing Co., Inc., 1997. 373 p. ISBN 0-201-89683-4.

MARKOV, I. L.; HU, J.; KIM, M. Progress and challenges in vlsi placement research.
Proceedings of the IEEE, v. 103, n. 11, p. 1985–2003, Nov 2015. ISSN 0018-9219.
DOI: 10.1109/JPROC.2015.2478963.

MARQUES, F. S. et al. Dag based library-free technology mapping. In: ACM Great
Lakes Symposium on VLSI. New York, NY, USA: ACM, 2007. (GLSVLSI ’07), p.
293–298. ISBN 978-1-59593-605-9. DOI: 10.1145/1228784.1228857.

MARTINS, M. G. A. et al. Boolean factoring with multi-objective goals. In: IEEE
International Conference on Computer Design (ICCD). [S.l.: s.n.], 2010. p. 229–234.
ISSN 1063-6404. DOI:10.1109/ICCD.2010.5647772.

MATOS, J. M. et al. Deriving reduced transistor count circuits from aigs. In: IEEE
Symposium on Integrated Circuits and Systems Design (SBCCI). [S.l.: s.n.], 2014.
p. 1–7. DOI:10.1145/2660540.2661008.

MICHELI, G. D. Synthesis and optimization of digital circuits. [S.l.]: McGraw-Hill
Higher Education, 1994.

MORAES, F. G. et al. A Physical Synthesis Design Flow based on Virtual
Components. In: DCIS’00: XV Design of Circuits and Integrated Systems
Conference. Montpellier, France: [s.n.], 2000. p. 740–745. Available from Internet:
<https://hal-lirmm.ccsd.cnrs.fr/lirmm-00239439>.

MURGAI, R. Technology-dependent logic optimization. Proceedings of
the IEEE, v. 103, n. 11, p. 2004–2020, Nov 2015. ISSN 0018-9219.
DOI:10.1109/JPROC.2015.2484299.

http://doi.org/10.1109/PDP.2016.90
http://doi.org/10.1109/TCAD.2015.2448675
https://doi.org/10.1007/978-90-481-9591-6_8
http://doi.org/10.1109/ICCD.2010.5647772
http://doi.org/10.1145/2660540.2661008
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00239439
http://doi.org/10.1109/JPROC.2015.2484299


92

NEWTON, A. R. A survey of computer aids for vlsi layout. In: IEEE Symposium on
VLSI Technology. [S.l.: s.n.], 1982. p. 72–75.

ONODERA, H.; HASHIMOTO, M.; HASHIMOTO, T. Asic design methodology with
on-demand library generation. In: IEEE Symposium on VLSI Circuits (VLSIC). [S.l.:
s.n.], 2001. p. 57–60. DOI: 10.1109/VLSIC.2001.934194.

PILATO, C.; FERRANDI, F.; PANDINI, D. A design methodology for the automatic
sizing of standard-cell libraries. In: ACM Great Lakes Symposium on VLSI. New
York, NY, USA: ACM, 2011. (GLSVLSI ’11), p. 151–156. ISBN 978-1-4503-0667-6.
DOI: 10.1145/1973009.1973040.

POSSANI, V. N. et al. Graph-based transistor network generation method for supergate
design. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, v. 24,
n. 2, p. 692–705, Feb 2016. ISSN 1063-8210. DOI:10.1109/TVLSI.2015.2410764.

POSSER, G. et al. Transistor sizing and gate sizing using geometric programming
considering delay minimization. In: 10th IEEE International NEWCAS Conference.
[S.l.: s.n.], 2012. p. 85–88. DOI:10.1109/NEWCAS.2012.6328962.

POSSER, G. et al. A study on layout quality of automatic generated cells. In: 2010 17th
IEEE International Conference on Electronics, Circuits and Systems. [S.l.: s.n.],
2010. p. 651–654. DOI: 10.1109/ICECS.2010.5724596.

RABAEY, J. M.; CHANDRAKASAN, A. P.; NIKOLIC, B. Digital Integrated Circuits.
[S.l.]: Prentice hall Englewood Cliffs, 2002. ISBN 1-40207-075-6.

REIMANN, T.; SZE, C. C.; REIS, R. Challenges of cell selection algorithms in industrial
high performance microprocessor designs. Integration, v. 52, p. 347 – 354, 2016. ISSN
0167-9260. DOI:10.1016/j.vlsi.2015.09.001.

REIS, A. I. Covering strategies for library free technology mapping. In: IEEE
COMPUTER SOCIETY. Proc. of the IEEE Computer Society Symp. on
Integrated Circuit Design and System Design. [S.l.], 1999. p. 0180–0180.
DOI:10.1109/SBCCI.1999.803115.

REIS, A. I. et al. Library free technology mapping. In: VLSI: Integrated Systems on
Silicon. [S.l.]: Springer, 1997. p. 303–314. DOI:10.1007/978-0-387-35311-1_25.

REIS, R. Physical design automation at transistor level. In: 2008 NORCHIP. [S.l.: s.n.],
2008. p. 241–245. DOI:10.1109/NORCHP.2008.4738270.

REIS, R. Design automation of transistor networks, a new challenge. In: IEEE
International Symposium on Circuits and Systems (ISCAS). [S.l.: s.n.], 2011. p.
2485–2488. ISSN 0271-4302. DOI:10.1109/ISCAS.2011.5938108.

REIS, R. Power consumption & reliability in nanocmos. In: IEEE Conference on
Nanotechnology (IEEE-NANO). [S.l.: s.n.], 2011. p. 711–714. ISSN 1944-9399.
DOI:10.1109/NANO.2011.6144656.

ROY, R.; BHATTACHARYA, D.; BOPPANA, V. Transistor-level optimization of digital
designs with flex cells. Computer, v. 38, n. 2, p. 53–61, Feb 2005. ISSN 0018-9162.
DOI:10.1109/MC.2005.74.

http://doi.org/10.1109/TVLSI.2015.2410764
http://doi.org/10.1016/j.vlsi.2015.09.001
https://doi.org/10.1109/SBCCI.1999.803115
http://doi.org/10.1109/NORCHP.2008.4738270
http://doi.org/10.1109/ISCAS.2011.5938108
http://doi.org/10.1109/NANO.2011.6144656


93

SCARTEZZINI, G.; REIS, R. Power consumption in transistor networks versus in
standard cells. In: IEEE International Conference on Electronics, Circuits, and
Systems (ICECS). [S.l.: s.n.], 2011. p. 740–743. DOI:10.1109/ICECS.2011.6122380.

SCHNEIDER, F. R. Building transistor-level networks following the lower bound on
the number of stacked switches. Thesis (MSc in Computer Science) — Universidade
Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brazil, 2007. Available in:
http://hdl.handle.net/10183/55446.

SEO, J. s. et al. On the decreasing significance of large standard cells in technology
mapping. In: 2008 IEEE/ACM International Conference on Computer-Aided Design.
[S.l.: s.n.], 2008. p. 116–121. ISSN 1092-3152. DOI:10.1109/ICCAD.2008.4681561.

SILVA, L. M. da. Minimização Lógica por Fusão de Portas. Thesis (MSc in
Microlectronics) — Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre,
RS - Brazil, 2017. Available in: http://hdl.handle.net/.

SMANIOTTO, G. et al. A post-processing methodology to improve the automatic
design of cmos gates at layout-level. In: IEEE International Conference
on Electronics, Circuits and Systems (ICECS). [S.l.: s.n.], 2017. p. 42–45.
DOI:10.1109/ICECS.2017.8292073.

TONFAT, J.; FLACH, G.; REIS, R. Leakage current analysis in static cmos logic gates
for a transistor network design approach. In: IEEE International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS). [S.l.: s.n.], 2016. p.
107–113. DOI:10.1109/PATMOS.2016.7833673.

WEBER, O. Fdsoi vs finfet: differentiating device features for ultra low power amp;amp;
iot applications. In: IEEE International Conference on IC Design and Technology
(ICICDT). [S.l.: s.n.], 2017. p. 1–3. DOI:10.1109/ICICDT.2017.7993513.

XUE, J.; AL-KHALILI, D.; ROZON, C. N. Tree-based transistor topology
extraction algorithm for library-free logic synthesis. In: IEEE International
Conference on Semiconductor Electronics. [S.l.: s.n.], 2004. p. 5 pp.–.
DOI:10.1109/SMELEC.2004.1620879.

ZIESEMER, A.; REIS, R. Simultaneous two-dimensional cell layout compaction using
milp with astran. In: IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
[S.l.: s.n.], 2014. p. 350–355. DOI:10.1109/ISVLSI.2014.79.

ZIESEMER, A. et al. Automatic layout synthesis with astran applied to asynchronous
cells. In: IEEE Latin American Symposium on Circuits and Systems (LASCAS).
[S.l.: s.n.], 2014. p. 1–4. DOI:10.1109/LASCAS.2014.6820314.

ZIESEMER, A. M.; REIS, R. A. L. Simultaneous two-dimensional cell layout
compaction using milp with astran. In: IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). [S.l.: s.n.], 2014. p. 350–355. ISSN 2159-3469.
DOI:10.1109/ISVLSI.2014.79.

ZIESEMER JR., A. M. Síntese Automática do Leiaute de Redes de Transistores. The-
sis (PhD in Microlectronics) — Universidade Federal do Rio Grande do Sul (UFRGS),
Porto Alegre, RS - Brazil, 2014. Available in: http://hdl.handle.net/10183/97852.

http://doi.org/10.1109/ICECS.2011.6122380
http://doi.org/10.1109/ICCAD.2008.4681561
http://doi.org/10.1109/ICECS.2017.8292073
http://doi.org/10.1109/PATMOS.2016.7833673
http://doi.org/10.1109/ICICDT.2017.7993513
http://doi.org/10.1109/SMELEC.2004.1620879
http://doi.org/10.1109/ISVLSI.2014.79
http://doi.org/10.1109/LASCAS.2014.6820314
http://doi.org/10.1109/ISVLSI.2014.79


94

APPENDIX A

Here we present an example of the configuration file as used in the current version

of the tool. It is a plain text file where commented lines start with #, and valid lines are

composed of a pair parameter-value, separated by white space.

config_45nm

######################################################

# UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL - UFRGS #

# INSTITUTO DE INFORMATICA - INF #

# PROGRAMA DE POS GRADUACAO EM COMPUTACAO - PPGC #

# Autor: Calebe Micael de Oliveira Conceicao #

# Orientador: Ricardo Augusto da Luz Reis #

######################################################

# path of the input Verilog file

netlist b12.v

# path of the .lib file

library NOCL45nm_functional_with_astran_area.lib

# name of the weakest inverter available in the library

invgate INV_X1

# name of the output pin of the inverter

output ZN

# name of the input pin of the inverter

input A

# default flipflop

defaultff DFFR_X1

# name of the inverted output pin of the FF gate

invffout QN

# length of the transistor in the technology

l_size 50

# prefered width of the transistor P

wpsize 630

# prefered width of the transistor N

wnsize 415

# name of the power pin

vddpin VDD

# name of the ground pin

gndpin VSS

# default unit of length. It will be used in spice

unit n
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# name of the NMOS transistor

nmos_t nmos

# name of the PMOS transistor

pmos_t pmos

# defining how to merge.

# "unbounded" -> without any limitation.

# "bounded" -> limited by serial transistor.

# "optimized" -> bounded, using exhaustive search method

method optimized

# maximum number of serial transistors.

serial 4

# maximum number of nodes to perform exhaustive search

maxnodeopt 10

# maximum number of transistors the new SCCG can have.

# valid only in bounded and optimized methods

maxnumtrs 16

# enable adding inverters when an inverted input is needed

# assign false only when estimating using unbounded method

addinvs true
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THESIS SUMMARY IN PORTUGUESE

Esta tese se concentra na otimização da tecnologia de circuitos integrados visando

a diminuição do número de transistores necessários para implementá-lo. Essa demanda

fica patente ao se observar o número reduzido de funções lógicas que uma biblioteca de

células tradicional usualmente fornece, o que representa uma limitação inerente à otimiza-

ção do número de transistores no circuito, algo que também, conforme estudos anteriores,

tem influência direta sobre as métricas usuais de desempenho do circuito como área, dis-

sipação de energia e atraso. Nesse contexto, uma abordagem de projeto livre de bibliote-

cas se faz necessária para obter circuitos otimizados, usando ferramentas para permitir a

síntese de layout de qualquer rede de transistores. Observando a taxonomia do método

adotado nessa tese, ele se encaixa como um processo customizado usando células compi-

ladas, conforme ilustrado na Figura 1.3 do texto principal.

O objetivo desta tese é avaliar a efetividade do método proposto e desenvolver al-

goritmos para otimizar a netlist lógica de um circuito que usa como estratagema a realiza-

ção de substituições de grupos de células simples por células complexas, visando reduzir

o número de transistores. Tomamos como entrada para nossos algorítimos a netlist gerada

no fluxo de síntese lógica tradicional para células padrão, a mesma que serve como entrada

para as ferramentas de projeto físico do circuito, bem como informações da biblioteca, e

parâmetros definidos pelo usuário da ferramenta em que os algoritmos estão implemen-

tados. A netlist é então processada para sistematicamente substituírmos agrupamentos de

células combinacionais conexas de fanout unitário por uma nova porta complexa com lóg-

ica equivalente, gerada sob demanda para reduzir o número de transistores. A nova porta

complexa normalmente não está disponível na biblioteca de células tradicional, e por ser

gerada automaticamente para a demanda pontual – usando para isso uma ferramenta de

geração automática de leiaute tal qual o ASTRAN – ela possui uma rede de transistores

personalizada, que pode ser adequadamente organizada e dimensionada para atender aos

requisitos específicos da porção do circuito onde se insere.

As abordagens livres de biblioteca disponíveis na literatura usualmente provêem

um número extenso de funções lógicas habilitadas pela adoção de biliotecas virtuais como

as de formato .genlib, que são descrições muito mais simplificadas das características da

células básicas que as caracterizações encontradas nos formatos liberty, de modo a per-

mitir lidar com a complexidade que um número grande de funções confere ao processo de

mapeamento tecnológico. Por sua vez, a metodologia adotada nesta tese consiste em uma
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forma alternativa de ampliar o número de funções lógicas utilizadas para implementar um

circuito lógico, e apresenta resultados similares aos alcançados com ferramentas conheci-

das no meio acadêmico e industrial. Como resultado, a ferramenta desenvida para esta

tese suporta a realização paralela da substituição de agrupamento de células no circuito,

enquanto apresenta resultados similares às ferramentas desenvolvidas anteriormente inde-

pendente da complexidade do conjunto de funções lógicas usadas para mapear a netlist de

entrada para nosso método. Isso significa que a técnica aqui proposta pode partir de ma-

peamentos iniciais tão simples quanto os que fazem uso apenas de células básicas como

NANDs e NORs, e ainda assim é capaz de reduzir o número de transistores a quantidades

equivalentes às alcançadas em abordagens livres de biblioteca anteriores que fazem uso

de bibliotecas virtuais com milhares de funções lógicas.

Três algoritmos principais foram desenvolvidos no arcabouço dessa tese para re-

alizar a identificação, agrupamento e substituição de células em uma netlist, a qual é repre-

sentada internamente como um grafo. Os Algoritmos 3, 4 e 8 apresentados no Capítulo 3

dessa tese são complementares entre si, adequados para avaliar características ou realizar

otimizações distintas dentro do método proposto. Cada algoritmo e os respectivos resulta-

dos são tema das três principais publicações realizadas no curso de desenvolvimento desta

tese (CONCEIÇÃO; POSSER; REIS, 2016; CONCEIÇÃO et al., 2017; CONCEIÇÃO;

REIS, 2019). O Capítulo II desta tese contém um detalhado passo a passo da metodologia

proposta, e do funcionamento geral dos algoritmos para um circuito básico de exemplo.

As principais contribuições dessa tese compreendem os algoritmos propostos e

os estudos e discussões realizados, que buscam responder às questões que naturalmente

emergem quanto às consequências da aplicação do método, a exemplo do real impacto so-

bre congestionamento e comprimento dos fios, e quanto ao impacto potencial de otimiza-

ção da técnica aplicada a uma dada netlist. Além disso, foram feitas estimativas sobre

as métricas usuais de desempenho do circuito, como o impacto sobre a área e sobre o

consumo do circuito, apesar da tese estar concentrada nas otimizações possíveis de serem

feitas no escopo da síntese lógica.

Os experimentos realizados mostram que a abordagem proposta é capaz de reduzir

o número de transistores em todo o circuito em até 13 % em comparação com netlists

geradas usando outras ferramentas de minimização, independentemente do tamanho da

biblioteca de células padrão usada inicialmente para sintetizar a netlist original. Também

reduzimos o número de instâncias (consequentemente contatos e conexões) nos experi-

mentos realizados em 14%, (11% e 10% em média, respectivamente), quando comparados
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com a netlist gerada usando uma ferramenta acadêmica líder em síntese lógica. Investig-

amos também o impacto da otimização proposta na área e comprimento de fio, alcançando

estimativas de redução média de 5 % na área e de até 14 % no comprimento total de fio.

Por outro lado, conjectura-se que a aplicação da técnica aqui proposta será mais eficaz

se realimentada com dados extraídos do processo de síntese física, como informações

do posicionamento (real ou estimado) das células consideradas nas substituições, como

forma de aprimorar os resultados obtidos quanto ao congestionamento do circuito. Para

além disso, restam evidenciadas as oportunidades de otimização possíveis de serem al-

cançadas ao romper com o paradigma de concepção de circuito digitais usando células

básicas como blocos construtivos para direcionar à uma concepção livre de biblioteca,

que enxerga o circuito de forma transparente como um agrupamento de redes de transis-

tores em um fluxo full custom automatizado, que permite maiores graus de customização.
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